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Abstract

We cast the resampling step in particle filters
(PFs) as a variational inference problem, re-
sulting in a new class of resampling schemes:
variational resampling. Variational resam-
pling is flexible as it allows for choices of 1)
divergence to minimize, 2) target distribution
to input to the divergence, and 3) divergence
minimization algorithm. With this novel ap-
plication of VI to particle filters, variational
resampling further unifies these two power-
ful and popular methodologies. We construct
two variational resamplers that replicate par-
ticles in order to maximize lower bounds
with respect to two different target measures.
We benchmark our variational resamplers on
challenging smoothing tasks, outperforming
PFs that implement the state-of-the-art re-
sampling schemes.

1 INTRODUCTION

Particle filters are a widely used class of algorithms to
perform stochastic nonlinear filtering that, since their
popularization in (Gordon et al., 1993), have found ap-
plications in countless domains, notably (probabilistic)
mobile robot localization (Thrun et al., 2000, 2001;
Maggio et al., 2023; Placed et al., 2023), epidemic
tracking (Storvik et al., 2023) option pricing in math-
ematical finance (Creal, 2012), Bayesian phylogenetic
inference (Bouchard-Côté et al., 2012; Moretti et al.,
2021; Koptagel et al., 2022); and many more.

In PFs, a resampling step is used to filter out low-
probability particles in order to avoid particle degen-
eracy. Classical resampling schemes, like multino-
mial, systematic or stratified resampling, are designed
to produce resampled measures that do not deviate
too much from the normalized importance weighted
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Figure 1: (A) At each time step t in a particle filter, N
particles have been proposed (black points) in the la-
tent space. The posterior density is shown in red. Each
particle, i, has a single replica, i.e. ϕit = 1. (B) Given
the proposed particles, variational resampling infers
the combination ϕ1:Nt ∈ Φ1:N that minimizes a diver-
gence with respect to a target measure, τψ(dx1:t|y1:t).
(C) The optimal resampled measure produced by vari-
ational resampling is then returned. The surviving
particles (black points) each have at least one replica.

measure. This is achieved by making the resampling
schemes produce resampled measures that are unbi-
ased.

The variational inference (VI; Jordan et al. (1999);
Blei et al. (2017)) methodology allows for inferring a
distribution by directly minimizing a divergence to a
target distribution. As such, we cast the resampling
step as a VI problem, where we recognize the simpler,
rational-valued resampled measure to be a variational
distribution, approximating a target measure. In con-
trast to the classical resampling schemes, this allows
us to directly minimize a divergence between the two
measures.

In doing so, we are proposing a novel class of resam-
pling schemes, which we call variational resampling.
Variational resampling is flexible as it allows the prac-
titioner to design and choose among divergences to
minimize, target measures to approximate and opti-
mization algorithm for minimizing the divergence. It
is principled as it relies on the VI methodology, and
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further unifies VI and PFs. Indeed, variational re-
sampling is a new paradigm for developing resampling
schemes in PFs.

In this work, we construct two instances (resamplers)
of variational resampling. The first resampler pro-
duces resampled measures which are accurate approx-
imations of the normalized importance weighted mea-
sure, improving over the state-of-the-art methods.

The second resampler is explicitly designed to enhance
smoothing-related estimates for the PF. Utilizing the
flexibility of variational resampling, this is done by re-
sampling based on the likelihoods of the particle tra-
jectories up until the current time step. We think of
this new resampler as performing online smoothing, re-
sulting in smoothing estimates superior to the previous
state-of-the-art methods.

Our contributions can be itemized as follows:

• We propose a new class of resampling schemes,
variational resampling. This is a new paradigm
for developing resampling schemes as it casts the
resampling step as a VI problem, paving way for
interesting future work.

• We design a deterministic optimization algo-
rithm that maximizes a lower bound on the log-
normalizing constant of the target measure, which
we call the lower bound (LB) resampler.

• We give two target measures to use as input in the
LB resampler, resulting in two variational resam-
pling schemes. The first (Sec. 3.2.1) resamples
particles by minimizing the Kullback-Leibler (KL)
divergence between the resampled measure and
the normalized importance weighted one. The
second (Sec. 3.2.2) is carefully designed to en-
hance the smoothing estimates from the PF, re-
sulting in impressive performances.

We illustrate the practical benefits of our framework
first on toy experiments, providing intuition, and then
experiment on challenging state-space models using
synthetic and real data.

2 BACKGROUND

Let x1:t and y1:t be sequences of latent variables and
observations, respectively, each of length t, and let
p(dx1:t|y1:t) be a posterior measure with correspond-
ing unnormalized density γ(x1:t|y1:t) which factorizes
as follows

γ(x1:t|y1:t) = g(yt|xt)f(xt|xt−1)γ(x1:t−1|y1:t−1). (1)

We use the dx argument to distinguish measures from
densities. Furthermore, let δxi

1:t
(dx1:t) be a Dirac mea-

sure on the latent space, N be the number of particles,
xi1:t be the positions in the particle trajectory of the
i-th particle in Rt, and ϕit ∈ [1, ..., N ] the number of
times the i-th particle is replicated at time step t. That
is, ϕ1:Nt is in Φ1:N , the set of all possible combinations

of ϕ1:Nt , such that
∑N
i=1 ϕ

i
t = N .

Assuming that resampling is performed at every time
step in the particle filter, then the importance weight
for particle i at time t is

wit =
g(yt|xit)f(xit|xit−1)

k(xit|xit−1)
, (2)

where xit is simulated from a proposal density,
k(xt|xit−1). From these weights, an estimate of the
marginal log-likelihood can be computed

log Ẑt = log
1

N

N∑
i=1

wit ≈ log p(yt|y1:t−1), (3)

where

log Ẑ1:t =

t∑
k=1

log Ẑk ≈ log p(y1:t) (4)

We now introduce the normalized importance
weighted measure,

πw̃1:N
t

(dx1:t|y1:t) =
N∑
i=1

w̃itδxi
1:t
(dx1:t), (5)

where w̃it = wit/
∑N
j=1 w

j
t , which itself can be viewed

as an approximation to the target measure of interest,
πw̃1:N

t
(dx1:t|y1:t) ≈ p(dx1:t|y1:t) (Doucet et al., 2009,

Section 3.4).

After resampling at time step t, a resampled measure
is obtained as

qϕ1:N
t

(dx1:t|y1:t) =
N∑
i=1

ϕit
N
δxi

1:t
(dx1:t), (6)

which is a normalized measure. The classical re-
sampling schemes, like multinomial, systematic or
stratified resampling, are designed to produce resam-
pled measures that do not deviate too much from
πw̃1:N

t
(dx1:t|y1:t). This is achieved by making the re-

sampling schemes produce resampled measures that
are unbiased, i.e.

ER(ϕ1:N
t |w̃1:N

t )[ϕ
i
t] = N · w̃it, i = 1, . . . , N (7)

where R
(
ϕ1:Nt |w̃1:N

t

)
is the law of the resampling

scheme. The discrepancy between the measures can,
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however, be large. This is quantified in Chopin et al.
(2020, Chapter 9, Section 9.7), where the total varia-
tion (TV) distance of Eq. (5) and (6) is measured.

To constrain the analysis of the resampling methods
in this work, we consider bootstrap PFs (BPFs; i.e.
the prior density is utilized as the proposal density)
and assume that resampling is employed at every time
step. See Alg. 1 for an algorithmic description.

Algorithm 1 BPF with resampling every t

1: Initialization. Obtain initial particle positions
{xi1}Ni=1 as a sample from the prior pdf p(x1).

2: for t = 1, . . . , T do
3: Weighting. Compute the unnormalized

weights as

wit = g(yt|xit), i = 1, . . . , N (8)

4: Resampling. Obtain ϕ1:Nt and the resampled
indices {r(i)}Ni=1 based on w̃1:N

t

5: Updating trajectories.

x
r(i)
1:t = xi1:t, i = 1, . . . , N (9)

6: if t < T then
7: Propagation.

xit+1 ∼ f(xt+1|xr(i)t ), i = 1, . . . , N (10)

8: end if
9: end for

3 VARIATIONAL RESAMPLING

As discussed in the previous sections, a desirable prop-
erty of a resampling scheme is that the resampled mea-
sure is a good approximation of the normalized im-
portance weighted measure. The importance of this
may be highlighted via the TV distance between the
two measures, which can be seen as a quantification
of how much the resampling scheme degenerates the
approximation of the posterior measure obtained from
πw̃1:N

t
(dx1:t|y1:t) (Chopin et al., 2020, Chapter 9, Sec-

tion 9.7).

Variational resampling accommodates the possibil-
ity to construct resampling schemes that directly
minimize a divergence between qϕ1:N

t
(dx1:t|y1:t) and

πw̃1:N
t

(dx1:t|y1:t) with respect to the number of repli-

cates of each particle, ϕ1:Nt . Therefore, casting the re-
sampling step as a VI problem is a change of paradigm
regarding how to develop resampling methods.

In our proposed variational resampling setting, the
task is to infer ϕ1:Nt such that some function L is opti-
mized with respect to a target measure, τψ(dx1:t|y1:t),

with Dirac measures at values x1:N1:t and parameters ψ.
For example, if we let πw̃1:N

t
(dx1:t|y1:t) be the target

measure (giving, ψ = w̃1:N
t ) and L is the KL diver-

gence, then the resampled measure is one that mini-
mizes the KL divergence to πw̃1:N

t
(dx1:t|y1:t). In Fig. 1,

we illustrate an abstraction of variational resampling.

Given L, τψ(dx1:t|y1:t) and x1:N1:t , one can devise opti-
mization algorithms for inferring ϕ1:Nt and, as a result,
the resampled measure, qϕ1:N

t
(dx1:t|y1:t). Implement-

ing variational resampling for a BPF requires minor
modifications of the BPF in Alg 1. These can be im-
plemented with few additional lines of code, as exem-
plified in Alg. 2. Next, we devise an optimization
algorithm for a general target measure. Then, in Sec.
3.2.1-3.2.2, we propose two target measures and apply
them to the optimization algorithm, leading to our two
variational resamplers.

3.1 The Lower Bound Resampler

To construct our optimization algorithm, we let
τψ(dx1:t|y1:t) be an unnormalized target measure with
normalizing constant logZ(τψ), and we will below de-
rive the function L as a lower bound on logZ(τψ).
We start from the negated KL between the resampled
measure and the normalized τψ(dx1:t|y1:t)

−KL
(
qϕ1:N

t
(dx1:t|y1:t)∥τψ(dx1:t|y1:t)/Z(τψ))

)
(11)

=

∫
qϕ1:N

t
(dx1:t|y1:t) log

τψ(dx1:t|y1:t)/Z(τψ)
qϕ1:N

t
(dx1:t|y1:t)

(12)

=

∫
qϕ1:N

t
(x1:t|y1:t) log

τψ(x1:t|y1:t)/Z(τψ)
qϕ1:N

t
(x1:t|y1:t)

dx1:t

(13)

=

N∑
i=1

ϕit
N

log
τψ(x

i
1:t|y1:t)
ϕit/N

− logZ(τψ) ≤ 0, (14)

where in Eq. (13) we replace the Radon-Nykodim
derivative with the density ratio. Also, in Eq. (14)
the integral becomes a sum since the measures are
concentrated in x1:N1:t , and, by convention, 0 log 0

0 = 0.
Finally, the negative KL is non-positive.

Adding logZ(τψ) on both sides of the inequality in Eq.
(14), we define the L which we aim to optimize in our
algorithm

L
(
τψ(dx1:t|y1:t), qϕ1:N

t
(dx1:t|y1:t)

)
:= (15)

N∑
i=1

ϕit
N

log
τψ(x

i
1:t|y1:t)
ϕit/N

≤ logZ(τψ), (16)

i.e., L is a lower bound on logZ(τψ).

We seek to maximize Eq. (15) w.r.t. {ϕit}Ni=1, which
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leads to the following optimization problem

{ϕi,⋆t }Ni=1 = argmax{ϕi
t}N

i=1∈Φ1:N L
(
τψ(dx1:t|y1:t), qϕ1:N

t
(dx1:t|y1:t)

)
(17)

We will address Eq. (17) with our lower bound (LB)
resampler, an optimization algorithm that finds ϕ1:Nt ∈
Φ1:N which maximize L.

Concretely, Eq. (15) is maximized by greedily repli-
cating particles in a sequential manner. Initially, all
particles have zero replicates. Until the total number
of replicates is N , we choose to replicate the parti-
cle that contributes to the largest (intermediate) LB
score. An algorithmic description is provided in Alg.
3. By using heapsort, extracting from the heap to
compute the argmax function in line 6 in Alg. 3, the
LB resampler has a time complexity of O(N logN).

Algorithm 2 BPF with variational resampling every
t

1: Initialization. Obtain initial particle positions
{xi1}Ni=1 as a sample from the prior pdf p(x1).

2: for t = 1, . . . , T do
3: Weighting. Set the unnormalized importance

weights as

wit = g(yt|xit), i = 1, . . . , N (18)

and recursively update Eq. (28).
4: Variational resampling.
5: if LB resampler with πγ1:N

t
(dx1:t|x1:N1:t ) then

6: Input {γit}Nj=1 to Alg. 3 to obtain ϕit replicates
of particle i and resampled index r(i).

7: else if LB resampler with πw1:N
t

(dx1:t|y1:t) then
8: Input {wjt}Nj=1 to Alg. 3 to obtain ϕit repli-

cates of particle i and resampled index r(i).
9: end if

10: Updating trajectories. Set x
r(i)
1:t = xi1:t

11: if t < T then
12: Propagation.

xit+1 ∼ f(xt+1|xr(i)t ), i = 1, . . . , N (19)

13: end if
14: end for

3.2 Target Measures

Here we discuss two target measures that we will use
as input to the LB resampler.

3.2.1 Importance Weighted Target Measure

The first target measure we construct is one that min-
imizes the KL divergence between the resampled mea-
sure and the normalized importance weighted measure

in Eq. (5). As we will show, this is coincidentally
achieved simultaneously by maximizing a lower bound
on log Ẑt (see Eq. (3)).

Let τψ(dx1:t|y1:t) be the (unnormalized) importance
weighted target measure,

τψ(dx1:t|y1:t) = πw1:N
t

(dx1:t|y1:t) (20)

=

N∑
i=1

witδxi
1:t
(dx1:t), (21)

i.e. the unnormalized version of the importance
weighted measure in Eq. (5), therefore it is not a
probability measure (but still a measure). Its log-

normalizing constant is logZ(qwt
) = log

∑N
i=1 w

i
t.

Plugging this target measure into the LB resampler,
Eq. (15) becomes a lower bound on logZ(qwt

),

L(πw1:N
t

(dx1:t|y1:t), qϕ1:N
t

(dx1:t|y1:t)) ≤ log

N∑
i=1

wit.

(22)
Maximizing this bound is equivalent to minimizing the
KL divergence between the resampled measure and the
normalized importance weighted measure.

Interestingly, the LB resampler using this target mea-
sure simultaneously maximizes a lower bound on
log Ẑt. To see this, start by plugging πw̃1:N

t
(dx1:t|y1:t)

into Eq. (14), and observe that this gives a negated
KL divergence between the resampled measure and the
normalized importance weighted measure (both are
normalized),

N∑
i=1

ϕit
N

log
πw̃1:N

t
(xi1:t|y1:t)
ϕit/N

≤ 0. (23)

Then add log 1
N

∑N
i=1 w

i
t on both sides to get a lower

bound on the estimated marginal log-likelihood, in-
duced by the resampling measure,

̂ResELBOt :=

N∑
i=1

ϕit
N

log
πw1:N

t
(xi1:t|y1:t)/N
ϕit/N

(24)

≤ log
1

N

N∑
i=1

wit = log Ẑt. (25)

Note that the 1/N coefficients in the log ratio in the
L.H.S. of the inequality can be discarded during max-

imization, and so maximizing ̂ResELBOt is equivalent
to maximizing the bound in Eq. (22).

In our state-space model experiments we will indeed
see empirically that this variational resampler achieves
the best approximation of the normalized importance
weighted measure in terms of the TV distance, as well
as the smallest KL divergences to the normalized im-
portance weighted measure in Sec. 5.1.
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Algorithm 3 The LB resampler

1: Input: {ui}Ni=1

2: set ϕi = 0, ∀i
3: define h(ϕi, ui) = ϕi log ui

ϕi , where h(0, u
i) := 0

4: define C+(ϕi, ui) = h(ϕi + 1, ui)− h(ϕi, ui)

5: while
∑N
i=1 ϕ

i < N do
6: compute m = argmaxi C

+(ϕi, ui)
7: set ϕm = ϕm + 1
8: end while
9: return {ϕi}Ni=1, {r(i)}Ni=1 (based on the repli-

cates)

3.2.2 Model Based Target Measure

Next, we define a target measure designed in order
to produce powerful PF-based smoothing approxima-
tions. We call this measure the model based target
measure,

τψ(dx1:t|y1:t) = πγ1:N
t

(dx1:t|y1:t) (26)

=

N∑
i=1

γitδxi
1:t
(dx1:t), (27)

where

γit =

t∏
k=1

g(yk|xik)f(xik|xik−1), (28)

and we denote f(xi1|x0) := p(xi1).

When used in the LB resampler, πγ1:N
t

(dx1:t|y1:t) gives
a lower bound on its self-normalized constant. Anal-
ogous to the derivations in the previous section, this
means that this resampler minimizes the KL between
the resampled measure and the self-normalized version
of πγ1:N

t
(dx1:t|y1:t).

The model based target measure has two powerful
properties. First, as shown in Eq. (28), the target
factorises from time t to the first time step regardless
whether resampling was performed before time t. This
is significantly different from the other target measures
and classical resampling in general,1 where this in-
formation is lost as the previous importance weights
are set to uniform post resampling. This is an in-
teresting property when approximating the smoothing
measure as it will enforce replication of particle tra-
jectories with higher unnormalized smoothing density
scores over the full sequence up to time t. We think of
this as an online smoothing property.

Secondly, the target does not include the evaluation of
the proposal density, implying that one can use this
target measure to construct a variational-resampling

1Note that this also differs from a PF with adaptive
resampling (Doucet et al., 2009, Section 3.5).

Figure 2: The likelihood functions (pink) in two time
steps for two particle trajectories (purple) are show.
We are using a BPF, resampling at every time step
and, for simplicity, a uniform prior. The importance
weights at t = 2, w1

2 and w2
2, are equal, while the

model based target measure assigns more weight to
the green trajectory based on its history—regardless if
resampling was performed at t = 1. We refer to this
property as online smoothing, and it allows our LB
resampler with πγ to resample particles with higher
posterior-density trajectories. See Sec. 3.2.2 for de-
tails.

based PF with a proposal density which is difficult
to evaluate, but possible to sample from. This is not
possible for the other target measures and in classical
resampling, as the importance weights are functions of
the evaluation of the proposal density.

We give the following example to demonstrate the
power of the online smoothing property.

Example 1 (Online Smoothing) In Fig. 2 we con-
sider two particle trajectories over two time steps and
their corresponding likelihoods. To simplify the illus-
tration, we assume uniform prior densities, f(x2|x1) =
f(x1) = c. However, the example generalizes to any
number of time steps and prior densities.

At t = 1, particle 1 (x11; green) has a higher observa-
tion likelihood than particle 2 (x21; blue), g(y1|x11) = 1
and g(y1|x21) = 0.2, respectively. In t = 2, they have
equal observation likelihoods, g(y2|x12) = g(y2|x22) =
0.2.

Using a BPF and performing resampling at every time
step, the classical resampling schemes and the LB re-
sampler with πw will not discriminate between x12 and
x22 when resampling, as their importance weights will
be equal, w1

2 = g(y2|x12) = g(y2|x22) = w2
2 = 0.2.

Meanwhile, the LB resampler with πγ assigns higher
weight to x11:2, since

γ12 = g(y2|x12)f(x12|x11)g(y1|x11)f(x11) = 0.2c2,

is greater than

γ22 = g(y2|x22)f(x22|x21)g(y1|x21)f(x21) = 0.04c2.
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(a) (b) KL = 0.06 (c) KL = 0.07

(d) KL = 0.42 (e) KL = 0.17 (f) KL = 0.12

Figure 3: The KL divergences between the resampled and the normalized importance weighted measure are
reported in the captions of the subplots (lower is better). (a) N = 1000 samples from the proposal k(x) = f(x).
The remaining subplots display the resampled particles using (b) the LB resampler with πw, (c) the LB resampler
with πγ , (d) multinomial resampling, (e) stratified resampling, and (f) systematic resampling. In a typical VI
manner, the two variational resampling schemes (b-c) concentrate the mass of their measures around the mode
of the posterior density.

As we will see in the subsequent experiments, this on-
line smoothing property results in impressive smooth-
ing performances in challenging state-space models.

4 RELATED WORK

Deterministic resampling. While resampling is
a well-studied topic in particle filtering (Douc and
Cappé, 2005; Hol et al., 2006; Li et al., 2015), few
works have previously considered deterministic resam-
pling schemes, notably Li et al. (2012). However, Li
et al. (2012) proposes methods that are based on par-
titioning the state space in grids, which does not scale
beyond very low-dimensional problems. Crisan and
Lyons (2002) presented a theoretical analysis of an al-
gorithm that minimizes the relative entropy similarly
to our Algorithm 3, but the method (i) is applicable
only to discrete state spaces (ii) is randomized instead
of deterministic and (iii) is not implemented in exper-
iments.

Variational inference and particle filters. More
broadly, previous works have considered variational
lower bounds in the context of particle filters (e.g.,
Maddison et al. (2017); Naesseth et al. (2018); Le et al.
(2018); Moretti et al. (2021)), however, all of these use
traditional resampling schemes. In Saeedi et al. (2017),
a variational objective is maximized by finding optimal
positions and weights of a particle distribution, i.e., VI
is not used as a resampling step. Grover et al. (2018)
proposes a method with a similar name to ResELBO,
but their method uses accept/reject steps. Futher-

more, backward simulation methods (Lindsten et al.,
2013) can be constructed to improve the smoothing ap-
proximations, however these require post-hoc (offline)
analysis of PFs and are not alternatives to resampling
schemes.

Biased resampling. Notably, many recent works
have considered schemes that introduce a bias in the
estimates of the marginal likelihood either usinga bi-
ased resampling scheme or replacing resampling with
another operation, for example optimal transport
based resampling (Reich, 2013; Corenflos et al., 2021;
Li et al., 2022), nudging (Akyildiz and Mı́guez, 2020)
or measure transport maps (Arbel et al., 2021; Maken
et al., 2022) (in particular, Arbel et al. (2021) corrects
for the bias using separate sets of particles).

5 EXPERIMENTS

Here we conduct a series of experiments highlighting
the superiority of variational resampling with respect
to different metrics. We compare the LB resampler
with πw (Sec. 3.2.1) and with πγ (Sec. 3.2.2) to multi-
nomial resampling and the state-of-the art resampling
schemes, systematic and stratified.

First, we provide toy experiments where we explore the
properties of the variational resamplers. We then ex-
amine the smoothing estimation qualities of PFs using
variational resampling on challenging state-space mod-
els in three settings: the stochastic volatility model
with and without real data, and the Lorenz 63 model.
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The code to reproduce our results are publicly
available at GitHub: https://github.com/okviman/
Variational-Resampling.

5.1 Non-Sequential Toy Experiments

Here we are considering the following posterior density,

p(x|y = 0) ∝ g(y = 0|x)f(x), (29)

where g(y = 0|x) = N (y = 0|x, 0.25) and f(x) =
N (x|0, 1). In accordance with the rest of this work,
we set k(x) = f(x).

In Fig. 3, we visualize the distribution of the re-
sampled particles when using the different resampling
schemes, and report the corresponding KL divergences
between the resampled and the normalized importance
weighted measure (see Eq. (23)). Interestingly, the
two variational resampling schemes—the LB resampler
with πγ or with πw—both concentrate their distribu-
tions of resampled particles around the mode of the
posterior density, in a typical ELBO-based VI fashion.

The LB resampler with πw achieves the best KL scores.
As shown in Sec. 3.2.1, this resampler is indeed resam-
pling particles in order to minimize this KL. As such,
the scores verify empirically that our optimization al-
gorithm is working as intended.

5.2 State-Space Models

First, let p(dx1:T |y1:T ) be a ground truth smoothing
measure generated by running a BPF with multino-
mial resampling and 50,000 particles, and x∗1:T be the
true latent sequence. For all state-space models, we
evaluate the two following smoothing-related mean-
squared errors (MSEs). MSE∗: the MSE between the
mean of the smoothing distribution from the PF and
x∗1:T , and MSE: the MSE between the smoothing dis-
tribution from the PF and the mean of p(dx1:T |y1:T ).

Additionally, following Chopin et al. (2020, Chapter 9,
Section 9.7), we evaluate the TV distance between the
resampled measures and the normalized importance
weighted measures at every time step,

TV(qϕ1:N , πw̃1:N ) = (30)

1

T

T∑
t=1

1

2

∑
xt∈S[πw̃1:N

t
]

∣∣∣∣∣
N∑
i=1

ϕit
N
δxi

t
(xt)−

N∑
i=1

w̃itδxi
t
(xt)

∣∣∣∣∣ ,
where S[πw̃1:N

t
] denotes the support of the normalized

importance weighted measure. As we will demon-
strate, our results are aligned with the findings in
Chopin et al. (2020) that systematic produces small
TV distances compared to the existing schemes. How-
ever, our LB resampler with πw outperforms system-

atic, advancing the state-of-the-art with respect to this
metric.

Finally, in the real-data experiment, we also investi-
gated the marginal log-likelihood scores produced by
our algorithms. Relative to the estimates from the PF
using stratified, the estimates from our two schemes
are indeed similar to those from an expensive PF.

All reported results are averages of ten independent
runs. In all our state-space model experiments, we
found that the resampling schemes performed the same
w.r.t. effective sample size. Additional experimental
results and details are provided in the Supplementary
Material, where it is evident that the results are con-
sistent across multiple seeds.

5.2.1 Stochastic Volatility Model

The stochastic volatility (SV) model is a common
model in financial econometrics which is popular to
use for benchmarking PFs (Doucet et al., 2009; Lind-
sten et al., 2014; Naesseth et al., 2018). The model is
formulated as follows

g(yt|xit) = N
(
yt|0, β2ex

i
t

)
(31)

f(xit|xit−1) = N
(
xit|mxit−1, σ

2
)

(32)

p(xi1) = N
(
xi1

∣∣∣0, σ2

1−m2

)
. (33)

We first test the performance of the resampling meth-
ods when generating observations from the model for
a given set of parameters. This allows us to evaluate
MSE∗.

Then we follow Lindsten et al. (2014) and experiment
on Standard and Poor’s (S&P) 500 data between 2006-
04-03 and 2014-03-31, i.e. T = 2011. We run an
expensive grid search using a BPF with multinomial
resampling and N = 10, 000, finding the set of param-
eters yielding the highest marginal log-likelihood esti-
mates. Using these parameters, we evaluate the per-
formances of the resampling schemes. This real data
experiment will inform us whether the LB resamplers
are useful for parameterized models used in practice.

The Synthetic Data-Generation Setting We
parameterize the model by setting (σ, β,m) =
(1, 0.5, 0.91), following Doucet et al. (2009, Section
2.1). The results are presented in Table 1. Our LB re-
sampler with πγ outperforms the other methods with
ten times less particles, with respect to the smoothing-
related MSEs. Meanwhile, the LB resampler with πw
produces the smallest TV distances.

https://github.com/okviman/Variational-Resampling
https://github.com/okviman/Variational-Resampling
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Resampling scheme
N = 100 N = 1000

MSE∗ MSE MSE∗ MSE TV
LB resampler w. πw 1.79 0.91 1.17 0.35 0.13
LB resampler w. πγ 1.14 0.22 1.09 0.15 0.29
Multinomial 1.75 0.87 1.40 0.51 0.37
Systematic 1.67 0.79 1.18 0.29 0.16
Stratified 1.66 0.79 1.18 0.29 0.21

Table 1: Results on the SV model when T = 1000 and (σ, β,m) = (1, 0.5, 0.91). The reported scores are averaged
over ten runs for the same sequence of observations. MSE∗ denotes the MSE between the mean of the smoothing
distribution from the PF and the true data-generating latent sequence, and MSE denotes the MSE between the
smoothing distribution from the PF and the mean of p(dx1:T |y1:T ). Lower scores are better and in bold font.

Resampling scheme
N = 100 N = 1000
MSE MSE TV

LB resampler w. πw 0.82 0.34 0.13
LB resampler w. πγ 0.20 0.16 0.28
Multinomial 0.82 0.59 0.37
Systematic 0.74 0.31 0.16
Stratified 0.73 0.30 0.21

Table 2: Results on the S&P 500 data using the SV
model when T = 2011. The reported scores are aver-
aged over ten runs for the same sequence of observa-
tions. Lower scores are better.

The S&P 500 Data Setting As described above,
we ran a coarse grid search over 252 parameter combi-
nations to find the SV model parameters that best fit
the real data. The tested parameters in the grid search
are shown in the Supplementary Material. Given the
optimal parameters, we evaluated the MSE (note that
MSE∗ is not applicable here as we do not have access
to the true latent sequence) and TV distance, and the
results are shown in Table 2.

For this real data experiment, the LB resampler with
πγ produces impressive smoothing MSE performances,
again requiring a factor ten less particles to match the
other resamplers. The LB resampler with πw achieves
the best TV to the normalized importance measure.

Furthermore, we computed the marginal log-likelihood
scores, i.e. log Ẑ1:T , of PFs using our LB resam-
plers, and using stratified resampling. The scores were
then compared to that of an N = 50, 000 PF with
multinomial resampling. The other algorithms used
N = 1000, and the results are shown in Table 3. Our
resamplers here produce log Ẑ1:T scores that are very
close to the ground truth, given the score of system-
atic. The results indicate that although the LB re-
samplers are deterministic, this is not necessarily pro-
hibitive in practice.

Resampling scheme log Ẑ1:T

LB resampler w. πw 5473.37
LB resampler w. πγ 5470.68
Stratified 5468.77
Ground truth 5469.39

Table 3: Results on the S&P 500 data using the
SV model when T = 2011. Comparison between
our methods and the PF using stratified resampling
(N = 1000 for the three methods). The ground truth
is a N = 50, 000 PF with multinomial resampling.

5.3 Lorenz 63 system

The Lorenz 63 dynamical system is a well-established
benchmark for stochastic nonlinear filters in the me-
tereological sciences (Van Leeuwen, 2009, 2010), and
for PF methodologies, more generally (Crisan et al.,
2018; Branchini and Elvira, 2024). The system has a
three-dimensional latent space whose temporal evolu-
tion is described by the following stochastic differential
equations (SDEs)

dx1 = σ(x2 − x1)dt+ dw1, (34)

dx2 = (x1(ρ− x3)− x2)dt+ dw2, (35)

dx3 = (x1x2 − βx3)dt+ dw3, (36)

where t denotes continuous time and {wi(s)}s∈(0,∞)

for i = 1, 2, 3 are one-dimensional independent inde-
pendent Wiener processes. As common in the PF lit-
erature, we discretize the SDEs following the Euler-
Maruyama method. This is a challenging model due
to its choatic nature.

The LB resampler with πγ consistently outperforms
the other resamplers using ten times less particles in
terms of both MSE∗ and MSE. See the results in Table
4. Once again, the LB resampler with πw achieves the
smallest TV distance.
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Resampling scheme
N = 100 N = 1000

MSE∗ MSE MSE∗ MSE TV
LB resampler w. πw 642.97 323.25 485.45 234.54 0.12
LB resampler w. πγ 339.65 85.93 276.80 85.42 0.44
Multinomial 634.24 333.55 658.51 269.79 0.34
Systematic 886.57 417.58 549.51 244.40 0.15
Stratified 594.01 394.56 388.95 247.29 0.19

Table 4: Results on the Lorenz 63 model when T = 1000. The reported scores are averaged over ten runs for
the same sequence of observations. MSE∗ denotes the MSE between the mean of the smoothing distribution
from the PF and the true data-generating latent sequence, and MSE denotes the MSE between the smoothing
distribution from the PF and the mean of p(dx1:T |y1:T ). Lower scores are better and in bold font.

6 DISCUSSION

As stated in Sec. 3.1, the LB resampler runs with time
complexity O(N logN), while multinomial resampling
runs in O(N). The results in the previous section,
however, show that our algorithms require orders of
magnitude less particles to outperform the baselines.

Variational resampling is here justified via empiri-
cal results and compelling ideas of bridging popular
methodologies. Devising guarantees such as conver-
gence rates in the VI methodology is an active field of
research (Domke et al., 2024; Kim et al., 2024; Hotti
et al., 2024), and so characterization of the biased-
ness of the LB resamplers (stemming from their de-
terministic nature) was outside the scope of this work.
Nonetheless, establishing theoretical guarantees is an
important future-work direction.

Other exciting research directions include the appli-
cation of variational resampling to resampling-based
adaptive IS methods (Bugallo et al., 2017; Elvira
et al., 2017; Elvira and Chouzenoux, 2022), or mixture-
learning in black-box VI (Kviman et al., 2022, 2023a,b)
where it could be used to infer the mixture weights.

7 CONCLUSION

We have proposed a variational resampling, a new
paradigm for developing resampling schemes in PFs
by casting the resampling step as a VI problem. We
design two variational resamplers that outperform the
baselines in terms of 1) producing resampled measures
with smaller TV distance to the corresponding nor-
malized importance weighted measures, or 2) result-
ing in PFs with superior smoothing estimation perfor-
mances, respectively. Additionally, we derive a novel
lower bound, induced by the resampled measure, on
the estimated marginal log-likelihood.

We limited our work to analyses based on the per-
formances of the resampling schemes using BPFs and
resampling at every time step. Apart from extending

the analyses to more advanced PF algorithms, there
is plenty of interesting future work in terms of devel-
oping a more theoretical understanding of variational
resampling. New target measures and optimization
algorithms can be constructed, and other divergences
than the KL can be considered.
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R. Douc and O. Cappé. Comparison of resampling
schemes for particle filtering. In Ispa 2005. proceed-
ings of the 4th international symposium on image
and signal processing and analysis, 2005., pages 64–
69. IEEE, 2005.

A. Doucet, A. M. Johansen, et al. A tutorial on particle
filtering and smoothing: Fifteen years later. Hand-
book of nonlinear filtering, 12(656-704):3, 2009.

V. Elvira and E. Chouzenoux. Optimized population
monte carlo. IEEE Transactions on Signal Process-
ing, 70:2489–2501, 2022.

V. Elvira, L. Martino, D. Luengo, and M. F. Bugallo.
Improving population monte carlo: Alternative
weighting and resampling schemes. Signal Process-
ing, 131:77–91, 2017.

N. J. Gordon, D. J. Salmond, and A. F. Smith. Novel
approach to nonlinear/non-gaussian bayesian state
estimation. In IEE proceedings F (radar and signal
processing), volume 140, pages 107–113. IET, 1993.

A. Grover, R. Gummadi, M. Lazaro-Gredilla, D. Schu-
urmans, and S. Ermon. Variational rejection sam-
pling. In International Conference on Artificial
Intelligence and Statistics, pages 823–832. PMLR,
2018.

J. D. Hol, T. B. Schon, and F. Gustafsson. On re-
sampling algorithms for particle filters. In 2006
IEEE nonlinear statistical signal processing work-
shop, pages 79–82. IEEE, 2006.

A. Hotti, L. Van der Goten, and J. Lagergren. Ben-
efits of non-linear scale parameterizations in black
box variational inference through smoothness results

and gradient variance bounds. In Proceedings of The
27th International Conference on Artificial Intelli-
gence and Statistics, Proceedings of Machine Learn-
ing Research. PMLR, 2024.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and
L. K. Saul. An introduction to variational methods
for graphical models. Machine learning, 37:183–233,
1999.

K. Kim, J. Oh, K. Wu, Y. Ma, and J. Gardner. On the
convergence of black-box variational inference. Ad-
vances in Neural Information Processing Systems,
36, 2024.

H. Koptagel, O. Kviman, H. Melin, N. Safinianaini,
and J. Lagergren. Vaiphy: a variational infer-
ence based algorithm for phylogeny. Advances in
Neural Information Processing Systems, 35:14758–
14770, 2022.

O. Kviman, H. Melin, H. Koptagel, V. Elvira, and
J. Lagergren. Multiple importance sampling elbo
and deep ensembles of variational approximations.
In International Conference on Artificial Intelli-
gence and Statistics, pages 10687–10702. PMLR,
2022.

O. Kviman, R. Molén, A. Hotti, S. Kurt, V. Elvira,
and J. Lagergren. Cooperation in the latent space:
The benefits of adding mixture components in vari-
ational autoencoders. In International Conference
on Machine Learning, pages 18008–18022. PMLR,
2023a.

O. Kviman, R. Molén, and J. Lagergren. Improved
variational bayesian phylogenetic inference using
mixtures. arXiv preprint arXiv:2310.00941, 2023b.

T. A. Le, M. Igl, T. Rainforth, T. Jin, and F. Wood.
Auto-encoding sequential monte carlo. In Inter-
national Conference on Learning Representations,
2018.

T. Li, T. P. Sattar, and S. Sun. Deterministic resam-
pling: unbiased sampling to avoid sample impover-
ishment in particle filters. Signal Processing, 92(7):
1637–1645, 2012.

T. Li, M. Bolic, and P. M. Djuric. Resampling methods
for particle filtering: classification, implementation,
and strategies. IEEE Signal processing magazine, 32
(3):70–86, 2015.

Y. Li, W. Wang, K. Deng, and J. S. Liu. Stratification
and optimal resampling for sequential monte carlo.
Biometrika, 109(1):181–194, 2022.

F. Lindsten, T. B. Schön, et al. Backward simula-
tion methods for monte carlo statistical inference.
Foundations and Trends® in Machine Learning, 6
(1):1–143, 2013.

https://doi.org/10.1515/mcma.2002.8.4.343


Oskar Kviman, Nicola Branchini, Vı́ctor Elvira, Jens Lagergren

F. Lindsten, M. I. Jordan, and T. B. Schon. Particle
gibbs with ancestor sampling. Journal of Machine
Learning Research, 15:2145–2184, 2014.

C. J. Maddison, J. Lawson, G. Tucker, N. Heess,
M. Norouzi, A. Mnih, A. Doucet, and Y. Teh. Fil-
tering variational objectives. Advances in Neural
Information Processing Systems, 30, 2017.

D. Maggio, M. Abate, J. Shi, C. Mario, and L. Car-
lone. Loc-nerf: Monte carlo localization using neural
radiance fields. In 2023 IEEE International Con-
ference on Robotics and Automation (ICRA), pages
4018–4025. IEEE, 2023.

F. A. Maken, F. Ramos, and L. Ott. Stein particle
filter for nonlinear, non-gaussian state estimation.
IEEE Robotics and Automation Letters, 7(2):5421–
5428, 2022.

A. K. Moretti, L. Zhang, C. A. Naesseth, H. Venner,
D. Blei, and I. Pe’er. Variational combinatorial se-
quential monte carlo methods for bayesian phyloge-
netic inference. In Uncertainty in Artificial Intelli-
gence, pages 971–981. PMLR, 2021.

C. Naesseth, S. Linderman, R. Ranganath, and
D. Blei. Variational sequential monte carlo. In In-
ternational conference on artificial intelligence and
statistics, pages 968–977. PMLR, 2018.

J. A. Placed, J. Strader, H. Carrillo, N. Atanasov,
V. Indelman, L. Carlone, and J. A. Castellanos. A
survey on active simultaneous localization and map-
ping: State of the art and new frontiers. IEEE
Transactions on Robotics, 2023.

S. Reich. A nonparametric ensemble transform
method for bayesian inference. SIAM Journal on
Scientific Computing, 35(4):A2013–A2024, 2013.

A. Saeedi, T. D. Kulkarni, V. K. Mansinghka, and
S. J. Gershman. Variational particle approxima-
tions. The Journal of Machine Learning Research,
18(1):2328–2356, 2017.

G. Storvik, A. D.-L. Palomares, S. Engebretsen, G. O.
Isaksson Rø, K. Engø-Monsen, A. B. Kristoffersen,
B. F. de Blasio, and A. Frigessi. A sequential Monte
Carlo approach to estimate a time varying reproduc-
tion number in infectious disease models: the Covid-
19 case. Journal of the Royal Statistical Society Se-
ries A: Statistics in Society, page qnad043, 04 2023.
ISSN 0964-1998. doi: 10.1093/jrsssa/qnad043. URL
https://doi.org/10.1093/jrsssa/qnad043.

S. Thrun, D. Fox, W. Burgard, et al. Monte carlo
localization with mixture proposal distribution. In
AAAI/IAAI, pages 859–865, 2000.

S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Ro-
bust monte carlo localization for mobile robots. Ar-
tificial intelligence, 128(1-2):99–141, 2001.

P. J. Van Leeuwen. Particle filtering in geophysical
systems. Monthly Weather Review, 137(12):4089–
4114, 2009.

P. J. Van Leeuwen. Nonlinear data assimilation in geo-
sciences: an extremely efficient particle filter. Quar-
terly Journal of the Royal Meteorological Society,
136(653):1991–1999, 2010.

https://doi.org/10.1093/jrsssa/qnad043


Variational Resampling

Variational Resampling
Supplementary Materials

A ADDITIONAL RESULTS AND EXPERIMENTAL DETAILS

Here we include some additional results and details about the experiment setups, starting with those relating to
the stochastic volatility model.

A.1 Stochastic Volatility Model

In Table 5 we show the estimation results when T = 500. As expected, all estimation scores improve with the
number of particles. However, note that our LB resampler with πγ outperforms the other resampling schemes
with ten times less particles (N = 10 vs. N = 100).

In Table 6 we present the results of the same experiment setup as in the main text, but with another random
seed for generating the data. The outcome of the experiment is the same.

To find the model parameters for the real data experiment we ran a grid search (as described in the main text)
over the following parameters

m ∈ (0.01, 0.1, 0.2, 0.5, 0.6, 0.8, 0.9),

β ∈ (0.01, 0.1, 0.5, 1, 1.5, 2),

and
σ ∈ (0.01, 0.1, 0.5, 1, 1.5, 2).

All 252 possible combinations were tested, and the best combination was (σ, β,m) = (1, 0.01, 0.8), measured by
the marginal log-likelihoods estimated by the N = 10, 000 PFs with multinomial resampling.

The S&P 500 data is publicly available here https://finance.yahoo.com/quote/%5EGSPC/history?ltr=1, but
can also be found in our GitHub repository.

A.2 Lorenz 63 Model

We reran the the experiment setup in the main text using another random seed for generating the data, shown
in Table 7. We draw the same conclusions here as we did in the main text—our LB resampler with πγ gives
superior performance w.r.t. the MSEs (again, with ten times less particles), while the LB with πw achieves the
smallest TV distance.

In the experiment in the main text all PFs had averaged ESS scores (Doucet et al., 2009, Section 3.5) of 622 for
the variational resamplers or 621 for the others. In the experiment given here, the variational resamplers also
had marginally higher average ESS scores (all scores were between 624 and 626).

Resampling scheme
N = 10 N = 100 N = 1000

MSE∗ MSE MSE∗ MSE MSE∗ MSE
LB resampler w. πw 2.19 1.34 1.62 0.73 1.16 0.22
LB resampler w. πγ 1.45 0.55 1.19 0.21 1.12 0.15
Multinomial 2.11 1.19 1.76 0.79 1.27 0.29
Systematic 1.99 1.04 1.60 0.64 1.13 0.17
Stratified 2.02 1.07 1.64 0.67 1.13 0.17

Table 5: Results on the SV model when T = 500 and (σ, β,m) = (1, 0.5, 0.91). The reported scores are averaged
over ten runs for the same sequence of observations. Lower scores are better.

https://finance.yahoo.com/quote/%5EGSPC/history?ltr=1
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Resampling scheme
N = 100 N = 1000

MSE∗ MSE MSE∗ MSE TV
LB resampler w. πw 1.76 0.88 1.26 0.40 0.13
LB resampler w. πγ 1.13 0.24 1.07 0.18 0.29
Multinomial 1.68 0.84 1.39 0.52 0.36
Systematic 1.68 0.80 1.25 0.37 0.16
Stratified 1.65 0.80 1.24 0.37 0.21

Table 6: Results on the SV model when T = 1000 and (σ, β,m) = (1, 0.5, 0.91) using another random for
generating the data. The reported scores are averaged over ten runs for the same sequence of observations. MSE∗

denotes the MSE between the mean of the smoothing distribution from the PF and the true data-generating
latent sequence, and MSE denotes the MSE between the smoothing distribution from the PF and the mean of
p(dx1:T |y1:T ). Lower scores are better and in bold font.

Resampling scheme
N = 100 N = 1000

MSE∗ MSE MSE∗ MSE TV
LB resampler w. πw 528.57 403.25 377.67 181.92 0.12
LB resampler w. πγ 335.09 67.94 331.14 50.17 0.44
Multinomial 470.08 284.44 426.29 196.77 0.34
Systematic 557.66 229.65 401.15 193.15 0.15
Stratified 621.02 438.56 544.10 200.49 0.19

Table 7: Results on the Lorenz 63 model when T = 1000 using another random seed for generating the data.
The reported scores are averaged over ten runs for the same sequence of observations. MSE∗ denotes the MSE
between the mean of the smoothing distribution from the PF and the true data-generating latent sequence, and
MSE denotes the MSE between the smoothing distribution from the PF and the mean of p(dx1:T |y1:T ). Lower
scores are better and in bold font.

In Fig. 4 we visualize the 3D latent sequence used in the experiment in the main text, whose parameters we
describe below.

Lorenz 63 parameters. The Euler-Maruyama discretization of the Lorenz63 model leads to the following
state-space model with paramters s, ρ, β,

x
(1)
t+∆t = x

(1)
t + s(x

(2)
t − x

(1)
t )∆t+ ϵ1

x
(2)
t+∆t = x

(2)
t + (x

(1)
t (ρ− x

(3)
t )− x

(2)
t )∆t+ ϵ2

x
(3)
t+∆t = x

(3)
t + (x

(1)
t x

(2)
t − βx

(3)
t )∆t+ ϵ3,

where ϵ1,+ϵ2,+ϵ3 are all (independent) additive Gaussian noises whose variance depends on ∆t, N (0, σ2
x(∆t)).

Specifically, we set σ2
x(∆t) =

1
2∆t. We obtain observations, as typical in experiments on the Lorenz 63 system,

by observing the first coordinate corrupted by noise as

yt+∆t = x
(1)
t+∆t + ϵy, (37)

where ϵy ∼ N (0, σ2
y) and we used. Finally, to obtain meaningful latent trajectories, we use the following equations

relating total continuous time T and discrete time T (length of the time series that we will use to generate data)

T = T /∆t. (38)

Therefore, the full set of parameters we used is {σ = 10, β = 8/3, ρ = 28,∆t = 0.01, T = 10}.
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Figure 4: Visualization of the Lorenz 63 3D latent space realization used in the experiments in the main text.

CHECKLIST

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. Yes

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. Yes

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
Yes

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. Not Applicable

(b) Complete proofs of all theoretical results. Not Applicable

(c) Clear explanations of any assumptions. Not Applicable

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). Yes

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random
seed after running experiments multiple times). Yes

(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). Yes

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. Not Applicable

(b) The license information of the assets, if applicable. Not Applicable

(c) New assets either in the supplemental material or as a URL, if applicable. Not Applicable

(d) Information about consent from data providers/curators. Not Applicable
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(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.
Not Applicable

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. Not Applicable

(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if
applicable. Not Applicable

(c) The estimated hourly wage paid to participants and the total amount spent on participant compensa-
tion. Not Applicable
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