Interpretable Causal Inference for Analyzing Wearable, Sensor, and
Distributional Data

Srikar Katta
Duke University

Harsh Parikh

Abstract

Many modern causal questions ask how treat-
ments affect complex outcomes that are mea-
sured using wearable devices and sensors.
Current analysis approaches require summa-
rizing these data into scalar statistics (e.g.,
the mean), but these summaries can be mis-
leading. For example, disparate distribu-
tions can have the same means, variances,
and other statistics. Researchers can over-
come the loss of information by instead rep-
resenting the data as distributions. We de-
velop an interpretable method for distribu-
tional data analysis that ensures trustworthy
and robust decision-making: Analyzing Dis-
tributional Data via Matching After Learning
to Stretch (ADD MALTS). We (i) provide
analytical guarantees of the correctness of
our estimation strategy, (ii) demonstrate via
simulation that ADD MALTS outperforms
other distributional data analysis methods at
estimating treatment effects, and (iii) illus-
trate ADD MALTS’ ability to verify whether
there is enough cohesion between treatment
and control units within subpopulations to
trustworthily estimate treatment effects. We
demonstrate ADD MALTS’ utility by study-
ing the effectiveness of continuous glucose
monitors in mitigating diabetes risks.

1 INTRODUCTION

Diabetes — a disease limiting glucose regulation in the
bloodstream — affects millions worldwide. According
to the World Health Organization, Diabetes caused 2
million deaths in 2019 and is a leading cause of blind-
ness, kidney failure, and heart attacks (WHO! 2023).
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Figure 1: For patients older than 55 years, we measure
the effectiveness of CGMs as the percent change of
time in healthy range. The plot shows how changing
the healthy range’s upper bound (x-axis) affects the
treatment effect (y-axis). 70 is the lower bound.

Continuous glucose monitors (CGMs), which are wear-
able devices that automatically track patients’ blood
glucose concentrations over time, offer a new avenue
for diabetes care. CGMs allow researchers and clini-
cians to screen patients, propose treatments, and man-
age diets (Matabuena et al., 2021; |Janine Freeman
et al., [2008; |Hall et al., |2018; [Lu et al., [2021)).

While CGMs show much promise for diabetes care,
the standard approaches for summarizing CGM data
can lead to very misleading insights. To demonstrate
these issues, we reanalyze CGM data from a study
conducted by the Juvenile Diabetes Research Foun-
dation (JDRF). JDRF ran a randomized experiment
to investigate the effectiveness of CGMs in mitigat-
ing the risks of Diabetes using a cohort of 450 pa-
tients with type 1 diabetes. Each CGM’s continuous
stream of data was summarized by measuring how of-
ten a patient’s blood glucose concentration was within
a healthy range of 70-180 mg/dL. The treatment ef-
fect was then calculated by comparing pre-and-post
“time in range” (TIR) between treated and control
patients. While JDRF researchers used 70-180 mg/dL
as a healthy range, slightly changing the healthy range
to 70-140 mg/dL — as used by |Okazaki et al.| (2022));
Beck et al.| (2019) — completely changes the results. As
shown in Figure[l] for patients older than 55 years old,
using the 70-140 mg/dL range would suggest
that CGMs are 1300 percentage points more
effective than if the healthy range was 70-180
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mg/dL. This case study highlights how summarizing
complex CGM data using scalar statistics can lead to
misleading insights, which may be detrimental to pa-
tient care.

To overcome the issues of scalar metrics, several re-
searchers have recommended representing data from
wearable devices as distributions (Matabuena et al.|
2021} |Ghosal et al. [2023; |Ghodrati and Panaretos|
2022)). Rather than asking, “how often is a pa-
tient’s glucose concentration in a pre-described healthy
range,” the distributional representation answers the
question, “how often is a patient’s glucose concen-
tration at any particular level for all possible levels.”
Matabuena et al.| (2021) demonstrates that the dis-
tributional representation of glucose concentrations is
much richer than TIR, is clinically useful, and is highly
correlated with other clinical biomarkers.

Taking inspiration from the optimal transport litera-
ture (Vallender] [1974)), [Lin et al.| (2023) propose es-
timands and estimators for conducting causal infer-
ence with distributional outcomes, enabling us to de-
rive rich insights from CGM data. However, these ap-
proaches rely on strong and often untestable assump-
tions. For example, the positivity assumption requires
enough cohesion between treated and control units
across subregions of the covariate space. When such
assumptions fail, these techniques can yield misleading
insights. For proper diabetes care and management,
researchers require techniques that can help validate
whether the strict assumptions in causal inference can
hold. To this aim, we develop an end-to-end inter-
pretable causal approach for analyzing distributional
data: Analyzing Distributional Data via Matching Af-
ter Learning to Stretch (ADD MALTS).

Contributions We prove that ADD MALTS can
consistently estimate treatment effects with complex,
distributional data. Via simulation, we demonstrate
that ADD MALTS can more accurately estimate con-
ditional average treatment effects than competing
methods; we also show how ADD MALTS adds trust-
worthiness in the causal pipeline by validating whether
treated and control units are comparable in subre-
gions of the covariate space. Finally, we re-analyze
data studying the effectiveness of CGMs in managing
health risks in patients with type 1 diabetes, finding
important insights about the data and CGMSE

LAll code to replicate simulation and real data analy-
sis results are available here: https://github.com/almost-
matching-exactly /addmalts

2 BACKGROUND

In this section, we introduce background concepts that
are necessary for ADD MALTS. We first discuss the
Wasserstein distance, which measures distances be-
tween distributions. Next, we discuss how we can “av-
erage” distributions (referred to as the barycenter).
Finally, we connect the concepts from the Wasserstein
space to ideas from traditional causal inference.

Wasserstein Space Our work relies on the Wasser-
stein metric space for measuring distances between dis-
tributions (Vallender, |1974). The 2-Wasserstein dis-
tance Wa(u, v) measures how different cumulative dis-
tribution functions (CDFs) u,v are from each other
by asking how we can transport the mass in p to v in
the most cost-effective manner (Panaretos and Zemel|
2019). When distributions are one-dimensional (the
focus of our work), the most efficient way of trans-

porting mass between distributions is through their
1

quantiles: Wa(u,v) = (fol lu=t(q) — y_l(q)Hqu) °,
where p~1(q) = inf{x € R : u(x) > q}Vq € [0,1] rep-
resents the quantile function of . The quantile func-
tion returns the value x such that the probability of
observing a value less than x is at least as much as q,
the given input probability. Additionally, we can “av-
erage” distributions using the Wasserstein distance,
referred to as barycenters. Specifically, the Wasser-
stein barycenter of a set of distributions is the distri-
bution that minimizes the average distance between
it and all distributions in the set — the centroid of the
set: B[Fy] € argmin, E[W3(Fy,,~)]. With continuous,
one-dimensional distributions, the quantile function of
the Wasserstein barycenter also has a closed form so-
lution: B[Fy]~'(¢q) = E[Fy'(¢)]. In other words, the
quantile function of the average of distributions is the
average of quantile functions. We exploit this geome-
try and represent distributional data via quantiles.

In our setting, we observe S,, a collection of n in-
dependent and identically distributed observations.
Each unit ¢ in &, is assigned to a binary treatment
T; € {0,1}; for notational convenience, let S rep-
resent the set of units whose assigned treatment is t.
We let Fy, (1) and Fy, (g represent the treated and con-
trol potential outcomes, respectively. We make the
standard Stable Unit Treatment Value Assumption
(SUTVA); specifically, let Fy, = Fy,( if t; = 1 and
Fy, = Fy, () if t; = 0 (Rubin, 2005)). Unlike traditional
causal inference that assumes the outcomes exist in
some Euclidean space, we consider the setting in which
the outcomes are continuous distribution functions in
the 2-Wasserstein metric space on the closed interval
Z = [Cmin; Cmax] C R, denoted as W5 (Z). For any cu-
mulative distribution function Fy € Wa(Z), Fy(s) =0
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for all 8 < (min and Fy-(s) = 1 for all s > (nax. Addi-
tionally, let Fx, = [Fy, ,,..., Fy, ,] represent a vector
of d distributional covariates for unit ¢ with supports
contained within the compact set J C R.

Remark 1. Because any scalar can be represented as
a degenerate distribution, ADD MALTS can handle
distribution-on-scalar, scalar-on-distribution, scalar-

on-scalar, and distribution-on-distribution regression.

Similar to |[Lin et al|(2023) and |Gunsilius| (2023), we
measure the treatment effect as a contrast between the
quantile functions of the potential outcomes. Specifi-
cally, we define the individual treatment effect (ITE)
as 7;(q) = F;@%l)(q) — F;l_%o)(q) for all ¢ € [0,1]. We
then define the conditional average treatment effect
(CATE) and average treatment effect (ATE) by aver-
aging ITEs: respectively, 7(q|Fz) = E[:(q)|Fx, = Fz)
and 7(q) = E[r;(q)] for all ¢ € [0,1], where the expec-
tations are over the observed population.

Remark 2. This estimand is different than the quantile
treatment effect studied in scalar causal inference (Lin
et al., 2023)): while quantile treatment effects mea-
sure the distribution of differences between potential
outcomes, our treatment effect measures the difference
between distributional potential outcomes.

We consider the setting where each unit’s treatment
assignment and the observed potential outcome may
depend on common covariates, referred to as con-
founders. Under the following assumptions, we can
identify (conditional) average treatment effects. First,
we assume conditional ignorability, i.e., that the poten-
tial outcomes are independent of the assigned treat-
ment given the confounders: (Fy, (), Fy,0)) 1L T; |
Fx,. Additionally, we assume positivity, i.e., that ev-
ery unit could be in the treated/control group with
some chance: 0 < P(T; = 1| Fx, = F) < 1. Under
these assumptions, we can identify CATEs/ATEs (see
Proposition [1] in Section [A] of the supplement).

2.1 Related Literature

Lin et al.[(2023) present three strategies for estimating
these treatment effects: outcome regression, propen-
sity score weighting, and a doubly robust approach.
One outcome regression scheme is to treat the dis-
tributional outcome as functional and use functional
data analysis tools (Morris, 2015). Similarly, another
approach is to predict each quantile of the outcomes
using a separate regression (Lin et al., [2023)). How-
ever, neither of these approaches can guarantee that
the predicted distributional outcome is actually a dis-
tribution, i.e., integrates to one, with quantile function
monotonically increasing. Without these constraints,
the imputed counterfactual may not be a distribution.

Other regression approaches combine traditional sta-

tistical ideas and take advantage of the linearity
of Wasserstein space for univariate distributions via
quantile functions. For example, [Petersen and Muller
(2019)); Ghodrati and Panaretos| (2022) generalize lin-
ear models. |Ghosal et al.| (2023); |Chen et al.| (2021);
Yang| (2020) adapt spline methods. [Tang et al.
(2023)) introduce an expectation-maximization style al-
gorithm. And |Qiu et al.|(2022)) adapt tree algorithms.
However, these outcome regression methods are highly
sensitive to model misspecification.

Lin et al.[(2023) propose an augmented inverse propen-
sity weighting style method that requires only one of
the propensity score or outcome regression models to
be correctly specified. However, these approaches do
not allow for any type of meaningful validation of the
important causal assumptions. For example, viola-
tions of the positivity assumption significantly reduce
the precision of our treatment effect estimates. In or-
der to validate the positivity assumption, researchers
often prune observations that have extremal estimated
propensity scores (Stuart, 2010; |Crump et al., 2009).
As we demonstrate in Section [£.2] this strategy is inca-
pable of validating this assumption when the propen-
sity score model is incorrectly specified.

Our approach extends the family of Almost Match-
ing Exactly (AME) methods to the setting of distribu-
tional data (Diamond and Sekhon, [2013; |Dieng et al.|
2019} [Parikh et al.| 2022} |[Lanners et al.l [2023; Morucci
et al., 2023). AME methods learn a distance met-
ric in the covariate space in order to group units that
are similar on important covariates; in doing so, we
create localized balance, overcoming confounding and
enabling us to estimate treatment effects. The concep-
tual simplicity of these methods makes them easily in-
terpretable and accessible to non-technical audiences.
Furthermore, as shown in [Parikh et al. (2023), AME
methods can also easily integrate qualitative analyses,
better aiding decision-making. We extend the fam-
ily of AME techniques to the setting of distributional
data. Our method is highly flexible, end-to-end inter-
pretable, accurate at CATE estimation, and useful in
answering important questions using wearable devices,
sensors, and other distributional data.

3 METHODS

Distance Metric with Distributional Covariates
AME methods learn a distance metric in the covariate
space to ensure that matched units are most similar on
important features. We first extend the notion of a dis-
tance metric to the setting of distributional covariates.
Let daq represent a distance metric parameterized by
the d x d diagonal matrix M. We measure the distance
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between unit i, j’s covariates as

d
dM(Fmi’ ij) = ZMUW; (Fwi,vazj,z) .
=1

Remark 3. Continuous values can be represented as
degenerate distributions; and discrete values can be
one-hot-encoded and then represented as degenerate
distributions. Because the 2-Wasserstein distance be-
tween degenerate distributions is the same as the /5
distance between their scalar counterparts, this dis-
tance metric can be viewed as a distributional gener-
alization of a weighted Euclidean distance.

Distance Metric Learning Traditional nearest
neighbor/caliper matching techniques run into the
curse of dimensionality where the distance metric can
be dominated by less useful covariates when there are
many of them (Diamond and Sekhon, [2013). Instead,
we learn a distance metric and overcome these issues.
We first split our data into a training set S;- and an
estimation set S.g; our training and estimation sets
are disjoint, so our causal inference remains “honest”
and helps lower bias (Rubin, 2005; [Athey and Imbens|
2016). On our training set, we evaluate the perfor-
mance of a proposed distance metric by measuring how
well we can predict the observed outcomes; we predict
the outcomes for each training unit by averaging the
quantile functions of the K-nearest neighbors (KNN)
that have the same treatment, where the learned dis-
tance metric defines the nearest neighbors.

Under a distance metric daq, the KNN of an unit ¢ in
the set of observations with treatment ¢, S®), is

KNN,,, (Fwi,S(t)) (1)

dM(FE”FmJ)

=<k: 1 <K
Z |: <dM(Fmi’ka):|
jes®

We predict unit ¢’s outcome by computing the quantile
function of the barycenter of their KNNs’ outcomes:

. 1
—1, N _ + -1
Fy (q) = KZKKNNW(FWS(U)FW (@). (2

We then find the optimal distance metric parame-
ters that would yield the best predictions of the ob-
served outcomes using the following objective, a dis-
tributional generalization of the mean squared error:

M*(Sir) € argminc| M|, + AV (M) +AO (M),

where AW = 1/|S1S" W (Ey, Fr). (3)

(t)
tr

Our objective function regularizes the parameters
using the Frobenius norm and also considers two

treatment-specific loss functions. We evaluate how
well we can predict the observed outcomes in the train-
ing data by calculating the mean squared Wasserstein
distance between the predicted and observed values for
the treated units and then the control units.

CATE Estimation On the estimation set, we then
estimate treatment effects via matching. Specifically,
we estimate the quantile functions of the treated
and control conditional barycenter for each treatment
t using the set of KNNs: B[Fy|Fx = Fp,,T =
17 q) = % ZjeKNNdM(Fmi SO F;jl(q). We then es-
timate the CATE as the difference between the condi-
tional barycenters’ quantile functions:

%(Q|Fm7) :B[FY|FX = Fmi’T = 1]71(Q)
—B[Fy|Fx = Fp,,T = 0]"(q).

3.1 Theoretical Results

We prove that ADD MALTS consistently estimates
conditional barycenters and CATEs by making as-
sumptions analogous to standard ones in the match-
ing literature. Assumption [1]is a Lipschitz continuity-
style assumption that states that as the units’ covari-
ates become more similar, so too do their conditional
barycenters. This is an extension of standard assump-
tions in the matching literature (Dieng et al.l 2019;
Parikh et al., 2022; Lanners et all 2023)) to the set-
ting of distributional data and is guaranteed to hold
with distributional covariates/outcomes with bounded
supports.

Assumption 1. Let Fp,,Fp, € W(J) and as-
sume t; = tj. If dp(Fg,, Fo;) < « for some a €
R, then WOO(B[Fy|FX = Fm“T = ti],B[Fy|FX =
Fp;, T = t;]) < 6(a) for some monotonically increas-
ing, zero-intercept function §, where W, represents the
oco— Wasserstein distance.

Note that this assumption is under the co-Wasserstein
metric, which is measured as the largest point-
wise distance between quantiles: W (u,v) =
suPye(o,1) [~ (¢) =~ (g)|- The W, upper bounds all
other p-Wasserstein distances (Remark 6.6 in [Villani
et al.| (2009)), so this assumption suggests that condi-
tional barycenters become more similar with respect
to any Wasserstein metric as the covariates become
more similar.

The following lemma and theorem rely on this assump-
tion to prove consistency with an intuitive argument.
Lemma 1 shows that as we increase the amount of ob-
served data, the radius of each KNN set will decrease.
As the radius of each KNN set decreases, the average
of the KNN’s outcomes will become more similar to
that of the query unit’s conditional barycenter. This
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yields the result in Theorem 1: as the estimated con-
ditional barycenters converge to the true conditional
barycenters, so too will the estimated CATEs.

Lemma 1. Let Assumptian hold. Let B[Fy|Fx =
Fy,,T = t] € argming ZkK:1 W3 (Fy,,7y) be the
YEW2(Z)

barycenter of the KNN’s outcomes. Assume the quan-
tile functions of the distributions Fy- € Wa(Z) are Lip-
schitz continuous in the probability: there exists an
Li > 0 such that |Fy(q) — Fy'(¢)| < Lrla — ¢
for q,q' €[0,1]. Let ¢ > 6(«), where a represents the
distance from unit i to its K" nearest neighbor ac-
cording to dyg. Then, there exists a function c(e, «)
that is exponentially decreasing to 0 in K such that

IE3[FY|FX =Fy,, T =1]
i) bl <
: (Wl <B[Fy|Fx =F.,, T =t >e ) < 2c(e ),

where W1 is the 1-Wasserstein metric.

Theorem 1. Under the same conditions as Lemma
! €
P ([ Iralre) - #alrlda > €) < e (5.0).
0

As evident in Theorem [1} for any ¢ > §(«), the right
hand side will decrease to 0 as K — oo. Because we
work on a bounded covariate space, « is guaranteed
to decrease and d(«) will go to 0 as the size of the es-
timation set increases. Therefore, we can consistently
estimate conditional barycenters and conditional aver-
age treatment effects.

4 SIMULATION EXPERIMENTS

Our experiments investigate elements essential for
causal inference with distributional data: accuracy
and trustworthiness. Section ] shows that ADD
MALTS estimates CATEs more accurately than base-
lines and illustrates that ADD MALTS handles scalar
and distributional covariates. Section [£.2] highlights
that ADD MALTS can assess positivity violations.

4.1 CATE Estimation

Our first experiment evaluates how well a variety of
baselines and ADD MALTS can estimate CATEs. We
consider four data generative processes (DGPs). In
each DGP, we generate our distributional outcomes
as truncated normal distributions (truncated at +3
standard deviations from the mean). In the “Lin-
ear,” “Variance,” and “Complex” DGPs, we sample
scalar covariates while the “Dist Cov” DGP has scalar
covariates and one distributional covariate. A sum-
mary of the distributional covariate is used to gen-
erate the distributional outcome in “Dist Cov.” We

evaluate each methods ability to estimate the CATE,
7(q|F%,), using the percent Integrated Relative Error:
IRE = 100><f01 %‘ dq. Section “CATE Estima-
tion Experimental Details” of the supplement expands
on our experimental setup.

Figure 2] displays the results of our simulations. The y-
axis represents the integrated relative error so smaller
values mean better performance. Across the board,
ADD MALTS performs at least as well as the baselines
(described in the caption). The “Complex” DGP has
trigonometric and polynomial relationships between
covariates and distributional outcomes. In this com-
plex setting, ADD MALTS achieves a median
IRE of 41.7%, approximately one-third of the
error of the next best method (LR + RF PS with
median IRE of ~ 115%).

In the “Dist Cov” DGP, the specific function that
summarizes the distributional covariate is the integral
over the covariate’s quantile function (see the table
in “CATE Estiamtion Experimental Details” of the
supplement). However, in practice, the correct sum-
mary function is unknown (e.g., using the mean, me-
dian, area under the quantile function). Here, we
advantage the baseline methods by letting them use
the correct summary value of the distribution (i.e.,
the integral over its quantile function). On the other
hand, ADD MALTS only has access to the raw data
drawn from the distribution. Even in this scenario,
ADD MALTS outperforms the baselines. ADD
MALTS again reduces the median IRE from the next
best method by one-third, demonstrating that ADD
MALTS can effectively handle both scalar and
distributional covariates. ADD MALTS does not
require us to preprocess or summarize distributional
covariates, proving that ADD MALTS handles com-
plex data without sacrificing performance.

4.2 Positivity Violations

ADD MALTS can also precisely assess positivity vio-
lations. While there are several methods for character-
izing regions with violations of positivity with scalar
data (e.g., |Oberst et all [2020; |Crump et al., 2009;
Hill et al., |2020)), to the best of our knowledge, there
are no techniques for distributional data. To bench-
mark ADD MALTS, we extend methods using esti-
mated propensity scores to our setting. Traditionally,
researchers would exclude any units for which the esti-
mated propensity score is not within certain thresholds
(e.g., between 0.1 and 0.9) (Stuart],2010; |Crump et al.|
2009 |Li et al., |2019). However, these approaches are
highly sensitive to model misspecification. We demon-
strate that ADD MALTS assesses positivity violations
more accurately than these propensity score baselines.
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Figure 2: The figure displays the Integrated Relative Error (%) (y-axis) of the different methods we consider
for different simulation setups (x-axis). We consider the following baseline methods: Lin PSM and RF PSM
represent propensity score matching fit with linear and random forest models, respectively; FT and FRF repre-
sent decision tree and random forest methods for functional outcomes ; LR represents outcome
regression fit at each quantile with a linear regression ; LR + Lin PS and LR 4+ RF PS
represent augmented inverse propensity weighting methods combining the linear outcome regression with linear

and random forest propensity score models, respectively.
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Figure 3: The plot displays which units should be
pruned in red according to each method: (from left
to right) propensity score estimated with logistic re-
gression using L1 regularization, propensity score es-
timated with a random forest, and the diameter of
matched groups estimated with ADD MALTS. The
background displays the true propensity score; the
bottom, left corner marks the region of the covariate
space with no overlap.

Using ADD MALTS to Assess Overlap. First,
we match each treated and control unit to their K
nearest neighbors of the opposite treatment status.
We calculate each unit’s nearest-neighbor diameter D;,
the average distance to its nearest neighbors: D; =
+ ZjeKNNdM dpm(Fy,,S'7%). Units with high diam-
eters are far away from units of the opposite treat-
ment and are therefore more likely to be in regions
of the covariate space with limited overlap. We flag
any units whose diameter is greater than Dypper =
Qp,(0.75)+1.5-(Qp,(0.75)—Q p, (0.25)), where @ p, (s)
is the s'" quantile of the diameters (this is a common

measure of outliers (Suri et all [2019)).

Simulation Setup We simulate data using the fol-
lowing DGP. We have two covariates xz;o,z;1 ~
Unif[—1,1] and the following, piece-wise propensity
score model: T; = 0 if z;0 < 0.5 Az;; < —0.5, else
T; ~ Bern(expit(—0.52;0—0.5x;,1)). In this simulation

setup, the true propensity score is linear except for the
bottom left corner of the covariate space, where there
is no overlap. We train a (parametric) ¢;-regularized
linear propensity score model (Linear PS) and a (non-
parametric) random forest propensity score model (RF
PS); any units with propensity scores outside [0.1,0.9]
were labeled as suffering from positivity violations.

Figure [3] displays the results for one of the iterations
of this simulation. The linear propensity score (Lin-
ear PS) fails to flag positivity violations. The random
forest propensity score (RF PS) correctly character-
izes the region of space with positivity violations but
at the cost of mischaracterizing regions of overlap as
having positivity violations. Dropping observations in
regions of the space without positivity violations could
adversely affect the precision of our treatment effect
estimates. In contrast, ADD MALTS characterizes al-
most all of the regions of the covariate space correctly.
We repeat this experiment 100 times and find that —
overall — ADD MALTS accurately classifies 97.6% of
units. In comparison, Linear PS and RF PS only clas-
sify 93% of units properly. ADD MALTS also enables
us to inspect nearest neighbor sets and qualitatively
assess whether flagged units suffer from a positivity
violation, unlike the propensity score methods. ADD
MALTS precisely flags overlap violations while
also being end-to-end interpretable.

5 REAL DATA ANALYSIS

We use ADD MALTS to reanalyze a clinical trial (Ju-
Te Dial R W Foundation Cont; o
|cose Monitoring Study Group, [2008) focused on as-
sessing the effectiveness of continuous glucose moni-
tors (CGMs) in mitigating the risk of hyperglycemia
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Figure 4: Quantile functions of glucose levels measured
at baseline. The thick black line represents the average
quantile function while the other colors represent the
quantile functions for 50 patients.

(resulting from high glucose levels) or hypoglycemia
(linked to low glucose levels) in type 1 diabetes pa-
tients. To ensure data validity, we begin by investigat-
ing potential violations of the positivity assumption
in the CGM trial data. ADD MALTS detects a lack
of positivity for patients who experienced severe hy-
poglycemia prior to treatment, raising concerns about
the generalizability of the trial results to this subgroup.
We then assess the heterogeneity of the treatment ef-
fects using ADD MALTS. Our findings suggest that,
on average, the use of CGMs provides only a marginal
benefit in reducing the risk of hyperglycemia or hypo-
glycemia. However, our subgroup analysis reveals that
CGDMs can be beneficial in reducing the risk of
extremely high glucose levels for patients aged
55 or older who are effectively managing their
diabetes.

Data Description CGMs are wearable devices that
monitor blood glucose levels. The Juvenile Diabetes
Research Foundation (JDRF) conducted a random-
ized control trial across 10 clinics and a cohort of 450
patients with type 1 diabetes to assess how helpful
CGMs can be in mitigating the risk of extremal glu-
cose concentrations (Juvenile Diabetes Research Foun-
dation Continuous Glucose Monitoring Study Group
2008, 2010)). One week prior to randomization, all pa-
tients wore modified CGMs where the readings were
recorded but not visible to diabetes patients. Patients
were then randomly assigned to monitor blood glucose
concentrations using CGMs (treatment) or a standard,
blood glucose meter (control). The researchers used a
stratified randomization scheme to maintain balance
based on the clinical center, age group (8 to 14 years,
15 to 24 years, and > 25 years), and baseline blood
glycated hemoglobin levels (HbAlc < or > 8%). Pa-
tients monitored their blood glucose levels using their
assigned strategy for 26 weeks; after 26 weeks, all pa-
tients wore CGMs with the readings blinded to the
control group and visible to the treated group.

Age | HbAlc | Dur. | Col | NHW? | Hypo? | Male | T
43 Low 24.3 | True True True True | 0
42 High 20.3 | True True False True | 1
40 Low 24.2 | True True False False | 1
43 High 20.8 | True True False | False | 1
40 Low 33.1 | True True False False | 1
41 Low 16.0 | True True False True | 1

Table 1: The table displays the treated nearest neigh-
bors (bottom five rows) for the query unit (top row).

Methods Previous analyses of these data use the
time in range metric to summarize CGM readings (Ju-
venile Diabetes Research Foundation Continuous Glu-
cose Monitoring Study Groupl [2008, 2010). As we
demonstrate in Figure [1} the time in range metric is
highly sensitive to the actual choice of healthy range.
To overcome these issues, we re-analyze this data by
representing each patient’s CGM data as distributions
of glucose concentrations over time (Figure {4| shows
the quantile functions of the baseline glucose distribu-
tions for 50 patients). We assess overlap and estimate
the ATE and CATEs using ADD MALTS.

In our analysis, we include the following control vari-
ables. Age describes the unit’s age at randomization
(in years). HbAlc describes whether the unit’s gly-
cated blood hemoglobin at baseline was < 8% (Low)
or not (High). “Dur” describes the number of years
the patient had diabetes. “Col” denotes whether the
patient (or their guardian) graduated from college.
“NHW?” is a boolean that is true if the patient is Non-
Hispanic White. “Hypo?” denotes whether the pa-
tient suffered from an episode of severe hypoglycemia
prior to treatment. “Male” denotes whether the pa-
tient is male. And Treatment denotes the patient’s
treatment assignment. We also control for the dis-
tribution of pre-treatment glucose concentrations, as
measured by blinded CGMs. We use 40% of the pa-
tients to learn ADD MALTS’ distance metric and 60%
of the patients to estimate treatment effects.

Assessing Positivity Violations We first check
for positivity violations in our estimation set. We
flagged units in no-overlap regions using the same pro-
cedure as in Section Table [I] displays the nearest
neighbor set for a 43 year old male in the control group
who suffered from severe hypoglycemia (i.e., an ad-
verse health outcome due to glucose levels being too
low) who was flagged. When we inspect his nearest
neighbor set, we see that there is no similar treated
patient who also suffered an episode of severe
pre-treatment hypoglycemia. This unit’s CATE
is not very trustworthy, and we would need more data
to make such granular insights.



Interpretable Causal Inference for Analyzing Wearable, Sensor, and Distributional Data

Estimated Treatment Effects We first estimate
the average treatment effect. As shown in Figure [5]
there is little difference between the overall ATE (pink)
and the ATE after pruning units suffering from posi-
tivity violations (gold). There is a very small, marginal
change in glucose concentrations: at each quantile,
CGMs only affect glucose levels by between -2 and 1.5
mg/dL, which is miniscule when considering the av-
erage person’s glucose readings range between 50 and
350 mg/dL (see Figure . We find that, on aver-
age, CGMs do not affect glucose levels.

ADD MALTS enables us to go beyond ATEs and ac-
curately investigate effects in subpopulations. Using
ADD MALTS, we revisit the subpopulation in Fig-
ure [} patients older than 55 years of age. As shown
in Figure b), CGMs have marginal effects on glu-
cose concentrations for patients older than 55 years of
age (green line); extremal glucose levels only change
by up to 15 mg/dL. As we see in Figure [4] the aver-
age patient’s glucose concentrations range between 50
and 350 mg/dL. A decrease in upper-extremal glucose
levels by 15 mg/dL suggests CGMs may be beneficial
but not transformative for these older adults’ hyper-
glycemic risks.

However, CGMs may be very beneficial for patients
older than 55 years old who also have low HbA1c levels
at baseline; HbAlc is a biomarker that measures the
concentration of long-term sugars in the bloodstream.
People with lower HbAlc levels tend to have better
control of their diabetes needs and lifestyle (i.e., man-
aging diet and exercise). For these patients, upper ex-
tremal glucose levels decrease by up to 40 mg/dL, over
10% of the maximum glucose concentration of the av-
erage patient (see black line in Figure ). Because the
effect has intensified for patients with low HbAlc lev-
els, this treatment effect estimate suggests that CGMs
are most beneficial for patients who actively manage
their diabetes needs. On their own, CGMs are not
a panacea for diabetes care; however, when coupled
with active engagement and self-care, CGMs can help
reduce patients’ risk of hyperglycemia.

CGMs tend not to increase lower extremal glucose
levels, suggesting that CGMs may not be effective in
mitigating the risk of hypoglycemia. As suggested by
Wolpert| (2007), CGMs may cause patients to “over
bolus” or overcompensate for rising glucose levels if
they observe glucose readings too often. Patients
overly concerned about high glucose levels may not
manage low glucose concentrations. Understanding
that CGMs do not increase low glucose levels sug-
gests CGMs tend not to increase lower extremal glu-
cose levels, suggesting that CGMs may not be effec-
tive in mitigating the risk of hypoglycemia. As sug-
gested by Wolpert| (2007), CGMs may cause patients

2
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= —20
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Figure 5: (a) Average treatment effect of glucose-

monitoring with CGM on the distribution of glu-
cose concentrations before pruning positivity viola-
tions (pink) and after (gold). (b) Conditional average
treatment effect of glucose monitoring with CGM on
the distribution of glucose concentrations for patients
older than 55 years of age (green) and for those with
low HbAlc levels at baseline (blue). The x-axes dis-
play the probability level and the y-axes display the
difference in the related quantiles of the outcomes.

to “over bolus” or overcompensate for rising glucose
levels if they observe glucose readings too often. Pa-
tients overly concerned about high glucose levels may
not manage low glucose concentrations. Understand-
ing that CGMs may not change low glucose levels sug-
gests that we should explore other treatments to help
diabetic patients better manage hypoglycemic risks.

6 CONCLUSION

To enable high-quality and trustworthy causal in-
ference with distributional data, we introduce ADD
MALTS. We prove that ADD MALTS can consistently
estimate CATEs and validate its performance via sim-
ulation. We also show that ADD MALTS effectively
handles distributional and scalar covariates. ADD
MALTS can also precisely flag overlap violations. We
use ADD MALTS to study CGMs’ role in glucose level
management in type 1 diabetic patients.

Limitations and Future Directions While we
discuss ADD MALTS’ utility in the context of con-
tinuous glucose monitoring data, it can be highly use-
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ful for analyzing a variety of other data. For exam-
ple, distributional representations have been helpful
for summarizing images (Oliva et al.,[2013} |[Yang et al.|
2020 |Zhang et al., [2022)) and for summarizing survey
data from across geographies (Gunsilius| 2023]). How-
ever, these complex data may benefit from being rep-
resented as multidimenstonal distributions. Future di-
rections should consider extending ADD MALTS to
the setting of multidimensional distributional data.
Additionally, uncertainty quantification and variance
estimation using distributional outcomes is a difficult
and challenging issue that future research should ex-
plore. We propose preliminary insights in the supple-
mentary material. Finally, wearable devices are be-
coming increasingly popular, leading to large datasets
with hundreds of thousands of patients (Nazaret et al.|
2022)). To accommodate such data, future research
could benefit from extensions of ADD MALTS that
scale to larger datasets without sacrificing accuracy or
interpretability.
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Appendix A Identification of the ATE

We first prove that we can identify average treatment effects. This is the same theorem statement as in|Lin et al.
(2023)) and the proof follows the same arguments. This is here for completeness.

Proposition 1 (Lin et al| (2023)). Under SUTVA, conditional ignorability, and positivity, we can identify
average treatment effects.

Proof. We aim to identify the average treatment effect,

(@) = E | Pyt (@) = Fyfo) ()]
where the expectation is over the population we sample data from.

Let ¢ € [0,1]. By the law of iterated expectations,

EilFy:t1)(0) = Fyito(@)] = Erx { Bl Py {1 (@) = Fr ) (@) Fx, = Fal }
= Epy {Ei[F‘;i%l)(Q)‘FX = Fp] — EL[F;,%Q)(Q)lFX1 = Fw]} )
by the linearity of expectations. Recall that by conditional ignorability, we know that for all ¢ €
[0,1],E; [Fg%n)(qﬂle] =E; [Fi%Ti)(q)\Ti, F,,]. Substituting this equality into our equation, we know that
-1 -1
E, [Fy,-(n(‘J) - Fy,b.(o)(qn
=Ery {Ei[FQ%U(QNFXi = Fx| — Ei[Fy () (¢)| Fx, = Fw]}
=Erx {Ei[Fﬂl)(Q)Wxi = Fo, T; = 1] = Ei[Fy ) (@) Fx, = Fo, T; = 0]} :

Because we have now conditioned on observing a specific treatment for our units, we know by SUTVA that
Fyi = FY,(Ti) SO,

Ei[Fy (1)(9) = Fy {g) (@)
—Ery {Ei[Fy ()| Fx = Fo, Ty = 1] — Ei[Fy. ' (¢)|Fx = Fo, Ti = 0]}
~Ere (B (@0)1Fx = Fo, Ty = 1]}~ Epy {B{F7 ) Fx = Fa, T = 0]} 0
=Ei[Fy M (q)|T; = 1] — E[Fy; } (o)| T3 = 0],

i

where the last two steps follow by using the linearity of expectations and reversing the iterated expectation. [

Appendix B CATE Estimation Consistency Proofs

This section establishes the consistency of ADD MALTS’ CATE estimation strategy. We first re-introduce the
smoothness assumption used in these proofs:

Assumption . Let Fy,, Fp; € Wo(J) and assume t; = tj. If dp(Fy,, Fr,) < a for some o € R, then
Weo B[Fy|Fx = Fy,, T = t;], B[Fy |Fx = Fy,;,T = t;]) < d(a) for some monotonically increasing, zero-intercept
function §, where Wy, represents the oco— Wasserstein distance.
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B.1 Proof of Barycenter Consistency (Lemma 1)

Lemma (1)). Let Assumption hold. Let B[Fy|Fx = Fy,, T = 1] € arg min & Zszl W3 (Fy,,v) be the barycenter
YEW2(T)

of the KNN’s outcomes. Assume the quantile functions of the distributions Fy € Wh(Z) are Lipschitz continuous

in the probability: there exists an Ly > 0 such that |Fy ' (q) — Fy'(¢')| < Lrlg—¢'| for ¢,q' € [0,1]. Let & > 6(a),

where « represents the distance from unit i to its K" nearest neighbor according to da,. Then, there exists a

function c(e, a) that is exponentially decreasing to 0 in K such that

B[Fy|Fx = Fy,, T = 1]
i) bl <
: <W1 <B[FY|FX —F.,T=1t) ¢)° 2c(e, ),

where W1 is the 1-Wasserstein metric.

Proof. Let B; = B[Fy|Fx = Fy,,T = t] represent the conditional barycenter of the outcome at Fy, and treatment
t. Let KNN; = KNNdM(le,SeSt) represent the K nearest neighbors to unit ¢ in the estimation set with

assigned treatment ¢. We demonstrate that ADD MALTS’ estimate — B; = arg min, ey, (1) % Zszl W3 (Fy,,v)
— consistently estimates the true conditional barycenter’s quantile function. Let € > §(«).

We begin by showing the following: for a given ¢ € [0, 1],
P(

Recall that the quantile function of the barycenter of one-dimensional, continuous distributions is the average of
quantile functions, so

Keost)y

B:l(q) — B:I(Q)’ > E) S 2eXp (2(<max - Cmin)2

Bl o)== > F. 9

kEKNN;

We manipulate the probability statement to bring it into the following form:
P([B7' @) B ()| > <)

=P<Bﬂ<q>—j{ 3

kEKNN;

> E) by def’n on empirical barycenter

P B (q) — Fy.' (9)]

> 5) by rearranging the summation
kGKNN

ke KNN;

( B (q) — B, ' (0) + B, (@) —Fy. (@) | | > €
—_—————

(add 0)
1 1
=P e [B; '(q) —B;, ' (g)] + o Z B, (q) — ngl (@)]] > 5) by distributing the summation
keKNN keKNN;
1
<P B; () — B, ' (q)| + Ve Z B; '(q) — F;;(q) > 5) by triangle inequality
k:eKNN keKNN;
_ _ 1 _ . . . .
<P <K Z ’Bi Yq) — B, 1(61)} + e Z B, Yq) — Fykl(q) > €> by triangle inequality.
kEKNN; kEKNN;

Recall that the oo-Wasserstein distance in one dimension is simply a contrast between quantile functions:
Weo(Fa, F) = sup,c(o11 [Fx ' (¢) — F5 ' (q)|. Thus,
1

1 1
% 2 B@-Bl@l<5 D osw BB (9] =5 Y. Weo(BiBi).
kEKNN, keK NN, 1€[0.1] keKNN;
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Recall that unit ¢ and unit k¥ are within distance « of each other. By Assumption we then know that
W (B;, Bi) < d(ax). So,

% 2 M@B)< D i

ke KNN; kEKNN
Then,
]. 1 1 1 —1 —1
Pl D [Bl'@-Bl'@l+|% > B'@)-F'(9]>¢
k:EKNN ke KN N,

> B - Fyla)
kEKNN

B, '(q) — Fy, ' (q)

rfo
ol

kEKNN;

By Hoeffding’s inequality, we then know that

P(|B (@) - B (0)] > <)
1

<P
< (|

= > B9 - Fyl(g)

keEKNN;

>e— 5(@)) < 2exp (M) . (Pointwise Bound)

This result demonstrates point-wise consistency at each probability level. Now, we will show consistency of
estimating the conditional barycenter simultaneously.

Assume that all quantile functions, Fy, € Wh(Z) are Lipschitz continuous. Define the function

= > Fyla) -B(g).

k€EKNN;

9(q) =

Because the average and difference of Lipschitz functions are Lipschitz, we then know that g(g) is also Lipschitz
continuous. Let L be the Lipschitz constant of g.

Let B, (z) represent a ball of radius r € (0,0.5] centered at = € [0,1]. Choose an r and a corresponding grid of
points @ = [q1,...,qn] C [0,1] such that the following are satisfied: (1) r < # and (2) UM, B, () = [0,1]

and B,.(gs) N B (qy) = 0 for any q, # g5 in @. Choose any q € Q. Because all ¢’ € B, (q) are within distance r of
q, we know that sup,cp (o) 19(¢) — g(¢’)| < Lr. Then,

/ o(t)dt = / l9(t) — 9(q) + 9(q)] dt by adding 0
B.(q) Br(q)

< / [lg(t) — g(q)| + g(q)] dt by definition of absolute value

<),
B (q)

sup |g(¢") — g(q)| + g(q)| dt by definition of sup

q'€Br(q)

dg = /0 g(q)dg = Z/B ( )g(t)dt < Z[QLT2 +2g(q)r]. (Covering Bound)

PIte) qeq@
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Now, let us return to our original probabilistic statement:
P (W1 (Bi,]ﬁ%i) > e)

IP’(/OI

<P Z [2Lr2 + Qg(q)r} > ¢ | from Equation [Covering Bound]

qeq

B; ' (q) — B_l(q)’ dq > s) by definition of W

(2

<P Z [Lr2 + g(q)r] >¢/2 | by dividing by 2 on both sides

q€q@

1
< E P (Lr2 +g(q)r > rs) by Union bound and because there are > balls covering [0, 1]
r

q€q

= Z P (g(q) > e — Lr) by subtracting Lr* and dividing by
q€q

= Z P ( B;'(q) - I@;l(q)’ >e— Lr) by definition of g(q)
qeq@

—K(e—Lr—96§ 2
< Z 2 exp < 2((2: _T c (;j;)) ) from Equation |Pointwise Bound]
qeé max min

1 —K(s— Lr — §())?
—exp ( Q(Cmax - Cmin)2

1
> because there are o balls covering [0, 1].
r

B.2 Proof of CATE Consistency (Theorem 1)

Theorem . Under the same conditions as Lemma
1
P ([ el - HalBl > <) < de(e/2,0).
0

Proof. We estimate conditional average treatment effects as a contrast between the quantile functions of the
treated and control conditional barycenters. Specifically,

#(q) = B[Fy|Fx = Fy,,T = 1]"'(q) - B[Fy|Fx = Fa,,T = 0] (q).

We want to show that for all ¢ € [0, 1], 7(q) converges to 7(q):

7(q) = B[Fy|Fx = Fp,, T =1]"'(¢q) — B[Fy|Fx = Fp,, T =0]"'(q).

Let € > 0. By definitions and rearranging,

P({Aﬂﬂ@—7m>@}>e)
= ({0 - (R )|} )

_p ({/01 ( B[Fy|Fx = Fy,,T = 1]1—11(q) ) _ ( B[Fy|Fx = Fy,, T = 0]—11<q>))’dq} N 6) .

—B[Fy|Fx = Fp,, T =
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By the triangle inequality, we see that

(/)

Cam e ) - G )|} <)
<e({ [ | R R ) )
e ({ B e [ SR S > )

And by the union bound, we see that

P({/l B[Fy|Fx sz“Tzl]—lfq) ’dq+/1

—B[{MFX = F,,,T =1]"1(q) B[Fy |Fx = Fj, 1T =0~
< (U B e 0w >5) = ({]

B[Fy|Fx = F.
_ B[Fy|Fx = Fy,, T=1],\ _ € B[Fy|Fx = Fp,, T = 0],
_P(Wl <B[FY|FX:F:IJ¢)T:1] >2 R B[FY|FX:F:1:NT:0} ”

B[Fy|Fx = Fy,, T = 0] f())’dq} > 5)
T

where the last line follows from the definition of 1-Wasserstein in one-dimension.

Let a be the maximum distance between unit ¢ and any of its treated or control K nearest neighbors. From
Lemmal [T we know that

1 —K(£ — Lr — 6(a))?
P (W) (B[Fy|Fx = Fx,.T = 1) BIFy|Fx = F,, T=1]) > 5 ) < rexp( QEgmaxfcmin(;D >

for an r < 5/2—7;5((1). Therefore,

P ({/01 |7(q|Fy,) — 7(q|Fy,) dq} S E)

B[Fy|Fx = Fp,, T =1] € B[Fy |Fx = Fp,, T = 0] £
< i ) = ) ) <
—P<W1 <]B%[Fy|FX—in,T—1] o ) PR Bipy ik = B T =0]) 7 2

2 (—K(g —Lr - 5(a))2) |

< —exp
r 2(§max - Cmin)2

Appendix C Uncertainty Quantification

We construct point-wise confidence intervals for the average treatment effect. The motivation and theory follow
almost directly from |Abadie and Imbens| (2011)), but we discuss these in the context of our notation and setting
with distributional outcomes.
- _ 2

Let py (q | Fp) = E[Fy'(q) | Fx = Fo, T =t] and 07 (¢ | Fp) = E [(Fyf(q) — e (q| Fe)) | Fx = Fp, T = t]
Assume p (q| Fp,) and of (q| Fy) are smooth: for units 4,j with ¢; = ¢;, | (q| Fo,) — pe (¢ Fa,)|
and |at2 (q| Fg,) —0? (q | FmJ)’ strictly monotonically decrease as dag (Fwi,ij) decreases and are 0 when
dm (Fm , ij) = (0. This assumption places smoothness at the quantile-level rather than at the quantile-function
level. Also, assume that E {(F;%t)(q))‘1 | Fx = Fz] < C for some finite C' and that o7 (q | F) is bounded away
from 0.

Our estimand of interest is the average treatment effect (ATE):

(@) = E[Fyifo)(a) = Py fo)(@)] -
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Let fit(q| Fgz,) represent a consistent estimator of p;(q| Fg,). Also, let Mg(i) =
ls“tl 1 [z € KNNg,, (F S f’))} represent the number of times unit ¢ is in another unit’s set of K

Ty Cest

nearest neighbors of the opposite treatment status. Rewriting our estimate for the ATE:

Ho) = = 3 L -1)- (HM?@) )

| est|

1E€Sest
v (o (@),
|Sest| g van(@) = P o) (a
where
P (g Fy'(q) ift =T,
. =491 -1 .
}/z(t) ?ZjeKNNdM (F Séit 1)) FY (q) lft#TZ

However, 7(q) is biased; |Abadie and Imbens| (2011) provide a closed form solution for the bias term and an
estimator:

1 2T, — 1
B(q) = Sorl Z % Z pi-m, (¢ | Fo,) — pi-m, (q| Fa,) -
est 1€Sest jEKNN,iM (Fmi7317T,i)

est

We then have an unbiased estimate of the ATE, 7(q) = E[7(¢) — B(q)]. However, we do not know the true
conditional mean function p; (¢ | Fy,;), so we must estimate them. Assume we have consistent estimators of the
conditional means of the outcomes. Then, we can consistently estimate B(q):

. 1 2T, — 1 N N
B(q) = Z I Z -, (q | Fa;) = -, (q| Fa,)

Sest| .
‘ est'zesest jEKNNdM (F Sest )

rhem(q) = #(q) — B(q).

We now construct the variance of our bias corrected estimator. Let {Fx,, Ti};cs. , represent the covariates and
treatment statuses observed in the estimation set. And let

1 .
= =V [7(q) [ {Fx, . Ti}cs...]
|Sest|

N A\ 2
1 MKZ
NZ<1+ K”) o7, (q | Fa,)
i=1

VIR (q) = B [(n (a ] Far) - o (a | Fa)) — @)

We can then construct our bias-corrected estimator 7

VE(q)

Then,

T Ghem () 7)) S N(0,1).

VISeal (VE(g) + V700 (q) )
By estimating V' (q) + V7(F=:)(q), we could construct 1 — a% confidence intervals. To do this, we must first
find a way to estimate 0%, (q | Fy,) , the conditional variance of the outcome. Let £;(i) represent the j* nearest
neighbor of ¢ with the same treatment status in the estimation set. For some fixed J, we can estimate 07, (¢ | Fy,)

as
2

J 1¢
el o) = 7 | B0 - 5 B

Theorem 7 of |Abadie and Imbens| (2006) then shows that we can estimate valid confidence intervals using the
following consistent estimator of V(q) = V¥ (q) + V7(alFe:)(g)

. 1 B _ .
V(g) =ra— Fy (@) = Fy fo) (@) — 7(g)
| Sest| i€S
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+|$1te§$: [(M;(z‘))Z (2KK—1) (MZ@)] o (1 Fuy). 5

C.1 Simulation Study

We use the data generating processes with scalar covariates in Table[3]to evaluate the coverage of our uncertainty
quantification strategy. For each of 100 Monte Carlo iterations, we first calculate the true average treatment
effect and use the variance estimator in Equation [5| to construct 95% pointwise confidence intervals. We then
evaluate the nominal pointwise coverage.

DGP ‘ Coverage
Variance 0.947

Linear 0.963
Complex 0.989

Table 2: The estimated coverage of 95% confidence intervals computed using the variance from Equation

Appendix D Real Data Analysis: Exploratory Data Analysis

In this section, we further explore the data from |Juvenile Diabetes Research Foundation Continuous Glucose
Monitoring Study Group| (2010 [2008). Specifically, we first show how we clean the data; and because the trial
randomized treatment, we compare ADD MALTS’ estimated ATE to the difference-in-means-estimated ATE to
validate that ADD MALTS can also recover an accurate ATE estimate.

Data Cleaning and Processing The data analyses were published in two separate studies: |Juvenile Diabetes
Research Foundation Continuous Glucose Monitoring Study Group| (2008) studies patients for whom glycated
blood hemoglobin levels (HbAlc) at baseline was greater than 8% and |Juvenile Diabetes Research Foundation
Continuous Glucose Monitoring Study Group| (2010)) studies patients for whom glycated blood hemoglobin levels
(HbAlc) at baseline was < 8%. Both studies excluded patients who did not complete the full 26 weeks of
randomization; we also excluded patients that did not have CGM readings more than 26 weeks worth of readings
after the last recording in their baseline data. We constructed each quantile function using 900 quantiles; to
exclude outlier glucose readings, we only evaluate treatment effects between the 2.5 and 97.5 percentiles.

ADD MALTS vs Difference of Means Because the data we analyze is from a randomized experiment, the
difference in mean quantile functions will be an unbiased estimate of average treatment effects. We compare
ADD MALTS’ estimated ATE to the difference-in-means-estimated ATE (DIME ATE). As seen in Figure @,
the two estimates are not significantly different from one another (the ADD MALTS ATE is within the 95%
confidence interval for the DIME ATE). Also, there is a very marginal difference between the point-estimates:
the DIME ATE also ranges between -2 and 2, and the difference between the DIME and ADD MALTS’ ATEs
range between -1 and 1. The fact that ADD MALTS’ estimated ATE is so close to the DIME ATE validates
ADD MALTS’ ability to estimate average treatment effects in real-world settings.

Appendix E Additional Synthetic Experiments

In this section, we provide more details on the CATE estimation experiments and the positivity violation exper-
iment. We also demonstrate how ADD MALTS’ CATE estimation performance is insensitive to the number of
nearest neighbors.

E.1 CATE Estimation Experimental Details

In this section, we provide more details on CATE estimation experiments in the main paper.

We consider four data generative processes (DGPs). In each DGP, we generate our distributional outcomes as
truncated normal distributions (truncated at +3 standard deviations from the mean). Table [3| describes the
functions used to generate the means and variances of the truncated normal outcomes for each DGP. In the
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Figure 6: We compare the difference-in-means-estimated ATE (green) to the ADD MALTS’ estimated ATE before
and after pruning bad matched groups (pink, gold respectively). The grey interval represents 95% confidence
interval for the difference-in-means-estimated ATE.

Name 7 o
Variance 10+ 250 + 22,1 + & [10 + 2,0 + 22,1 + 10T; + &)
Linear 10 + Z;0 + 293@71 + IOTZ' +&; 1

10 sin (mci,()xi’l) + 20(.%'1"2 — 0.5)2 + 10:1%‘,3 + 55(17;’4
+T {7 + ;2 COS (ﬂ'xi,o.’L‘i’l)} + &

10sin ( UO . 0 qu x5 1) + 20(%‘ o —0.5)% 4+ 102 3 + 5xi 4
+T; {7—}—331-,2005( [fo o ( dq} 9611)} + &

Complex 110 + 2, 0 + 22,1 + &4

Dist Cov

Table 3: In our simulations, the distributional outcomes are truncated normal distributions (truncated at +3
standard deviations from the mean). The table describes the functions used to generate the mean and variance
of each outcome. In the “Linear,” “Variance,” and “Complex” DGPs, we respectively sample 2, 2, and 6 scalar
covariates independently and identically from Uniform[—1,1]. The last simulation (Dist Cov) has a distributional
covariate I, ,, which we use by taking the integral of its cumulative distribution function as a covariate, and 9
scalar covariates.

“Linear,” “Variance,” and “CompleX” DGPs, we respectively sample 2, 2, and 6 scalar covariates independently
and identically from Uniform[—1,1]. The propensity score models are hnear P(T; = 1|Fy,) = expit(z; 0 + 1)

The “Dist Cov” simulation instead has nine scalar covariates and a distributional covariate Fy,,. Fy,, is
uniformly sampled to be any uniform distribution between [—1, 0] and [—1, 1]. We use the integral of the quantile
function as a feature to generate outcomes. Because baseline methods can only handle scalar covariates, we

instead provide them the preprocessed covariate, the area under the quantile function. Here, the propensity score
model is also linear but depends on this processed distribution: P(T; = 1|Fy,) = expit ([ fo v O dq} + x; 2)

For each DGP, we consider 1500 units, using 67% in the training set and 33% to estimate CATEs. Also, each
DGP has at least five irrelevant covariates. We repeat each experiment 100 times and evaluate CATE estimation

performance using the Integrated Relative Error (%) = 100 - fol %q;m)‘ dq.

We compare ADD MALTS to the following baselines: Lin PSM and RF PSM represent propensity score
matching fit with linear and random forest models, respectively. We use a cross-validated ¢;-regularized logistic
regression to train the linear propensity score model. We use the default settings in sklearn’s random forest
implementation to train the random forest propensity score model. FT and FRF represent decision tree and
random forest methods for functional outcomes (Qiu et al.,|2022)); we use a depth bound of 5 to train the decision
tree and 100 trees of depth bound 20 to train our foresﬂ LR represents outcome regression fit at each quantile

2The choice of 100 trees comes from the default setting in sklearn’s implementation of random forests. While sklearn

has no depth bound, the functional outcome tree code we wrote ran into memory issues when the depth bound was greater
than 20
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with a linear regression (Lin et al. [2023); LR + Lin PS and LR + RF PS represent augmented inverse
propensity weighting methods combining the linear outcome regression with linear and random forest propensity
score models, respectively. Here, we use an unregularized linear regression for the outcome model, as in|Lin et al.
(2023)), and use the same propensity score model configurations as in the propensity score matching methods.
Table (4] details the package dependencies of each method that we used for implementation.

E.1.1 Timing Results

1000

Time (seconds)
«
o
o

o

Dist Cov Complex Linear Variance

Figure 7: Each boxplot displays the time in seconds (y-axis) it took for ADD MALTS to run, from fitting the
distance metric to estimating CATEs, for each DGP in Table [3| across 100 Monte Carlo iterations.

In this section, we evaluation ADD MALTS’ running time. ADD MALTS had median run-time across all Monte
Carlo iterations less than 10 minutes, from fitting the distance metric to estimating CATEs (see Figure[7)). The

Linear and Variance DGPs had the lowest median runtime, less than three minutes per iteration.

E.2 ADD MALTS’ CATE Estimation Performance on Another DGP

Algorithm 1 Mixture-beta outcomes DGP

for:=1,...,1000 do
Xi1y--,Xin0 ~ Unif[—1,1] > Generate scalar covariates
T; ~ Bern (expit (X; 1 + X, 2)) > Assign treatment
Oé(ti) =5+10 Sil’l(?TXi,lXi72)2+20(Xi73—0.5)2+10Xi74+5Xi,5+ti10Xi,3 COS(7TXZ*71X1‘,2)2—|—EYi yEY; ™ ./\/(0, 1)
> Generate parameter that will control Beta distribution’s shape
for 5 =1,...,1001 do
Z;,; ~ Bern(1/4) > Sample which mixture of the outcome this observation will come from
Y; ;(0) ~ Beta(2a(0), 8(0)) %" Beta(8c(0), 2a(0))! ~%1i > Generate sample from the control potential
outcome
Y; (1) ~ Beta(2a(1), 8(1)) =% Beta(8(1), 2c(1))%i > Generate sample from the treated potential
outcome
end for
F)Z%O) (¢) = min{y : 1557 2]1.02011 1[Y; ;(0) < y] > ¢} > Generate the control potential outcome’s quantile
function
F;i%l)(q) = min{y : g7 Z;O:Oll 1[Y; ;(1) < y] > q} > Generate the treated potential outcome’s quantile
function

(4| Fa,) = FQ%”(Q) - FQ%O)(Q) > Calculate the true CATE

FyHg) = TiFy 1y (9) + (1 = T,) Fy ) (0) > Calculate the observed outcome
end for

return S, = {(Xm, o Xi10), T, F;f};;l > Return observations

In this section, we also evaluate ADD MALTS’ CATE estimation performance when the outcome distribution
is not a truncated normal distribution. In this experiment, we generate our outcomes as a mixture of two-beta
distributions (as seen in Algorithm [T).

The DGP has 10 scalar covariates. We then assign treatment using a simple, linear propensity score model using
two of the covariates. Our outcome is a mixture of two Beta distributions whose parameters are controlled by
the term «(t;); a(t;) is a combination of complex quadratic and trignometric terms. When ¢; = 1, the mixture
proportions flip so that more mass is concentrated in the upper end of the distribution’s support; additionally,
when t; = 1, the Beta distribution’s parameter increases by another complex interaction of trignometric terms,
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Figure 8: Subplot (a) displays the densities of the treated (blue) and control (orange) potential outcomes
generated from this data generating process. Subplot (b) displays the integrated relative error (y-axis) for the
various baselines and ADD MALTS for the DGP described in Algorithm E

causing the variance of each mixture component to shrink. We construct each unit’s observed quantile function
using the outcome observations associated with unit ¢’s treatment status: vy, 1(¢;), ..., ¥i1001(¢;). In our DGP,
we have 5 relevant covariates and 5 irrelevant covariates. We also use a 60/40 train/estimation split to estimate
conditional average treatment effects. As seen in Figure [§f ADD MALTS does at least as well as the other
methods in this complex DGP.

E.3 Positivity Violation Experimental Details

In this section, we provide more details on the Positivity Violations experiment in Section [£:2} While we describe
the DGP we considered in the main paper, we offer more details on the implementation of the baselines and
ADD MALTS in this section. We have two baseline methods: a linear propensity score model fit using cross-
validation (using the default LASSO logistic regression cross-validation parameters in sklearn) and a random
forest propensity score model fit using cross-validation (cross-validating over the number of trees: 20, 50, 100,
200). We use sklearn’s cross-validation implementations of both these techniques to find the best parameters.

ADD MALTS Accuracy

2 Baseli

3 0.850 aseline

—— Linear PS
RF PS

Q N
) ) & & N ) & ) & N
Propensity Score Thresholds

Figure 9: The x-axis represents the thresholds used for flagging regions of the covariate space that may suffer
from a positivity violation using the propensity score methods. The y-axis represents each method’s accuracy in
flagging units that are in positivity violation regions. The orange line represents the accuracy for the random
forest estimated propensity score while the blue line represents the accuracy for the propensity score estimated
with a linear model. The black, dotted line represents the accuracy when using ADD MALTS’ diameter to flag
units.
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Propensity score flagging methods and their relationship to the propensity score thresholds We
evaluate how sensitive RF PS and Lin PS are to changes in the propensity score thresholds when flagging units
as being in positivity violation regions. As evidenced in Figure [0 ADD MALTS outperforms the other methods
with various propensity score thresholds. Furthermore, the qualitative inspection of nearest neighbor sets using
ADD MALTS offers a layer of fidelity unachievable by the propensity score methods that produce uninterpretable
matched groups (see Parikh et al. (2022) for more details on this comparison).

E.4 Insensitivity to the Number of Nearest Neighbors

[o2]
o
o

Method
I ADD MALTS B ADD MALTS (k = 5) [0 ADD MALTS (k = 2)

(o)}
o
o

400

Variance Linear Complex Dist Cov

Integrated Relative Error (%)

o

Figure 10: The figure displays the integrated relative error (%) on the y-axis of each DGP (x-axis) for ADD
MALTS estimators with different numbers of nearest neighbors (10 in turquoise, 5 in navy blue, 2 in pink).

In this section, we demonstrate that ADD MALTS’ CATE estimation performance is not affected by the choice
of the number of nearest neighbors. Figure displays the integrated relative error (%) on the y-axis of each
DGP (x-axis) for ADD MALTS estimators with different numbers of nearest neighbors (10, 5, 2). All box-plots
overlap, with the largest difference being a deviation of about 50% IRE between k = 5 and k = 2 in the “Dist
Cov” simulation. A 50% difference in IRE is marginal compared to the range of values seen in Figure |2| of
0-1500%.

E.5 Computational Resources

All experiments for this work were performed on an academic institution’s cluster computer. We used up to 40
machines in parallel, selected from the specifications below:

2 Dell R610’s with 2 E5540 XeonProcessors (16cores)

10 Dell R730’s with 2 Intel Xeon E5-2640 Processors (40 cores)
e 10 Dell R610’s with 2 E5640 Xeon Processors (16 cores)

10 Dell R620’s with 2 Xeon(R) CPU E5-2695 v2’s (48 cores)

8 Dell R610’s with 2 E5540 Xeon Processors (16cores)

We did not use GPU acceleration for this work.
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Method Code Dependencies
Lin PSM Pedregosa et al.| (2011)); Harris et al.| (2020
RF PSM Pedregosa et al.| (2011); |[Harris et al.| (2020
FT Pedregosa et al.| (2011); [Harris et al.| (2020); pandas development team| (2020
FRF Pedregosa et al.| (2011); [Harris et al.| (2020); jpandas development team| (2020
LR Pedregosa et al.| (2011); |[Harris et al.| (2020
LR + Lin PS Pedregosa et al.| (2011)); Harris et al.| (2020
RF + Lin PS Pedregosa et al.| (2011); [Harris et al.| (2020

ADD MALTS | Harris et al. (2020); [Virtanen et al|(2020); pandas development team| (2020)

Table 4: A table describing which libraries each baseline in the CATE estimation experiment depended on.
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