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Abstract

Motivated by the cost heterogeneity in exper-
imentation across different alternatives, we
study the Best Arm Identification with Re-
source Constraints (BAIwRC) problem. The
agent aims to identify the best arm under
resource constraints, where resources are con-
sumed for each arm pull. We make two novel
contributions. We design and analyze the
Successive Halving with Resource Rationing
algorithm (SH-RR). The SH-RR achieves a
near-optimal non-asymptotic rate of conver-
gence in terms of the probability of succes-
sively identifying an optimal arm. Interest-
ingly, we identify a difference in convergence
rates between the cases of deterministic and
stochastic resource consumption.

1 Introduction

Best arm identification (BAI) is a fundamental multi-
armed bandit formulation on pure exploration. The
over-arching goal is to identify an optimal arm through
a sequence of adaptive arm pulls. The efficiency of
the underlying strategy is typically quantified by the
number of arm pulls. On one hand, the number of arm
pulls provides us statistical insights into the strategy’s
performance. On the other hand, the number of arm
pulls does not necessarily provide us with the economic
insights into the total cost of the arm pulls in the
scenario of arm cost heterogeneity, where the costs of
arm pulls differ among different arms.

Arm cost heterogeneity occurs in a variety of applica-
tions. For example, consider a retail firm experimenting
two marketing campaigns: (a) advertising on an online
platform for a day, (b) providing $5 vouchers to a se-
lected group of recurring customers. The firm wishes
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to identify the more profitable one out of campaigns (a,
b). The executions of (a, b) lead to different costs. A
cost-aware retail firm would desire to control the total
cost in experimenting these campaign choices, rather
than the number of try-outs. Arm cost heterogeneity
also occurs in many other operations research appli-
cations. Process design decisions in business domains
such as supply chain, service operations, pharmaceu-
tical tests typically involve experimenting a collection
of alternatives and identifying the best one in terms of
profit, social welfare or any desired metric. Compared
to the total number of try-outs, it is more natural to
keep the total cost in experimentation in check. What
is the relationship between the total arm pulling cost
and the probability of identifying the best arm?

We make three contributions to shed light on the above
question. Firstly, we construct the Best Arm Identifi-
cation with Resource Constraints (BAIwRC) problem
model, which features arm cost heterogeneity in a fun-
damental pure exploration setting. In the BAIwRC,
pulling an arm generates a random reward, while con-
suming resources. The agent, who is endowed with
finite amounts of resources, aims to identify an arm
of highest mean reward, subject to the resource con-
straints. In the marketing example, the resource con-
straint could be the agent’s financial budget for ex-
perimenting different campaign, and the agent’s goal
is to identify the most profitable campaign while not
exceeding the budget.

Secondly, we design and analyze the Successive Halving
with Resource Rationing (SH-RR) algorithm. SH-RR
eliminates sub-optimal arms in phases, and rations an
adequate amount of resources to each phase to ensure
sufficient exploration in all phases. We derive upper
bounds for SH-RR on its Pr(fail BAI), the probabil-
ity failing to identify a best arm. Our bounds decay
exponentially to zero when the amounts of endowed re-
sources increases. In addition, our bounds depends on
the mean rewards and consumptions of the arms. Our
bounds match the state-of-the-art when specialized to
the fixed budget BAI setting. Crucially, we demon-
strate the near-optimality of SH-RR by establishing
lower bounds on Pr(fail BAI) by any strategy.
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Thirdly, our results illustrate a fundamental difference
between the deterministic and the stochastic consump-
tion settings. Campaign (a) in the marketing exam-
ple has a deterministic consumption, since the cost
for advertisement is determined and fixed (by the ad
platform) before (a) is executed. Campaign (b) has
a random consumption, since the total cost is pro-
portional to the number of recurring customers who
redeem the vouchers, which is random. More pre-
cisely, for a BAIwRC instance Q, our results imply
that − log(Pr(fail BAI)) under an optimal strategy is
proportional to γdet(Q) or γsto(Q), in the cases when
Q is a deterministic consumption instance or a stochas-
tic consumption instance respectively. The complexity
terms γdet(Q), γsto(Q) are defined in our forthcoming
Section 4, and γdet, γsto differ in how the resource con-
sumption are encapsulated in their respective settings.
Finally, our theoretical findings are corroborated with
numerical simulations, which demonstrate the empir-
ical competitiveness of SH-RR compared to existing
baselines.

Literature Review. The BAI problem has been
actively studied in the past decades, prominently under
the two settings of fixed confidence and fixed bud-
get. In the fixed confidence setting, the agent aims to
minimize the number of arm pulls, while constraining
Pr(fail BAI) to be at most an input confidence param-
eter. In the fixed budget setting, the agent aims to
minimize Pr(fail BAI), subject to an upper bound on
the number of arm pulls. The fixed confidence set-
ting is studied in (Even-Dar et al., 2002; Mannor and
Tsitsiklis, 2004; Audibert and Bubeck, 2010; Gabillon
et al., 2012; Karnin et al., 2013; Jamieson et al., 2014;
Kaufmann et al., 2016; Garivier and Kaufmann, 2016),
and surveyed in (Jamieson and Nowak, 2014). The
fixed budget setting is studied in (Gabillon et al., 2012;
Karnin et al., 2013; Kaufmann et al., 2016; Carpentier
and Locatelli, 2016). The BAI problem is also studied
in the anytime setting (Audibert and Bubeck, 2010; Jun
and Nowak, 2016), where a BAI strategy is required
to recommend an arm after each arm pull. A related
objective to BAI is the minimization of simple regret,
which is the expected optimality gap of the identified
arm, is studied Bubeck et al. (2009); Audibert and
Bubeck (2010); Zhao et al. (2022). Despite the volume
of studies on pure exploration problems on multi-armed
bandits, existing works focus on analyzing the total
number of arm pulls. We provide a new perspective by
considering the total cost of arm pulls.

BAI problems with constraints have been studied in
various works. Wang et al. (2022) consider a BAI ob-
jective where the identified arm must satisfy a safety
constraint. Hou et al. (2022) consider a BAI objective
where the identified arm must have a variance below

a pre-specified threshold. Different from these works
that impose constraints on the identified arm, we im-
pose constraints on the exploration process. Sui et al.
(2015, 2018) study BAI problems in the Gaussian ban-
dit setting, with the constraints that each sampled arm
must lie in a latent safety set. Our BAI formulation
is different in that we impose cumulative resource con-
sumption constraints across all the arm pulls, rather
than constraints on each individual pull. In addition,
Sui et al. (2015, 2018) focus on the comparing against
the best arm within a certain reachable arm subset,
different from our objective of identifying the best arm
out of all arms.

Our work is thematically related to the Bandits with
Knapsack problem (BwK), where the agent aims to
maximize the total reward instead of identifying the
best arm under resource constraints. The BwK problem
is proposed in Badanidiyuru et al. (2018), and an array
of different BwK models have been studied (Agrawal
and Devanur, 2014, 2016; Sankararaman and Slivkins,
2018). In the presence of resource constraints, achieving
the optimum under the BwK objective does not lead
to BAI. For example, in a BwK instance with single
resource constraint, it is optimal to pull an arm with
the highest mean reward per unit resource consump-
tion, which is generally not an arm with the highest
mean reward, when resource consumption amounts dif-
fer across arms. Li et al. (2023) propose a BAI problem
with BwK setting and shares some settings with us, as-
suming multiple resources with random consumptions,
a finite arm set. But their task is to identify the index
set X ∗ of all optimal arms in an LP relaxation to a
BwK problem. X ∗ depends on both the mean reward
and mean consumption of the arms. The difference
of the target marks a significant departure from our
methodologies and results in the field.

Lastly, our work is related to the research on cost-aware
Bayesian optimization (BO). In this area, an arm might
correspond to a hyper-parameter or a combination of
hyper-parameters. A widely adopted idea in the BO
community is to set up different acquisition functions
to guide the selection of sampling points. One of the
most popular choices is Expected Improvement(EI)
(Frazier, 2018), without considering the heterogeneous
resource consumptions like time or energy. To make
EI cost-aware, which is correlated to our setting of a
single resource, a common way is to divide it by an
approximated cost function c(x) (Snoek et al., 2012;
Poloczek et al., 2017; Swersky et al., 2013), calling it
Expected Improvement per unit (EIpu). However, Lee
et al. (2020) shows this division may encourage the
algorithm to explore domains with low consumption,
leading to a worse performance when the optimal point
consumes more resources. Then Lee et al. (2020) de-
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signs the Cost Apportioned BO (CArBo) algorithm,
whose acquisition function gradually evolves from EIpu
to EI. For better performance, Guinet et al. (2020)
develops Contextual EI to achieve Pareto Efficiency.
Abdolshah et al. (2019) discusses Pareto Front when
there are multiple objective functions. Luong et al.
(2021) considers EI and EIpu as two arms in a multi-
arm bandits problem, using Thompson Sampling to
determine which acquisition function is suitable in each
round. These works focus on minimizing the total cost,
different from our resource constrained setting. In ad-
dition, we allow the resource consumption model to
be unknown, random and heterogeneous among arms.
In comparison, existing works either assume one unit
of resource consumed per unit pulled (Jamieson and
Talwalkar, 2016; Li et al., 2020; Bohdal et al., 2022;
Zappella et al., 2021), or assume heterogeneity (and
deterministic) resource consumption but with the re-
source consumption (or a good estimate of it) of each
arm known Snoek et al. (2012); Ivkin et al. (2021);
Lee et al. (2020). Some alternative cost-aware BO
require the multi-fidelity or other grey-box assump-
tion (Forrester et al., 2007; Kandasamy et al., 2017;
Wu et al., 2020; Foumani et al., 2023; Belakaria et al.,
2023), which are not consistent with our settings.

Notation. For an integer K > 0, denote [K] =
{1, . . . ,K}. For d ∈ [0, 1], we denote Bern(d) as the
Bernoulli distribution with mean d.

2 Model

An instance of Best Arm Identification with Resource
Constraints (BAIwRC) is specified by the triple Q =
([K], C, ν = {νk}k∈[K]). The set [K] represents the
collection of K arms. There are L types of different
resources. The quantity C = (Cℓ)

L
ℓ=1 ∈ RL

>0 is a
vector, and Cℓ is the amount of type ℓ resource units
available to the agent. For each arm k ∈ [K], νk is the
probability distribution on the (L+1)-variate outcome
(Rk;D1,k, . . . , DL,k), which is received by the agent
when s/he pulls arm k once. By pulling arm k once,
the agent earns a random amount Rk of reward, and
consumes a random amount Dℓ,k of the type-ℓ resource,
for each ℓ ∈ {1, . . . , L}. We allow Rk, D1,k, . . . , DL,k

to be arbitrarily correlated. We assume that Rk is
a 1-sub-Gaussian random variable, and Dℓ,k ∈ [0, 1]
almost surely for every k ∈ [K], ℓ ∈ [L].

We denote the mean reward E[Rk] = rk for each k ∈
[K], and denote the mean consumption E[Dℓ,k] = dℓ,k
for each ℓ ∈ [L], k ∈ [K]. Similar to existing works on
BAI, we assume that there is a unique arm with the
highest mean reward, and without loss of generality we
assume that r1 > r2 ≥ . . . ,≥ rK . We call arm 1 the
optimal arm. We emphasize that the mean consump-

tion amounts {dℓ,k}Kk=1 on any resource ℓ need not be
ordered in the same way as the mean rewards. We
assume that dℓ,k > 0 for all k ∈ [K], ℓ ∈ [L]. Crucially,
the quantities rk, dℓ,k, νk for any k, ℓ are not known to
the agent.

Dynamics. The agent pulls arms sequentially in time
steps t = 1, 2, . . ., according to a non-anticipatory
policy π. We denote the arm pulled at time t as
A(t) ∈ [K], and the corresponding outcome as O(t) =
(R(t);D1(t), . . . , DL(t)) ∼ νA(t). A non-anticipatory
policy π is represented by the sequence {πt}∞t=1, where
πt is a function that outputs the arm A(t) by in-
putting the information collected in time 1, . . . , t− 1.
More precisely, we have A(t) = πt(H(t − 1)), where
H(t− 1) = {O(s)}t−1

s=1. The agent stops pulling arms
at the end of time step τ , where τ is a finite stop-
ping time1 with respect to the filtration {σ(H(t))}∞t=1.
Upon stopping, the agent identifies arm ψ ∈ [K] to be
the best arm, using the information H(τ). Altogether,
the agent’s strategy is represented as (π, τ, ψ).

Objective. The agent aims to choose a strategy
(π, τ, ψ) to maximize Pr(ψ = 1), the probability of BAI,
subject to the resource constraint that

∑τ
t=1Dℓ(t) ≤

Cℓ holds for all ℓ ∈ [L] with certainty. We distin-
guish between two problem model settings, namely the
stochastic consumption setting and the determin-
istic consumption setting. The former is precisely
as described above, where we allow {Dℓ,k}ℓ,k to be
arbitrary random variables bounded between 0 and 1.
The latter is a special case where Pr(Dℓ,k = dℓ,k) = 1
for all ℓ ∈ [L], k ∈ [K], meaning that all the resource
consumption amounts are deterministic. In the special
case when L = 1 and Pr(D1,k = 1 for all k ∈ [K]) = 1,
the deterministic consumption setting specializes to
the fixed budget BAI problem.

We focus on bounding the failure probability
Pr(fail BAI) = Pr(ψ ̸= 1) in terms of the underly-
ing parameters in Q. The forthcoming bounds are in
the form of exp(−γ(Q)), where γ(Q) > 0 can be under-
stood as a complexity term that encodes the difficulty
of the underlying BAIwRC instance Q. To illustrate, in
the case of L = 1, we aim to bound Pr(ψ ̸= 1) in terms
of exp(−C1/H), where H > 0 depends on the latent
mean rewards and resource consumption amounts. In
the subsequent sections, we establish upper bounds
on Pr(ψ ̸= 1) for our proposed strategy SH-RR, as
well as lower bounds on Pr(ψ ̸= 1) for any feasible
strategy. We demonstrate that the complexity term
γ(Q) crucially on if Q has deterministic or stochastic
consumption.

1For any t, the event {τ = t} is σ(H(t))-measurable,
and Pr(τ = ∞) = 0
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Algorithm 1 Sequential Halving with Resource Ra-
tioning (SH-RR)
1: Input: Total budget C, arm set [K].
2: Initialize S̃(0) = [K], t = 1.
3: Initialize Ration(0)ℓ = Cℓ

⌈log2 K⌉ for each ℓ ∈ [L].
4: for q = 0 to ⌈log2K⌉ − 1 do
5: Initialize I(q)ℓ = 0 ∀ℓ ∈ [L], H(q) = J (q) = ∅.
6: while I(q)ℓ ≤ Ration(q)ℓ − 1 for all ℓ ∈ [L] do
7: Identify the arm index a(t) ∈ {1, . . . , |S̃(q)|}

such that a(t) ≡ t mod |S̃(q)|.
8: Pull arm A(t) = k

(q)
a(t) ∈ S̃

(q).
9: Observe the outcome O(t) ∼ νA(t).

10: Update I(q)ℓ ← I
(q)
ℓ +Dℓ(t) for each ℓ ∈ [L].

11: Update H(q) ← H(q) ∪ {(A(t), O(t))}.
12: Update J (q) ← J (q) ∪ {t}.
13: Update t← t+ 1.
14: end while
15: Use ∪qm=0H

(m) to compute empirical means
{r̂(q)k }k∈S̃(q) , see (1).

16: Set S̃(q+1) be the set of top ⌈|S̃(q)|/2⌉ arms with
highest empirical mean.

17: Set Ration(q+1)
ℓ = Cℓ

⌈log2 K⌉ + (Ration(q)ℓ − I
(q)
ℓ ).

18: end for
19: Output the arm in S̃(⌈log2 K⌉).

3 The SH-RR Algorithm

Our proposed algorithm, dubbed Sequential Halv-
ing with Resource Rationing (SH-RR), is displayed
in Algorithm 1. SH-RR iterates in phases q ∈
{0, . . . , ⌈log2K⌉}. Phase q starts with a surviving arm
set S̃(q) ⊆ [K]. After the arm pulling in phase q, a
subset of arms in S̃(q) is eliminated, giving rise to
S̃(q+1). After the final phase, the surviving arm set
S̃(⌈log2 K⌉) is a singleton set, and its only constituent
arm is recommended as the best arm. We denote
S̃(q) = {k(q)1 , . . . , k

(q)

|S̃(q)|}. In each phase q, the agent

pulls arms in S̃(q) in a round-robin fashion. At a time
step t, the agent first identifies (see Line 7) the arm in-
dex a(t) ∈ {1, . . . , |S̃(q)|} and pulls the arm k

(q)
a(t) ∈ S̃

(q).
The round robin schedule ensures that the arms in S̃(q)

are uniformly explored. SH-RR keeps track of the
amount of type-ℓ resource consumption via I(q)ℓ . The
while condition (see Line 6) ensures that at the end of
phase q, the total amount I(q)ℓ of type-ℓ resource con-
sumption during phase q lies in (Ration(q)ℓ −1,Ration(q)ℓ ]
for each ℓ ∈ [L]. The lower bound ensures sufficient
exploration on S̃(q), while the upper bound ensures
the feasibility of SH-RR to the resource constraints, as
formalized in the following claim:

Claim 1. With certainty, SH-RR consumes at most

Cℓ units of resource ℓ, for each ℓ ∈ [L].

Proof of Claim 1 is in Appendix B.1. Crucially, SH-RR
maintains the observation history H(q) that is used to
determined the arms to be eliminated from S̃(q). After
exiting the while loop, the agent computes (in Line
15) the empirical mean

r̂
(q)
k =

∑q
m=0

∑
t∈J(m) R(t) · 1(A(t) = k)

max{
∑q

m=0

∑
t∈J(m) 1(A(t) = k), 1}

(1)

for each k ∈ S̃(q). The surviving arm set S̃(q+1) in the
next phase of phase q+1 consists of the ⌈|S̃(q)|/2⌉ arms
in S̃(q) with the highest empirical means, see Line 16.
The amounts of resources rationed for phase q+1 is in
Line 17.

4 Performance Guarantees of SH-RR

We start with the deterministic consumption set-
ting, and some necessary notation. For each k ∈
{2, . . . ,K}, we denote ∆k = r1 − rk ∈ [0, 1]. We also
denote ∆1 = r1 − r2 = ∆2. Consequently, we have
∆1 = ∆2 ≤ ∆3 ≤ . . . ≤ ∆K . For each resource type
ℓ ∈ [L], we denote dℓ,(1), dℓ,(2), . . . , dℓ,(K) as a permu-
tation of dℓ,1, dℓ,2, . . . , dℓ,K such that dℓ,(1) ≥ dℓ,(2) ≥
. . . ≥ dℓ,(K). We define

Hdet
2,ℓ (Q) = max

k∈{2,...,K}

{∑k
j=1 dℓ,(j)

∆2
k

}
, (2)

which encodes the difficulty of the instance. When we
specialize to the fixed budget BAI problem by setting
L = 1 and Pr(D1,k = 1) = 1 for all k ∈ [K], the
quantity Hdet

2,1 (Q) is equal to a quantity H2, which
a complexity term defined for the fixed budget BAI
setting (Audibert and Bubeck, 2010; Karnin et al.,
2013). Our first main result is an upper bound on
Pr(fail BAI) = Pr(ψ ̸= 1) for our proposed SH-RR in
the deterministic consumption setting.
Theorem 2. Consider a BAIwRC instance Q in the
deterministic consumption setting. SH-RR (Algorithm
1) has BAI failure probability Pr(ψ ̸= 1) at most

⌈log2K⌉K exp

(
− 1

4⌈log2K⌉
· γdet(Q)

)
(3)

where γdet(Q) = minℓ∈[L]{Cℓ/H
det
2,ℓ (Q)}, and Hdet

2,ℓ (Q)
is defined in (2).

Theorem 2 is proved in Appendix B.2. The performance
guarantee of SH-RR improves when the complexity
term γdet(Q) increases. We provide intuitions in the
special case of L = 1, so ℓ = 1 always. The upper
bound (3) decreases when C1 increases, since more
resource units allows more experimentation, hence a
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lower failure probability. The upper bound (3) increases
when Hdet

2,1 (Q) increases. Indeed, when dℓ,(k) increases,
the agent consumes more resource units when pulling
the arm with the k-th highest consumption on resource
ℓ, which leads to less arm pulls under a fixed budget.
In addition, when ∆k decreases, more arm pulls are
needed to distinguish between arms 1, k, leading to a
higher Pr(fail BAI). Observe thatHdet

2,1 (Q) involves the
mean consumption d1,(1), . . . , d1,(K) in a non-increasing
order, providing a worst-case hardness measure over
all permutations of the arms. One could wonder if the
definition of Hdet

2,ℓ can be refined in the non-ordered way,
i.e. maxk∈{2,...,K}{

∑k
j=1 dℓ,j/∆

2
k}. Our analysis in

appendix B.7 shows such a refinement is unachievable.

The insights above carry over to the case of general L.
The complexity term γdet(Q) involves a minimum over
all resource types [L], meaning that the failure probabil-
ity depends on the bottleneck resource type(s). Finally,
when we specialize to the fixed budget BAI setting,
the upper bound (3) matches (up to a multiplicative
absolute constant) the BAI failure probability upper
bound of the Successive Halving algorithm Karnin et al.
(2013).

At first sight, it seems Theorem 2 should hold in the
stochastic consumption setting. Indeed, if an arm’s
pull consumes Bern(d) units of a resource (Let’s assume
L = 1 for the discussion), then N arm pulls consume
at most Nd + 2

√
Nd log(1/δ) units with probability

≥ 1 − δ, for any δ ∈ (0, 1). With a large enough N ,
for example when C1/d is sufficiently large, we expect
Nd ≥ 2

√
Nd log(1/δ). That is, with probability≥ 1−δ

the realized consumption is at most twice of Nd, the
consumption with N pulls where each pull consumes
d units with certainty instead of Bern(d). It then
transpires that (3) should hold, modulo a different
constant (from 1/4) in the exponent.

Despite the intuition, a simulation on two instances
Qdet, Qsto suggests the otherwise. Instances Qdet, Qsto

both have with K = 2, L = 1, C = 2. Instances
Qdet, Qsto share the same Bernoulli rewards with means
r1 = 0.5, r2 = 0.4 and the same mean resource con-
sumption d1 = d2 = d, where d varies. In Qdet, an arm
pull consumes d units with certainty, while in Qsto it
consumes Bern(d) per pull. We plot log(Pr(ψ ̸= 1))
under SH-RR against the varying d in Figure 1, while
other model parameters are fixed. Figure 1 shows that
the Pr(ψ ̸= 1) for Qdet is always less than that for
Qsto. In addition, Pr(ψ ̸= 1)’s for Qdet, Qsto diverge
when d shrinks, which is in contrary to the previous
mentioned intuition. The left panel shows that the
plotted log(Pr(ψ ̸= 1)) does not decreases linearly as
1/d grows, which implies that the bound in (3) does
not hold for Qsto when d is sufficiently small.
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Figure 1: Convergence rates of log(Pr(ψ ̸= 1)), with
107 repeated trials

It turns out the stochastic consumption setting
needs a different characterization. For an instance Q
with stochastic consumption, define

Hsto
2,ℓ (Q) = max

k∈{2,...,K}

{∑k
j=1 f(dℓ,(j))

∆2
k

}
, (4)

where the function f : (0, 1]→ (0, e2] is defined as

f(d) =

{
e2 · d if d ∈ [e−2, 1],

2(− log d)−1 if d ∈ (0, e−2).
(5)

The function f is continuous and increasing in (0, 1].
Theorem 3. Consider a BAIwRC instance Q in the
stochastic consumption setting. The SH-RR algorithm
has BAI failure probability Pr(ψ ̸= 1) at most

7LK(log2K) exp

(
− 1

8⌈log2K⌉
· γsto(Q)

)
, (6)

where γsto(Q) = minℓ∈[L]{Cℓ/H
sto
2,ℓ (Q)}, and Hsto

2,ℓ (Q)
is defined in (4).

Theorem 3 is proved in Appendix B.3. The upper
bound in (6) has a similar form to (3), except that
γdet(Q) is replaced with γsto(Q). Crucially, the ex-
pected consumption dℓ,(j) in Hdet

2,ℓ (Q) is replaced with
effective consumption f(dℓ,(j)) in Hsto

2,ℓ (Q). For an arm
k ∈ [K], the effective consumption f(dℓ,k) encapsulates
the magnitude of the random consumption through
the mean dℓ,k. The non-linearity of f encapsulates
the impact of randomness in resource consumption.
The function f(d) is increasing in d, meaning that a
higher mean consumption leads to a higher level of
utilization on a resource. Note that f(d) > d, and
limd→0 f(d)/d = ∞, which bears the following impli-
cations. Consider a stochastic consumption instance
and a deterministic consumption instance that have the
same {Cℓ}ℓ∈[L], {rk}k∈[K], {dℓ,k}k∈[K],ℓ∈[L]. The upper
bound (6) on Pr(ψ ≠ 1) for the stochastic instance con-
verges at a strictly slower rate to zero than the upper
bound (3) for the deterministic instance. In addition,
when all of {dℓ,k}k∈[K],ℓ∈[L] tend to zero, the ratio be-
tween the two upper bounds grows arbitrarily. These
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implications are depicted by the diverging curves in
Figure 1, and the upper bound (6) is in fact consistent
with the curve for Qsto in Figure 1.

5 Lower Bounds to Pr(ψ ̸= 1)

While the deterioration in the upper bound to
Pr(fail BAI) could appear to be a limitation to SH-RR,
we establish lower bound results for BAIwRC, which
demonstrate the near optimality of SH-RR. In what
follows, we consider instances where arm 1 needs not be
optimal, different from our development of SH-RR. Our
lower bound results involve constructing K instances
{Q(i)}Ki=1, where the resource consumption models are
carefully crafted to (nearly) match the upper bound
results of SH-RR.

Deterministic consumption setting. Each instance
involves the set [K] of K arms and L types of resources
[L]. Let {rk}Kk=1 be any sequence such that (a) 1/2 =
r1 ≥ r2 ≥ · · · ≥ rK ≥ 1/4, and let {{dℓ,(k)}Kk=1}ℓ∈[L]

be a fixed but arbitrary collection of L sequences such
that (b) dℓ,(1) ≥ dℓ,(2) ≥ · · · ≥ dℓ,(K) for all ℓ ∈ [L],
and dℓ,(k) ∈ (0, 1] for all ℓ ∈ [L], k ∈ [K].

In instance Q(i), pulling arm k ∈ [K] generates a ran-
dom reward Rk ∼ Bern(r(i)k ), where

r
(i)
k =

{
rk if k ̸= i,
1− rk if k = i,

.

Pulling arm k ∈ [K] consumes

dℓ,k =

{
dℓ,(2) if k = 1,
dℓ,(1) if k = 2,
dℓ,(k) if k ∈ {3, . . . ,K}

(7)

units of resource ℓ for each ℓ ∈ [L] with certainty.

In instance Q(i), arm i is the uniquely optimal arm.
All instances Q(1), . . . , Q(K) have identical resource
consumption model, since the consumption amounts
(7) do not depend on the instance index i. This ensures
that no strategy can extract information about the
reward from an arm’s consumption. In addition, the
consumption amounts in (7) are designed to ensure
that (a) instance Q(1) is the hardest among {Q(i)}Ki=K

in the sense that Hdet
2,ℓ (Q

(1)) = maxi∈[K]H
det
2,ℓ (Q

(i)) for
every ℓ ∈ [L], (b) The ordering dℓ,1 ≤ dℓ,2 ≥ dℓ,3 ≥
. . . ,≥ dℓ,K makes Q(1) a hard instance in the sense
that it cost the most to distinguish the second best
arm (arm 2) from the best arm. More generally, for
each resource ℓ, the consumption amounts are designed
such that a sub-optimal arm is more costly to pull
when its mean reward is closer to the optimum. Our
construction leads to the following lower bound on the
performance of any strategy:

Theorem 4. Consider deterministic consumption
instances Q(1), . . . , Q(K) constructed as above, with
{rk}k∈[K], {dℓ,(k)}ℓ,k being fixed but arbitrary sequences
of parameters that satisfy properties (a, b) respectively.
When C1, . . . , CL are sufficiently large, for any strategy
there exists an instance Q(i) (where i ∈ [K]) such that

Pr
i
(ψ ̸= i) ≥1

6
exp

(
−122 · γdet(Q(i))

)
,

where Pri(·) is the probability measure over the trajec-
tory {(A(t), O(t))}τt=1 under which the arms are chosen
according to the strategy and the outcomes are modeled
by Q(i), and γdet(Q) is as defined in Theorem 2.

Theorem 4 is proved in Appendix B.5. Theorems 2, 4
demonstrate the near-optimality of SH-RR, and
the fundamental importance of the quantity γdet(Q)
for the BAIwRC problem with deterministic consump-
tion. Indeed, both the BAI failure probability upper
bound (of SH-RR) in Theorem 2 and the BAI fail-
ure probability lower bound in Theorem 4 decay to
zero exponentially, with rates linear in γdet(Q). More
precisely, the bounds in Theorems 2, 4 imply

sup
strategy

inf
det inst Q:

γdet(Q)≥κdet

{
− log (Pr(fail BAI))

γdet(Q)

}
∈ (8)

[
1

16 log2K
, 123

]
, (9)

where κdet = 32(log(2K))2. The supremum is over
all feasible strategy, and the infimum is over all in-
stances Q where γdet(Q) ≥ κdet, i.e. instances with
sufficiently large capacities C1, . . . , CL. In the special
case of fixed-budget BAI, (Audibert and Bubeck, 2010;
Carpentier and Locatelli, 2016) imply that the right
hand side in (9) can be [ 1

8 log2 K ,
400
logK ]. Pinning down

the correct dependence on logK in (9) is an interesting
open question.

Stochastic consumption setting. We construct
instances {Q(i)}Ki=1 in a similar way to the case
in deterministic consumption setting, except replacing
the consumption model (colored in blue) with the
following: Pulling arm k ∈ [K] consumes D

(i)
ℓ,k ∼

Bern(dℓ,k) units of resource ℓ, where dℓ,k is defined
in (7). In addition, the reward Rk and Dℓ,1, . . . Dℓ,K

are jointly independent. We have the following lower
bound result:

Theorem 5. Consider a fixed but arbitrary func-
tion g : [0,+∞) → [0,+∞) that is increasing and
lim

d→0+

1
g(d) log 1

d

= +∞, g(0) = 0, as well as any fixed

{rk}Kk=1 ⊂ (0, 1), 1
2 = r1 > r2 ≥ · · · ≥ rK = 1

4 , any
fixed {d0ℓ,(k)}

K,L
k=1,ℓ=1 ⊂ R, d0ℓ,(1) ≥ d

0
ℓ,(2) ≥ · · · ≥ d

0
ℓ,(K),

and any fixed i ∈ {2, · · · ,K}. We can identify c̄ ∈
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(0, 1), such that for any c ∈ (0, c̄) and large enough
{Cℓ}Lℓ=1, by taking dℓ,(j) = cd0ℓ,(j),∀j ∈ [K],∀ℓ ∈ [L],
we can construct corresponding instances Q(j): (1)
pulling arm k ∈ [K] generates a random reward

Rk ∼ N (r
(j)
k , 1), where r

(j)
k =

{
rk if k ̸= j,
1− rk if k = j,

,

(2) pulling arm k ∈ [K] consumes Dℓ ∼ Bern(dℓ,k),

dℓ,k =

{ dℓ,(2) if k = 1,
dℓ,(1) if k = 2,
dℓ,(k) if k ∈ {3, . . . ,K}

for ℓ ∈ [L]. The

following performance lower bound holds for any strat-
egy:

max
j∈{1,i}

Pr
Q(j)

(ψ ̸= j) ≥ exp
(
−2γ̃sto(Q(j))

)
,

where γ̃sto(Q(j)) = minℓ∈[L]
Cℓ

H̃sto
2,ℓ

, and H̃sto
2,ℓ =

max
k∈{2,3,··· ,K}

∑k
j=1 g(dℓ,(j))

∆2
k

.

In Theorem 5, which is proved in Appendix B.6, we
establish a lower bound for stochastic consumption in
multiple resource scenarios. This theorem, alongside
Theorem 3, illustrates the near-optimality of the SH-RR
approach in stochastic cases, similar to the conclusion
in deterministic settings.

In Theorem 3, we introduce a novel complexity measure,
Hsto

2,ℓ (Q). This measure is notable for incorporating a
term 1

log 1
d

, which exceeds d when d is small. This
results in a larger and possibly weaker upper bound
compared to the deterministic case and is also different
from traditional BAI literature. A pertinent question
arises: Is it feasible to refine this term from 1

log 1
d

to d?

Theorem 5 directly addresses this question, clarifying
that such a refinement should not be expected to hold
for any given sets {rk}Kk=1 and {dℓ,k}K,L

k=1,ℓ=1. This
result decisively indicates that the term 1

log 1
d

in the

definition of Hsto
2,ℓ (Q) is irreplaceable with 1

(log 1
d )

1+ϵ

for any ε > 0, and certainly not with d itself. This
pivotal finding emphasizes a crucial aspect: stochastic
consumption scenarios are inherently more complex
than deterministic ones, especially in cases where the
mean consumptions are extremely low.

It is crucial to highlight the difference in Theorem 5:
it asserts maxj∈1,i in its conclusion, diverging from
the conventional form of maxj∈[K]. Additionally, the

ratio H̃sto
2,ℓ (Q)

Hsto
2,ℓ (Q)

can approach to 0, given the function g

and sufficiently small {dℓ,(k)}K,L
k=1,ℓ=1. This gap that

might stem from how the pulling times of arm i are
approximated. The current derivation, based on the
assumption that all resources are allocated to arm i,
somehow replace the step 2 in appendix B.5. This
suggests that there is room for improvement in the

approximation. A tighter approximation in the expo-
nential term is to be explored.

6 Numerical Experiments

We conducted a performance evaluation of the SH-
RR method on both synthetic and real-world problem
sets. Our evaluation included a comparison of SH-RR
against four established baseline strategies: Anytime-
LUCB (AT-LUCB) (Jun and Nowak, 2016), Upper
Confidence Bounds (UCB) (Bubeck et al., 2009), Uni-
form Sampling, and Sequential Halving (Karnin et al.,
2013) augmented with the doubling trick. Unlike fixed
confidence and fixed budget strategies, these baseline
methods are anytime algorithms, which recommend an
arm as the best arm after each arm pull, continuously,
until a specified resource constraint is violated. The
evaluation was carried out until a resource constraint
was breached, at which point the last recommended arm
was returned as the identified arm. Fixed confidence
and fixed budget strategies were deemed inapplicable
to the BAIwRC problem as they necessitate an upper
bound on the BAI failure probability and an upper
limit on the number of arm pulls in their respective
settings. Further details regarding the experimental
set-ups are elaborated in appendix C.

Synthesis problems. We investigated the perfor-
mance of our algorithm across various synthetic set-
tings, each with distinct reward and consumption dy-
namics. (1) High match High (HmH) where higher
mean rewards correspond to higher mean consumption,
(2) High match Low (HmL) where they correspond to
lower mean consumption, and (3) Mixture (M) where
each arm consumes less of one resource while consuming
more of another, applicable when L = 2. Additionally,
resource consumption variability was categorized into
deterministic, correlated (random and correlated with
rewards), and uncorrelated (random but independent
of rewards), with the deterministic setting omitted
for L = 2 due to similar results to L = 1. Reward
variability across arms was explored through four set-
tings: One Group of Sub-optimal, Trap, Polynomial,
and Geometric, analogous to Karnin et al. (2013). The
various combinations of these settings are illustrated
in Figure 2, with more detailed descriptions provided
in Appendices C.1 and C.2.

Figure 2 presents the failure probability of the dif-
ferent strategies in different setups, under K = 256,
L = 1, 2 with an initial budget of 1500 for each re-
source. Each strategy was executed over 1000 inde-
pendent trials, with the failure probability quantified
as (# trials that fails BAI)/1000. Our analysis antici-
pated a higher difficulty level for the HmH instances,
a notion substantiated by the experimental outcomes.
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Figure 2: Comparison of SH-RR and anytime baselines
in different setups

The bottom panel illustrates comparable performances
on M and HmH setups, suggesting the scarcer resource
could predominantly influence the performance. This
observed behavior aligns with the utilization of the min
operator in the definitions of γdet and γsto.

Our proposed algorithm SH-RR is competitive com-
pared to these state-of-the-art benchmarks. SH-RR
achieves the best performance by a considerable mar-
gin for HmL, while still achieve at least a matching
performance compared to the baselines for HmH. SH-
RR favors arms with relatively high empirical reward,
thus when those arms consume less resources, SH-RR
can achieve a higher probability of BAI. For confi-
dence bound based algorithms such as AT-LUCB and
UCB, resource-consumption-heavy sub-optimal arms
are repeatedly pulled, leading to resource wastage and
a higher failure probability. These empirical results
demonstrate the necessity of SH-RR algorithm for BAI-
wRC in order to achieve competitive performance in a
variety of settings.

Real-world problems. We implemented different
machine learning models, each adorned with various
hyperparameter combinations, as distinct arms. The
overarching goal is to employ diverse BAI algorithms to
unravel the most efficacious model and hyperparameter
ensemble for tackling supervised learning tasks. There
is a single constraint on running time for each BAI ex-
periment. To meld simplicity with time-efficiency, we
orchestrated implementations of four quintessential, yet
straightforward machine learning models: K-Nearest
Neighbour, Logistic Regression, Adaboost, and Ran-
dom Forest. Each model is explored with eight unique
hyperparameter configurations. We considered 5 classi-
fication tasks, including (1) Classify labels 3 and 8 in
part of the MNIST dataset (MNIST 3&8). (2) Optical
recognition of handwritten digits data set (Handwrit-
ten). (3) Classify labels -1 and 1 in the MADELON
dataset (MADELON). (4) Classify labels -1 and 1 in
the Arcene dataset (Arcene). (5) Classify labels on
weight conditions in the Obesity dataset (Obesity).
See appendix C.3 for details on the set-up.

We designated the arm with the lowest empirical mean
cross-entropy, derived from a combination of machine
learning models and hyperparameters, as the best arm.
Our BAI experiments were conducted across 100 inde-
pendent trials. During each arm pull in a BAI experi-
ment round—i.e., selecting a machine learning model
with a specific hyperparameter combination—we parti-
tioned the datasets randomly into training and testing
subsets, maintaining a testing fraction of 0.3. The
training subset was utilized to train the machine learn-
ing models, and the cross-entropy computed on the
testing subset served as the realized reward.
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The results, showcased in Table 1 and 2, delineate the
failure probability in identifying the optimal machine
learning model and hyperparameter configuration for
each BAI algorithm. Amongst the tested algorithms,
SH-RR emerged as the superior performer across all
experiments. This superior performance can be at-
tributed to two primary factors: (1) classifiers with
lower time consumption, such as KNN and Random
Forest, yielded lower cross-entropy, mirroring the HmL
setting; and (2) the scant randomness in realized Cross-
Entropy ensured that after each half-elimination in
SH-RR, the best arm was retained, underscoring the
algorithm’s efficacy.

Table 1: Failure Probability of different BAI strategies
on Real-life datasets

Algorithm MNIST 3&8 Handwritten

SHRR 0 0.12
ATLUCB 0.21 0.23

UCB 0.21 0.34
Uniform 0.21 0.25

DSH 0.14 0.20

Table 2: Failure Probability of different BAI strategies
on Real-life datasets, cont.

Algorithm Arcene Obesity MADELON

SHRR 0.38 0.31 0
ATLUCB 0.6 0.43 0.42

UCB 0.71 0.43 0.30
Uniform 0.81 0.56 0.29

DSH 0.67 0.54 0.12
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Applicable]
Not Applicable.

(d) Information about consent from data
providers/curators. [Yes/No/Not Applicable]
Not Applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]
Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Yes/No/Not Applica-
ble]
Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Yes/No/Not Appli-
cable]
Not Applicable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/Not Applicable]
Not Applicable.
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A Auxiliary Results

Lemma 6 (Chernoff). Let {Xn}Nn=1 be i.i.d random variables, where Xn ∈ [0, 1] almost surely, with common
mean E[X1] = µ ∈ [0, 1]. For any µ+ ∈ (µ, 1], it holds that

P

[
1

N

N∑
n=1

Xn ≥ µ+

]
≤ exp (−N ·KL(µ+, µ)) ,

where KL(p, q) = p log p
q + (1− p) log 1−p

1−q for p, q ∈ [0, 1]. In addition, for any ϵ ∈ (0, 2e− 1), it holds that

P

[
1

N

N∑
n=1

Xn ≥ (1 + ϵ)µ

]
≤ exp

(
−Nµϵ

2

4

)
.

Lemma 6 can be extracted from Exercise 10.3 in Lattimore and Szepesvári (2020).

B Proofs

B.1 Proof of Claim 1

Proof of Claim 1. The total type-ℓ resource consumption is

⌈log2 K⌉−1∑
q=0

I
(q)
ℓ

=

⌈log2 K⌉−1∑
q=0

[
Cℓ

⌈log2K⌉
+ (Ration(q)ℓ − Ration(q+1)

ℓ )

]
=Cℓ + (Ration(0)ℓ − Ration(⌈log2 K⌉)

ℓ ).

We complete the proof by showing that Ration(0)ℓ = Cℓ

⌈log2 K⌉ ≤ Ration(q)ℓ with certainty for every q. Indeed, with

certainty we have I(q−1)
ℓ ≤ Ration(q−1)

ℓ for every q ≥ 1. The while loop maintains that I(q−1) ≤ Ration(q−1)
ℓ − 1,

which ensures that I(q−1) ≤ Ration(q−1)
ℓ when the while loop ends, and consequently Cℓ

⌈log2 K⌉ ≤ Ration(q)ℓ by Line
17. Altogether, the claim is shown.

B.2 Proof of Theorem 2

Denote T (q) as the pulling times at the qth phase, S(q) as the surviving set at the qth phase. The size of
S(q) is always ⌈K2q ⌉. Assume the pulling times of each arm in each phase are the same (the difference is
at most 1). T (q) is a random number. Conditioned on S(q), T (q) = minℓ

Cℓ

⌈log2 K⌉
∑

k∈S(q) dk,ℓ
. Thus we can

assert P

(
T (q) ≥ minℓ

Cℓ

⌈log2 K⌉
∑⌈ K

2q
⌉

k=1 dℓ,(k)

)
= 1. Define T̃ (q) = T (1) + T (2) + · · · + T (q), then we can assert

P

(
T̃ (q) ≥ minℓ

Cℓ

⌈log2 K⌉
∑⌈ K

2q
⌉

k=1 dℓ,(k)

)
= 1.

Denote set Eq := {i : r̂T̃q
> r̂1,T̃q

}, and define the bad event

B(q) = {|Eq| ≥ ⌈
K

2q+1
⌉} (10)

We assert that, for any phase q

P(B(q)) ≤ K exp

(
−min

ℓ

Cℓ

4⌈log2K⌉H2,ℓ

)
. (11)
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Once the main assertion (11) is shown, the Theorem can be proved by a union bound over all phases:

Pr(ψ ̸= 1) ≤P(∪⌈log2 K⌉
q=1 B(q))

≤
⌈log2 K⌉∑

q=1

P(B(q))

≤⌈log2K⌉K exp

(
−min

ℓ

Cℓ

4⌈log2K⌉Hdet
2,ℓ

)
.

In what follows, we establish the main claim (11).

For any q, we have

P(B(q))

≤P
(
∃k ≥ ⌈ K

2q+1
⌉, r̂k,T̃q

> r̂1,T̃q

)

≤P

∃k ≥ ⌈ K

2q+1
⌉,∃N ≥ min

ℓ

Cℓ

⌈log2K⌉
∑⌈ K

2q ⌉
k=1 dℓ,(k)

, r̂k,N > r̂1,N


≤

K∑
k=⌈ K

2q+1 ⌉

P

∃N ≥ min
ℓ

Cℓ

⌈log2K⌉
∑⌈ K

2q ⌉
k=1 dℓ,(k)

, r̂k,N > r̂1,N

 .

Denote N0 := minℓ
Cℓ

⌈log2 K⌉
∑⌈ K

2q
⌉

k=1 dℓ,(k)

. For any k, let {Rk,n, R1,n}∞n=1 be i.i.d samples of rewards under arm

k, arm 1. Define Gn = Rk,n − R1,n + ∆k, then EGn = 0. And r̂k,N = 1
N

∑N
n=1Rk,n, r̂1,N = 1

N

∑N
n=1R1,n.

r̂k,N > r̂1,N ⇒
∑N

n=1 Gn

N > ∆k. Take λ = ∆k,

P

(
∃N ≥ N0,

∑N
n=1Gn

N
> ∆k

)

=P

(
∃N ≥ N0, exp(λ

N∑
n=1

Gn) > exp(Nλ∆k)

)

=P

(
sup

N≥N0

exp(λ
∑N

n=1Gn)

exp(Nλ∆k)
> 1

)
.

Since E
[
exp(λ

∑N+1
n=1 Gn)

exp((N+1)λ∆k)
|G1, G2, · · · , GN

]
≤ exp(λ

∑N
n=1 Gn)

exp(Nλ∆k)

exp(λ2

2 )

exp(λ∆k)
≤ exp(λ

∑N
n=1 Gn)

exp(Nλ∆k)
, by Doob’s optional stopping
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theorem, see Theorem 3.9 in Lattimore and Szepesvári (2020) for example.

P

(
sup

N≥N0

exp(λ
∑N

n=1Gn)

exp(Nλ∆k)
> 1

)

≤E
exp(λ

∑N0

n=1Gn)

exp(N0λ∆k)

≤
exp(N0λ

2

2 )

exp(N0λ∆k)

= exp(−N0∆
2
k

2
)

= exp

−min
ℓ

Cℓ

⌈log2K⌉
∑⌈ K

2q ⌉
k=1 dℓ,(k)

(r1 − rk)2

2


≤ exp

−min
ℓ

Cℓ

⌈log2K⌉
∑⌈ K

2q ⌉
k=1 dℓ,(k)

(r1 − rk)2

2

 .

Thus

P(B(q)) ≤ K exp

(
−min

ℓ

Cℓ

4⌈log2K⌉Hdet
2,ℓ

)
.

Altogether, the Theorem is proved.

B.3 Proof of Theorem 3

Before the proof, we need a lemma to bound the pulling times of arms.
Lemma 7. Let {Xn}∞n=1 be i.i.d random variable, P (Xn ∈ [0, 1]) = 1, and denote EXi = d ∈ [0, 1]. For any
positive integer N , it holds that

P

(
1

N

N∑
n=1

Xn > f(d)

)
≤ exp

(
−N

3

)
,

where the function f is defined in (5).

We start by defining T̄ (q) = T (1) + . . . T (q) and set Eq := {i : r̂i,T (q) > r̂1,T (q)}. The bad event is

B(q) = {|Eq| ≥ ⌈
K

2q+1
⌉}. (12)

We assert that, for any phase q, it holds with certainty that

P
(
B(q)

)
≤ 2LK exp

(
− 1

12
min
ℓ∈[L]
{ Cℓ

⌈log2K⌉Hsto
2,ℓ

}

)
. (13)

Remark {k̂ = 1} ⊃ ∪log2 K
q=1 ¬B(q). Once (13) is shown, the Theorem can be proved by a union bound over all

phases:

P(k̂ ̸= 1)

≤P(∪log2 K
q=1 B(q))

≤
log2 K∑
q=1

P(B(q))

≤2LK(log2K) exp

(
− 1

12
min
ℓ∈[L]
{ Cℓ

⌈log2K⌉Hsto
2,ℓ

}

)
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In what follows, we establish the main claim (13). For our analysis, we define β
(q)
ℓ :=

Cℓ

⌈log2 K⌉·
∑⌈ K

2q
⌉

k=1 f(dℓ,(k))
, and β̄(q) = minℓ∈[L]{β

(q)
ℓ }., then we can split P

(
B(q)

)
into two parts.

P(Eq)

≤P
(
∃k ≥ ⌈ K

2q+1
⌉, r̂k,T̃ (q) > r̂1,T̃ (q)

)
≤P

(
∃k ≥ ⌈ K

2q+1
⌉, r̂k,T̃ (q) > r̂1,T̃ (q) , T̃

(q) ≥ β̄(q)

)
︸ ︷︷ ︸

(¶)

+ P
(
T̃ (q) < β̄(q)

)
︸ ︷︷ ︸

(‡)

To facilitate our discussions, we denote {D̃(q)
ℓ,k(n)}∞n=1 as i.i.d. samples of the random consumption of resource ℓ

by pulling arm k. For the term (‡), we have

E
[
1
(
T (q) < β̄(q)

)
| S̃(q)

]
=E

[
1

( ⌈β̄(q)⌉∑
n=1

∑
k∈S̃(q)

D̃
(q)
ℓ,k(n) > Ration(q)ℓ for some ℓ ∈ [L]

)
| S̃(q)

]

≤E

[
1

( ⌈β̄(q)⌉∑
n=1

∑
k∈S̃(q)

D̃
(q)
ℓ,k(n) >

Cℓ

⌈log2K⌉
for some ℓ ∈ [L]

)
| S̃(q)

]
(14)

≤
∑
ℓ∈[L]

∑
k∈S̃(q)

E

[
1

⌈β̄(q)⌉∑
n=1

D̃
(q)
k (n) >

Cℓf(dℓ,k)

⌈log2K⌉ ·
∑

k′∈S̃(q) f(dℓ,k′)

 | S̃(q)

]
(15)

≤
∑
ℓ∈[L]

∑
k∈S̃(q)

E

[
1

⌈β(q)
ℓ ⌉∑

n=1

D̃
(q)
k (n) > β

(q)
ℓ f(dℓ,k)

 | S̃(q)

]
(16)

≤
∑
ℓ∈[L]

∑
k∈S̃(q)

exp

(
−
β
(q)
ℓ

3

)
(17)

≤L · |S̃(q)| · exp
(
− β̄

(q)

3

)
. (18)

Step (14) is by the invariance Ration(q)ℓ ≤ Cℓ

⌈log2 K⌉ maintained by the while loop of SH-RR. Step (15) is by the

pigeonhole principle. Step (16) is by the definition of β(q)
ℓ . Step (17) is by applying Lemma 7.

Next, we analyze the term (¶), we denote

(†)(q)k = P
(
r̂
(q)
1 < r̂

(q)
k ,1(T (q) > β̄(q))

)
.

We remark that (¶) ≤
∑K

k=⌈ K

2q+1 ⌉(†)(q). Let {R(q)
k (n)}∞n=1, {R

(q)
1,n}∞n=1 be i.i.d. samples of the rewards under arm k

and arm 1 respectively. For each n, we define W (n) = R
(q)
k (n)−R(q)

1 (n) +∆k, where we recall that ∆k = r1 − rk.
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Clearly, E[W (n)] = 0, and W (n) are i.i.d. 1-sub-Gaussian. For any λ > 0, we have

(†)(q)k

≤P

(
∃N ≥ β̄(q),

∑N
n=1Gn

N
> ∆k

)

=P

(
sup

N≥β̄(q)

exp(λ
∑N

n=1Gn)

exp(Nλ∆k)
> 1

)

≤E

exp
(
λ
∑⌈β̄(q)⌉

n=1 W (n)
)

exp
(
λ⌈β̄(q)⌉∆k

)
 (19)

≤
exp

(
λ2⌈β̄(q)⌉

2

)
exp

(
λ⌈β̄(q)⌉∆k

) . (20)

Step (19) is by the maximal inequality for (super)-martingale, which is a Corollary of the Doob’s optional stopping
Theorem, see Theorem 3.9 in Lattimore and Szepesvári (2020) for example. Step (20) is by the fact that G(n) is
1-sub-Gaussian. Finally, applying λ = ∆k, (20) leads us to (†)(q)k ≤ exp(−β̄(q)∆2

k/2),, meaning

(¶) ≤ K exp

(
− min

ℓ∈[L]
{β(q)

ℓ }
(r1 − r⌈ K

2q+1 ⌉)
2

2

)
. (21)

Step (21) is by the assumption that ∆k is not decreasing. Altogether, combining the upper bounds (17,21) to
(‡), (¶) respectively, leads us to the proof of (13).

P(B(q))

≤
K∑

k=⌈ K

2q+1 ⌉

P
(
r̂k,T̃q

> r̂1,T̃q
,1(T̄q ≥ β̄(q))

)
+ L ·K · exp

(
−1

3
min
ℓ∈[L]
{β(q)

ℓ }
)

≤K exp

(
− min

ℓ∈[L]
{β(q)

ℓ }
(r1 − r⌈ K

2q+1 ⌉)
2

2

)
+ L ·K · exp

(
−1

3
min
ℓ∈[L]
{β(q)

ℓ }
)

≤2LK exp

(
−1

3
min
ℓ∈[L]
{ Cℓ

4⌈log2K⌉Hsto
2,ℓ

}

)

=2LK exp

(
− 1

12
min
ℓ∈[L]
{ Cℓ

⌈log2K⌉Hsto
2,ℓ

}

)
.

B.4 Proof of Lemma 7

The proof involves the consideration of two cases: d ∈ (e−2, 1] and d ∈ (0, e−2].

Case 1: d ∈ (e−2, 1]. In this case, we have f(d) > 3d. Consequently,

P

(
1

N

N∑
n=1

Xn > f(d)

)

≤P

(
1

N

N∑
n=1

Xn > 3d

)
≤ exp

(
−22Nd

4

)
(22)

=exp(−Nd) ≤ exp

(
−N

3

)
. (23)

Step (22) is by the Chernoff inequality (see Lemma 6), and step (23) is by the case assumption that d ≥ e−2.
Altogether, Case 1 is shown.
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Case 2: d ∈ (0, e−2). In this case, note that we still have f(d) = 2(log(1/d))−1 ≥ 2d > d. We assert that
KL(f(d), d) ≥ 1/2. Given the assertion, applying Lemma 6 gives

P

(
1

N

N∑
n=1

Xn > f(d)

)
≤ exp (−N ·KL(f(d), d))

≤ exp

(
−N

2

)
≤ exp

(
−N

3

)
,

which establishes the desired inequality. In the remaining, we show the assertion, which is equivalent to the
assertion (

1

2
log

1

d

)
·KL(f(d), d) ≤ 1

4
log

1

d
. (24)

To demonstrate (24), we start with the left hand side of (24):[
1

2
log

1

d

]
·KL

(
2

log 1
d

, d

)

= log

(
2

d log 1
d

)
+

1

2
log

1

d

(
1− 2

log 1
d

)
log

1− 2
log 1

d

1− d

= log 2 + log
1

d
− log log

1

d

−
[
1

2
log

1

d
− 1

]
· log

(
1 +

2
log 1

d

− d

1− 2
log 1

d

)
︸ ︷︷ ︸

(†)

. (25)

We argue that (†) ≤ 1. Indeed,

(†) ≤
[
1

2
log

1

d
− 1

]
· 1

1− 2
log 1

d

·
(

2

log 1
d

− d
)

(26)

=

[
1

2
log

1

d

]
·
(

2

log 1
d

− d
)

=1− d

2
log

1

d
≤ 1. (27)

Step (26) is by the fact that log(1 + x) ≤ x for all x > −1. Step (27) is by the case assumption that d ∈ (0, e−2).
Next, we apply the bound (†) ≤ 1 to (25), which yields[

1

2
log

1

d

]
·KL

(
2

log 1
d

, d

)
≥ log 2 + log

1

d
− log log

1

d
− 1

≥ log
1

d
− log log

1

d
− 0.5

≥1

4
log

1

d
. (28)

Step (28) follows from the fact that 1
4 log

1
d ≥ 0.5 and 1

2 log
1
d ≥ log log 1

d hold for any d ∈ (0, e−2). Altogether,
Case 2 is shown and the Lemma is proved.

B.5 Proof of Theorem 4

To facilitate our discussion, we denote Ei[·] as the expectation operator corresponding to the probability measure
Pri. Theorem 4 is proved in the following two steps.
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Step 1. We show that, under the assumption Pr1(ψ ̸= 1) < 1/2, for every i ∈ {2, . . . ,K} it holds that

Pr
i
(ψ ̸= i) ≥ 1

6
exp

(
−60ti

(
1

2
− ri

)2

− 2
√
T log(12KT )

)
, (29)

where

ti = E1[Ti], Ti =

τ∑
t=1

1(A(t) = i) (30)

is the number of times pulling arm i, and

T = min
ℓ∈[L]

{
⌊ Cℓ

dℓ,(K)
⌋
}

(31)

is an upper bound to the number of arm pulls by any policy that satisfies the resource constraints with certainty.
Note that if the assumption Pr1(ψ ≠ 1) < 1/2 is violated, the conclusion in Theorem 4 immediately holds for
Q(1).

Step 2. We show that there exists i ∈ {2, . . .K} such that

ti(1/2− ri)2 ≤ minℓ∈[L]

{
2Cℓ

Hdet
ℓ,2 (Q1)

}
(32)

≤ minℓ∈[L]

{
2Cℓ

Hdet
ℓ,2 (Qi)

}
.

This step crucially hinges on the how the consumption model is set in (7). Finally, Theorem 4 follows by taking
C1, . . . , CL so large that

mini∈[K],ℓ∈[L]

{
2Cℓ

Hdet
ℓ,2 (Qi)

}
≥
√
T log(12KT ).

Such C1, . . . , CL exist. For example, we can take C1 = . . . = CL = C, then the left hand side of the above
condition grows linearly with C, while the right hand side only grows linearly with

√
C logC. Altogether, the

Theorem is shown, and it remains to establish Steps 1, 2.

Establishing on Step 1. To establish (29), we follow the approach in (Carpentier and Locatelli, 2016) and
consider the event

Ei = {ψ = 1} ∩ {Ti ≤ 6ti} ∩ {ξ}

for i ∈ [K]. The quantities Ti, ti are as defined in (30), and ξ is an event concerning an empirical estimate on
a certain KL divergence term. To define ξ, it requires some set up. Denote ν(i)k as the outcome distribution of
arm k in instance Q(i) (recall that the outcome consists of the reward Rk and the consumption D1,k, . . . Dℓ,k,
where Rk has different distributions under different Q(i), while the distribution of D1,k, . . . Dℓ,k is invariant across
Q(1), . . . , Q(K)). Define

KLi = KL(ν(i)i , ν
(1)
i )

= KL(Bern(rk),Bern(1− rk)) (33)
= KL(Bern(1− rk),Bern(rk)) (34)

= (1− 2rk) log

(
1− rk
rk

)
,

where (33) is by the fact that the outcomes ν(i)i , ν
(1)
i are identical in the resource consumption but only different

in reward. In addition, for each i ∈ [K], t ∈ [Ti], we define

K̂Li,t =
1

t

t∑
s=1

(1− 2R̃i(s)) log
1− rk
rk

,
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where R̃i(1), . . . , R̃i(Ti) are arm i rewards received during the Ti pulls of arm i in the online dynamics (recall the
definition of Ti in (30)). Note that Ti ≤ T with certainty. Finally, define confidence radius

rad(t) = (
√
2 log 3) ·

√
log 12KT

t
,

and the event ξ is defined as

ξ =
{
∀i ∈ [K], t ∈ [Ti], |K̂Li,t| −KLi ≤ rad(t)

}
. (35)

The event ξ is also considered in (Carpentier and Locatelli, 2016) when T is part of the problem input instead of
a set parameter in (31), and the following result from (Carpentier and Locatelli, 2016) still carries over:
Lemma 8 (Lemma 4 in Carpentier and Locatelli (2016)). PGi(ξ) ≥ 5

6 holds for all i ∈ [K].

For every i ∈ {2, . . . ,K}, we have

Pr
i
(ψ ̸= i)

≥Pi(Ei)

=E1

(
1{Ei} exp(−TiK̂Li,Ti

)
)

(36)

≥E1

(
1{Ei} exp(−TiKLi − 2

√
Ti log(12KT ))

)
(37)

≥ exp
(
−6tiKLi − 2

√
T log(12KT )

)
· Pr

1
(Ei) (38)

≥
[
2

3
− Pr

1
(ψ ̸= 1)

]
· exp

(
−6tiKLi − 2

√
T log(12KT )

)
(39)

≥
[
2

3
− Pr

1
(ψ ̸= 1)

]
· exp

(
−60ti

(
1

2
− ri

)2

− 2
√
T log(12KT )

)
. (40)

The above calculations establishes Step 1, and we conclude the discussion on Step 1 by justifying steps (36-39).

Step (36) is by a change-of-measure identity frequently used in the MAB literature. For example, it is established
in equation (6) in Audibert and Bubeck (2010) and Lemma 18 in Kaufmann et al. (2016). The identity is described
as follows. Let τ be a stopping time with respect to {σ(H(t))}∞t=1, where we recall that H(t) is the historical
observation up to the end of time step t. For any event E ∈ σ(H(τ)) and any instance index i ∈ {2, . . .K}, it
holds that

PGi(E) = EG1

[
1{E} exp(−TiK̂Li,Ti

)
]
.

Consequently, step (36) holds by the fact that the choice of arm ψ only depends on the observed trajectory
σ(H(τ)), and evidently both Ti and ξ are both σ(H(τ))-measurable. Step (37) is by the event ξ. Step (38) is by
the event that Ti ≤ 6ti.

Step (39) is by the following calculations:

Pr
1
(Ei) = 1− Pr

1
(¬Ei)

≥1− PG1(¬{ψ = 1})− PG1(¬{ξ})− PG1(¬{Tk ≤ 6tk})

≥2

3
− Pr

1
(ψ ̸= 1). (41)

Step (41) follows from Lemma 9 which shows Pr1(ξ) ≥ 5/6, and the Markov inequality that shows that for any
i ∈ {2, . . . ,K}:

Pr
i
(Ti ≥ 6ti) ≤

1

6
.

Finally, step (40) is by the fact that ri ∈ [ 14 ,
1
2 ] for all i ∈ [K], leading to 0 ≤ KLi ≤ 10(1− ri)2 for all i ∈ [K].
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Establishing Step 2. To proceed with Step 2, we first define a complexity term Hdet
1,ℓ (Q), which is similar

to Hdet
2,ℓ (Q) but the former aids our analysis. For a deterministic consumption instance Q (whose arms are

not necessarily ordered as r1 ≥ r2 ≥ . . . , rK), we denote {r(k)}Kk=1 as a permutation of {rk}Kk=1 such that
r(1) > r(2) ≥ . . . ≥ r(K). For example, when Q = Q(i), we can have r(1) = r

(i)
i , r(j+1) = r

(i)
j for j ∈ {1, . . . , i− 1},

and r(j) = r
(i)
j for j ∈ {i + 1, . . . ,K}. Similarly, denote {dℓ,(k)}Kk=1 as a permutation of {dℓ,k}Kk=1 such that

dℓ,(1) ≥ dℓ,(2) ≥ . . . ≥ dℓ,(K). Define ∆(1) = ∆(2) = r(1) − r(2), and define ∆(k) = r(1) − r(k) for k ∈ {3, . . . ,K}.
Now, we are ready to define

Hdet
ℓ,1 (Q) =

K∑
k=1

dℓ,(k)

∆2
(k)

. (42)

In the special case of L = 1 and d1,k = 1 for all k ∈ [K], the quantity Hdet
ℓ,1 (Q) is equal to the complexity term

H1 defined for BAI in the fixed confidence setting (Audibert and Bubeck, 2010) (the term H1 is relabeled as
H in subsequent research works Karnin et al. (2013); Carpentier and Locatelli (2016)). Observe that for any
deterministic consumption instance Q, we always have

Hdet
ℓ,2 (Q) ≤ Hdet

ℓ,1 (Q). (43)

In addition, we observe that for any i ∈ {2, . . . ,K} and any ℓ ∈ [L], it holds that

Hdet
ℓ,1 (Q

(1)) ≥ Hdet
ℓ,1 (Q

(i)), (44)

Hdet
ℓ,2 (Q

(1)) ≥ Hdet
ℓ,2 (Q

(i)). (45)

After defining Hdet
ℓ,1 (Q), we are ready to proceed to establishing Step 2. Recall that Ti =

∑τ
t=1 1(A(t) = i) is the

number of arm pulls on arm i. By the requirement of feasibility and the definition of dℓ,k in (7), we know that

T1dℓ,(2) + T2dℓ,(1) +

K∑
k=3

Tkdℓ,(k) ≤ Cℓ

holds for all ℓ ∈ [L]. Taking expectation E1 and recalling the definition ti = E1[Ti] in (30), we show that

t1dℓ,(2) + t2dℓ,(1) +

K∑
k=3

tkdℓ,(k) ≤ Cℓ

holds for all ℓ. From our definition of Hdet
ℓ,1 (Q

(1)), for every ℓ ∈ [L] we have

dℓ,1

Hdet
ℓ,1 (Q

(1))( 12 − r2)2
+

K∑
k=2

dℓ,(k)

Hdet
ℓ,1 (Q

(1))( 12 − rk)2
= 1,

which implies that

2Cℓdℓ,(1)

Hdet
ℓ,1 (Q

(1))( 12 − r2)2
+

K∑
k=3

Cℓdℓ,(k)

Hdet
ℓ,1 (Q

(1))( 12 − rk)2

≥t1dℓ,(2) + t2dℓ,(1) + t3dℓ,(3) + · · ·+ tKdℓ,(K). (46)

holds for any ℓ. Inequality (46) implies that for any ℓ ∈ [L], it is either the case that 2Cℓ·dℓ,(1)

Hdet
ℓ,1 (Q(1))( 1

2−r2)2
≥ t2dℓ,(1),

or there exists kℓ ∈ {3, . . . ,K} such that Cℓdℓ,(kℓ)

Hdet
ℓ,1 (Q(1))( 1

2−rkℓ
)2
≥ tkℓ

dℓ,(kℓ). Collectively, the implication is equivalent

to saying that for all ℓ ∈ [L], there exists kℓ ∈ {2, . . . ,K} such that

tkℓ

(
1

2
− rkℓ

)2

≤ 2Cℓ

Hdet
ℓ,1 (Q

(1))
,

or more succinctly there exists i ∈ {2, . . . ,K} such that

ti

(
1

2
− ri

)2

≤ min
ℓ∈[L]

{
2Cℓ

Hdet
ℓ,1 (Q

(1))

}
.

Finally, Step 2 is established by the observations (43, 44, 45).
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B.6 Proof of Theorem 5

Denote τ as the total number of arm pulls. Before proving theorem theorem 5 we need to firstly procide a high
probability upper bound to τ , with the lemma 2 in Csiszár (1998).

Lemma 9 (Csiszár (1998)). Denote {Dt}∞t=1 be i.i.d. random variables distributed as Bern(d), where d ∈ (0, 1).
Let C be a positive real number. Define random variable ρ = min{T :

∑T
t=1Dt ≥ C}. For any integer t′ ∈ (C,C/d),

it holds that

Pr(ρ ≤ t′) ≥ exp(−t′ log 2 ·KL(C/t′, d))
t′ + 1

,

where we denote KL(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)).

We assert the following lemma.

Lemma 10. Denote Ti as the pulling times of arm i ∈ {3, · · · ,K},i.e Ti =
∑τ

s=1 1(As = i) and {dℓ0,(k)}Kk=1 ⊂
(0, 1)K . For any ℓ0 ∈ [K], if ∀k, g(dℓ0,(k)) < 1

log 1
dℓ0,(i)

, (r1−ri)
2

(r1−r2)2 log 1
dℓ0,(i)

+
∑K

k=3
(r1−ri)

2

(r1−rk)2 log 1
dℓ0,(i)

< 1 and

log 1
1−dℓ0,(i)

< 1
2 all hold, we have

Pr
1

Ti > Cℓ0
g(dℓ0,(1))

(r1−r2)2
+
∑K

k=3

g(dℓ0,(k))

(r1−rk)2

1

(r1 − ri)2

 ≤ 1− exp

− Cℓ0
1

4 log 1
dℓ0,(i)



Remarks: We can derive a similar conclusion For the case that i = 2, with assumptions ∀k, g(dℓ0,(k)) < 1
log 1

dℓ0,(1)

,

(r1−ri)
2

(r1−r2)2 log 1
dℓ0,(1)

+
∑K

k=3
(r1−ri)

2

(r1−rk)2 log 1
dℓ0,(1)

< 1 and log 1
1−dℓ0,(1)

< 1
2 . The details are omitted here.

Proof. For simplicity, denote T̄i :=
Cℓ0

g(dℓ0,(1))

(r1−r2)2
+
∑K

k=3

g(dℓ0,(k))

(r1−rk)2

1
(r1−ri)2

, h =
(

1
(r1−r2)2

+
∑K

k=3
1

(r1−rk)2

)
(r1 − ri)2.

Easy to see h ≥ 1. By simple calculation, we have

Pr
1

(
Ti ≥ T̄i

)
=Pr

1

Ti ≥ T̄i, Ti∑
s=1

Di,ℓ0,s < Cℓ0 ,

T̄i∑
s=1

Di,ℓ0,s < Cℓ0


≤Pr

1

 T̄i∑
s=1

Di,ℓ0,s < C1


=1− Pr

1

 T̄i∑
s=1

Di,ℓ0,s ≥ C1



≤1− Pr
1


Cℓ0
h log 1

dℓ0,(i)∑
s=1

Di,ℓ0,s ≥ Cℓ0

 .

where {Di,ℓ0,s}+∞
s=1

i.i.d∼ Bern(dℓ0,(i)). The last inequality is from the fact that g(dℓ0,k) <
1

log 1
dℓ0,(i)

holds for all k,

further T̄i >
Cℓ0

h log 1
dℓ0,(i)

.
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As h
log 1

dℓ0,(i)

> 1
log 1

dℓ0,(i)

> dℓ0,(i), we can apply lemma 9.

Pr
1


Cℓ0
h log 1

dℓ0,(i)∑
s=1

Di,ℓ0,s ≥ C1

 (47)

≥
exp

(
−Cℓ0

h log 1
dℓ0,(i)

KL
(

h
log 1

dℓ0,(i)

, dℓ0,(i)

))
Cℓ0

h log 1
dℓ0,(i)

+ 1
(48)

≥
exp

(
−(Cℓ0

h log 1
dℓ0,(i)

)h− Cℓ0

h log 1
dℓ0,(i)

log 1
1−dℓ0,(i)

)
Cℓ0

h log 1
dℓ0,(i)

+ 1
(49)

≥ exp

− Cℓ0
1

log 1
dℓ0,(i)

− Cℓ0
1

log 1
dℓ0,(i)

1

2
− Cℓ0

1
log 1

dℓ0,(i)

 (50)

≥ exp

− Cℓ0
1

4 log 1
dℓ0,(i)

 . (51)

Step (48) is by lemma 9. Step (49) is by the following fact

KL(
M

log 1
d

, d) =
M

log 1
d

log

M
log 1

d

d
+

(
1− M

log 1
d

)
log

1− M
log 1

d

1− d

=
M

log 1
d

log
M

log 1
d

+M +

(
1− M

log 1
d

)
log(1− M

log 1
d

) +

(
1− M

log 1
d

)
log

1

1− d

≤0 +M + 0 +

(
1− M

log 1
d

)
log

1

1− d

=M + log
1

1− d

holds for any M,d such that M
log 1

d

, d ∈ (0, 1). Step (50) is due to h ≥ 1, log 1
1−dℓ0,(1)

< 1
2 and inequality

ex ≥ x+ 1.

Now we are ready to prove theorem 5. We firstly introduced some notations. Define H̃sto
1,ℓ :=

g(dℓ,(1))

(r1−r2)2
+∑K

k=3
g(dℓ,(k))

(r1−rk)2
, Hsto

1,ℓ =
g(dℓ,(1))

(r1−r2)2
+
∑K

k=2
g(dℓ,(k))

(r1−rk)2
. Easy to see 2H̃sto

1,ℓ ≥ Hsto
1,ℓ > H̃sto

2,ℓ . This implies once we prove

max
j∈{1,i}

Pr
Q(j),alg

(failure) ≥ exp

(
− min

ℓ∈[L]

Cℓ

H̃sto
1,ℓ

)
,

for small enough c̄ and large enough {Cℓ}Lℓ=1, we prove theorem 5. The constructions of c̄ and {Cℓ}Lℓ=1

are as follows. As lim
d→0+

1
g(d) log 1

d

= +∞ is equivalent to limd→0+ g(d) log
1
d = 0, we can further conclude

limc→0+ g(cd
0
ℓ,(i)) log

1
cd0

ℓ,(j)

= limc→0+ g(cd
0
ℓ,(i)) log

1
cd0

ℓ,(i)

+ g(cd0ℓ,(i)) log
d0
ℓ,(i)

d0
ℓ,(j)

= 0,∀i, j ∈ [K],∀ℓ ∈ [L], thus we
can find a c̄, such that when 0 < c < c̄,

• 16g(dℓ,(j)) = 16g(cd0ℓ,(j)) <
1

log 1

cd0
ℓ,(i)

= 1
log 1

dℓ,(i)

for all j ∈ [K], ℓ ∈ [L],

• log 1
1−dℓ,(j)

< 1
2 , log 1

dℓ,(j)
> 1 for all j ∈ [K], ℓ ∈ [L],

• 64
(

g(dℓ,(1))

(r1−r2)2
+
∑K

k=3
g(dℓ,(k))

(r1−rk)2

)
log 1

dℓ,(i)
< 2, for all ℓ ∈ [L],
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• (r1−ri)
2

(r1−r2)2 log 1
dℓ,(i)

+
∑K

k=3
(r1−ri)

2

(r1−rk)2 log 1
dℓ,(i)

< 1, for all ℓ ∈ [L].

We also require {Cℓ}Lℓ=1 are large enough, such that for the above given {dℓ,(k)}K,L
k=1,ℓ=1, we have

• Cℓ

16H̃sto
1,ℓ

>
√

4
16

C1

H̃sto
1,ℓ

log 1
16

C1

H̃sto
1,ℓ

1
(r1−ri)2

holds for all ℓ ∈ [L],

• Cℓ ≥ log 64 for all ℓ ∈ [L].

For these c, {dℓ,(k)}K,L
k=1,ℓ=1, and {Cℓ}, we can start the analysis. Define T̄i = minℓ∈[L]

1
16

Cℓ

H̃sto
1,ℓ

1
(r1−ri)2

, K̂Li,s =

log
fi(Ri,s)
fi′ (Ri,s)

, where fi is the density function of N (ri, 1), fi′ is the density function of N (1− ri, 1), and Ri,s ∼
N (ri, 1). Easy to see

log
fi(Ri,s)

fi′(Ri,s)
= log e−

(Ri,s−ri)
2−(Ri,s−(1−ri))

2

2

=− (Ri,s − ri −Ri,s + (1− ri))(Ri,s − ri +Ri,s − (1− ri))
2

=−
2( 12 − ri)(2Ri,s − 1)

2

=− 2(r1 − ri)(2Ri,s − 1)

2
∼ N (2(ri − r1)2, 4(r1 − ri)2).

Define ξi =

t ∈ [T̄i], K̂Li,t − 2(ri − r1)2 ≤ 2|r1 − ri| ·

√
minℓ∈[L]

Cℓ
H̃sto

1,ℓ

+log T̄i

t

, easy to derive the following inequal-

ity by Chernoff and union bounds.

Pr
1
(¬ξi) ≤

T̄i∑
t=1

exp

−
4(r1 − ra)2

(
minℓ∈[L]

Cℓ
H̃sto

1,ℓ

+log T̄i

t

)
4(r1 − ri)2

t

 = exp

(
− min

ℓ∈[L]

Cℓ

H̃sto
1,ℓ

)
.

Apply the transportaion equality just like section B.5, we have

Pr
i
(ψ ̸= i)

≥E1

(
1{ψ ̸= i}1{Ti ≤ T̄i}1(ξi) exp(−TiK̂Li,Ti

)
)

(52)

≥E1

1{ψ ̸= i}1{Ti ≤ T̄i}1(ξi) exp

−T̄iKLi − 2(r1 − ri)

√√√√T̄i

(
min
ℓ∈[L]

Cℓ

H̃sto
1,ℓ

+ log T̄i

) (53)

≥E1

(
1{ψ ̸= i}1{Ti ≤ T̄i}1(ξi) exp

(
−T̄iKLi −

√
4(r1 − ri)2T̄i min

ℓ∈[L]

Cℓ

H̃sto
1,ℓ

−
√
4(r1 − ri)2T̄i log T̄i

))
(54)

=E1

(
1{ψ ̸= i}1{Ti ≤ T̄i}1(ξi)

exp

(
− 2

16
min
ℓ∈[L]

Cℓ

H̃sto
1,ℓ

− 8

16
min
ℓ∈[L]

Cℓ

H̃sto
1,ℓ

−
√

4

16
min
ℓ∈[L]

Cℓ

H̃sto
1,ℓ

log
1

16
min
ℓ∈[L]

Cℓ

H̃sto
1,ℓ

1

(r1 − ri)2

))
(55)

≥Pr
1

(
(ψ ̸= i) and (Ti ≤ T̄i) and ξi

)
exp

(
−11

16
min
ℓ∈[L]

Cℓ

H̃sto
1,ℓ

)
. (56)

Step (54) is by the inequality
√
a+ b ≤

√
a +
√
b for a, b ≥ 0. Step (56) is by the requirement Cℓ

16H̃sto
1,ℓ

>√
4
16

C1

H̃sto
1,ℓ

log 1
16

C1

H̃sto
1,ℓ

1
(r1−ri)2

holds for all ℓ ∈ [L].
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We can further derive the lower bound of the probabilistic term,

Pr
1

(
(ψ ̸= i) and (Ti ≤ T̄i) and ξi

)
≥1− Pr

1
(ψ = i)− Pr

1

(
Ti > T̄i

)
− Pr

1
(¬ξi)

≥1− exp

(
− min

ℓ∈[L]

Cℓ

H̃sto
1,ℓ

)
− Pr

1

(
Ti > T̄i

)
− exp

(
− min

ℓ∈[L]

Cℓ

H̃sto
1,ℓ

)
.

The last inequality is by the assumption Pr1 (ψ = i) ≤ exp

(
−minℓ∈[L]

Cℓ

H̃sto
1,ℓ

)
. If this assumption doesn’t

hold, then we have completed the proof. Denote ℓ0 = argminℓ∈[L]
Cℓ

g(dℓ,(1))

(r1−r2)2
+
∑K

k=3

g(ℓ,d(k))

(r1−rk)2

, apply lemma 10 to

Pr1
(
Ti > T̄i

)
, we get

Pr
1

(
(ψ ̸= i) and (Ti ≤ T̄i) and ξi

)
≥1− exp

(
− Cℓ0

H̃sto
1,ℓ0

)
−

1− exp

− Cℓ0
1

4 log 1
dℓ0,(i)

− exp

(
− Cℓ0

H̃sto
1,ℓ0

)

=exp

− Cℓ0
1

4 log 1
dℓ0,(i)

− exp

(
− Cℓ0

H̃sto
1,ℓ0

)
− exp

(
− Cℓ0

H̃sto
1,ℓ0

)
.

By the property of c, dℓ0,(i), easy to see

64

(
g(dℓ0,(1))

(r1 − r2)2
+

K∑
k=3

g(dℓ0,(k))

(r1 − rk)2

)
log

1

dℓ0,(i)
< 2, Cℓ0 > log 64, log

1

dℓ0,(i)
> 1

⇒ exp

(
− Cℓ0

H̃sto
1,ℓ0

)
≤ 1

4
exp

− Cℓ0
1

4 log 1
dℓ0,(i)

 .

Thus, we can conclude Pr1
(
(ψ ̸= i) and (Ti ≤ T̄i) and ξi

)
≥ 1

2 exp

(
− Cℓ0

1

4 log 1
dℓ0,(i)

)
, further

Pr
i
(ψ ̸= i) ≥ 1

2
exp

− Cℓ0
1

4 log 1
dℓ0,(i)

 exp

(
−11

16

Cℓ0

H̃sto
1,ℓ0

)
.

That implies

Pri(ψ ̸= i)

exp

(
− Cℓ0

H̃sto
1,ℓ0

)

≥ exp

 5Cℓ0

16H̃sto
1,ℓ0

− Cℓ0
1

4 log 1
dℓ0,(i)


=exp


(
5− 64

(
g(dℓ0,(1))

(r1−r2)2
+
∑K

k=3

g(dℓ0,(k))

(r1−rk)2

)
log 1

dℓ0,(i)

)
Cℓ0,

16H̃sto
1,ℓ0


≥ exp

(
Cℓ0

16H̃sto
1,ℓ0

)
> 1.
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The last second inequality is from the property 64
(

g(dℓ,(1))

(r1−r2)2
+
∑K

k=3
g(dℓ,(k))

(r1−rk)2

)
log 1

dℓ,(i)
< 2, for all ℓ ∈ [L]. The

overall inequality suggests

Pr
i
(ψ ̸= i) ≥ exp

(
− Cℓ0

H̃sto
1,ℓ0

)
= exp

(
− min

ℓ∈[L]

Cℓ

H̃sto
1,ℓ

)
≥ exp

− min
ℓ∈[L]

Cℓ

1
2

(
g(dℓ,(1))

(r1−r2)2
+
∑K

k=2
g(dℓ,(k))

(r1−rk)2

)
 ,

which is our target.

B.7 Improvement of Hdet
2,ℓ (Q) is Unachievable

For a problem instance Q with mean reward {rQk }Kk=1, r
Q
1 ≥ r

Q
2 ≥ · · · ≥ r

Q
K , mean consumption {dQℓ,k}

K,L
k=1,ℓ=1 and

budget {Cℓ}Lℓ=1, we define

H̃det
1,ℓ (Q) =

dℓ,1

(rQ1 − r
Q
2 )

2
+

K∑
k=2

dℓ,k

(rQ1 − r
Q
k )

2
(57)

H̃det
2,ℓ (Q) = max

2≤k≤K

∑k
j=1 dℓ,j

(rQ1 − r
Q
k )

2
. (58)

Easy to see H̃det
1,ℓ (Q) ≤ Hdet

1,ℓ (Q), H̃det
2,ℓ (Q) ≤ Hdet

2,ℓ (Q). We want to know whether we can find an algorithm such
that for any problem instance Q, we can achieve the following upper bound of the failure probability.

Pr
Q
(failure)

≤poly(K) exp

(
− O(1)

log2K
min
ℓ∈[L]

{
Cℓ

H̃det
2,ℓ (Q)

})
. (59)

The answer is No. And the analysis method we used is similar to appendix B.5. We can construct a list of
problem instance Q(i), and prove a lower bound that could be larger than the right side of (59), as K and {Cℓ}Lℓ=1

are large enough.

We focus on L = 1. Assume there are C units of the resource. Given K, let d1 = 1
2K−2 , dk = 1

2K−k , k ≥ 2,
r1 = 1

2 , rk = 1
2 − 2

k−K−4
2 , k ≥ 2. Easy to see d1 = d2 ≤ · · · ≤ dK , 1

2 = r1 ≥ r2 ≥ · · · ≥ rK = 1
4 . Then we construct

K problem instances {Q(i)}Ki=1. For problem instance Q(1), the mean reward of kth arm is rk, following the
Bernoulli distribution. And the deterministic consumption of kth arm is dk. For problem instance Q(i), 2 ≤ i ≤ K,
the mean reward of kth ̸= i arm is rk, the mean reward of ith arm is 1− ri. And the deterministic consumption
of kth arm is dk. For i ∈ [K], the best arm of Q(i) is always the ith arm. Then we can calculate H̃det

1,ℓ=1(Q
(i)) and

H̃det
2,ℓ=1(Q

(i)) for i ∈ [K]. Easy to derive

H̃det
1,ℓ=1(Q

(1))

=
d1

(r1 − r2)2
+

K∑
k=2

dk
(r1 − rk)2

=
K
2

2K−3 1
2K+2

= 16K.

H̃det
2,ℓ=1(Q

(1)) = max
k≥2

∑k
t=1 dt

(r1 − rk)2
= 32. (60)
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For 2 ≤ i ≤ K,

H̃det
1,ℓ=1(Q

(i))

=
di + d1

(1− ri − r1)2
+

i−1∑
t=2

dt
(1− ri − rt)2

+

K∑
t=i+1

dt
(1− ri − rt)2

=
1

2K−i +
1

2K−2

(2
i−K−4

2 )2
+

i−1∑
t=2

1
2K−t

(2
i−K−4

2 + 2
t−K−4

2 )2
+

K∑
t=i+1

1
2K−t

(2
i−K−4

2 + 2
t−K−4

2 )2

=
2i + 4

2i−4
+

i−1∑
t=2

2t

2i−4 + 2
i+t
2 −3 + 2t−4

+

K∑
t=i+1

2t

2i−4 + 2
i+t
2 −3 + 2t−4

. (61)

H̃det
2,ℓ=1(Q

(i))

=max{ di + d1
(1− ri − r1)2

, max
2≤t≤i−1

di +
∑t

l=1 dl
(1− ri − rt)2

, max
i+1≤t≤K

∑t
l=1 dl

(1− ri − rt)2
}

=max{
1

2K−i +
1

2K−2

(2
i−K−4

2 )2
, max
2≤t≤i−1

1
2K−i +

1
2K−t−1

(2
i−K−4

2 + 2
t−K−4

2 )2
, max
i+1≤t≤K

1
2K−t−1

(2
i−K−4

2 + 2
t−K−4

2 )2
}

=max{2
i + 4

2i−4
, max
2≤t≤i−1

2i + 2t+1

2i−4 + 2
i+t
2 −3 + 2t−4

, max
i+1≤t≤K

2t+1

2i−4 + 2
i+t
2 −3 + 2t−4

}. (62)

With a simple calculation, for 2 ≤ i ≤ K, we have 2i+4
2i−4 ≤ 32, 2i+2t+1

2i−4+2
i+t
2

−3+2t−4
≤ 32 and 2t+1

2i−4+2
i+t
2

−3+2t−4
≤ 32.

Thus we can conclude H̃det
2,ℓ=1(Q

(i)) ≤ 32 = H̃det
2,ℓ=1(Q

(1)). On the other hand, easy to check H̃det
1,ℓ=1(Q

(i)) ≤
H̃det

1,ℓ=1(Q
(1)) from the definition of H̃det

1,ℓ=1.

Following the step 1 in appendix B.5, we can conclude for every i ∈ {2, . . . ,K} it holds that

Pr
i
(ψ ̸= i)

≥1

6
exp

(
−60ti

(
1

2
− ri

)2

− 2
√
T log(12KT )

)
,

(63)

where

ti = E1[Ti], Ti =

τ∑
t=1

1(A(t) = i) (64)

is the number of times pulling arm i, and

T = ⌊C
d1
⌋ (65)

is an upper bound to the number of arm pulls by any policy that satisfies the resource constraints with certainty.

Following the step 2 in appendix B.5, recall d1 = d2 = 1
2K−2 , we can derive

K∑
k=2

2dk

H̃det
1,ℓ=1(Q

(1))(r1 − rk)2
≥ 1.
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Since
∑K

k=1 tkdk ≤ C, we can further conclude

K∑
k=2

2Cdk

H̃det
1,ℓ=1(Q

(1))(r1 − rk)2
≥

K∑
k=1

tkdk

which implies there exists i ≥ 2, such that 2Cdi

H̃det
1,ℓ=1(Q

(1))(r1−ri)2
≥ tidi. For this i,

PGi(k̂ ̸= i)

≥1

6
exp

(
− 120

C

H̃det
1,ℓ=1(Q

(1))
−

√
2 log 3

√
⌊ C
d(k)
⌋ log(12⌊ C

d(k)
⌋K)

)
.

When C is large enough, we can assume 120 C
H1(Q(1))

>
√
2 log 3

√
⌊ C
d(k)
⌋ log(12⌊ Cd1

⌋K), for any bandit strategy

that returns the arm k̂,

max
2≤i≤K

PGi(k̂ ̸= i) ≥1

6
exp

(
−240 C

H̃det
1,ℓ=1(Q

(1))

)

=
1

6
exp

(
−480 C

KH̃det
2,ℓ=1(Q

(1))

)

≥1

6
exp

(
−480 C

KH̃det
2,ℓ=1(Q

(i))

)
.

That means we should never expect to use the right side of 59 as a general upper bound.

C Details on the Numerical Experiment Set-ups

In what follows, we provide details about how the numerical experiments are run. All the numerical experiments
were run on the Kaggle servers.

C.1 Single Resource, i.e, L = 1

The details about Figure 2 is as follows. Firstly, the bars in the plot are more detailedly explained as follows: From
left to right, the 1st blue column is matching high reward and high consumption, considering deterministic resource
consumption. The 2nd orange column is matching high reward and low consumption, considering deterministic
consumption. The 3rd green column is matching high reward and high consumption, considering correlated reward
and consumption. The 4th red column is matching high reward and low consumption, considering correlated
reward and consumption. The 5th purple column is matching high reward and high consumption, considering
uncorrelated reward and consumption. The 6th brown column is matching high reward and low consumption,
considering uncorrelated reward and consumption.

Next, we list down the detailed about the setup.

1. One group of suboptimal arms, High match High
r1 = 0.9; ri = 0.8, i = 2, · · · , 256; dℓ=1,i = 0.9, i = 1, · · · , 128; dℓ=1,i = 0.1, i = 129, · · · , 256

2. One group of suboptimal arms, High match Low
r1 = 0.9; ri = 0.8, i = 2, · · · , 256; dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i = 129, · · · , 256

3. Trap, High match High
r1 = 0.9; ri = 0.8, i = 2, · · · , 32; ri = 0.1, i = 33, · · · , 256; dℓ=1,i = 0.9, i = 1, · · · , 128; dℓ=1,i = 0.1, i =
129, · · · , 256
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4. Trap, High match Low
r1 = 0.9; ri = 0.8, i = 2, · · · , 32; ri = 0.1, i = 33, · · · , 256; dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i =
129, · · · , 256

5. Polynomial, High match High

r1 = 0.9, ri = 0.9(1−
√

i
256 ), i ≥ 2. dℓ=1,i = 0.9, i = 1, · · · , 128; dℓ=1,i = 0.1, i = 129, · · · , 256

6. Polynomial, High match Low

r1 = 0.9, ri = 0.9(1−
√

i
256 ), i ≥ 2. dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i = 129, · · · , 256

7. Geometric, High match High
r1 = 0.9, r256 = 0.1, {ri}256i=1 is geometric, ri = 0.9 ∗ ( 19 )

i−1
255 . dℓ=1,i = 0.9, i = 1, · · · , 128; dℓ=1,i = 0.1, i =

129, · · · , 256

8. Geometric, High match Low
r1 = 0.9, r256 = 0.1, {ri}256i=1 is geometric, ri = 0.9 ∗ ( 19 )

i−1
255 . dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i =

129, · · · , 256

There are three kinds of consumption.

1. Deterministic Consumption. The consumption of each arm are deterministic.

2. Uncorrelated Consumption. When we pull an arm, the consumption and reward follow Bernoulli Distribution
and are independent.

3. Correlated Consumption. When we pull the arm i, the consumption is Dℓ=1,i = 1(U ≤ dℓ=1,i), Dℓ=2,i =
1(U ≤ dℓ=2,i), R = 1(U ≤ ri), where U follows uniform distribution on [0, 1]

C.2 Multiple Resources

Similarly, in multiple resources cases, we still considered different setups of mean reward, consumption, and
consumption setups.

1. One group of suboptimal arms, High match High
r1 = 0.9; ri = 0.8, i = 2, · · · , 256; dℓ=1,i = 0.9, i = 1, · · · , 128; dℓ=1,i = 0.1, i = 129, · · · , 256; dℓ=2,i = 0.9, i =
1, · · · , 128; dℓ=2,i = 0.1, i = 129, · · · , 256

2. One group of suboptimal arms, Mixture
r1 = 0.9; ri = 0.8, i = 2, · · · , 256; dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i = 129, · · · , 256; dℓ=2,i = 0.9, i =
1, · · · , 128; dℓ=2,i = 0.1, i = 129, · · · , 256

3. One group of suboptimal arms, High match Low
r1 = 0.9; ri = 0.8, i = 2, · · · , 256; dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i = 129, · · · , 256; dℓ=2,i = 0.1, i =
1, · · · , 128; dℓ=2,i = 0.9, i = 129, · · · , 256

4. Trap, High match High
r1 = 0.9; ri = 0.8, i = 2, · · · , 32; ri = 0.1, i = 33, · · · , 256; dℓ=1,i = 0.9, i = 1, · · · , 128; dℓ=1,i = 0.1, i =
129, · · · , 256; dℓ=2,i = 0.9, i = 1, · · · , 128; dℓ=2,i = 0.1, i = 129, · · · , 256;

5. Trap, Mixture
r1 = 0.9; ri = 0.8, i = 2, · · · , 32; ri = 0.1, i = 33, · · · , 256; dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i =
129, · · · , 256; dℓ=2,i = 0.9, i = 1, · · · , 128; dℓ=2,i = 0.1, i = 129, · · · , 256;

6. Trap, High match Low
r1 = 0.9; ri = 0.8, i = 2, · · · , 32; ri = 0.1, i = 33, · · · , 256; dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i =
129, · · · , 256; dℓ=2,i = 0.1, i = 1, · · · , 128; dℓ=2,i = 0.9, i = 129, · · · , 256
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7. Polynomial, High match High

r1 = 0.9, ri = 0.9(1 −
√

i
256 ), i ≥ 2. dℓ=1,i = 0.9, i = 1, · · · , 128; dℓ=1,i = 0.1, i = 129, · · · , 256; dℓ=2,i =

0.9, i = 1, · · · , 128; dℓ=2,i = 0.1, i = 129, · · · , 256

8. Polynomial, Mixture

r1 = 0.9, ri = 0.9(1 −
√

i
256 ), i ≥ 2. dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i = 129, · · · , 256; dℓ=2,i =

0.9, i = 1, · · · , 128; dℓ=2,i = 0.1, i = 129, · · · , 256

9. Polynomial, High match Low

r1 = 0.9, ri = 0.9(1 −
√

i
256 ), i ≥ 2. dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i = 129, · · · , 256; dℓ=2,i =

0.1, i = 1, · · · , 128; dℓ=2,i = 0.9, i = 129, · · · , 256

10. Geometric, High match High

r1 = 0.9, r256 = 0.1, {ri}256i=1 is geometric, ri = 0.9 ∗ ( 19 )
i−1
255 . dℓ=1,i = 0.9, i = 1, · · · , 128; dℓ=1,i = 0.1, i =

129, · · · , 256; dℓ=2,i = 0.9, i = 1, · · · , 128; dℓ=2,i = 0.1, i = 129, · · · , 256;

11. Geometric, Mixture

r1 = 0.9, r256 = 0.1, {ri}256i=1 is geometric, ri = 0.9 ∗ ( 19 )
i−1
255 . dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i =

129, · · · , 256; dℓ=2,i = 0.9, i = 1, · · · , 128; dℓ=2,i = 0.1, i = 129, · · · , 256;

12. Geometric, High match Low

r1 = 0.9, r256 = 0.1, {ri}256i=1 is geometric, ri = 0.9 ∗ ( 19 )
i−1
255 . dℓ=1,i = 0.1, i = 1, · · · , 128; dℓ=1,i = 0.9, i =

129, · · · , 256; dℓ=2,i = 0.1, i = 1, · · · , 128; dℓ=2,i = 0.9, i = 129, · · · , 256

There are two kinds of consumption.

1. Uncorrelated Consumption. When we pull an arm, the consumption and reward follow Bernoulli Distribution
and are independent.

2. Correlated Consumption. When we pull the arm i, the consumption is Dℓ=1,i = 1(U ≤ dℓ=1,i), Dℓ=2,i =
1(U ≤ dℓ=2,i), R = 1(U ≤ ri), where U follows uniform distribution on [0, 1]

C.3 Detailed Setting of Real-World Dataset

We adopted K Nearest Neighbour, Logistic Regression, Random Forest, and Adaboost as our candidates for
the classifiers. And we applied each combination of machine learning model and its hyper-parameter to each
supervised learning task with 500 independent trials. We identified the combination with the lowest empirical
mean cross-entropy as the best arm.

Our BAI experiments were conducted across 100 independent trials. During each arm pull in a BAI experiment
round—i.e., selecting a machine learning model with a specific hyperparameter combination—we partitioned the
datasets randomly into training and testing subsets, maintaining a testing fraction of 0.3. The training subset was
utilized to train the machine learning models, and the cross-entropy computed on the testing subset served as the
realized reward. We flattened the 2-D image as a vector if the dataset is consists of images. All the experiments
are deploied on the Kaggle Server with default CPU specifications.

The details of the real-world datasets we used are as follows

• To classify labels 3 and 8 in part of the MNIST Dataset. (MNIST 3&8)

Number of label 3: 1086, Number of label 8: 1017, Number of Atrributes: 784.

Time budget: 60 seconds.

Link of dataset: https://www.kaggle.com/competitions/digit-recognizer.

https://www.kaggle.com/competitions/digit-recognizer
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• Optical Recognition of Handwritten Digits Data Set. (Handwritten)

Number of Instances: 3823, Number of Attributes: 64

Time budget: 60 seconds.

Link of dataset: https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+
digits

• To classify labels -1 and 1 in the MADELON dataset. (MADELON)

Number of Instances: 2000, Number of Attributes: 500.

Time budget: 80 seconds.

Link of dataset: https://archive.ics.uci.edu/ml/datasets/Madelon.

• To classify labels -1 and 1 in the Arcene dataset. (Arcene)

Number of Instances: 200, Number of Attributes:10000

Time budget: 150 seconds.

Link of dataset: https://archive.ics.uci.edu/ml/datasets/Arcene (Arcene)

• To classify labels of weight conditions in the Obesity dataset. (Obesity)

Number of Instances: 2111, Number of Attributes: 16.

Time budget: 20 seconds.

Link of dataset: https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+based+
on+eating+habits+and+physical+condition.

The machine learning models and candidate hyperparameters, aka arms, are as follows. We implemented all these
models through the scikit-learn package in https://scikit-learn.org/stable/index.html

• K Nearest Neighbour

– n_neighbours = 5, 15, 25, 35, 45, 55, 65, 75

• Logistic Regression

– Regularization = "l2" or None
– Intercept exists or not exists
– Inverse value of regularization coefficient= 1, 2

• Random Forest

– Fix max_depth = 5
– n_estimators = 10, 20, 30, 50
– criterion = "gini" or "entropy"

• Adaboost

– n_estimators = 10, 20, 30, 40
– learning rate = 1.0, 0.1

https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/ml/datasets/Madelon
https://archive.ics.uci.edu/ml/datasets/Arcene
https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+based+on+eating+habits+and+physical+condition
https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+based+on+eating+habits+and+physical+condition
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