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Abstract

We study finite episodic Markov decision pro-
cesses incorporating dynamic risk measures
to capture risk sensitivity. To this end, we
present two model-based algorithms applied
to Lipschitz dynamic risk measures, a wide
range of risk measures that subsumes spectral
risk measure, optimized certainty equivalent,
and distortion risk measures, among others.
We establish both regret upper bounds and
lower bounds. Notably, our upper bounds
demonstrate optimal dependencies on the
number of actions and episodes while reflect-
ing the inherent trade-off between risk sensi-
tivity and sample complexity. Our approach
offers a unified framework that not only en-
compasses multiple existing formulations in
the literature but also broadens the applica-
tion spectrum.

1 INTRODUCTION

Standard reinforcement learning (RL) aims to identify
an optimal policy that maximizes the expected return
Sutton and Barto (2018). This approach is commonly
known as risk-neutral RL since it prioritizes the mean
value of the uncertain return. However, in domains
characterized by high stakes scenarios, such as finance
(Davis and Lleo, 2008; Bielecki et al., 2000), medical
treatment (Ernst et al., 2006), and operations research
(Delage and Mannor, 2010), decision-makers exhibit
risk-sensitive behavior and strive to optimize a risk
measure associated with the return. For example, in
the field of finance, investors have different risk ap-
petites and their investment decisions should consider
risk factors such as market volatility, potential losses,
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and downside risks. Using risk-sensitive reinforcement
learning, portfolio managers can optimize their invest-
ment strategies by balancing risk and return to meet
their clients’ risk preferences.

One classical framework that addresses risk sensitivity
in Markov decision processes (MDPs) is the static risk
measure. In this framework, the value of a policy is
defined as a risk measure applied to the cumulative
reward at all stages. Among the commonly used static
risk measures are the entropic risk measure (ERM)
(Howard and Matheson, 1972; Föllmer and Knispel,
2011) and the conditional value at risk (CVaR) (Rock-
afellar et al., 2000), along with several others. However,
except for the ERM, the static risk measure generally
does not satisfy the Bellman equation. Consequently,
obtaining the optimal policy becomes computationally
challenging, even when the MDP model is known.

As an extension of the static risk measure, the dynamic
risk measure (DRM) (Ruszczyński, 2010) is constructed
by recursively applying the risk measure to the reward
at each stage. This recursive formulation naturally al-
lows for the derivation of a dynamic programming equa-
tion and thus circumvents the computational burden.
Furthermore, DRMs have the advantage of producing
time-consistent optimal policies, a property that is par-
ticularly justified in financial applications (Osogami,
2012). Therefore, DRMs provide a more robust frame-
work for decision-making in safety-critical applications,
such as clinical treatment, where risk sensitivity at all
stages is of paramount importance (Du et al., 2023).

Our work studies risk-sensitive reinforcement learn-
ing (RSRL) with a general DRM in the tabular and
episodic MDP setting, in which the agent interacts
with an unknown MDP with finite states and actions
in an episodic manner. Central to our methodology
is a foundational assumption: the risk measure in use
exhibits Lipschitz continuity, aligned to a specific met-
ric. This Lipschitz risk measure not only generalizes
but also augments prior studies on RSRL with regret
bounds. Some of the notable works in this domain
include risk-neutral RL (Azar et al., 2017), RSRL with
ERM (Fei et al., 2020, 2021a,b), RSRL with dynamic
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CVaR (Du et al., 2023), dynamic optimized certainty
equivalent (OCE) (Xu et al., 2023). These risk mea-
sures belong to coherent or concave categories. Yet, the
scope of Lipschitz risk measures extends beyond these.
Several fields such as operations research, control the-
ory, and behavioral economics employ even broader
risk measures. To shed light on a few:

• behavioral economics. The prevailing assump-
tion in coherent/concave measures is that agents
demonstrate economic rationality, inherently skew-
ing towards risk aversion, which often restricts
its applicability in behavioral economics. Here,
agents may not always be risk-averse, warranting
more encompassing risk measures as highlighted
by Chateauneuf and Cohen (2008); Tversky and
Kahneman (1992). Our framework extends con-
cave risk measures to incorporate those recognized
in behavioral economics.

• operation research. Jiang and Powell (2016) ap-
plies a convex combination of expectation and
CVaR to address the electric vehicle charging prob-
lem. Bäuerle and Glauner (2021) explores distor-
tion risk measures and their applications in areas
such as stopping problems, casino games, and cash
balance management.

Whereas prior studies are tailored to particular risk
measure classes, our approach offers a unified frame-
work that not only encompasses multiple episodic RL
formulations found in the literature but also broadens
the application spectrum.

Challenges Leveraging Lipschitz risk measures
presents unique technical challenges. One notable chal-
lenge emerges during the algorithmic design phase,
especially when designing exploration bonuses for gen-
eral nonlinear risk measures. Traditional methods,
such as the Hoeffding inequality or Bernstein-type con-
centration bounds, primarily cater to the concentra-
tion of mean values, making them less suitable for our
context. To navigate this, previous research, like Du
et al. (2023) and Xu et al. (2023), tailors exploration
bonuses according to the specific properties of the risk
measures under examination. For example, Du et al.
(2023) adopts a CVaR-specific classical concentration
bound to determine the exploration bonus for dynamic
CVaR. Conversely, Xu et al. (2023) exploits the op-
timization representation of OCE and uses the the
concavity of the utility function for bonus construc-
tion. In our approach, the Lipschitz continuity of the
risk measure allows us to link the value difference to
the supremum distance. Subsequently, we employ the
Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Mas-
sart, 1990) to bound the deviation between a given
distribution and its empirical counterpart.

A second challenge arises when attempting to determine
the suboptimality gap’s recursion across different stages
in our regret upper bounds proof. In a risk-neutral
setting, the standard analysis draws upon the linearity
of the mean for this recursion. However, such a direct
adaptation is incompatible in a risk-sensitive context.
Our solution is twofold: Firstly, the Lipschitz continuity
is used to link the difference in values to the Wasserstein
distance of two probability distributions. Next, we
employ a transport inequality to bound the Wasserstein
distance between two probability mass functions that
share the same probability mass but vary in support.
By incorporating the Lipschitz property, we derive a
recursion for the suboptimality gap, with the Lipschitz
constant serving as a scaling factor. Overcoming these
challenges enables us to develop efficient algorithms
and establish regret upper bounds.

Main Contributions We summarize our main con-
tributions as follows:

1. We propose two model-based algorithms for RSRL
with Lipschitz DRM. These algorithms incorporate the
principle of optimism in the face of uncertainty (OFU)
in different ways to facilitate efficient learning. To
the best of our knowledge, this is the first work that
investigates RSRL using general DRM without making
the simulator assumption.

2. We provide worst-case and gap-dependent regret
upper bounds for the proposed algorithms. Notably,
the regret bounds are optimal in terms of the number
of actions (A), and the number of episodes (K). They
are dependent on the Lipschitz constants of the risk
measures at all stages, capturing the inherent trade-off
between risk sensitivity and sample complexity.

3. We establish the minimax and gap-dependent lower
bounds for episodic MDPs with a general DRM. These
lower bounds are tight in terms of A, K, and the num-
ber of states. Moreover, they reveal a constant factor
that depends on the specific risk measure employed.

1.1 Related Work

RSRL without Regret Bounds. General DRM
applied to MDP is presented in Ruszczyński (2010);
Shen et al. (2013); Chu and Zhang (2014); Asienkiewicz
and Jaśkiewicz (2017); Bäuerle and Glauner (2022).
However, these works typically assume that the model
of the MDP is known, whereas our paper focuses on
studying regret guarantees for RSRL in the presence
of an unknown MDP. While some research, such as
Coache and Jaimungal (2021); Coache et al. (2022),
explore RSRL with dynamic convex risk measures and
dynamic spectral risk measures, these studies do not
provide regret guarantees.
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Regret Bounds for RSRL with Static Risk Mea-
sures Fei et al. (2020) provide the first regret bound
for risk-sensitive tabular MDPs using the ERM. This
result is further improved upon by Fei et al. (2021a),
where they remove the exponential factor dependence
on the episode length. Fei and Xu (2022) present the
first gap-dependent regret bounds under this frame-
work. Liang and Luo (2022) propose distributional re-
inforcement learning algorithms for RSRL with ERM,
matching the results obtained in Fei et al. (2021a).
Bastani et al. (2022) consider RSRL with the objective
of spectral risk measure. Furthermore, Wang et al.
(2023) improve upon the regret bound obtained in Bas-
tani et al. (2022) in terms of the number of states
and episode length. Ding et al. (2023) focuses on non-
stationary RSRL based on entropic risk measure, which
proposes a meta-algorithm with regret guarantees as
well as regret lower bounds. A direct comparison be-
tween our work and the aforementioned studies is not
feasible, as they operate within distinct contexts.

Regret Bounds for RSRL with DRMs Du et al.
(2023) provides the first regret bound for RSRL using
DRMs, specifically focusing on dynamic CVaR. Xu
et al. (2023) investigates RSRL through the lens of
dynamic OCE, a class of risk measures that encom-
passes several well-known measures, including ERM,
CVaR, and mean-variance. Their research introduced
a UCB-based value iteration algorithm, offering both
regret upper bounds and a minimax lower bound. Lam
et al. (2023) focuses on dynamic coherent risk measures
in the context of non-linear function approximation.
They propose an algorithm that leverages UCB-based
value functions with nonlinear function approximation
and prove a sublinear regret upper bound. Their work
assumes the access to a weak simulator, which allows
for generating an arbitrary number of next states from
any given state. It remains unclear whether such as-
sumptions can be removed in the tabular setting.

Our work contributes to this branch of literature. In
contrast to Lam et al. (2023), our work does not rely on
specific assumptions about the risk measure estimator
or concentration bounds. Additionally, our approach
considers a broader class of DRMs by focusing on Lip-
schitz DRMs, which encompasses a wider range of risk
measures compared to coherent ones.

Connections to Robust MDPs Risk-sensitive
MDPs and robust MDPs have garnered significant at-
tention in the field of sequential decision-making under
uncertainty. Risk-sensitive MDPs optimize risk-aware
objective functions, such as entropic risk measures
or CVaR, instead of the traditional expected reward
criterion. Robust MDPs (Iyengar, 2005; Wiesemann
et al., 2013), on the other hand, aim to optimize the

worst-case performance over a set of plausible MDPs,
providing robustness against model misspecification
or adversarial environments. Recent works have ex-
plored the connections between risk-sensitive and ro-
bust MDPs (Chow et al., 2015; Zhang et al., 2023), as
well as their extensions to partially observable Bäuerle
and Ott (2011) settings. These frameworks have found
applications in domains where accounting for risk and
uncertainty is crucial, such as finance, robotics, and
cyber-security.

Our paper is organized as follows. We first introduce
some background and problem formulations in Section
2. We then propose our algorithms in Section 3, which
is followed by our main results in Section 4. The
numerical experiments are shown in Section 5. Finally,
we conclude our paper in Section 6.

2 PRELIMINARIES

Notations. We write [N ] := {1, 2, ..., N} for any
positive integers N . We use I{·} to denote the indicator
function. We denote by a ∨ b := max{a, b}. We use
the notation Õ(·) to represent O(·) with logarithmic
factors omitted. For two real numbers a < b, the
notation D([a, b]) refers to the space of all probability
distributions that are bounded over the interval [a, b].
For a discrete set x = {x1, · · · , xn} and a probability
vector P = (P1, · · · , Pn), the notation (x, P ) represents
the discrete distribution where P(X = xi) = Pi.

Static Risk Measure. A (static) risk measure quan-
tifies the risk associated with a random outcome. It
is a mapping ρ : X → R that assigns a real number
to each random variable in the set X , which satisfies
certain properties of the following.

• monotonicity: X ⪯ Y ⇒ ρ(X) ≤ ρ(Y ),

• translation-invariance: ρ(X+c) = ρ(X)+c, c ∈ R,

• super-additivity: ρ(X + Y ) ≥ ρ(X) + ρ(Y ),

• positive homogeneity: ρ(αX) = αρ(X) for α ≥ 0

• concavity: ρ(αX+(1−α)Y ) ≥ αρ(X)+(1−α)ρ(Y )

• law-invariance: FX = FY ⇒ ρ(X) = ρ(Y ).

Two intrinsic properties of risk measures are monotonic-
ity and translation-invariance. Coherent risk measures,
introduced by Artzner et al. (1999), are a widely used
class of risk measures that satisfy super-additivity and
positive homogeneity in addition. Coherent risk mea-
sures capture important concepts such as diversification
and risk pooling. Concave risk measures generalize co-
herent risk measures by relaxing the requirements of
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super-additivity and positive homogeneity to concav-
ity. Concave risk measures are more flexible and can
capture a wider range of risk preferences.

Lipschitz risk measures (Bhat and LA, 2019; Liang and
Luo, 2023), on the other hand, form an even broader
class of risk measures, which encompass both coherent
and concave risk measures. They allow for more gen-
eral functional forms and provide a flexible framework
for capturing risk in various settings. Lipschitz risk
measures satisfy the law-invariance property, therefore
we overload notations and write ρ(FX) := ρ(X) for
X ∼ FX .

Lipschitz Continuity. For two cumulative distri-
bution functions (CDFs) F and G, their supremum
distance is defined as

∥F −G∥∞ ≜ sup
x∈R
|F (x)−G(x)| .

For two distributions F,G over the reals, the Wasser-
stein distance between them coincides with their ℓ1
distance (Bhat and LA, 2019)

W1(F,G) = ∥F −G∥1 ≜
∫ ∞

−∞
|F (x)−G(x)| dx.

A risk measure ρ is said to be Lipschitz continuous
with respect to a distance ∥·∥p (p = 1 or p = ∞) on
the set of distributions D([a, b]) if

ρ(F )−ρ(G) ≤ Lp(ρ, [a, b]) ∥F −G∥p ,∀F,G ∈ D([a, b]).

Here, Lp(ρ, [a, b]) is the Lipschitz constant associated
with the risk measure ρ over the interval [a, b], and
represents the maximum rate of change of the risk mea-
sure with respect to the distance metric. The Lipschitz
continuity property provides a way to quantify the sen-
sitivity of the risk measure to changes in the underlying
distributions. A larger Lipschitz constant indicates a
greater sensitivity or variability of the risk measure
values with respect to changes in the distributions.

To gain some intuition, we present the Lipschitz con-
stant values for several popular risk measures over
the range [0,M ] in Table 1. OCE encompasses both
CVaR and ERM. Meanwhile, the distortion risk mea-
sure (DisRM) comprises the proportional hazard (PH)
and lookback (LB) measures. For interested readers,
please refer to Appendix B for the formal definitions of
the risk measures and more detailed discussions about
the Lipschitz constants.

Episodic MDP. An episodic MDP is defined by
a tupleM ≜ (S,A, (Ph)h∈[H], (rh)h∈[H], H), where S
is the finite state space with cardinality S ≜ |S|, A
the finite action space with cardinality A ≜ |A|, Ph :

S ×A× S → [0, 1] the probability transition kernel at
step h, rh : S ×A → [0, 1] the reward functions at step
h, and H the length of one episode. The agent interacts
with the environment for K episodes. At the beginning
of episode k, an initial state sk1 is arbitrarily selected.
In step h, the agent takes action akh based on the state
skh, according to its policy. The policy is represented
by a deterministic sequence of functions π = (πh)h∈[H],
where each πh maps from S to A. The agent observes
the reward rh(s

k
h, a

k
h) and transitions to the next state

skh+1 ∼ Ph(·|skh, akh). The episode terminates at H + 1,
after which the agent proceeds to the next episode.

Dynamic Programming with DRM. The dy-
namic risk measure is defined via a recursive application
of static risk measures (ρh)h∈[H−1] (Ruszczyński, 2010).
The risk-sensitive value function of a policy π at step
h is defined recursively

Qπ
h(sh, ah) = rh(sh, ah) + ρh(V

π
h+1(sh+1))

V π
h (sh) = Qπ

h(sh, πh(sh)), V
π
H+1(sH+1) = 0.

(1)

where ρh is taken over the next-state value V π
h+1(sh+1),

i.e.,

V π
h+1(sh+1) ∼

(
V π
h+1, Ph(s, a)

)
=⇒

ρh(V
π
h+1(sh+1)) = ρh

((
V π
h+1, Ph(s, a)

))
.

We refer to the distribution of V π
h+1(sh+1) as the (next-

state) value distribution
(
V π
h+1, Ph(s, a)

)
. For conve-

nience, we write ρ(x, P ) = ρ((x, P )), thus we write
ρh
(
V π
h+1, Ph(s, a)

)
. By incorporating the risk measure

ρh into the recursive formulation, the dynamic risk
measure framework provides a way to account for risk
preferences and evaluate the risk-sensitive value func-
tion of a policy at each time step. When the risk
measure ρh specializes in the mean (i.e., taking the ex-
pectation), Equation 1 reduces to the standard Bellman
equation.

The (risk-sensitive) optimal policy is defined as the
policy that maximizes the value function, i.e., π∗ =
argmaxπ V

π
1 . Consequently, the optimal value function

is defined as V ∗
h (s) = V π∗

h (s) and Q∗
h(s, a) = Qπ∗

h (s, a).
Ruszczyński (2010) shows that an optimal Markovian
policy exists, and the optimal value functions can be
computed recursively. The Bellman optimality equa-
tion is given by

Q∗
h(sh, ah) = rh(sh, ah) + ρh(V

∗
h+1, Ph(sh, ah))

V ∗
h (sh) = max

a∈A
Q∗

h(sh, ah), V
∗
H+1(sH+1) = 0.

(2)

The optimal policy is the greedy policy with respect
to the optimal action-value function, i.e., π∗

h(s) =
argmaxa∈A Q∗

h(s, a).
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Table 1: Lipschitz constants of risk measures

OCE CVaR ERM DisRM PH LB

L1([0,M ]) u′(−M) 1
α e|β|M max g′(x) pMp−1 q2

(q−1)e

L∞([0,M ]) -u(−M) M
α

e|β|M−1
|β| M max g′(x) pMp Mq2

(q−1)e

Regret. We define the regret of an algorithm alg

interacting with an MDPM for K episodes as

Regret(alg,M,K) ≜
K∑

k=1

V ∗
1 (s

k
1)− V πk

1 (sk1).

The regret quantifies the accumulated suboptimality
gap of an algorithm compared to the optimal policy. It
is a random variable due to the randomness in πk, which
is introduced by the algorithm. We denote the expected
regret by E[Regret(alg,M,K)]. We may omit the
notation π andM when clear from the context.

3 ALGORITHM

In this section, we introduce two algorithms that lever-
age the OFU principle in distinct manner for efficient
learning. Both algorithms consistently update an em-
pirical model throughout the learning phase, categoriz-
ing them under the model-based algorithm class. The
major difference lies in that Algorithm 1 uses the explo-
ration bonus to incentive exploration, while Algorithm 2
builds an optimistic model from the empirical model for
efficient exploration. Algorithm 1 surpasses Algorithm
2 in terms of computational efficiency. While both al-
gorithms enjoy the same regret upper bound, empirical
evidence suggests that Algorithm 2 outperforms Algo-
rithm 1 in practice. Our proposed algorithms operate
under the following assumption:

Assumption 1. For each h ∈ [H], ρh is Lipschitz
continuous with respect to ∥·∥1 and ∥·∥∞, and satisfies
ρh : D([a, b])→ [a, b].

The second condition in Assumption 1 is relatively mild,
as it is met by prevalent risk measures. Specifically, it
is easy to check the condition for CVaR and ERM. For
simplicity, we omit ρ and write Lp,h ≜ Lp(ρh, [0, H−h])
for h ∈ [H − 1]. For two probability mass functions
(PMFs) P and Q sharing identical support, we overload
notation and represent their ℓ1 distance as ∥P −Q∥1 :=∑

i |Pi −Qi|.

3.1 UCBVI-DRM

The Upper Confidence Bound Value Iteration for
Dynamic Risk Measure (UCBVI-DRM, cf. Algorithm
1) algorithm uses the bonus term to ensure optimism
in the estimation of the value function, considering

the nonlinearity of the risk measure. In each step h
of episode k, the optimistic value function is obtained
by adding a bonus term bkh to the empirical value.
The empirical value is constructed by approximating
the Bellman optimality equation (Equation 2) with
empirical model. The empirical model is maintained
and updated based on the visiting counts

Nk
h (s, a) ≜

k−1∑
τ=1

I {(sτh, aτh) = (s, a)} ,

Nk
h (s, a, s

′) ≜
k−1∑
τ=1

I
{
(sτh, a

τ
h, s

τ
h+1) = (s, a, s′)

}
.

The empirical model P̂ k
h for step h in episode k is set

to be the visiting frequency

P̂ k
h (s

′|s, a) = Nk
h (s, a, s

′)

Nk
h (s, a) ∨ 1

.

The bonus term bkh is composed of two factors: the
estimation error of the next-state value distribution
and the Lipschitz constant of the risk measure. Using
the DKW inequality (Fact 5), the estimation error can
be bounded as∥∥∥(P̂ k

h , V
∗
h+1)− (Ph, V

∗
h+1)

∥∥∥
∞
≤
√

ι

2(Nk
h (·, ·) ∨ 1)

,

where ι is a confidence level to be specified later. This
error term captures the uncertainty in the empirical
model. The Lipschitz constant L∞,h of the risk mea-
sure reflects its sensitivity to changes in the underlying
distributions. Multiplying these two factors together
yields the exploration bonus term, which is added to
the empirical value function estimate. This bonus term
encourages exploration in situations where the model
estimation error is large or the risk measure is sensi-
tive. By carefully designing the bonus term, UCBVI-DRM
achieves optimism in its value function estimates, pro-
moting exploration while considering the nonlinearity
of the risk measure. This allows the algorithm to bal-
ance exploration and exploitation, taking into account
the uncertainty in the model and the smoothness of
the risk measure.

Remark 1. Algorithm 1 provides a general framework
that subsumes other algorithms such as ICVaR-VI in
Du et al. (2023) for dynamic CVaR and OCE-VI in
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Algorithm 1 UCBVI-DRM

1: Input: (ρh)h∈[H−1], T and δ

2: Initialize Nk
h (·, ·) ← 0, P̂ k

h (·, ·) ← 1
S1, ι ←

log(SAT )
3: for k = 1 : K do
4: V k

H(·)← maxa rH(·, a)
5: for h = H − 1 : 1 do
6: bkh(·, ·)← L∞,h

√
ι

2(Nk
h (·,·)∨1)

7: Qk
h(·, ·) ← rh(·, ·) + ρh(V

k
h+1, P̂

k
h (·, ·)) +

bkh(·, ·)
8: V k

h (·)← maxa∈A Qk
h(·, a)

9: end for
10: Receive sk1
11: for h = 1 : H do
12: Take action akh ← argmaxa∈A Qk

h(s
k
h, a)

and transition to skh+1

13: Update Nk
h (·, ·) and P̂ k

h (·, ·)
14: end for
15: end for

Xu et al. (2023) for dynamic OCE. In particular, our
bonus term matches theirs by setting L∞,h = (H −
h)/α for CVaR and L∞,h = u(−(H − h)) for OCE.
Furthermore, Algorithm 1 accommodates a wider range
of risk measures, including distortion risk measure with
specific instances shown in Table 1.

3.2 OVI-DRM

The Optimistic Value Iteration for Dynamic Risk
Measure (OVI-DRM, cf. Algorithm 2) is a model-based
algorithm which injects the optimism in the estimated
model. For each step h in episode k, the algorithm
constructs an optimistically estimated transition model
P̃ k
h based on a high probability concentration bound

on the empirical transition model P̂ k
h . This optimistic

model allows for exploration and promotes optimism
in the face of uncertainty. Using the optimistic model
P̃ k
h , the algorithm approximates the Bellman optimal-

ity equation (Equation 2) to obtain optimistic value
functions Qk

h.

Fix an (s, a, k, k), The Optimistic Model (OM, cf. Algo-
rithm 3) algorithm takes the empirical model P̂ k

h (s, a),
the value at the next step V k

h+1, and a confidence ra-

dius ckh(s, a) as input and outputs the optimistic model

P̃ k
h (s, a). For a PMF P and a real number c > 0, de-

note by B1(P, c) ≜ {P ′| ∥P ′ − P∥1 ≤ c} the ℓ1 norm
ball centered at P with radius c. Lemma 1 shows
that OM can output an optimistic model P̃ whose value
distribution dominates those generated by the model
within the concentration ball.

Lemma 1. Let P, V, c be the input of OM and P̃ be the

output. It holds that

(P̃ , V ) ⪰ (Q,V ),∀Q ∈ B1(P, c).

Lemma 2 together with the monotonicity of ρh implies
that ∀P ′ ∈ B1(P̂

k
h (s, a), c

k
h(s, a)), P̃

k
h (s, a) satisfies

ρh(P̃
k
h (s, a), V

k
h+1) ≥ ρh(P

′, V k
h+1).

In Appendix D, we will show that Ph(s, a) ∈
B1(P̂

k
h (s, a), c

k
h(s, a)) with high probability. Suppose

V k
h+1(s) ≥ V ∗

h+1(s),∀s. It follows that ∀(s, a), we have

Qk
h(s, a) = rh(s, a) + ρh(P̃

k
h (s, a), V

k
h+1)

≥ rh(s, a) + ρh(Ph(s, a), V
k
h+1)

≥ rh(s, a) + ρh(Ph(s, a), V
∗
h+1) = Q∗

h(s, a).

The second inequality is due to the monotonicity of ρh
together with the fact that

V k
h+1 ≥ V ∗

h+1 =⇒ (Ph(s, a), V
k
h+1) ⪰ (Ph(s, a), V

∗
h+1).

Then we have V k
h (s) = maxQk

h(s, a) ≥ maxQ∗
h(s, a) =

V ∗
h (s),∀s. By induction, we obtain

V k
h (s) ≥ V ∗

h (s),∀(k, h, s).

This implies that the value functions induced by the
optimistic models are indeed optimistic compared to
the optimal value functions.

By using an optimistically estimated model, the
OVI-DRM algorithm promotes exploration and encour-
ages the agent to take actions that have the potential
for higher values.

Remark 2. The computational complexity of running
the subroutine OM in Algorithm is O(S logS). In con-
trast, the computational complexity of calculating the
bonus term is simply O(1). Therefore, Algorithm 1
outweighs Algorithm 2 in terms of computational effi-
ciency. Although both algorithms enjoy the same regret
upper bound, Algorithm 2 is shown to empirically out-
perform Algorithm 1. The intuition lies in the different
optimism levels injected by the two algorithms. Specif-
ically, Algorithm 1 employs the Lipschitz constant of
the risk measure, resulting in an inflated upper bound
on values. In contrast, Algorithm 2, with its reliance
on the optimistic model, constructs a tighter bound,
ensuring a more grounded optimism and, thus, superior
empirical outcomes.

4 MAIN RESULTS

For convenience, we define L̃1,t ≜
∏t

i=1 L1,i for t ∈ [H].
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Algorithm 2 OVI-DRM

1: Input: (ρh)h∈[H−1], T and δ

2: Initialize Nk
h (·, ·)← 0, P̂ k

h (·, ·)← 1
S1

3: for k = 1 : K do
4: V k

H(·)← maxa rH(·, a)
5: for h = H − 1 : 1 do
6: ckh(·, ·)←

√
2S

Nk
h (·,·)∨1

ι

7: P̃ k
h (·, ·)← OM

(
P̂ k
h (·, ·), V k

h , ckh(·, ·)
)

8: Qk
h(·, ·)← rh(·, ·) + ρh(V

k
h+1, P̃

k
h (·, ·))

9: V k
h (·)← maxa∈A Qk

h(·, a)
10: end for
11: Receive sk1
12: for h = 1 : H do
13: Take action akh ← argmaxa∈A Qk

h(s
k
h, a)

and transition to skh+1

14: Update Nk
h (·, ·) and P̂ k

h (·, ·)
15: end for
16: end for

Algorithm 3 OM

1: Input: P = (P (s1), · · · , P (sS)), V =
(V (s1), · · · , V (sS)) and c > 0

2: Sorting: let V ′ = (V (s(1)), · · · , V (s(S))) such that
V (s(1)) ≤ V (s(2)) ≤ · · · ≤ V (s(S))

3: Permutation: let P ′ = (P (s(1)), · · · , P (s(S)))
4: Transport: sequentially move probability mass c

2∧1
of the leftmost states to s(S)

4.1 Worst-case Regret Bounds

Theorem 1 (Worst-case regret upper bound). Fix
δ ∈ (0, 1). Suppose Assumption 1 holds. Algorithm 1
and Algorithm 2 satisfy for any MDPM

Regret(K) ≤ Õ

(
H−1∑
h=1

L∞,hL̃1,h−1 ·
√
S2AK

)

with probability at least 1− δ, where ι ≜ log(4SAT/δ).

Proof Sketch. For simplicity, we only provide the proof
sketch for UCBVI-DRM. The proof structure builds upon
the framework established in Azar et al. (2017), but
we introduce new techniques to address the specific
challenges posed by nonlinear risk measures. We first
exploit the Lipschitz continuity w.r.t. ∥·∥∞ together
with the DKW inequality to establish the optimism
of V k

h . Next, standard techniques fail to obtain the
recursion of the value gap due to the nonlinearity of
the risk measure. Our key observation to overcome the
difficulty is a simple transport inequality (cf. Lemma
6) together with the Lipschitz continuity w.r.t. ∥·∥1.
Remark 3. In the risk-neutral setting, the Lipschitz

constants take L∞,h = H−h and L1,h = 1, which leads

to the bound of Õ
(
H2
√
S2AK

)
.

Theorem 2 (Minimax Lower Bound). For any al-
gorithm alg, there exists an MDP M such that for
sufficiently large K

E[Regret(alg,M,K)] ≥ Ω
(
cρH
√
SAT

)
,

where cρ is a constant dependent on the risk measure

Our proof methodology draws inspiration from the
framework presented in Domingues et al. (2021). The
coefficient cρ serves as a risk-dependent parameter
linked to the non-smoothness of the given risk measure.
Intuitively, it can be thought of as the “anti-Lipschitz
constant” for the risk measure, especially in relation
to Bernoulli distributions, as expressed by:

ρ(Ber(p))− ρ(Ber(q)) ≥ cρ|p− q|.

This coefficient, cρ, quantifies the non-smoothness of
the risk measure, and is always smaller than the Lip-
schitz constant. For certain risk measures like mean,
ERM, and CVaR, it is seen to match the Lipschitz con-
stant up to a numerical constant. Moreover, it leads to
tight minimax lower bounds when applied to mean and
ERM. Nevertheless, it remains uncertain whether this
constant yields a tight lower bound across all dynamic
risk measures. To our knowledge, this is the first result
that characterizes the hardness of RSRL when using a
general DRM.

Comparisons and Discussions. We compare our
regret bounds with that of Xu et al. (2023) in the
dynamic OCE setting. By instantiating the Lips-
chitz constants of OCE with L∞,h = u(−H + h) and
L1,h = u′

−(−H+h), their bound can be translated into

Õ
(∑H−1

h=1 L∞,h

√
L̃1,h−1S2AK

)
. Our bound matches

their result with additional factors
√
L̃1,h−1. This is

because they employ a change-of-measure technique
based on the concave optimization representation of
OCE to derive a tighter recursion of value gaps, which
cannot be easily extended to general risk measures.
The Algorithm 1, however, still enjoy the same regret
bound as that in Xu et al. (2023) since our algorithm
reduces to OCE-VI for the dynamic OCE. Furthermore,
numerical experiments in Appendix E shows that Al-
gorithm 2 empirically outperforms Algorithm 1 for dy-
namic CVaR problem. Our lower bound also matches
the lower bound in Xu et al. (2023), both of which
are tight in S,A,K,H and depend on some constant
related to the risk measure.

In the dynamic CVaR setting, which is a special case
of dynamic OCE, our upper bound matches the bound
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Õ
(
H2
√
S2AK/

√
αH
)
in Du et al. (2023) up to a fac-

tor of 1/
√
αH . Algorithm 1 subsumes ICVaR-VI for the

dynamic CVaR problem. In contrast to Du et al. (2023)
that provides a algorithm-dependent lower bound, we
provide minimax and gap-dependent lower bound. Fur-
thermore, Lam et al. (2023) considers dynamic coherent
risk measures and non-linear function approximation,
and their regret bounds are derived under the assump-
tion of a weak simulator. As a result, our regret bounds
are not directly comparable to theirs.

The minimax lower bound is tight in terms of
S,A,K,H, and cρ might be loose. The intuition is
that our bound matches the tight minimax lower bound
Ω(H

√
SAT ) for risk-neutral MDP since cρ = 1 when

the risk measure is mean. On the other hand, the tight-
ness of cρ depends on the choice of risk measure. For the
well studied mean and ERM, the tight lower bounds are

known to be Ω(H
√
SAT ) and Ω( exp(βH)−1

βH H
√
SAT )

respectively. Through our analysis, cρ reduces to 1

and exp(βcH)−1
βH ( c ∈ (0, 1) is a constant), which is

(nearly) optimal. When navigating through risk mea-
sures such as CVaR or broader one, we are not aware
of tight minimax lower bound, therefore it is unclear
whether cρ is tight in general. In fact, tight minimax
lower bound for general dynamic risk measures is very
unexplored. Nevertheless, cρ reflects how the choice
of different risk measures affects the hardness of the
problem in a general sense.

Theorem 1 and Theorem 2 imply that RSRL with Lip-
schitz DRM can achieve regret bound that is minimax-
optimal in terms of K and A. Specifically, the gap
between the upper and lower bounds is determined by
two factors:

√
S and a multiplicative Lipschitz con-

stant L̃1,H . Achieving further improvements in these
factors might be challenging, especially for general risk
measures, under the mild Lipschitz assumption.

4.2 Gap-dependent Regret Bounds

Fix h ∈ [H], (s, a) ∈ S × A, the sub-optimality gap
of (s, a) at step h is defined as ∆h(s, a) ≜ V ∗

h (s, a) −
Q∗

h(s, a). The minimum sub-optimality gap is defined
as the minimum non-zero gap

∆min ≜ min
h,s,a
{∆h(s, a) : ∆h(s, a) > 0} .

Theorem 3 (Gap-dependent regret upper bound). Fix
δ ∈ (0, 1). With probability at least 1− δ, Algorithm 1
and Algorithm 2 satisfy

Regret(K)

≤ O

S2AH
(∑H−1

h=1 L̃1,h−1L∞,h

)2
∆min

log(SAT )

 .

We follow the standard convention in the literature for
the gap-dependent lower bound. The lower bound is
stated for algorithms that have sublinear worst-case
regret. Specifically, we say that an algorithm alg is
α-uniformly good if for any MDPM, there exists a con-
stant CM > 0 such that Regret(alg,M,K) ≤ CMKα.
The construction of proof is based on Simchowitz and
Jamieson (2019).

Theorem 4 (Gap-dependent regret lower bound).
There exists an MDP M such that any α-uniformly
good algorithm alg satisfies

lim
K→∞

Regret(alg,M,K)

logK
=

Ω

(1− α)
∑

(s,a):∆1(s,a)>0

(cρH)2

∆1(s, a)


To our knowledge, Theorem 3 provides the first result
showing that RSRL with DRMs can achieve log T -type
regret. The lower bound shows that for sufficiently large
K, the logarithmic dependence on K is unavoidable.
Notably, it implies that our algorithms have a tight
dependency on A and K. Furthermore, the presence of
a constant factor in both the upper and lower bounds
suggests that the specific choice of risk measure can
significantly affect its performance.

5 EXPERIMENTS

In this section, we provide some numerical results to
validate the empirical performance of our algorithms.
We compare our algorithms to the algorithms UCBVI
(Azar et al., 2017) for risk-neutral RL and RSVI2 (Fei
et al., 2021a) for RSRL with ERM.
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Figure 1: Comparison of different algorithms for dy-
namic CVaR.

In our experiments, we focus on an MDP with S = 3
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states, A = 5 actions, and a horizon H = 5, which is
similar to the construction in Du et al. (2023). The
major difference is that we consider a non-stationary
MDP. The MDP consists of a fixed initial state denoted
as state 0, and three additional states denoted as states
1, 2, and 3. In step 2 ≤ h ≤ H, the three states
generate reward 1,0 and 0.4, respectively. The agent
starts from state 0 in the first step, takes action from
[A], and then transitions to one of three states {1, 2, 3}
in the next step. Any action in [A − 1] leads to a
uniform transition to state 1 and state 2. The optimal
action A leads to a transition to state 2 and state 3 with
probability 0.001 and 0.999. We set δ = 0.005, A = 5,
H = 5, K = 10000, and α = (0.05, 0.05, 0.05, 0.05).

As shown in Figure 1, OVI-DRM and UCBVI-DRM enjoy
sublinear regret while the risk-neutral algorithm UCBVI

and RSVI2 suffer linear regret. In particular, OVI-DRM
outperforms UCBVI-DRM because it achieves a better
balance between exploration and exploitation. In Ap-
pendix A, we provide more comprehensive numerical
experiments. We show the results for MDP with larger
sizes S = 3, A = 10, H = 12. Moreover, we also con-
duct experiments for the ERM and the mean-variance
risk measure.

6 CONCLUSIONS

We propose two model-based algorithms for the broad
class of Lipschitz DRMs. To establish the efficacy of
our algorithms, we provide theoretical guarantees in
the form of worst-case and gap-dependent regret up-
per bounds. To complement our upper bounds, we
also establish regret lower bounds. These lower bounds
demonstrate the inherent difficulty of the problem. Our
work offers a unified framework that not only encom-
passes multiple existing RSRL formulations in the lit-
erature but also broadens the application spectrum.

There are several promising future directions. It might
be possible to improve the regret upper bounds by
designing new algorithms or improving the analysis.
Currently, our algorithms and analysis are primarily
focused on tabular MDPs. However, extending the
results to the setting of function approximation, such
as linear function approximation, is an important and
challenging task. The nonlinearity of risk measures
poses a significant obstacle in this context. One po-
tential approach to address this issue is to leverage
techniques like value-targeted regression, as proposed
in Ayoub et al. (2020); Jia et al. (2020), and integrate
them into our framework.
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A Experiments

We provide more comprehensive numerical experiments here. We show the results for MDP with larger sizes
S = 3, A = 12, H = 10 in Figure 2, in contrast to the original setting S = 3, A = 5, H = 5. Moreover, we also
conduct experiments for the entropic risk measure (cf. Figure 2b) and the mean-variance risk measure (cf. Figure
2c). The mean-variance is defined as

MV(X) ≜ E[X]− c · V[X],

where c > 0 is the risk coefficient that adjusts the degree of risk aversion. Figure 2 illustrates the superior
performance of OVI-DRM in comparison to UCBVI-DRM and UCBVI across diverse risk-sensitive scenarios. Specifically,
OVI-DRM achieves significantly lower regret than UCBVI-DRM due to its more conservative optimism injection.
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(a) Comparison of different algorithms for CVaR
with α = 0.05.
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(b) Comparison of different algorithms for en-
tropic risk measure with β = −1.5.
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variance risk measure with c = −0.1.

Figure 2: Enlarged MDP with S = 3, A = 12, H = 10.

B Risk Measures

B.1 Definitions

Conditional Value at Risk (CVaR) The CVaR value (Rockafellar et al., 2000) at level α ∈ (0, 1) for a
distribution F is defined as

Cα(F ) ≜ sup
ν∈R

{
ν − 1

α
EX∼F [(ν −X)+]

}
.

Acerbi and Tasche (2002) showed that when F is a continuous distribution, Cα(F ) = EX∼F [X|X ≤ F−1(α)].
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Spectral risk measure (SRM) SRM is class of risk measures that generalizes CVaR via adopting a non-
constant weighting function over the quantiles (Acerbi, 2002). The SRM value of F is defined as

Sϕ(F ) ≜
∫ 1

0

ϕ(y)F−1(y)dy,

where ϕ : [0, 1] → [0,∞) is the weighting function. Acerbi (2002) showed that an SRM is coherent if ϕ is is

decreasing and satisfies that
∫ 1

0
ϕ(y)dy = 1. SRM can be viewed as a weighted average of quantiles, with weight

specified by ϕ(y). In fact, Sϕ(F ) specializes in Cα(F ) for ϕ(y) = 1
α I{0 ≤ y ≤ α}.

Distortion risk measure For a distribution F ∈ D([0,∞)), the distortion risk measure (Balbás et al., 2009;
Wirch and Hardy, 2001) ρg(F ) is defined as

ρg(F ) ≜
∫ ∞

0

g(1− F (x))dx,

where g : [0, 1] → [0, 1] is a continuous increasing function with g(0) = 0 and g(1) = 1. We refer to g as the
distortion function. Distortion risk measure is coherent if and only if g is convex. Similar to SRM, the distortion
risk measure can also recover CVaR by choosing the appropriate g.

Entropic risk measure (ERM) ERM adjusts the user’s risk attitude through the exponential utility function.
In particular, the ERM value of F with coefficient β ̸= 0 is defined as

Uβ(F ) ≜
1

β
log(EX∼F [exp(βX)]) =

1

β
log

(∫
R
exp(βx)dF (x)

)
.

Notably, ERM is the prime example of a convex risk measure which is not coherent (Rudloff et al., 2008).

Optimized certainty equivalent (OCE) The OCE (Ben-Tal and Teboulle, 2007) value of F associated with
a utility function u is given by

Cu(F ) ≜ sup
λ
{λ+ EX∼F [u(X − λ)]} = sup

λ

{
λ+

∫
R
u(x− λ)dF (x)

}
,

where u is a non-decreasing, closed utility function that satisfies u(0) = 0 and 1 ∈ ∂u(0). THE OCE is risk-averse
(risk-seeking) if and only u is concave (convex). OCE subsumes important examples of popular risk measures,
including the ERM and CVaR.

Cumulative Prospect Theory (CPT) CPT (Tversky and Kahneman, 1992; Prashanth and Bhat, 2022)
takes the form:

C(F ) ≜ (FZ) =

∫ +∞

0

g+
(
1− Fu+(Z)(t)

)
dt−

∫ +∞

0

g−
(
1− Fu−(Z)(t)

)
dt,

where g+, g− : [0, 1] → [0, 1], g+/−(0) = 0, and g+/−(1) = 1. The functions u+, u− : R → R+are continuous,
with u+(z) = 0 when z ≥ c and u−(z) = 0 when z < c for some constant c ∈ R. CPT handles gains and losses
separately. The functions u+, u−compare the random variable Z to a baseline c, and the distortion g+is applied
to ”gains” (when Z ≥ c ), while g−is applied to ”losses” (when Z < c ).

B.2 Lipschitz Property

We summarizes the Lipschitz constants of common risk measures over a finite interval [a, b] in Table 2. Prashanth
and Bhat (2022) provides the Lipschitz constants of SRM, OCE, and distortion risk measure w.r.t. the Wasserstein
distance or ∥·∥1. Huang et al. (2021) provides the Lipschitz constants of distortion risk measure and CPT w.r.t.
∥·∥∞. In particular, Huang et al. (2021) identifies the Lipschitz constant to be bmax(Lg+ , Lg−), where Lg+ , Lg−

are the Lipschitz constant of g+ and g− respectively. Note that OCE subsumes ERM and CVaR, and distortion
risk measure encompasses PH and LB.
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For completeness, we will derive the Lipschitz constants of SRM and OCE w.r.t. ∥·∥∞ in the following. Fact 1 offers
a simple way to derive the Lipschitz constant of a risk measure w.r.t. ∥·∥1 based on that w.r.t. ∥·∥∞. Therefore,
the Lipschitz constants of SRM w.r.t. ∥·∥∞ can take L∞(Mϕ, [a, b]) = (b− a) · L1(Mϕ, [a, b]) = (b− a)max |ϕ(x)|.
As a special case, we have L∞(Cα, [0,M ]) = b−a

α .

Fact 1. If a functional ρ has Lipschitz constant L1([a, b]) over D([a, b]), then it has Lipschitz constant L∞([a, b]) =
L1([a, b])(b− a).

Proof. Suppose ρ has Lipschitz constant L1([a, b]) over D([a, b]), then

|ρ(F )− ρ(G)| ≤ L1([a, b]) ∥F −G∥1 ≤ L1([a, b]) ∥F −G∥∞ (b− a),∀F,G ∈ D([a, b]).

This implies that L∞([a, b]) = L1([a, b])(b− a) is a valid choice.

Fact 2. The Lipschitz constants of OCE w.r.t. ∥·∥∞ is L∞(Cu, [a, b]) = −u(a− b) for concave utility function
and L∞(Cu, [a, b]) = u(b− a) for convex utility function.

Proof. Let λ1, λ2 ∈ [a, b] satisfy

Cu(F ) = λ1 +

∫ b

a

u(x− λ1)dF (x) = max
λ∈[a,b]

λ+

∫ b

a

u(x− λ)dF (x)

Cu(G) = λ2 +

∫ b

a

u(x− λ2)dG(x) = max
λ∈[a,b]

λ+

∫ b

a

u(x− λ)dG(x).

Without loss generality, we assume Cu(F ) > Cu(G). It holds that

Cu(F )− Cu(G) = λ1 +

∫ b

a

u(x− λ1)dF (x)− λ2 −
∫ b

a

u(x− λ2)dG(x)

≤ λ1 +

∫ b

a

u(x− λ1)dF (x)− λ1 −
∫ b

a

u(x− λ1)dG(x)

=

∫ b

a

u(x− λ1)dF (x)−
∫ b

a

u(x− λ1)dG(x)

= u(x− λ1)F (x)|ba −
∫ b

a

F (x)du(x− λ1)− u(x− λ1)G(x)|ba +
∫ b

a

G(x)du(x− λ1)

=

∫ b

a

(G(x)− F (x))du(x− λ1)

≤
∫ b

a

du(x− λ1) · ∥F −G∥∞

= (u(b− λ1)− u(a− λ1)) ∥F −G∥∞
≤ max

λ∈[a,b]
(u(b− λ)− u(a− λ)) ∥F −G∥∞ = L∞(Cu, [a, b]) ∥F −G∥∞ ,

where the second inequality is due to that u is non-decreasing. For concave utility function, we can bound the
last term as

max
λ∈[a,b]

(u(b− λ)− u(a− λ)) = u(b− b)− u(a− b) = −u(a− b).

For convex utility function, we can bound the last term as

max
λ∈[a,b]

(u(b− λ)− u(a− λ)) = u(b− a)− u(a− a) = u(b− a).

Fact 3. The Lipschitz constants of OCE w.r.t. ∥·∥1 is L1(Cu, [a, b]) = u′(a− b) for concave utility function and
L1(Cu, [a, b]) = u′(b− a) for convex utility function.
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Table 2: Lipschitz constants of risk measures

OCE CVaR ERM DisRM PH LB CPT

L1([a, b]) u′(a− b) 1
α e|β|(b−a) max g′(x) pbp−1 q2

(q−1)e max(Lg+ , Lg−)

L∞([a, b]) −u(a− b) b−a
α

e|β|(b−a)−1
|β| (b− a)max g′(x) p(b− a)bp−1 (b−a)q2

(q−1)e bmax(Lg+ , Lg−)

Proof. Let λ1, λ2 ∈ [a, b] satisfy

Cu(F ) = λ1 +

∫ b

a

u(x− λ1)dF (x) = max
λ∈[a,b]

λ+

∫ b

a

u(x− λ)dF (x)

Cu(G) = λ2 +

∫ b

a

u(x− λ2)dG(x) = max
λ∈[a,b]

λ+

∫ b

a

u(x− λ)dG(x).

Without loss generality, we assume Cu(F ) > Cu(G). It holds that

Cu(F )− Cu(G) = λ1 +

∫ b

a

u(x− λ1)dF (x)− λ2 −
∫ b

a

u(x− λ2)dG(x)

≤
∫ b

a

u(x− λ1)dF (x)−
∫ b

a

u(x− λ1)dG(x)

=

∫ b

a

(G(x)− F (x))du(x− λ1)

=

∫ b

a

(G(x)− F (x))u′(x− λ1)dx

≤ max
λ∈[a,b],x∈[a,b]

u′(x− λ)

∫ b

a

|G(x)− F (x)|dx

= L1(Cu, [a, b]) ∥F −G∥1 ,

where the second inequality is due to the non-negativity of u′. For concave utility function, we can bound the last
term as

max
λ∈[a,b],x∈[a,b]

u′(x− λ) = u′(a− b).

For convex utility function, we can bound the last term as

max
λ∈[a,b],x∈[a,b]

u′(x− λ) = u′(b− a).

OCE subsumes ERM when u(x) = exp(βx)−1
β . In particular, L∞(Uβ , [a, b]) = −u(a − b) = − exp(β(a−b))−1

β =
exp(|β|(b−a))−1

|β| for concave utility (β < 0) and L∞(Uβ , [a, b]) = u(b− a) = exp(β(b−a))−1
β for convex utility (β > 0).

C Subroutine

We present more details about subroutine OM used in Algorithm 2 in this section. Fix an (s, a, k, k), OM takes the
empirical model P̂ k

h (s, a), the value at the next step V k
h+1, and a confidence radius ckh(s, a) as input and outputs

the optimistic model P̃ k
h (s, a). For a PMF P and a real number c > 0, denote by B1(P, c) ≜ {P ′| ∥P ′ − P∥1 ≤ c}

the ℓ1 norm ball centered at P with radius c. Recall that we F ⪰ G denotes that F (x) ≤ G(x),∀x ∈ R. Lemma
2 shows that OM can output an optimistic model P̃ whose value distribution dominates those generated by the
model within the concentration ball.

Lemma 2. Let P, V, c be the input of OM and P̃ be the output. It holds that

(P̃ , V ) ⪰ (Q,V ),∀Q ∈ B1(P, c).
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Proof. For simplicity, let P = (P1, · · · , Pn), V ∈ Rn satisfying V1 ≤ V2 · · · ≤ Vn. Observe that the CDF (P, V ) is
a piecewise constant function. Hence it suffices to show that

i∑
j=1

P̃j ≤
i∑

j=1

Qj ,∀i ∈ [n],∀Q ∈ B1(P, c).

Let l ≜ min
{
i|
∑i

j=1 Pj ≥ c
2

}
. There are two cases.

Case 1: Pn + c
2 ≤ 1. Since

∑l−1
j=1 Pj <

c
2 and

∑l
j=1 Pj ≥ c

2 , we have

P̃i =


0, i ∈ [l − 1]∑l

j=1 Pj − c
2 , i = l

Pi, l + 1 ≤ i ≤ n− 1

Pn + c
2 , i = n

and thus

i∑
j=1

P̃j =


0, i ∈ [l − 1]∑l

j=1 Pj − c
2 , l ≤ i ≤ n− 1

1, i = n

For any Q ∈ B1(P, c), it holds that
i∑

j=1

P̃j ≤
i∑

j=1

Qj ,∀i ∈ [n].

Otherwise
∑k

j=1 Qj <
∑k

j=1 Pj − c
2 for some l ≤ k ≤ n − 1, which implies

∑n
j=k+1 Qj = 1 −

∑k
j=1 Qj >

1 −
∑k

j=1 Pj +
c
2 =

∑k
j=1 Pj +

c
2 . This leads to a contradiction ∥P −Q∥1 =

∑
j∈[n] |Pj − Qj | ≥ |

∑k
j=1 Pj −∑k

j=1 Qj |+ |
∑n

j=k+1 Pj −
∑n

j=k+1 Qj | > c.

Case 2: Pn + c
2 > 1. In this case, P̃j = 0 for j ∈ [n− 1] and P̃n = 1. It is obvious that

i∑
j=1

P̃j ≤
i∑

j=1

Qj ,∀i ∈ [n],∀Q ∈ B1(P, c).

Therefore, we have
(P̃ , V ) ⪰ (Q,V ),∀Q ∈ B1(P, c).

Lemma 2 together with the monotonicity of ρh implies that the output P̃ k
h (s, a) satisfies

ρh(P̃
k
h (s, a), V

k
h+1) ≥ ρh(P

′, V k
h+1), ∀P ′ ∈ B1(P̂

k
h (s, a), c

k
h(s, a)).

In Appendix D, we will show that Ph(s, a) ∈ B1(P̂
k
h (s, a), c

k
h(s, a)) with high probability. Suppose V k

h+1(s) ≥
V ∗
h+1(s),∀s. It follows that

Qk
h(s, a) = rh(s, a) + ρh(P̃

k
h (s, a), V

k
h+1) ≥ rh(s, a) + ρh(Ph(s, a), V

k
h+1)

≥ rh(s, a) + ρh(Ph(s, a), V
∗
h+1) = Q∗

h(s, a),∀(s, a).

The second inequality is due to the monotonicity of ρh together with the fact that

V k
h+1 ≥ V ∗

h+1 =⇒ (Ph(s, a), V
k
h+1) ⪰ (Ph(s, a), V

∗
h+1).

Then we have V k
h (s) = maxQk

h(s, a) ≥ maxQ∗
h(s, a) = V ∗

h (s),∀s. By induction, we obtain

V k
h (s) ≥ V ∗

h (s),∀(k, h, s).

This implies that the value functions induced by the optimistic models are indeed optimistic compared to the
optimal value functions. The computational complexity of OM is O(S log(S)), since the computational complexity
of each step is O(S log(S)), O(S), and O(S).
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D Proofs of Regret Upper Bounds

D.1 Worst-case Regret Upper Bound

We first prove the worst-case regret upper bound for Algorithm 1.

D.1.1 Proof for Algorithm 1

Step 1: verify optimism. Fix an arbitrary δ ∈ (0, 1). Define the good event Gδ as

Gδ ≜

{∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S

Nk
h (s, a) ∨ 1

ι, ∀(s, a, k, h) ∈ S ×A× [K]× [H]

}
,

under which the empirical model concentrates around the true model under ∥·∥1.
Lemma 3 (High probability good event). The event Gδ holds with probability at least 1− δ.

Fact 4 (ℓ1 concentration bound, Weissman et al. (2003)). Let P be a probability distribution over a finite discrete

measurable space (X ,Σ). Let P̂n be the empirical distribution of P estimated from n samples. Then with probability
at least 1− δ, ∥∥∥P̂n − P

∥∥∥
1
≤
√

2|X |
n

log
1

δ
.

Lemma 3 does not directly follow from a union bound together with Fact 4 since the case Nk
h (s, a) = 0 need to

be checked.

Proof. Fix some (s, a, k, h) ∈ S × A × [K] × [H]. If Nk
h (s, a) = 0, then we have P̂ k

h (·|s, a) = 1
S1. A simple

calculation yields that for any Ph(·|s, a)∥∥∥∥ 1S 1− Ph(·|s, a)
∥∥∥∥
1

≤ 2 ≤
√

2S log(1/δ).

It follows that

P

(∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S

Nk
h (s, a) ∨ 1

log(1/δ)

∣∣∣∣∣Nk
h (s, a) = 0

)
= 1 > 1− δ.

The event is true for the unseen state-action pairs. Now we consider the case that Nk
h (s, a) > 0. By Fact 4 , we

have that for any integer n ≥ 1

P

(∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S

Nk
h (s, a)

log(1/δ)

∣∣∣∣∣Nk
h (s, a) = n

)
≥ 1− δ.

Thus we have

P

(∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S log(1/δ)

Nk
h (s, a)

)

=
∑

n=0,1,···
P

(∥∥∥P̂ k
h (·|s, a)− Ph(·|s, a)

∥∥∥
1
≤

√
2S log(1/δ)

Nk
h (s, a) ∨ 1

∣∣∣∣∣Nk
h (s, a) = n

)
P(Nk

h (s, a) = n)

≥ (1− δ)
∑

n=0,1,···
P(Nk

h (s, a) = n) = 1− δ.

Applying a union bound over all (s, a, k, h) and rescaling δ leads to the result.

Lemma 4 (Range of V ∗). For any MDP, it holds that V ∗
h (s) ∈ [0, H + 1− h] for all (s, h) ∈ S × [H + 1].
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Proof. The proof follows from induction and Assumption 1. Observe that V ∗
H+1 = 0. Suppose V ∗

h+1(s) ∈ [0, H−h]
for any s, then we have

0 ≤ Q∗
h(s, a) = rh(s, a) + ρh(V

∗
h+1, Ph(s, a)) ≤ 1 +H − h,

where the inequalities are due to the Assumption 1. Then we have V ∗
h (s) = maxa Q

∗
h(s, a) ∈ [0, H + 1− h]. The

induction is completed.

Fact 5 (DKW inequality for discrete distribution). Let P̂n be the empirical PMF for (x, P ) with n samples, then
w.p. at least 1− δ ∥∥∥(x, P )− (x, P̂n)

∥∥∥
∞
≤
√

log(2/δ)

2n
.

We remark that we can also derive a bound by Fact 6: w.p. 1− δ

∥∥∥(x, P )− (x, P̂n)
∥∥∥
∞
≤
∥∥∥P − P̂n

∥∥∥
1
≤
√

2m log(2/δ)

n
.

However, this bound is looser than that from Fact 5 with a factor of
√
m.

Lemma 5 (Optimistic value function). Conditioned on event Gδ, the sequence {V k
1 (s

k
1)}k∈[K] produced by

Algorithm 1 satisfies V k
1 (sk1) ≥ V ∗

1 (s
k
1),∀k ∈ [K].

Proof. The proof follows from induction. Fix k ∈ [K]. It is evident that the inequality holds when h = H + 1.
Suppose the inequality holds for h+ 1. It follows that for any (s, a)

Qk
h(s, a) = rh(s, a) + ρh

(
V k
h+1, P̂

k
h (s, a)

)
+ bkh(s, a)

≥ rh(s, a) + ρh

(
V ∗
h+1, P̂

k
h (s, a)

)
+ bkh(s, a)

≥ rh(s, a) + ρh(V
∗
h+1, Ph(s, a)) = Q∗

h(s, a).

The first inequality is due to the monotonicity of ρh and the induction hypothesis, and the second one follows
from that

ρh(V
∗
h+1, Ph(s, a))− ρh(V

∗
h+1, P̂

k
h (s, a)) ≤ L∞(ρh, H − h)

∥∥∥(V ∗
h+1, Ph(s, a))−

(
V ∗
h+1, P̂

k
h (s, a)

)∥∥∥
∞

≤ L∞(ρh, H − h)

√
ι

2(Nk
h (s, a) ∨ 1)

= bkh(s, a),

where the first inequality follows from the Lipschitz property of ρh and Lemma 4, and the second one is due to
the DKW inequality (Fact 5).

Fact 6. Let (x, P ) and (x,Q) be two discrete distributions with the same support x = (x1, · · · , xm) and F,G be
their CDFs respectively. It holds that

∥F −G∥∞ ≤ ∥P −Q∥1 .

Proof. Without loss of generality, we assume that x1 ≤ x2 · · · ≤ xn. By definition,

∥F −G∥∞ = sup
x∈R
|F (x)−G(x)| = max

i∈[n]
|F (xi)−G(xi)| = max

i∈[n]

∣∣∣∣∣∣
∑
j∈[i]

Pj −
∑
j∈[i]

Qj

∣∣∣∣∣∣
≤ max

i∈[n]

∑
j∈[i]

|Pj −Qj | =
∑
j∈[n]

|Pj −Qj | = ∥P −Q∥1 .

The second equality is due to that F and G are piecewise constant functions that only differ at x1, · · · , xn. This
would lead a worse bonus term with a factor of

√
S.
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Remark 4. Alternatively, we have

ρh(V
∗
h+1, Ph(s, a))− ρh(V

∗
h+1, P̂

k
h (s, a)) ≤ L∞(ρh, H − h)

∥∥∥(V ∗
h+1, Ph(s, a))−

(
V ∗
h+1, P̂

k
h (s, a)

)∥∥∥
∞

≤ L∞(ρh, H − h)
∥∥∥Ph(s, a)− P̂ k

h (s, a)
∥∥∥
1

≤ L∞(ρh, H − h)

√
2S

(Nk
h (s, a) ∨ 1)

ι,

where the second inequality is due to Fact 6, the third inequality is due to Lemma 3.

Step 2: regret decomposition. We introduce the key technical lemma here.

Lemma 6. Let (x, P ) and (y, P ) be two discrete distributions, where x = (x1, · · · , xn) and y = (y1, · · · , yn). It
holds that

∥(x, P )− (y, P )∥1 ≤
∑
i∈[n]

Pi |xi − yi| .

Proof. By the definition of Wasserstein distance between two discrete distributions, we have

∥F −G∥1 = inf∑
j λi,j=Pi,

∑
i λi,j=Pj

∑
i

∑
j

λi,j |xi − yj |

≤
∑
i

∑
j

δi,jPi |xi − yj |

=
∑
i

Pi

∑
j

δi,j |xi − yi|

=
∑
i

Pi |xi − yi| .

The inequality holds since {δi,jPi}i,j is a valid coupling∑
j

δi,jPi = Pi,
∑
i

δi,jPi = Pj .

We define ∆k
h ≜ V k

h − V πk

h ∈ [−(H + 1 − h), H + 1 − h]S and δkh ≜ ∆k
h(s

k
h). For any (s, h) and any π, we let

Pπ
h (·|s) ≜ Ph(·|s, πh(s)). The regret can be bounded as

Regret(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1) =

K∑
k=1

V ∗
1 (s

k
1)− V k

1 (sk1) + V k
1 (sk1)− V πk

1 (sk1)

≤
K∑

k=1

V k
1 (sk1)− V πk

1 (sk1) =

K∑
k=1

δk1 .

For simplicity, we write rkh ≜ rh(s
k
h, π

k
h(s

k
h)), bkh ≜ bkh(s

k
h, π

k
h(s

k
h)), Nk

h ≜ Nk
h (s

k
h, π

k
h(s

k
h)) and P̂ k

h (s
k
h) ≜

P̂ k
h (s

k
h, π

k
h(s

k
h)). For any h ∈ [H − 1], we decompose δkh as follows

δkh = ρh

(
V k
h+1, P̂

k
h (s

k
h)
)
+ bkh − ρh

(
V πk

h+1, P
πk

h (skh)
)

= ρh

(
V k
h+1, P̂

k
h (s

k
h)
)
− ρh

(
V k
h+1, P

πk

h (skh)
)

︸ ︷︷ ︸
(a)

+ ρh

(
V k
h+1, P

πk

h (skh)
)
− ρh

(
V πk

h+1, P
πk

h (skh)
)

︸ ︷︷ ︸
(b)

+bkh.
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Using the Lipschitz property of ρh,

(a) ≤ L∞(ρh, H − h)
∥∥∥(V k

h+1, P̂
k
h (s

k
h)
)
−
(
V k
h+1, P

πk

h (skh)
)∥∥∥

∞

≤ L∞(ρh, H − h)
∥∥∥P̂ k

h (s
k
h)− Pπk

h (skh)
∥∥∥
1

≤ L∞(ρh, H − h)

√
2S

Nk
h ∨ 1

ι.

Applying Lemma 6 yields that

(b) ≤ L1(ρh, H − h)
∥∥∥(V k

h+1, P
πk

h (skh)
)
−
(
V πk

h+1, P
πk

h (skh)
)∥∥∥

1

≤ L1(ρh, H − h)
∑
s′∈S

Pπk

h (s′|skh)
∣∣∣V k

h+1(s
′)− V πk

h+1(s
′)
∣∣∣

= L1(ρh, H − h)
∑
s′∈S

Pπk

h (s′|skh)
(
V k
h+1(s

′)− V πk

h+1(s
′)
)

= L1(ρh, H − h)
[
Pπk

h ∆k
h+1

]
(skh)

≜ L1(ρh, H − h)(ϵkh + δkh+1),

where ϵkh ≜ [Pπk

h ∆k
h+1](s

k
h)−∆k

h+1(s
k
h+1) is a martingale difference sequence with ϵkh ∈ [−2(H − h), 2(H − h)] a.s.

for all (k, h) ∈ [K]× [H]. The first equality is due to that V k
h+1(s

′) ≥ V ∗
h+1(s

′) ≥ V πk

h+1(s
′) for all s′.

Now we can bound δkh recursively

δkh ≤ L∞(ρh, H − h)

√
2S

Nk
h ∨ 1

ι+ L1(ρh, H − h)(ϵkh + δkh+1) + L∞(ρh, H − h)

√
ι

2(Nk
h ∨ 1)

≤ 2L∞(ρh, H − h)ekh + L1(ρh, H − h)(ϵkh + δkh+1),

where we define ekh ≜
√

2S
Nk

h∨1
ι in the last line. Repeating the procedure, we obtain

δk1 ≤ 2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)ekh +

H−1∑
h=1

h∏
i=1

L1(ρi, H − i)ϵkh +

H−1∏
h=1

L1(ρh, H − h)δkH

= 2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)ekh +

H−1∑
h=1

h∏
i=1

L1(ρi, H − i)ϵkh,

where the last step is because δkH = Qk
H −Q∗

H = rH − rH = 0.

Step 3: putting together. The total regret is bounded as

Regret(K) ≤
∑

k∈[K]

δk1 ≤ 2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)

K∑
k=1

ekh +

K∑
k=1

H−1∑
h=1

h∏
i=1

L1(ρi, H − i)ϵkh.
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The first term can be bounded as

2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)

K∑
k=1

ekh = 2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)

K∑
k=1

√
2S

Nk
h ∨ 1

ι

≤ 4

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)
√
S2AKι

≜ 4

H−1∑
h=1

L∞,h

h−1∏
i=1

L1,i

√
S2AKι

≜ 4

H−1∑
h=1

L∞,hL̃1,h−1

√
S2AKι,

where we denote by L∞,h = L∞(ρh, H − h) and L̃1,h−1 =
∏h−1

i=1 L1,i for simplicity. We can bound the second
term by Azuma-Hoeffding inequality: with probability at least 1− δ′, the following holds

K∑
k=1

H−1∑
h=1

h∏
i=1

L1(ρi, H − i)ϵkh =

K∑
k=1

H−1∑
h=1

L̃1,hϵ
k
h ≤

√√√√ K∑
k=1

H−1∑
h=1

(2(H − h)L̃1,h)2

2
log(1/δ′)

=

√√√√H−1∑
h=1

(H − h)2L̃2
1,h

√
2K log(1/δ′)

Using a union bound and let δ = δ′ = δ̃
2 , we have that with probability at least 1− δ,

Regret(K) ≤ 4

H−1∑
h=1

L∞,hL̃1,h−1

√
S2AKι+

√√√√H−1∑
h=1

(H − h)2L̃2
1,h

√
2K log(1/δ′)

= Õ

(
H−1∑
h=1

L∞,hL̃1,h−1

√
S2AK

)
.

The equality is due to that

H−1∑
h=1

L∞,hL̃1,h−1 ≥

√√√√H−1∑
h=1

L2
∞,hL̃

2
1,h−1 =

√√√√H−1∑
h=1

((H − h)L1,h)2L̃2
1,h−1

=

√√√√H−1∑
h=1

(H − h)2L̃2
1,h,

where the first inequality comes from the non-negativity of L∞,hL̃1,h−1, and the first equality is due to the choice
L∞,h = L1,h(H − h).

Remark 5. The following statement is not true

∥(x, P )− (y, P )∥1 ≤

∣∣∣∣∣∣
∑
i∈[n]

Pi(xi − yi)

∣∣∣∣∣∣ .
Consider the case that (x, P ) = ((0, 1), ( 13 ,

2
3 ) and (y, P ) = (( 13 ,

5
6 ), (

1
3 ,

2
3 )). A simple calculation yields that∑

i∈[n] Pi(xi − yi) = 0.

D.1.2 Proof for Algorithm 2

Step 1: verify optimism.

Lemma 7 (Optimistic value function). Conditioned on event Gδ, the sequence {V k
1 (s

k
1)}k∈[K] produced by

Algorithm 2 satisfies V k
1 (sk1) ≥ V ∗

1 (s
k
1),∀k ∈ [K].

Proof. The proof follows from Appendix C.
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Step 2: regret decomposition. The regret can be bounded as

Regret(K) =

K∑
k=1

V ∗
1 (s

k
1)− V πk

1 (sk1) ≤
K∑

k=1

V k
1 (sk1)− V πk

1 (sk1) =

K∑
k=1

δk1 .

For any h ∈ [H − 1], we decompose δkh as follows

δkh = ρh

(
V k
h+1, P̃

k
h (s

k
h)
)
− ρh

(
V πk

h+1, P
πk

h (skh)
)

= ρh

(
V k
h+1, P̃

k
h (s

k
h)
)
− ρh

(
V k
h+1, P

πk

h (skh)
)

︸ ︷︷ ︸
(a)

+ ρh

(
V k
h+1, P

πk

h (skh)
)
− ρh

(
V πk

h+1, P
πk

h (skh)
)

︸ ︷︷ ︸
(b)

.

Using the Lipschitz property of ρh,

(a) ≤ L∞(ρh, H − h)
∥∥∥(V k

h+1, P̃
k
h (s

k
h)
)
−
(
V k
h+1, P

πk

h (skh)
)∥∥∥

∞

≤ L∞(ρh, H − h)
∥∥∥P̃ k

h (s
k
h)− Pπk

h (skh)
∥∥∥
1

≤ L∞(ρh, H − h)
(∥∥∥P̃ k

h (s
k
h)− P̂πk

h (skh)
∥∥∥
1
+
∥∥∥P̂ k

h (s
k
h)− Pπk

h (skh)
∥∥∥
1

)
≤ 2L∞(ρh, H − h)

√
2S

Nk
h ∨ 1

ι.

Using arguments similar to the proof for Algorithm 1

(b) ≤ L1(ρh, H − h)(ϵkh + δkh+1),

Now we can bound δkh recursively

δkh ≤ 2L∞(ρh, H − h)

√
2S

Nk
h ∨ 1

ι+ L1(ρh, H − h)(ϵkh + δkh+1)

= 2L∞(ρh, H − h)ekh + L1(ρh, H − h)(ϵkh + δkh+1).

Repeating the procedure, we obtain

δk1 ≤ 2

H−1∑
h=1

L∞(ρh, H − h)

h−1∏
i=1

L1(ρi, H − i)ekh +

H−1∑
h=1

h∏
i=1

L1(ρi, H − i)ϵkh.

Step 3: putting together. The results follows from analogous arguments of the proof for Algorithm 1.

D.2 Gap-dependent Regret Upper Bound

Step 1: regret decomposition. The regret of each episode can be rewritten as the expected sum of sub-
optimality gaps for each action:

(V ∗
1 − V πk

1 )(sk1) = V ∗
1 (s

k
1)−Q∗

1(s
k
1 , a

k
1) + (Q∗

1 −Qπk

1 )(sk1 , a
k
1)

= ∆1(s
k
1 , a

k
1) + [P2(V

∗
2 − V πk

2 )](sk2 , a
k
2)

= · · · = E

[
H∑

h=1

∆h(s
k
h, a

k
h)

]
.

Step 2: optimism.

Lemma 8. With probability at least 1− δ, the following event holds

0 ≤ (Qk
h −Q∗

h)(s, a) ≤ 2bkh(s, a) + L1,h[Ph(V
k
h+1 − V ∗

h+1)](s, a).
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Proof.

(Qk
h −Q∗

h)(s, a) = rh(s, a) + ρh

(
V k
h+1, P̂

k
h (s, a)

)
+ bkh(s, a)− rh(s, a)− ρh

(
V ∗
h+1, Ph(s, a)

)
= ρh

(
V k
h+1, P̂

k
h (s, a)

)
− ρh

(
V k
h+1, Ph(s, a)

)
︸ ︷︷ ︸

(a)

+ ρh
(
V k
h+1, Ph(s, a)

)
− ρh

(
V ∗
h+1, Ph(s, a)

)︸ ︷︷ ︸
(b)

+bkh(s, a)

≤ L∞,h

∥∥∥(V k
h+1, P̂

k
h (s, a))− (V k

h+1, Ph(s, a))
∥∥∥
∞

+ L1,h

∥∥(V k
h+1, Ph(s, a))− (V ∗

h+1, Ph(s, a))
∥∥
1
+ bkh(s, a)

≤ L∞,h

∥∥∥P̂ k
h (s, a)− V k

h+1, Ph(s, a)
∥∥∥
1
+ L1,h[Ph(V

k
h+1 − V ∗

h+1)](s, a) + bkh(s, a)

≤ 2bkh(s, a) + L1,h[Ph(V
k
h+1 − V ∗

h+1)](s, a)

Step 3: bound number of steps in each interval

Lemma 9. For any n ∈ [N ],

Cn ≜
∣∣{(k, h) : (Qk

h −Q∗
h)(s

k
h, a

k
h) ∈ [2n−1∆min, 2

n∆min)
}∣∣ ≤ O

HS2Aι
(∑H−1

h′=h

∏h′−1
i=h L1,iL∞,h′

)2
4n∆2

min

 .

Proof. For every n ∈ [N ], h ∈ [H], define

w
(n,h)
k ≜ I

{
(Qk

h −Q∗
h)(s

k
h, a

k
h) ∈ [2n−1∆min, 2

n∆min)
}

C(n,h) ≜
K∑

k=1

w
(n,h)
k .

Observe that w
(n,h)
k ≤ 1 and (w

(n,h)
k )2 = w

(n,h)
k . Now we bound

∑K
k=1 w

(n,h)
k (Qk

h −Q∗
h)(s

k
h, a

k
h) from both sides.

On the one hand, by Lemma ,

K∑
k=1

w
(n,h)
k (Qk

h −Q∗
h)(s

k
h, a

k
h) ≤ 4

√
S2AιC(n,h) ·

H−1∑
h′=h

h′−1∏
i=h

L1,iL∞,h′ +

√
2C(n,h) log

1

δ′
·
H−1∑
h′=h

h′−1∏
i=h

L1,iL1,h′(H − h′)

= O

√S2AιC(n,h) ·
H−1∑
h′=h

h′−1∏
i=h

L1,iL∞,h′

 .

On the other hand, by the definition of w
(n,h)
k ,

K∑
k=1

w
(n,h)
k (Qk

h −Q∗
h)(s

k
h, a

k
h) ≥

K∑
k=1

w
(n,h)
k 2n−1∆min = 2n−1∆min · C(n,h).

Combining the two inequalities, we obtain

C(n,h) ≤ O

S2Aι
(∑H−1

h′=h

∏h′−1
i=h L1,iL∞,h′

)2
4n∆2

min


Finally, we have

C(n) =

H∑
h=1

C(n,h) ≤ O

S2Aι
∑H

h=1

(∑H−1
h′=h

∏h′−1
i=h L1,iL∞,h′

)2
4n∆2

min

 ≤ O
S2AιH

(∑H−1
h′=1 L̃1,h′−1L∞,h′

)2
4n∆2

min


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Lemma 10. For any positive sequence {wk}k∈[K], it holds that for any h ∈ [H]

K∑
k=1

wk(Q
k
h−Q∗

h)(s
k
h, a

k
h) ≤ 4

√√√√wS2Aι

K∑
k=1

wk ·
H−1∑
h′=h

h′−1∏
i=h

L1,iL∞,h′ +

√√√√2

K∑
k=1

w2
k log

1

δ′
·
H−1∑
h′=h

h′−1∏
i=h

L1,iL1,h′(H − h′).

Proof. By Lemma 5,

K∑
k=1

wk(Q
k
h −Q∗

h)(s
k
h, a

k
h) ≤

K∑
k=1

wk

(
2L∞,h

√
2Sι

Nk
h

+ L1,h[Ph(V
k
h+1 − V ∗

h+1)](s
k
h, a

k
h)

)

= 2L∞,h

K∑
k=1

wk

√
2Sι

Nk
h ∨ 1︸ ︷︷ ︸

(a)

+L1,h

K∑
k=1

wkϵ
k
h︸ ︷︷ ︸

(b)

+L1,h

K∑
k=1

wk(V
k
h+1 − V ∗

h+1)(s
k
h+1)

≤ (a) + (b) + L1,h

K∑
k=1

wk(Q
k
h+1 −Q∗

h+1)(s
k
h+1, a

k
h+1),

where ϵkh ≜ [Ph(V
k
h+1 − V ∗

h+1)](s
k
h, a

k
h)− (V k

h+1 − V ∗
h+1)](s

k
h+1) ∈ [−2(H − h), 2(H − h)] is a martingale difference

sequence w.r.t. Fk
h for any h ∈ [H], i.e., E

[
ϵkh|Fk

h

]
= 0. Define k(s, a, t) ≜ min{k : Nk

h (s, a) ≥ t} the episode
when (s, a) is visited t times at step h. We can bound term (a) as

(a) = 2L∞,h

K∑
k=1

wk

√
2Sι

Nk
h

= 2L∞,h

√
2Sι

∑
s,a

K∑
k=1

I{(skh, akh) = (s, a)} wk√
Nk

h (s, a) ∨ 1

= 2L∞,h

√
2Sι

∑
s,a

NK
h (s,a)∑
t=1

wk(s,a,t)√
t

≤ 2L∞,h

√
2Sι

∑
s,a

Cs,a/w∑
t=1

w√
t

≤ 4L∞,h

√
Sι
∑
s,a

√
Cs,aw

≤ 4L∞,h

√√√√wS2Aι

K∑
k=1

wk,

where Cs,a ≜
∑NK

h (s,a)
t=1 wk(s,a,t) and wk ≤ w for any k, and the last inequality follows from that

∑
s,a Cs,a =∑

s,a

∑NK
h (s,a)

t=1 wk(s,a,t) =
∑K

k=1 wk.

Since {ϵkh}k∈[K] is a MDS with |ϵkh| ≤ 2(H − h), we can bound term (b) by Azuma-Hoeffding inequality: w.p.
1− δ′

(b) = L1,h

K∑
k=1

wkϵ
k
h ≤ L1,h(H − h)

√√√√2

K∑
k=1

w2
k log

1

δ′
.

Thus we can get a recursive bound

K∑
k=1

wk(Q
k
h −Q∗

h)(s
k
h, a

k
h) ≤ 4L∞,h

√√√√wS2Aι

K∑
k=1

wk + L1,h(H − h)

√√√√2

K∑
k=1

w2
k log

1

δ′

+L1,h

K∑
k=1

wk(Q
k
h+1 −Q∗

h+1)(s
k
h+1, a

k
h+1).
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Unrolling the inequality yields

K∑
k=1

wk(Q
k
h −Q∗

h)(s
k
h, a

k
h) ≤

H−1∑
h′=h

h′−1∏
i=h

L1,i

4L∞,h′

√√√√wS2Aι

K∑
k=1

wk + L1,h′(H − h′)

√√√√2

K∑
k=1

w2
k log

1

δ′


= 4

√√√√wS2Aι

K∑
k=1

wk ·
H−1∑
h′=h

h′−1∏
i=h

L1,iL∞,h′ +

√√√√2

K∑
k=1

w2
k log

1

δ′
·
H−1∑
h′=h

h′−1∏
i=h

L1,iL1,h′(H − h′)

Step 4: Bound the regret Denote by τ ≜ (skh, a
k
h)k,h the trajectory. Define clip[x|δ] ≜ xI{x ≥ δ}. Observe

that
V ∗
h (s

k
h) = max

a
Q∗

h(s
k
h, a) ≤ max

a
Qk

h(s
k
h, a) = Qk

h(s
k
h, a

k
h),

thus we get
∆h(s

k
h, a

k
h) = clip[V ∗

h (s
k
h)−Q∗

h(s
k
h, a

k
h)|∆min] ≤ clip[(Qk

h −Q∗
h)(s

k
h, a

k
h)|∆min].

Regret(K) = E

[
K∑

k=1

H∑
h=1

∆h(s
k
h, a

k
h)

]
=
∑

P(τ)
K∑

k=1

H∑
h=1

∆h(s
k
h, a

k
h|τ)

≤
∑
τ∈E

P(τ)
K∑

k=1

H∑
h=1

clip[(Qk
h −Q∗

h)(s
k
h, a

k
h|τ)|∆min] +

∑
τ∈Ec

P(τ)KH2

≤ P(E)

N∑
n=1

2n∆minC
(n) + P(Ec)KH2

≤
N∑

n=1

O

HS2Aι
(∑H−1

h′=h

∏h′−1
i=h L1,iL∞,h′

)2
2n∆min

+H

= O

HS2Aι
(∑H−1

h′=h

∏h′−1
i=h L1,iL∞,h′

)2
∆min

 .

E Proofs of Regret Lower Bounds

E.1 Minimax Lower Bound

We make the following assumption Domingues et al. (2021).

Assumption 2. Assume S ≥ 6, A ≥ 2, and there exists an integer d such that S = 3+ Ad−1
A−1 . We further assume

that H ≥ 3d and H̄ ≜ H
3 ≥ 1.

Theorem 5. Assume Assumption 2 holds. For any algorithm A , there exists an MDP MA such that for
sufficiently large K

E[Regret(A ,MA ,K)] ≥
√
p

27
√
6
cρ,1H

√
SAT .

Step 1. Fix an arbitrary algorithm A . We introduce three types of special states for the hard MDP class: a
waiting state sw where the agent starts and may stay until stage H̄, after that it has to leave; a good state sg,
which is absorbing and is the only rewarding state; a bad state sb that is absorbing and provides no reward. The
rest of S − 3 states are part of a A-ary tree of depth d − 1. The agent can only arrive sw from the root node
sroot and can only reach sg and sb from the leaves of the tree. Let H̄ ∈ [H − d] be the first parameter of the

MDP class. We define H̃ := H̄ + d+ 1 and H ′ := H + 1 − H̃. We denote by L := {s1, s2, ..., sL̄} the set of L̄
leaves of the tree. For each u∗ := (h∗, ℓ∗, a∗) ∈ [d+ 1 : H̄ + d]× L×A, we define an MDPMu∗ as follows. The
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transitions in the tree are deterministic, hence taking action a in state s results in the a-th child of node s. The
transitions from sw are defined as

Ph (sw | sw, a) := I
{
a = aw, h ≤ H̄

}
and Ph (sroot | sw, a) := 1− Ph (sw | sw, a) .

The transitions from any leaf si ∈ L are specified as

Ph (sg | si, a) := p+∆u∗ (h, si, a) and Ph (sb | si, a) := 1− p−∆u∗ (h, si, a) ,

where ∆u∗ (h, si, a) := ϵI{(h, si, a) = (h∗, sℓ∗ , a
∗)} for some constants p ∈ [0, 1] and ϵ ∈ [0,min(1 − p, p)] to be

determined later. p and ϵ are the second and third parameters of the MDP class. Observe that sg and sb are
absorbing, therefore we have ∀a, Ph (sg | sg, a) := Ph (sb | sb, a) := 1. The reward is a deterministic function of
the state

rh(s, a) := I{s = sg, h ≥ H̃}.

Finally, we define a reference MDPM0 which differs from the previous MDP instances only in that ∆0(h, si, a) := 0
for all (h, si, a). For each ϵ, p and H̄, we define the MDP class

CH̄,p,ϵ :=M0 ∪ {Mu∗}u∗∈[d+1:H̄+d]×L×A.

For an MDPMu∗ , the optimal policy π∗,Mu∗ starts to traverse the tree at step h∗ − d then chooses to reach the
leaf sl∗ and performs action a∗. The optimal value in any of these MDPs is the same

V ∗,Mu∗
1 = V ∗,Mu∗

h∗ (sl∗) = Q∗,Mu∗
h∗ (sl∗ , a

∗) = rh(sl∗ , a
∗) + ρh∗(V ∗,Mu∗

h∗+1 , Ph(sl∗ , a
∗))

= ρh∗((V ∗,Mu∗
h∗+1 (sg), V

∗,Mu∗
h∗+1 (sb)), (p+ ϵ, 1− p− ϵ)).

For simplicity, we may dropMu∗ from the notations. Notice that the agent must be in either of the absorbing
states at step h ≥ H̃ = H̄ + d+ 1. Observe that V ∗,Mu∗

H (sg) = rH(sg, a) = 1 since rh(sg, a) = 1 for any a and

any h ≥ H̃, and V ∗,Mu∗
H (sb) = 0. Thus we have:

Q∗,Mu∗
H−1 (sg, a) = rH−1(sg, a) + ρH−1((V

∗,Mu∗
h∗+1 (sg), V

∗,Mu∗
h∗+1 (sb)), (1, 0)) = 1 + V ∗,Mu∗

h∗+1 (sg) = 2,∀a,

where the second equality follows from that ρh(c) = c for a deterministic constant c. Therefore V ∗,Mu∗
H−1 (sg) = 2.

Similarly we can get V ∗,Mu∗
H−1 (sb) = 0. It follows from inductions that V ∗,Mu∗

h (sg) = H+1−h and V ∗,Mu∗
h (sb) = 0

for h ≥ H̃. Moreover, observe that

V ∗,Mu∗

H̃−1
(sg) = 0 + ρH̃−1((V

∗,Mu∗

H̃
(sg), V

∗,Mu∗

H̃
(sb)), (1, 0)) = V ∗,Mu∗

H̃
(sg) = H + 1− H̃ = H ′

and V ∗,Mu∗

H̃−1
(sb) = 0. Then V ∗,Mu∗

h∗+1 (sg) = · · · = V ∗,Mu∗

H̃−1
(sg) = H ′ and V ∗,Mu∗

h∗+1 (sb) = · · · = V ∗,Mu∗

H̃−1
(sb) = 0.

Thus the optimal value

V ∗,Mu∗
1 = ρh∗((V ∗,Mu∗

h∗+1 (sg), V
∗,Mu∗
h∗+1 (sb)), (p+ ϵ, 1− p− ϵ))

= ρh∗((V ∗,Mu∗

H̃
(sg), V

∗,Mu∗

H̃
(sb)), (p+ ϵ, 1− p− ϵ))

= ρh∗((H ′, 0), (p+ ϵ, 1− p− ϵ))

Consider the case that policy πk ̸= π∗. Then we have (skh∗ , akh∗) ̸= (sl∗ , a
∗). Analogously, we can get

V πk

h (sg) = H + 1− h, V ∗,Mu∗
h (sb) = 0

for h ≥ H̃. Suppose πk arrives at the leaf node sklk in step lk ∈ [1 + d, H̃ − 1], then V πk

lk+1(sg) = · · · = V πk

H̃
(sg) =

H + 1− H̃ = H ′ and V πk

lk+1(sb) = · · · = V πk

H̃
(sb) = 0. Since Plk(sg|sklk , a

k
h) = p,

V πk

1 = ρlk((V
πk

lk+1(sg), V
πk

lk+1(sb)), (p, 1− p)) = ρlk((H
′, 0), (p, 1− p))

Denote by xk
h := (skh, a

k
h) for each (k, h), x∗ := (sℓ∗ , a

∗) and NK(u∗) :=
∑K

k=1 I{xk
h∗ = x∗}. It follows that

V πk

1 = I{xk
h∗ = x∗}V ∗

1 + I{xk
h∗ ̸= x∗}ρlk((H ′, 0), (p, 1− p))
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Define cρ as the constant that satisfies

ρ((H, 0), (p, 1− p))− ρ((H, 0), (q, 1− q)) ≥ cρ ∥((H, 0), (p, 1− p))− ((H, 0), (q, 1− q))∥1
= cρH|p− q|.

The expected regret of A inMu∗ can be bounded as

EA ,Mu∗ [Regret(A ,Mu∗ ,K)]

= EA ,Mu∗

[
K∑

k=1

V ∗
1 − V πk

1

]

= EA ,Mu∗

[
K∑

k=1

I{xk
h∗ ̸= x∗} (ρh∗((H ′, 0), (p+ ϵ, 1− p− ϵ))− ρlk((H

′, 0), (p, 1− p)))

]

≥ EA ,Mu∗

[
K∑

k=1

I{xk
h∗ ̸= x∗}cρ ∥((H ′, 0), (p+ ϵ, 1− p− ϵ))− ((H ′, 0), (p, 1− p))∥1

]

= EA ,Mu∗

[
K∑

k=1

I{xk
h∗ ̸= x∗}cρH ′ϵ

]
= cρϵH

′(K − EA ,Mu∗ [NK(u∗)]),

Step 2. The maximum of the regret can be bounded below by the mean over all instances as

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥ 1

H̄L̄A

∑
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K)

≥ cρ,1H
′Kϵ

1− 1

L̄AKH̄

∑
u∗∈[d+1:H̄+d]×L×A

Eu∗ [NK(u∗)]

 .

Observe that it can be further bounded if we can obtain an upper bound on
∑

u∗∈[d+1:H̄+d]×L×A Eu∗ [NK(u∗)],
which can be done by relating each expectation to the expectation under the reference MDPM0.

Fact 7 (Lemma 1,Garivier et al. (2019)). Consider a measurable space (Ω,F) equipped with two distributions P1

and P2. For any F-measurable function Z : Ω→ [0, 1], we have

KL (P1,P2) ≥ kl (E1[Z],E2[Z]) ,

where E1 and E2 are the expectations under P1 and P2 respectively.

Fact 8 (Lemma 5, Domingues et al. (2021)). Let M and M′ be two MDPs that are identical except for their
transition probabilities, denoted by Ph and P ′

h, respectively. Assume that we have ∀(s, a), Ph(· | s, a)≪ P ′
h(· | s, a).

Then, for any stopping time τ with respect to (Ik)k≥1 that satisfies PM[τ <∞] = 1

KL (PM,PM′) =
∑

(s,a,h)∈S×A×[H−1]

EM [Nτ
h (s, a)] KL (Ph(· | s, a), P ′

h(· | s, a)) .

Fact 9 (Lemma 28, Liang and Luo (2022)). If ϵ ≥ 0, p ≥ 0 and p+ ϵ ∈ [0, 1
2 ], then kl(p, p+ ϵ) ≤ ϵ2

2p(1−p) ≤
ϵ2

p .

By applying Fact 7 with Z = NK(u∗)
K ∈ [0, 1], we have

kl

(
1

K
E0 [NK(u∗)] ,

1

K
Eu∗ [NK(u∗)]

)
≤ KL (P0,Pu∗) .

By Pinsker’s inequality, it implies that

1

K
Eu∗ [NK(u∗)] ≤ 1

K
E0 [NK(u∗)] +

√
1

2
KL (P0,Pu∗).
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SinceM0 andMu∗ only differs at stage h∗ when (s, a) = x∗, it follows from Fact 8 that

KL (P0,Pu∗) = E0 [NK(u∗)] kl(p, p+ ε).

By Fact 9, we have kl(p, p+ ϵ) ≤ ϵ2

p for ϵ ≥ 0 and p+ ϵ ∈ [0, 1
2 ]. Consequently,

1

K

∑
u∗∈[d+1:H̄+d]×L×A

Eu∗ [NK(u∗)]

≤ 1

K
E0

 ∑
u∗∈[d+1:H̄+d]×L×A

NK(u∗)

+
ϵ√
2p

∑
u∗∈[d+1:H̄+d]×L×A

√
E0 [NK(u∗)]

≤ 1 +
ϵ√
2p

√
L̄AKH̄,

where the second inequality is due to the Cauchy-Schwartz inequality and that
∑

u∗∈[d+1:H̄+d]×L×A NK(u∗) = K.
It follows that

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥ cρ,1H
′Kϵ

1− 1

L̄AH̄
−

ϵ√
2p

√
L̄AKH̄

L̄AH̄

 .

Step 3. Choosing ϵ =
√

p
2 (1−

1
LAH̄

)
√

LAH̄
K maximizes the lower bound

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥
√
p

2
√
2
cρ,1H

′
(
1− 1

L̄AH̄

)2√
L̄AKH̄.

Since S ≥ 6 and A ≥ 2, we have L̄ = (1 − 1
A )(S − 3) + 1

A ≥
S
4 and 1 − 1

L̄AH̄
≥ 1 − 1

6
4 ·2

= 2
3 . Choose H̄ = H

3

and use the assumption that d ≤ H
3 to obtain that H ′ = H − d− H̄ ≥ H

3 . Now we choose arbitrary p ≤ 1
4 and

ϵ =
√

p
2 (1−

1
L̄AH̄

)
√

LAH̄
K < 1

2
√
2

√
L̄AH̄
K ≤ 1

4 if K ≥ 2L̄AH̄. Such choice of p and ϵ guarantees the assumption of

Fact 9. Finally we use the fact that
√
L̄AKH̄ ≥ 1

2
√
3

√
SAKH to obtain

max
u∗∈[d+1:H̄+d]×L×A

Regret(A ,Mu∗ ,K) ≥
√
p

27
√
6
cρH
√
SAKH.

E.2 Gap-dependent Lower Bound

Theorem 6 (Gap-dependent regret lower bound). Let S ≥ 2 and A ≥ 2, and let {δs,a}s,a∈S×A ⊂ (0, H
8 ) denote

a set of gaps. For any h ≥ 1, there exists an MDPM with S = [S + 2] and A = [A] such that any α-uniformly
good algorithm alg satisfies

lim
K→∞

Regret(alg,M,K)

logK
= Ω

(1− α)
∑

(s,a):∆1(s,a)>0

(cρH)2

∆1(s, a)


We first fix an arbitrary α-uniformly good algorithm A . For simplicity, we may drop A from the notations, e.g.,
EM = EM,A .

Step 1: construction of the hard instance. Our construction mirrors the lower bounds in . However, their
instance is suited for homogeneous/stationary MDP. Define an MDPM with S = {0} ∪ [S + 2] and A = [A].
Without loss of generality, we consider the case H ≥ 2. Otherwise, it reduces to a bandit setting. We first specify
the transition kernels. For the convenience of analysis, we introduce s0 = 0 at stage h = 0 with P0(s|0) = 1

S for
any s ∈ [S]. In other words, the initial state s1 is uniformly distributed over [S]. For (s, a) ∈ [S]× [A], let

P1(S + 1|s, a) = 3

4
− 2δs,a

H − 1
=:

3

4
− δ̃s,a, P1(S + 1|s, a) = 1− P1(S + 1|s, a).
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Thus at stage 1, each state s ∈ [S] can only transit to either state S + 1 or S + 2. Furthermore, we set state S + 1
and S + 2 to be absorbing state, i.e.

Ph(S + 1|S + 1, a) = Ph(S + 2|S + 2, a) = 1, ∀h ∈ [2 : H − 1], a ∈ [A].

Finally, we set the reward functions as

R(x, a) :=


1 (x, a) = (S + 1, 1)
1
2 (x, a) = (S + 2, 1)

0 otherwise.

We assume that there exists a unique action π∗(s) for each s ∈ [S] such that δs,π∗(s) = 0. We will see that such
action is the optimal action. Note that S + 1 and S + 2 are absorbing states and the only two rewarding states,
hence V ∗

h (S + 1) = H + 1− h and V ∗
h (S + 2) = H+1−h

2 for h ∈ [2 : H]. It follows that for x ∈ [S],

V ∗
h (s) = 0 + ρh(V

∗
h+1, Ph(s, π

∗
h(s))) = ρh

((
H − h,

H − h

2

)
,

(
3

4
,
1

4

))
,

Q∗
h(s, a) = 0 + ρh(V

∗
h+1, Ph(s, a)) = ρh

((
H − h,

H − h

2

)
,

(
3

4
− δ̃s,a,

1

4
+ δ̃s,a

))
,

which implies that

∆h(s, a) = ρh

((
H − h,

H − h

2

)
,

(
3

4
,
1

4

))
− ρh

((
H − h,

H − h

2

)
,

(
3

4
− δ̃s,a,

1

4
+ δ̃s,a

))
≥ cρ

∥∥∥∥((H − h,
H − h

2

)
,

(
3

4
,
1

4

))
−
((

H − h,
H − h

2

)
,

(
3

4
− δ̃s,a,

1

4
+ δ̃s,a

))∥∥∥∥
1

= cρ
H − h

2
δ̃s,a.

In particular, we have ∆1(s, a) ≥ cρ
H−1
2 δ̃s,a = cρ,1δs,a. Note that ∆1(s, a) is only defined for s ∈ [S].

Step 2: regret decomposition. The regret for algorithm A over MDPM can be decomposed as follows

Regret(A ,M,K) = E

[
K∑

k=1

V ∗
1 (s

k
1)− V πk

1 (sk1)

]

= E

[
K∑

k=1

H∑
h=1

∆h(s
k
h, a

k
h)

]

= E

[
K∑

k=1

H∑
h=1

∑
s,a

I
{
skh = s, akh = a

}
∆h(s

k
h, a

k
h)

]

=

H∑
h=1

∑
s,a

E

[
K∑

k=1

I
{
skh = s, akh = a

}]
∆h(s, a)

=

H∑
h=1

∑
s,a

E
[
NK

h (s, a)
]
∆h(s, a)

=

H∑
h=1

∑
s∈[S],a

E
[
NK

h (s, a)
]
∆h(s, a).

where the last equality is due to that ∆h(s, a) is only defined over [S]. For our hard instance, observe that
I
{
skh = s

}
= 0 for s ∈ [S] and h ̸= 1. Therefore NK

h (s, a) = 0 for s ∈ [S] and h ̸= 1, which implies

Regret(A ,M,K) =
∑

s∈[S],a

E
[
NK

1 (s, a)
]
∆1(s, a).
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We claim that for any (s, a) such that s ∈ [S] and ∆1(s, a) > 0, and any K ≥ K0(M), it holds that

EA ,M
(
NK

1 (s, a)
)
≥ Ω

(
1

δ̃2s,a
logK

)
= Ω

(
(cρ,1H)2

∆1(s, a)2
logK

)
.

It follows that

Regret(A ,M,K) ≥ Ω

 ∑
s∈[S],a:∆1(s,a)>0

(cρ,1H)2

∆1(s, a)
logK

 .

Step 3: bounding E
[
NK

h (s, a)
]
. Observe that δ̃s,a = 2

H−1δs,a ∈ (0, 1
2 ) due to the assumption that δs,a ∈ (0, H

8 ).

By Fact 7 and Fact 8, let Z be a FK-measurable random variable, then it holds that

kl (EM[Z],EM′ [Z]) ≤
∑

(s,a,h)∈S×A×[H−1]

EM
[
NK

h (s, a)
]
KL (Ph(s, a), P

′
h(s, a)) .

Now fix an arbitrary (s, a) ∈ [S]×[A]. Define an MDPM′
s,a which differs fromM only in that P1(S+1|s, a) = 3

4+η,

where η = min{ 18 , δ̃s,a}. For simplicity, we writeM′ =M′
s,a. The following holds

kl (EM[Z],EM′ [Z]) ≤ EM
[
NK

1 (s, a)
]
KL (P1(s, a), P

′
1(s, a)) = EM

[
NK

1 (s, a)
]
kl

(
3

4
− δ̃s,a,

3

4
+ η

)
.

Observe that 1
4 < 3

4 − δ̃s,a < 3
4 + η < 7

8 and η + δ̃s,a ≤ 2δ̃s,a, it follows from Fact 9 that

kl

(
3

4
− δ̃s,a,

3

4
+ η

)
≤ (η + δ̃s,a)

2

2( 34 − δ̃s,a)(1− 3
4 − η)

< 64δ̃2s,a.

Now we have

EM
[
NK

1 (s, a)
]
≥ 1

64δ̃2s,a
kl (EM[Z],EM′ [Z]) ≥ (cρ,1(H − 1))2

256∆2
1(s, a)

kl (EM[Z],EM′ [Z]) .

We set Z =
∑K

k=1
I{πk

1 (s)=a}
K ∈ [0, 1]. Note that Z is indeed FK-measurable random variable since πk is

FK-measurable and (s, a) is fixed. Denote by ∆′ the gap for MDPM′. Observe that for a′ ̸= a,

∆′
1(s, a

′) = ρh

((
H − 1,

H − 1

2

)
,

(
3

4
+ η,

1

4
− η

))
− ρh

((
H − 1,

H − 1

2

)
,

(
3

4
− δ̃s,a′ ,

1

4
+ δ̃s,a′

))
≥ cρ

H − 1

2
(η + δ̃s,a′) ≥ cρ

H − 1

2
η.

Under MDPM′, action a is the unique optimal action for s, thus

Regret(A ,M′,K) ≥
∑
a′ ̸=a

EM′
[
NK

1 (s, a′)
]
∆′

1(s, a
′)

≥ cρ
H − 1

2
η
∑
a′ ̸=a

EM′
[
NK

1 (s, a′)
]

= cρ
H − 1

2
ηEM′

 K∑
k=1

∑
a′ ̸=a

I
(
sk1 = s, πk

1 (s
k
1) = a

)
= cρ

H − 1

2
ηEM′

[
K∑

k=1

(
I
(
sk1 = s

)
− I
(
sk1 = s, πk

1 (s
k
1) = a

))]

= cρ
H − 1

2
η

(
K

S
− EM′

[
K∑

k=1

I
(
sk1 = s

)
I
(
πk
1 (s) = a

)])

= cρ
H − 1

2
η

(
K

S
−

K∑
k=1

EM′
[
I
(
sk1 = s

)]
EM′

[
I
(
πk
1 (s) = a

)])

= cρ
H − 1

2

K

S
(1− EM′ [Z]) ,
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where the second to the last equality is due to the dependence between sk1 and πk
1 . Since A is α-uniformly good

algorithm, there exists CM′ > 0 such that

cρ
H − 1

2

K

S
(1− EM′ [Z]) ≤ Regret(A ,M′,K) ≤ CM′Kα,

implying

1− EM′ [Z] ≤ 2CM′S

cρ,1(H − 1)K1−α
.

We can also get

CMKα ≥ Regret(A ,M,K) ≥ EM
[
NK

1 (s, a)
]
∆1(s, a) ≥

K∆1(s, a)

S
EM [Z] ,

which implies that EM [Z] ≤ CMS
∆1(s,a)K1−α . Observe that

kl(x, y) ≥ (1− x) log
1

1− y
− log 2.

It follows that

kl (EM [Z] ,EM′ [Z]) ≥
(
1− CMS

∆1(s, a)K1−α

)(
(1− α) logK − log

2CM′S

cρ,1(H − 1)

)
− log 2.

Step 4. We can also prove for the case h ̸= 1 by modifying the transition kernels for state 0. For h ̸= 1, we set
the transition kernels as

Pl(0|0, a) = 1,∀l ∈ [0 : h− 2],∀a ∈ [A], Ph−1(s|0, a) =
1

S
,∀s ∈ [S],∀a ∈ [A].

In other words, the MDP is randomly initialized over [S] at stage h rather than stage 1. For (s, a) ∈ [S]× [A], let

Ph(S + 1|s, a) = 3

4
− 2δs,a

H − 1
=:

3

4
− δ̃s,a, Ph(S + 1|s, a) = 1− Ph(S + 1|s, a).

Finally, we still set S + 1, S + 2 to be absorbing states. Using similar arguments concludes the proof.
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