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Abstract

Kriging aims to estimate the attributes of un-
seen geo-locations from observations in the
spatial vicinity or physical connections. Exist-
ing works assume that neighbors’ information
offers the basis for estimating the unobserved
target while ignoring non-neighbors. However,
neighbors could also be quite different or even
misleading, and the non-neighbors could still
offer constructive information. To this end,
we propose “Contrastive-Prototypical” self-
supervised learning for Kriging (KCP): (1)
The neighboring contrastive module coarsely
pushes neighbors together and non-neighbors
apart. (2) In parallel, the prototypical mod-
ule identifies similar representations via ex-
changed prediction, such that it refines the
misleading neighbors and recycles the useful
non-neighbors from the neighboring contrast
component. As a result, not all the neighbors
and some of the non-neighbors will be used
to infer the target. (3) To learn general and
robust representations, we design an adaptive
augmentation module that encourages data
diversity. Theoretical bound is derived for
the proposed augmentation. Extensive exper-
iments on real-world datasets demonstrate the
superior performance of KCP compared to its
peers with 6% improvements and exceptional
transferability and robustness.

1 INTRODUCTION

Spatially-distributed sensors are commonly deployed
to perceive the environment, such as temperature-
humidity sensors in weather stations in meteorology
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Figure 1: When looking through the node representa-
tions in the embedding space, spatial neighbors do not
always appear nearby and non-neighbors may also be
close to the target.

(Gad et al., 2017), landside tilt sensors in geology
(Li et al., 2021), water-level sensors in hydrogeol-
ogy (Tonkin and Larson, 2002), geomagnetic sensors
(Kwong et al., 2009) or cameras (Lin et al., 2021; Han
et al., 2022a) in transportation, and so on.

However, it is prohibitively costly to deploy sensors
with high coverage rates, resulting in under-sampling
and skewed monitoring. For example, in the traffic do-
main, some cities only have less than 20% intersections
installed with the sensors to collect the traffic flow. To
leverage data-driven applications, the data collected
from spatially sporadic sensors must be expanded into
spatially fine-grained data. Tailored to such a spatial
super-resolution task, Kriging, also known as spatial
interpolation, infers the attributes of targets at unsam-
pled locations from observations in the spatial vicinity
or physical connections. Shown in Fig. 1(a), Krig-
ing exploits a few locations’ observed data (blue/green
pins) to infer the rest that is not even equipped with
sensors (grey circles).

“Common Practice” of Kriging: Neighbors only.
Existing Kriging models (Bostan, 2017; Appleby et al.,
2020; Wu et al., 2021a,b; Lei et al., 2022) are built
upon the assumption that the information of neighbors
offers the basis to estimate the attribute values of the
target. As shown in Fig. 1(a), closer neighbor nodes
(e.g., green nodes B; to By) have larger impacts on the
interpolation weight of the target node (e.g., the red
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node A), but the non-neighbors (e.g., the blue nodes)
should be ignored, called “law of neighborhood”. To
achieve so, statistical Kriging introduces graph Lapla-
cian penalty (Rao et al., 2015), and deep Kriging based
on Graph Convolution Networks (GCN) (Wu et al.,
2021a; Appleby et al., 2020) also relies on adjacency
matrix, pushing neighbors’ embeddings closer.

A New Perspective: Solely relying on the neigh-
borhood is not always error-proof. Representa-
tion speaks louder than neighbors. Here we take a
closer look at Fig. 1(b): we conduct graph encoding via
GCN (Kipf and Welling, 2016) based on node attribute
- traffic flow, and visualize the embeddings via t-SNE
(Van der Maaten and Hinton, 2008), with the target
A as red «, its neighbors By to B, as green /\, and
its non-neighbor, e.g., C', as blue A. The insights are
two-fold: (1) the red * is close to the most of green
A it aligns with the general assumption - neighbors
have similar representations in embedding space. (2)
Some non-neighbors’ embeddings can be even closer
despite not being physical neighbors, e.g., the blue A
is even closer; some neighbor, i.e., By yet has quite
a different embedding. Inspired by the context, we
rethink Kriging from a novel perspective: to interpo-
late by using the embeddings rather than the
raw input. Specifically, we learn the target embedding
first and then recover the values of unknown targets
via downstream modules.

To conclude, we will formulate the Kriging task in a
pre-training and finetuning paradigm. We try to solve
the following three research questions (RQ):

RQ1: How to first conform to the common practice
of Kriging, that is, estimating the target node with its
neighbors and improving the aggregation effecicy?
RQ2: On the top of RQ1, how to further utilize
the non-neighbors’ useful information and discard
the neighbors’ nonconstructive information and main-
tain the balance of the two (some may use more no-
neighbors and others may use more neighbors)?
RQ3: For representation learning, how to learn a more
general embedding that respects the spatiotemporal
nature of the data, reflects the Kriging task, and is also
potentially robust enough to noise?

To answer all the questions, we propose a Kriging
Contrastive-Prototypical Learning (KCP). Since se-
lecting which nodes to infer the target is based on
representation, high-quality embeddings are now the
first key, while the second key is how to select the ratio-
nal nodes. Self-supervised learning (SSL) has proved
its superiority in learning general embedding, so this
work will be also the first Kriging solution based on con-
trastive learning. Three critical modules are designed,
shown in Fig. 2: The contrastive module respects
the “common practice” by attracting the neighbors’

embeddings together and repelling non-neighbors’ em-
beddings away. It can elaborate the embedding of
the target node by its neighbors, which answers RQ1;
the prototypical module instead learns to discard the
neighbors’ nonconstructive embeddings (refine) and
keep the non-neighbors’ useful embeddings (recycle)
via exchanged prediction, which responses RQ2. To
get a robust representation, the third component, a
spatiotemporal adaptive augmentation module, is pro-
posed, which augments the input graph from (spatial)
topology and (temporal) feature views, in an adaptive
and probabilistic manner to diversify the augmented
data, answering the RQ3.

The main contributions are summarized as follows:

(1) To the best of our knowledge, we are the first
to break the common practice of Kriging, i.e., neigh-
bors only, and propose a novel self-supervised learning
framework to better aggregate information from not
all neighbors and some non-neighbors for Kriging.

(2) We let the two SSL modules, i.e., neighboring con-
trast and prototypical head, collaborate to refine and
recycle constructive information for target nodes. To
facilitate more robust representation learning, we also
propose an adaptive augmentation module to generate
diverse and Kriging-related data for the SSL modules.

(3) We conduct extensive experiments on three real-
world datasets to evaluate the superiority of the pro-
posed KCP under various settings, which achieves
3% ~ 6% improvements over its peers and demon-
strates the best transferability and robustness.

2 RELATED WORK

Kriging methods can be categorized as transductive
and inductive. The details can be referred to in Sup-
plementary Materials 1.

2.1 Inductive Kriging

The message-passing mechanism in graph neural net-
works (GNNs), such as GraphSAGE (Hamilton et al.,
2017), makes them well-suited for inductive Kriging, in
that they can effectively aggregate the helpful informa-
tion to evaluate unknown data points. By predefining
and investigating the K nearest neighbors around the
unobserved node, KCN (Appleby et al., 2020) esti-
mates the targets by averaging the neighbors’ labels
with learnable weights. Furthermore, with randomly
selected K neighbors, PE-GNN (Klemmer et al., 2023)
plugs a general and highly modular positional encoding
component to learn the context-aware embedding for
geographic coordinates. By the modified Moran’s 1
auxiliary task, the module can be well-trained in par-
allel with the main task, incorporating spatial context
and correlation explicitly. Similarly, Egressy and Wat-
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tenhofer (2022) finds that positional node embeddings
derived from the coordinate position under the stress
function can be very effective for graph-based applica-
tions, and can learn to generalize with limited training
data. These provide novel insights into graph-based
Kriging. IGNNK (Wu et al., 2021a) generates random
subgraphs and reconstructs the signals on them (es-
pecially on unobserved nodes) by learning the spatial
correlations. But it may lack the capture of node-level
temporal dependencies. Aiming at better information
aggregation from neighbors, SATCN (Wu et al., 2021b)
designs several node message-passing modules for graph
learning and mines temporal correlations through a
temporal convolutional network. INCREASE (Zheng
et al., 2023) explicitly defines geographic and semantic
neighbors for the target node, thus providing addition-
ally referred candidates. But it may also introduce
more false positive neighbors as confused terms. Over-
all, the key insight of GNNs for Kriging is how to
improve the information aggregation efficiency, especifi-
cally spatiotemporal correlations from either neighbors
or no-neighbors, which relates to the model’s robustness
and inductive ability.

2.2 Graph structure learning on road network

Pioneering work, such as STGCN (Yu et al., 2018)
and DCRNN (Li et al., 2018a), emphasizes the inher-
ent topology of the road network, such as a binary
adjacency graph, or utilizes predefined graphs based
on specific metrics like Euclidean distance to indicate
the graph structure. Tailored to the traffic data in-
put, GWNet (Wu et al., 2019) proposes the learnable
embedding metric for pairwise node distance construc-
tion, which automatically constructs adaptive graphs
for road networks. According to the node embeddings,
AGCRN (Bai et al., 2020) introduces node-specific con-
volution filters to infer the inter-dependencies among
different traffic series automatically. Rather than the
Euclidean distance metric in road works, MFFB (Li
et al., 2020b) proposes evaluating the node distance
by Spearman similarity with trainable bias, thus build-
ing a dynamic adaptive graph. MTGODE (Jin et al.,
2022) abstracts multivariate time series into dynamic
graphs with time-evolving node features and unknown
graph structures. Based on the formulation, it designs
and solves a neural ODE to complement missing graph
topologies and unify both spatial and temporal message
passing. These studies enhance the feasibility of build-
ing adaptive and general graphs but cannot be directly
applied to the Kriging task, since we only recognize the
basic attributes of unseen nodes and lack any historical
observations, while historical data is indispensable in
adaptive graph structure learning.

3 METHODOLOGY
3.1 Problem Definition

In the Kriging task, different locations in the studied
region can be formulated as a potential graph structure
G = (V,&), where V and £ are the nodes and edges
sets, respectively. Each geo-location is treated as a
node v € V and the connections are reflected by the
graph adjacent matrix A € RVI*XIVI| Thus, it can also
be viewed as a graph super-resolution problem: Given
limited observed nodes V, attributes X (x; for node v;’s
attributes), the attributes y; of an unobserved node
vj € V, can be inferred from the spatial/temporal corre-
lations across nodes. To perform the inductive Kriging,
the topological information of unobserved nodes is un-
available in the training stage. As shown in Fig. 2(a),
training is conducted on the subgraph G, € G com-
posed of N, observed nodes (with adjacency A,). In
the testing stage, the un-observations serve as the newly
added nodes, and there is A € RWVetNu)x(NotNu)
where N,, denote the number of unobserved nodes and
N, + N, = |V|. In spatiotemporal Kriging, node at-
tributes are usually represented by time series with
horizon T, i.e., x; = [z!7,... /7], The objective
is to find a dedicated function F which can estimate
the attributes of N, unknown nodes Y € RN«xT (Y
for ground truth) with the available nodes’ informa-
tion X € RM*T and adjacent matrix A. That is
Z = F(X;A,) (training) then Y = F(Z; A) (testing).

3.2 The architecture of KCP

We elaborate on the details of KCP, with the overall
framework in Fig. 2. Our model mainly contains three
tailored components based on a graph feature extrac-
tion module: adaptive data augmentation, neighboring
contrast, and prototypical head. The first (Fig. 2(bl))
is dedicated to performing attribute-level and topologi-
cal augmentations from the canonical view, and then
provides the augmented view for feature extraction.
The last two components achieve self-supervision ac-
cording to the extracted representations’ consistency
between the canonical and augmented views: The for-
mer (Fig. 2(b2)) conducts the contrastive learning
by exploiting neighbor and non-neighbor information.
Considering that not all neighbors are definitely similar,
and non-neighbors are not always incompatible (as we
argued in Fig. 1), the latter (Fig. 2(b3)) aims to iden-
tify similar representations regardless of the adjacency
via exchanged prediction, thus refining the positive and
recycling the negative from the neighboring contrast.

3.2.1 Graph feature extraction module To en-
code the node representation, we adopt a GNN back-
bone with two graph aggregation layers (following
GraphSAGE (Hamilton et al., 2017)) for message pass-
ing. The rationale lies in 1) it is inductive and thus
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Figure 2: The framework of the proposed KCP

can be easily applied to new-coming nodes even unseen
scenarios; 2) it can model the node-attribute projection
(temporal patterns in the Kriging task) and the spatial
aggregation across nodes by learnable weights and ad-
jacent matrix A, respectively. For each layer, with the
attribute x; from v;, the output x; after aggregation:

x; = ReLU (W [xi,Aggje{jewAji>0} (W'x; + b)]) ,

(1)
where ReLU(+) is an activation function, [, ] represents
concatenation, and Agg(-) means the aggregation func-
tion (we simply use mean in the model). W, W and
b conduct the projection which can simply model the
temporal dependencies for the node attributes. After
the feature extraction module, the output represen-
tation r € R for each node in two views is yielded,
where F is the dimension of the representation, and
there are R € RVo*F for all the nodes in the canonical
view and R € RNo*E in the augmented view.

3.2.2 Adaptive data augmentation Data augmen-
tation is a key mechanism for SSL (especially con-
trastive learning). For graph SSL, there are two fami-
lies of techniques based on node attribute and topology.
However, as argued in (Zhu et al., 2021), simple data
augmentation in attribute/topology domains may not
generate diverse contexts. This issue is more promi-
nent in the Kriging since there are no inherent clues in
unknown nodes, and the estimations are completely de-
pendent on contextual information. Additionally, noise,
such as random missing caused by sensor breakdown
in observed nodes, is also notable, which complicates
the learning of node representations.

Given the issues, in the training stage, we devise an
adaptive data augmentation strategy to corrupt the
canonical view, which is illustrated in Fig. S1 in Suppl.
Specifically, among the observed nodes, we first ran-

domly select N nodes while keeping the remaining
nodes unchanged. Then, attribute-level and topolog-
ical augmentations are sequentially applied to each
selected node (More details in Fig. S1 in Suppl. 3.1).

(1) At the attribute-level augmentation, we al-
low each sampled node to pick one option between
two strategies: 1) feature mask, some attributes on a
sampled node are masked under a pre-specified ratio
Tm, Which aims to analog the noise that appears in the
known nodes (mimic random missing). We believe it
can force the model to focus on the temporal depen-
dencies in each node and thus benefit the robustness of
the model; 2) node mask, the attributes of a sampled
node are all filled with zeros. This can be regarded as
a special case of feature mask where r,, = 1, which
acts as the unknown nodes (mimic Kriging).

Since it is hard to specify which one option should
be picked for each sampled node, inspired by Zhu
et al. (2021), we design a learning-based operator
to achieve the specification adaptively. It can be
treated as a binary classification (implemented by a
3-layer multilayer perceptron (MLP)) with the node
feature x; as input and the binary logit 7 as output:
7t = MLP(x;) = [, 7%]. Considering that the specifi-
cation is non-differentiable, we introduce the Gumbel
Softmax (Jang et al., 2016) trick as the differentiable
approximation. During the forward propagation:

out; = argmax,, (log (71':,1) + gm> ,me{0,1}, (2)

where out; is the output specification for node wv;.
out; = 0 means feature mask and out; = 1 denotes
node mask. g,, ~ Gumbel(0, 1) is a noise term drawn
from the standard Gumbel distribution. The back-
ward propagation (MLP update) is conducted with the
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temperature parameter 7 by taking the derivative of:

out — % (108 () + gm) /7) (3)

Do exp ((log (w4) + gn) /7)

(2) In topological augmentation, edge drop is per-
formed. Different from traditional random edge drop-
ping, we only drop the edges connected to a high-
centrality node with a probability p. The underly-
ing prior is that the edge missing does not alter the
neighboring information aggregation. Based on the
centrality, the edges around a sampled node v; will
be dropped according to Bernoulli distribution, i.e.,
Bernoulli(p;), pi = max((Di; — davg)/dmax,0), where
D;; is the ,i-th entry for degree matrix D, d,yg is the
average degree across all the nodes and dy,ax is the
maximum. This setting ensures that the plain nodes
are ignored while the edges around critical nodes are
augmented: for the node with a few edges, e.g., only
one edge, dropping the only edge will cause the node to
have no neighbor, thus during the training, no reference
may cause bad inference; in contrast, the central nodes
have enough edges, dropping its edges will encourage
robust inference from different subsets of neighbors.

Theorem 3.1 Given the canonical graph G and aug-
mented graph, the homomorphism density t (defina-
tions referred to (Han et al., 2022b)) of the augmented
graphon W' is determined by ®, and W' = (1—-®)OW,
where the i, j-th entry of weighted matriz ® is sampled
from Bernoulli(p;). The difference in the homomor-
phism densities of the canonical graphons W and aug-
mented graphons W' is still upper bounded by

(G W) —t(G,W)| < (L=Ne(@)[W].  (4)

where A =TI}, _, (1 — ®y;), e(G) is the number of the
edges in G, and |W|ls means cut norm(Lovdsz, 2012).

Theorem 3.1 suggests that topological augmentation
is a special case of G-Mixup while sampling entries
in Bernoulli(p) and the augmentation still retains the
benefits of G-Mixup (i.e., promising generalization and
robustness). The detailed proof is in Suppl. 3.2.

3.2.3 Neighboring Contrast To guide the model
to estimate unobserved nodes by encoding neighboring
information, we propose to supervise the target
nodes with the representations of their neighbors.
Rather than node-to-node or node-to-graph contrast,
we primarily emphasize node-to-neighbor contrast
since the Kriging task should not refer to a specified
node nor to the whole graph; instead, the neighbors.
For an anchor node v;, its representation r; and
its aggregated neighboring representations in the
other view constitute a positive pair (r;,z;), while
the neighboring aggregation of other nodes is set

as the negative pair of r;. Since neighbors are not
equally important, the aggregation is adopted by an
attention-based readout:

z; = Wz - (ZjeNkm a;rj), (5)

where a; = eXp(eri)/ZjeNk(i) exp(Wirj). Wi, W, are
the trainable matrices, and N () is a set that contains
the top-k nearst neighbors of v;. With the canoni-
cal view and the augmented view, we maximize the
agreement between node representations by the noise
contrastive estimation loss:

1
Ly = — m;}[loga(D (ri,2i)) (6)

+ E,pllog (1 =0 (D (ri,zw)))]],

where o is sigmoid function and z,, is a negative sample.
P is the distribution of negative samples. D measures
the agreement between two vectors, i.e., their cosine
similarity D(x,y) = *¥/jx|ly|. As aresult, in Fig. 2(b2),
target A will be attracted together with its neighbors
B1-By, and repelled away from its non-neighbors Cj-
Cs, even though C is similar to A, not to By.

3.2.4 Prototypical Head Although neighboring
contrast utilizes neighbor and non-neighbor information
to obtain effective representations under the guidance
of Kriging’s common practice, it is not always ratio-
nal since non-neighboring nodes may share similarities
in certain time series patterns such as change trends,
peaks, or slopes. For example, in traffic, similar traffic
flow patterns can appear even in distant intersections
due to similar functional areas. To play a “refine and
recycle” role for the neighboring contrast component,
we further introduce a prototypical head (Liu et al.,
2021) module for self-supervision.

Assume there are H typical patterns, called prototypes,
among all node attributes that can be clustered. The
prototypical head aims to uniformly assign prototype
labels to each node with subject to >, ¢in = 1 and
>nin = 1, where g;;, is the assignment probability
with prototype h to node v;. The supervisory signal
comes from an intuitive principle: the representations
from two views for an anchor node should yield similar
assignment probabilities to the same prototype. To this
end, we project the representation into a new latent
space R by a learnable head H € RF*H, Specifi-
cally, for node v;, there is ¢; = r; - H = [¢;1, ¢i2, ...CiH ]
The score for assigning prototype h to node v; can be
calculated as p;, = exp(cin)/SH exp(e;;). Then, the as-
signment problem can be cast as an optimal transport
problem and the optimal assignment probability ¢;p
can be computed as the soft labels by the off-the-shelf
iterative Sinkhorn algorithm (Cuturi, 2013) under the
same input c¢;, i.e., ¢;, = Sinkhorn(¢;p,). For the proto-
type vectors from the canonical view and augmented
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Table 1: Performance comparison. For deep models, the results are obtained through three independent executions

and in format meantstd. The best results are in bold and the second-best are underlined.

Dataset | Metric(]) Statistical models Deep models

KNN-IDW XGBoost OKriging GPMF BGRL IGNNK KCN KCP (ours)

MAE(+std) 50.95 61.52 49.03 54.38 | 45.0940.311 43.9840.233 43.594+0.101 42.2940.122

PeMS RMSE 76.33 77.00 64.86 70.12 | 70.944+0.255 67.11+0.145 68.144+0.177 65.37+0.154
MAPE 36.5% 42.3% 50.1% 37.4% 31.9% 32.6% 31.6% 29.7%

MAE 1.778 1.878 1.977 1.645 | 1.702+0.019  1.8134+0.012 1.5714+0.015 1.569+0.013

NREL RMSE 2.713 3.261 2.980 2.451 | 2.58440.018 2.588+0.017 2.366+0.011 2.35340.015
MAPE 33.2% 44.7% 45.8% 42.7% 73.8% 36.4% 33.4% 32.2%

MAE 1.657 1.562 2.107 1.566 | 1.5644+0.115 1.760+0.013 1.568+0.022 1.556+0.018

Wind RMSE 2.339 2.139 2.789 2.154 | 2.049+0.016 2.489+0.017 2.12340.018  2.096+0.012
MAPE 39.1% 32.3% 55.3% 37.6% 30.3% 55.1% 33.4% 31.6%

view (denoted by ¢; and ¢;, respectively) of node v;,
we construct the supervision by cross-predicting the
pair-wise loss from two views: using the assignment
probability from augmented view ¢ to guide the score
p from the canonical view and vice versa:

£(ci, &) = — Z [Gin log pin + gin log Pin]

_exp (cin) exp (Cin)
=— in 1o + qinlog =————
Z din g ; €xp (cin) i 108 >, exp (Gin)
(7)

When migrating all the nodes, the total self-supervised
loss for the prototypical head module is:

Lp= |V | Z £(ci, €) . (8)

i€V,

As a result, shown in Fig. 2(b3), only the similar
embeddings for target A are selected into the same
prototype, i.e., nodes B1-Bs and C1, for A’s inference.

The final training loss is Lss;, = Ly + Lp. We also
summarize the computational complexity of the KCP,
which is O(XF ' NEEj 1+ (N+K)E;+nHN +
NEH) (details in Suppl. 2).

4 EXPERIMENTS AND ANALYSIS

4.1 Experiments setup

Dataset For a broader performance evaluation of the
proposed model, we conduct Kriging experiments on
three publicly available time series datasets, since they
are representative in particular application domains
and are all with geographical properties. They are
1) PeMS: The dataset aggregates a 5-minute traf-
fic flow across 325 stations, which is collected from
the Caltrans Performance Measurement System over
2 months (January 1st, 2017 to March 1st, 2017). 2)
NREL: It records 5-minute solar power output from
137 photovoltaic plants in Alabama in 2006, which is
extracted from (Wu et al., 2021a). 3) Wind: This
dataset records onshore renewable energy generation
for Greece, which contains hourly wind speed aggre-
gation on 18 installations over 4 years (Vartholomaios
et al., 2021).

In each dataset, 80% randomly selected nodes are set as
observations (i.e., V,) for training, and the remaining
are regarded as unobserved nodes v, € V,, for testing.
The data are normalized by the min-max scaler. More
details are in Suppl. 3.3.

Training and testing For a full graph G, we only
sample a subgraph G, with |V,| nodes for training. The
Kriging task is conducted under a pretraining and then
fine-tuning paradigm. During pretraining, we optimize
the proposed SSL loss for estimating the representations
of augmented nodes in the augmented view. When
fine-tuning, we use a 3-layer MLP to recover the node
attributes according to the estimated representations
of target nodes and finetune the parameters of the
feature extraction module under the mean absolute
error loss. In the testing stage, the |V,| nodes are
treated as known nodes while the remaining nodes in G
serve as new-coming and unobserved locations, which
are unavailable at the training stage.

Baselines We choose the following benchmarks: (1)
statistical models: KNN with inverse distance weights,
KNN-IDW for short, XGBoost (Chen and Guestrin,
2016), OKriging (Bostan, 2017), GPMF (Strahl et al.,
2020), and (2) GNN-based models: BGRL (Thakoor
et al., 2021), IGNNK (Wu et al., 2021a), and KCN
(Appleby et al., 2020). The details about the methods
are in Suppl. 3.4.

4.2 Results and detailed analysis

We conduct extensive experiments by answering the
following questions: Q1: 1) Does the proposed model
outperform the state-of-the-art baselines? 2) How will
the models perform with a higher percentage of unseen
nodes? Q2: What are the distinctive/advantages of
the learned representations by SSL for Kriging? Q3:
Which component is the most important in the pro-
posed model? Q4: Any cases to support: misleading
neighbors and constructive non-neighbors?

Kriging task performance (Q1.1): In Table 1,
we summarize the performance of the proposed KCP
and baselines on the three datasets. The best results
are in bold and the second-best ones are underlined.
Three commonly used metrics are adopted to evaluate
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Table 2: The Kriging results on PeMS across different
unsampled proportions

Models MAE RMSE
20% 50% 70% 20% 50% 70%
IGNNK 4398 6821 110.93 | 67.11  93.07  163.60
KCN 4359  62.19 88.53 | 68.14 93.61 122.60
KCP 42.29 59.50 87.74 | 65.37 86.49 114.53
Imp. (1) 3.0% 45% 09% | 31% 4.3% 6.7%

the Kriging models, i.e., MAE, RMSE, and MAPE
(definitions in Suppl. 3.5). The lower metrics indicate
better performance.

It can be seen that the KCP outperforms its peers
across almost all the datasets (about a maximum of
+6% improvements than the second-best one), achiev-
ing the lowest metrics except for the RMSE in the PeMS
dataset. Specifically, compared to statistical models,
GNN-based deep models typically obtain better Kriging
performance. KNN-IDW, the straightforward spatial
interpolation, is surprisingly competitive in Kriging,
since it goes beyond simple neighbor averaging and
incorporates inverse distance-weighted interpolation
which facilitates the neighboring information aggrega-
tion. XGBoost also shows promising performance in
the Wind dataset. The reason may be that it takes lat-
itude and longitude as input, which is more sensitive to
geographic location, whereas wind speed often exhibits
non-skewed spatial distributions and relates to geoloca-
tion. The BGRL achieves moderate outcomes, as there
is no specific SSL design for the Kriging task. KCN
outperforms the baselines on the PeMS and NREL
datasets, while IGNNK is also impressive under RMSE.
Additionally, a representative scheme of matrix factor-
ization, GPMF, also achieves good performance. How-
ever, it lacks inductive capability, thus cannot handle
the new nodes without re-training.

Different observation ratio (Q1.2): To evaluate the
model’s performance under different ratio observations,
we look through the Kriging results by varying the
unsampled ratio of unknown nodes. The unobserved
ratio ranges from 20%, 50%, and 70%. For clarity,
20% means to infer 20% unobserved nodes by 80%
known nodes. The results of the advanced GNN-based
baselines and our model are summarized in Table 2. It
can be seen that the superiority of the proposed model
still holds with the changes in the unobserved ratio,
which demonstrates its powerful Kriging ability across
various scenarios.

The learned representations (Q2): Next, we vi-
sualize the learned representations of the time series
across all the unobserved nodes. To identify inherent
patterns, KMeans is adopted to cluster them according
to the ground truth, making similar data appears in
the same class. We use t-SNE to visualize the learned

R
vt

(@) IGNNK (b) KCN () KCP (ours)
Figure 3: Embeddings of learned representations on
PeMS. According to the ground truth, similar time

series are clustered into the same class (same color).
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PeMS-Bay and transfer to META-LA

Figure 4: (a) Robustness and (b) Transferability.

representations of the unobserved time series in Fig.
3. It can be found that our representations are more
compact, and different classes are with better separa-
bility in the latent space than IGNNK and KCN. This
proves that our KCP learns the representation
with promising quality.

Robustness to confronting noise (Q2): In practical
situations, noise is a common problem. For example, in
the traffic monitoring system, the records in some mon-
itored intersections may be missing when the devices
are temporarily offline caused by unexpected events
such as high temperature and network error. Therefore,
the robustness to noise is also an important factor to
be accounted for in the Kriging model. To verify the
robustness of the models against noise, in the infer-
ence stage on PeMS, we set 5%, 10%, 20%, and 30%
random missing for the attributes in the known nodes
and investigate the estimations of the unknown nodes.
The results are shown in Fig. 4(a). With the noise
ratio increasing, the performance of all the models is
degraded, while our model can still beat the strong
GNN-based baselines. As the noise ratio increases, its
superiority becomes more pronounced. This proves
the robustness of the representations from KCP.

Transferability validation (Q2): To evaluate the
inductive performance with the unseen scenario, we
exploit two independent datasets with the same at-
tributes for evaluation, i.e., PeMS-Bay and METR-LA.
Both two datasets are extracted from (Li et al., 2018b)
with 5-min traffic speed aggregation. The model is
trained on PeMS-Bay while transferring without re-
training in METR-LA. The testing results are shown
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Figure 6: Ablation results on PeMS

in Fig. 4(b). The experiments show that the KCP
can be generalized to an unseen scenario and achieves
better transferability.

Ablations study (Q3): Since KCP contains three
tailored components for spatiotemporal Kriging, we
perform the following ablation experiments to provide
insights into these components specifically. 1) without
pretraining (w/o PT). The model is trained in an end-
to-end way for Kriging without the SSL module. 2)
without adaptive augmentation (w/o AA). We replace
the adaptive augmentation module with a general view
augmentation module, which simply masks all the se-
lected nodes. 3) without the neighboring contrast (w/o
NC). We remove the neighboring contrast module. 4)
without the prototypical head (w/o PH). The proto-
typical head module is removed from the KCP. The
experimental results on PeMS dataset are shown in Fig.
6. It can be concluded that (1) Compared to the model
w/o PT, the introduce of SSL is beneficial to the model
performance (about 2% ~ 3% improvements). (2) The
neighboring information aggregation is most crucial for
the Kriging task, since the model without neighbor-
ing contrast (w/o NC) component causes the largest
degradation. (3) The absence of the prototypical head
component (w/o PH) demonstrates worse results than

the proposed model, which indicates that the refining
and recycling operations are still noteworthy. (4) The
adaptive augmentation component is effective and help-
ful to the SSL model since its removal also hurts the
model performance partly.

Visualization of Two Cases (Q4): (1) Misleading
Neighbors and (2) Constructive Non-Neighbors. Fig.
5(a) shows: baselines such as IGNNK could get misled
by the neighbors, e.g., IGNNK predicts an upward
trend in the red box due to the misleading patterns
from two quite dissimilar yet close neighbors #2 and
#3. Fig. 5(b) shows: Our KCP makes the best of the
features from different neighbors and non-neighbors at
each time slot t. We also spatially visualize the kriging
performance based on PeMS in Suppl. 3.6.

5 CONCLUSION

In this paper, we propose a self-supervised learning
model for spatiotemporal Kriging. Rather than di-
rectly predicting the attributes of unobserved nodes,
we achieve more robust Kriging by estimating the rep-
resentations and then recovering them under the SSL
framework. The tailored adaptive data augmentation
and SSL modules can encourage data diversity and
facilitate the model fully exploit helpful information,
respectively. We not only enhance the neighboring
aggregation ability of the GNN backbone by the neigh-
boring contrast, but also emphasize the importance of
refining the neighboring and recycling non-neighboring
information by the prototypical head when constructing
the SSL module.
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Supplementary Materials for “Non-Neighbors Also Matter to Kriging:
A New Contrastive-Prototypical Learning”

6 MORE DETAILED RELATED WORK

6.1 Kriging and SSL methods

As mentioned in the main text, the fundamental intuition behind Kriging is to model the spatial correlation
across observed points to estimate the attributes at unobserved locations (Krige, 1951; Goovaerts, 1998). The
taxonomy of Kriging methods can be categorized as transductive and inductive. (1) Transductive models require
all the nodes to be present during training, and it cannot learn the representation for the unseen nodes in a
natural way: re-training the model with the new nodes is needed. Classic models such as matrix factorization,
DeepWalk, and GCN are by default transductive. (2) Inductive models instead can directly handle the new nodes
that are unseen during training. It can accommodate dynamic graphs and learn the representation of unseen
nodes. Here we will introduce more details in Transductive Kriging.

Transductive Kriging Recently, there has been a significant focus on learning-based variants of Kriging to capture
spatiotemporal patterns dynamically. (1) Several previous GCN-based studies construct spatiotemporal affinity
matrices about the observed and unobserved nodes, and infer the city-wide traffic volume with the constraints of
the spatiotemporal consistency (Meng et al., 2017; Yu et al., 2019; Dai et al., 2021). However, the predefined
affinity matrices usually make the model transductive, and thus they are unable to effectively generalize to infer
new nodes. (2) Another transductive stream emphasizes the statistical approaches, matrix/tensor factorization,
for filling the unobserved attributes, thus the spatiotemporal data can be decomposed into the product of low-rank
matrices (Jain and Oh, 2014). In this case, the node features are arranged under matrix/tensor forms, in which the
unobserved nodes are embodied as completely-missing rows. The geographic structure is introduced as auxiliary
information or priors (Zhou et al., 2012; Strahl et al., 2020; Chen et al., 2023). To estimate the network-wide
traffic volume, Zhang et al. (2020) propose to incorporate floating car data into a geometric matrix completion
model and add a divergence-based spatial smoothing index to measure the difficulty of estimation in each road
segment. Lei et al. (2022) present a Bayesian kernelized matrix factorization model to capture the spatiotemporal
dependencies among the data rows and columns, which is regularized by Gaussian process (Rasmussen et al., 2006)
priors over the columns of factorized matrixes. Such methods are still transductive and lack real-time inference
capabilities, since newly added nodes will increase the number of rows in a matrix, and thus re-factorization is
inevitable.

Self-supervised learning on graphs In SSL, predictions or labels are generated from raw data and guide
the model’s learning by pretext tasks. Contrastive learning, as a sub-domain of SSL, aims to learn general
representations by maximizing the mutual information (MI) between positive (similar) and negative (distinct)
samples that are generated from data augmentation (Ci et al., 2022; Tang et al., 2022). The key lies in how
to construct and define the positive/negative samples, which affects the representation quality largely. In the
context of Kriging, the choice of positive/negative samples could mean which nodes will be used to infer the
unseen node. Graph SSL (You et al., 2020b; Liu et al., 2022) offers potential solutions. The augmentation of
graph SSL is usually either in node attributes or structural topology (Hassani and Khasahmadi, 2020; You et al.,
2020a; Zhu et al., 2021).

When specifying positive/negative, similar to the Kriging norm, neighbors are usually considered as positive
samples (Mao et al., 2022) and non-neighbors as negative samples. However, scholars also realized the problem
with the negative sample definition. Grill et al. (2020) and Thakoor et al. (2021) stated that it is rather difficult to
contrast a realistic but semantically dissimilar augmented sample; thus, a contrast loss without negative samples
was proposed. Kiryo et al. (2017); Chen et al. (2020); Tonekaboni et al. (2021) raised the concern of negative
sampling bias, where blindly drawing samples from the distribution outside of the positive samples may result in
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negative samples that turn out quite similar to the reference; thus, “Positive-Unlabeled” learning is proposed:
outside of the positive region, it is an unlabeled region with a weighted combination of w positive and 1 — w
negative.

We improve the dilemma of positive/negative even further, considering both positive and negative are not strictly
cut off, both with exceptions. We propose “Contrastive-Prototypical” learning for Kriging, where the contrastive
module coarsely defines positive/negative as neighboring/non-neighboring and the prototypical module refines
the positive and recycles the negative. Besides, an adaptive augmentation is also proposed to choose the feature
mask and node mask in a probabilistic manner, encouraging higher diversity.

6.2 Methods that consider non-neighbors

Outside the scope of Kriging, there are methods that also consider the nodes that are not physical neighbors.
They mainly introduce more semantic graphs such as Point of Interest (POI) (Li et al., 2020a), transition (Mao
et al., 2022), and connectivity (Geng et al., 2019) (which are the most popularly defined graphs), besides the
topological graph. These semantic graphs are either incorporated as additional graph Laplacian penalties in
statistical models such as matrix factorization (Yang et al., 2021) and tensor decomposition (Li et al., 2020a), or
constructed as multi-view graphs in GCN-based models (Geng et al., 2019). However, these explicitly defined
graphs require domain knowledge, which might not be wholesome to explain why two nodes are similar. Moreover,
these methods are transductive. INCREASE (Zheng et al., 2023) is the first inductive method that explicitly
defined the three graphs, i.e., spatial proximity, function similarity, and transition probability for Kriging. It
shows that, with more graphs considered, the performance could consistently increase. However, the questions
are: are three graphs enough and accurate to describe how different nodes utilize each other’s information? If the
nodes are correlated with ten different patterns, do ten graphs need to be constructed? How to construct graphs
that are outside the scope of human domain knowledge? Therefore, we propose to select similar or dissimilar
nodes and show nodes utilize each others’ information in a learning base: no explicit definitions are required, and
most likely, the patterns that are not under the awareness of domain knowledge could also be captured.

7 COMPUTATIONAL COMPLEXITY ANALYSIS

The proposed KCP includes three main modules, each contributing to the overall computational complexity. The
complexities of these modules are as follows:

(1) GNN (i.e., GraphSAGE) is an off-the-shelf component and its complexity is O(Zf;ll NE;E; 1), where L is
the number of GNN layers, IV indicates the number of nodes in the graph, and F; means the dimension of the i-th
layer representations (embeddings). (2) The neighboring contrast module is designed to supervise target nodes
using representations from their neighbors, which involves aggregating features from K neighbors for each node in
the graph. Consequently, the computational complexity of this module is expressed as O(Zfz"l(]\f + K)E;), where
L,, indicates the number of aggregation layers (defaulted to 1) and K participates in the attention-based readout.
(3) The prototype head incorporates a linear projection and the Sinkhorn algorithm. Since the implementation
of the Sinkhorn involves alternately iterative normalization of the rows and columns for the matrix, during
the model training, it contributes to a computational complexity denoted as O(nHN), where 7 represents the
number of iterations and H is the number of prototypes. Associated with the O(NEH) complexity of the linear
projection, the overall computational complexity of the prototype head is expressed as O(nHN + NEH). To
sum up, the total computational complexity of the KCP model is the summarization of the three modules, that
is, O NEE;j (1 + Y5 (N + K)E; + nHN + NEH).

8 IMPLEMENTATION DETAILS

8.1 The illustration for data augmentation

As shown in Fig. 7, we further diagram the proposed data augmentation module. Specifically, among the observed
nodes, we first randomly select IV nodes while keeping the remaining nodes unchanged. Then, attribute-level and
topological augmentations are sequentially applied to each selected node (shown in Fig. 7(a)). In Fig. 7(b), we
showcase the internal modifications on three samples with augmentations.
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Figure 7: The diagram of adaptive data augmentation module.

8.2 Proof of Theorem 3.1

For the topologically augmented graphon W', there is W/ = (1 — ®) ® W. Recall that the definition of
homomorphism density ¢ is (G, W) = S[o V() Hi,jeE(g) W (z;, x;) Hiev(g) dz;. And the homomorphism density

of W' is
tG,w’ :J W' (x;, x5 dz;
( ) 0,1V, H (i, ;) , H
JEE(9) i€V (9)
-| [T @-®ew) @) [] d
AV, TG Vig)
= 1—®; ;)W (x4, x;) dx; 9
J[0,1]V<g>| , H ( v n ‘ 9)
1,jJEE(G) i€V (G)
= H (1_¢’JJ n W (@i, 5) H dzx;
i,jeB(9) 0,1V, jeB(g) ieV(Q)
= ] a-aitgw)
i,jeB(G)

Since ®; ; is determined by sampling under the edge drop probability p and irrelevant to dz, it can be excluded from
the integration. Following triangle inequality in G-mixup Han et al. (2022b), |¢(G, W') — (G, W)| < e(G)|W -W'|;.
Let A =[1; jep(g)(1 — ®4,5), and then the upper bound is derived as

[H(G, W) — (G, W)| = [M(G, W) — (G, W)| < ()| (1 = W)W o = (1 = Ne(G)[ W] (10)

8.3 Dataset description

For a broader performance evaluation of the proposed model, we conduct Kriging experiments on three publicly
available time series datasets with geographic properties, which are described in Table 3.

1) PeMS: The dataset aggregates a 5-minute traffic flow across 325 traffic stations, collected from the Caltrans
Performance Measurement System over a 2-month period (January 1st, 2017 to March 1st, 2017). 2) NREL:
It records 5-minute solar power output from 137 photovoltaic plants in Alabama in 2006, which is extracted
from (Wu et al., 2021a). 3) Wind: This dataset records onshore renewable energy generation for Greece, which
contains hourly wind speed aggregation on 18 installations over 4 years (2017-2020) (Vartholomaios et al., 2021).
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Table 3: Dataset description

Attributes Nodes Resolution

PeMS  Traffic flow 325 5 min
NREL Solar power 137 5 min
Wind Wind speed 18 hourly

Gaussian kernel-based inverse distance is employed to calculate the adjacent matrix A following (Li et al., 2018b),
where road network distance is for the PeMS dataset and Euclidean distance is for NREL and Wind datasets.
For nodes v; and vj, the related entry A;; in A is calculated by

Ay = o <_ (d“o))) , (1)

where o is the standard deviation of the distance.

8.4 Baselines

We compare seven advanced Kriging models involving statistical models and deep learning-based methods. They
are 1) KNN-IDW: A KNN model which incorporates inverse distance weighted interpolation for Kriging. The
weighted average of the K nearest observed nodes to the unobserved node is taken as the estimation, and the
weight is associated with the entry in the adjacent matrix. We set K = 5 in this paper. 2) XGBoost (Chen
and Guestrin, 2016): We train an extreme gradient boosting model, in which the geolocations are regarded as
the input, and the values of the attributes are the output. 3) OKriging (Bostan, 2017): Ordinary Kriging. It
estimates the unknown nodes with a known variogram under the Gaussian process, which is a typical spatial
interpolation model. 4) GPMF (Strahl et al., 2020): It is a graph-based prior probabilistic matrix factorization, in
which the graph structure is used as the side information to achieve the matrix factorization. 5) BGRL (Thakoor
et al., 2021): It is a self-supervised graph representation learning method that learns by predicting alternative
augmentations of the input. It uses only simple augmentations without explicit negative samples. The model is
also tailored to the Kriging task under the pretraining and then finetuning SSL paradigm. 6) IGNNK (Wu et al.,
2021a): It constructs dynamic subgraphs by random sampling and uses diffusion graph convolutional network (Li
et al., 2018b) for the spatiotemporal Kriging. 7) KCN (Appleby et al., 2020): A graph convolutional network for

Kriging, which makes direct use of K nearest neighboring observations for graph message passing. We also set
K =5.

For the neural networks, we split the time series attributes in each node by slide window with size 24 for input.

8.5 Evaluation metrics

To quantitatively characterize the performance of Kriging models, mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percentage error (MAPE) are adopted to evaluate the estimations Y and
ground truth Y on unobserved nodes. The first reflects the average error between Y and Y. The second provides
higher weights to larger errors, which is more sensitive to outliers. The last one indicates the average percentage
deviation of the Y from Y. Their definitions are

1 N, T
= L gt
MAE = N, xT (;1 |yj Y; > ’ (12)
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Figure 8: The visualization of Kriging errors at a particular time point on the PeMS. The stars represent the
unknown nodes and the dot points mean the observed nodes.

where N, denotes the number of unobserved nodes. T is the time horizon to perform Kriging. y§ and 3}5 are
scalars at the time step ¢ on node v;, which indicate ground truth and the estimation, respectively.

8.6 Spatial visualization of Kriging results

Based on PeMS, we further provide intuitive visualization about the absolute Kriging errors across the geographic
locations, which are calculated by |estimation — ground truth| and illustrated in Fig. 8. For demonstration,
we choose the traffic flow of the nodes at a particular time and show the Kriging errors from the graph-based
baselines and our method, respectively. It can be seen that the errors in our model are the smallest, which also
indicates its superiority.



