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Abstract

Solving optimization problems leads to ele-
gant and practical solutions in a wide variety
of real-world applications. In many of those
real-world applications, some of the informa-
tion required to specify the relevant optimiza-
tion problem is noisy, uncertain, and expen-
sive to obtain. In this work, we study how
much of that information needs to be queried
in order to obtain an approximately optimal
solution to the relevant problem. In particu-
lar, we focus on the shortest path problem in
graphs with dynamic edge costs. We adopt
the first passage percolationmodel from prob-
ability theory wherein a graph G′ is derived
from a weighted base graph G by multiply-
ing each edge weight by an independently
chosen, random number in [1, ρ]. Mathe-
maticians have studied this model extensively
when G is a d-dimensional grid graph, but
the behavior of shortest paths in this model
is still poorly understood in general graphs.
We make progress in this direction for a
class of graphs that resemble real-world road
networks. Specifically, we prove that if G
has a constant continuous doubling dimen-
sion, then for a given s − t pair, we only
need to probe the weights on ((ρ log n)/ϵ)O(1)

edges in G′ in order to obtain a (1 + ϵ)-
approximation to the s − t distance in G′.
We also generalize the result to a correlated
setting and demonstrate experimentally that
probing improves accuracy in estimating s−t
distances.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 INTRODUCTION

Path search in dynamic systems such as traffic net-
works is a foundational problem in computer science.
Dijkstra’s algorithm does not suffice for path search in
large graphs, like continent-scale road networks. Work
began on efficient path search in the early 2000s, with
the development of reach (Gutman, 2004; Goldberg
et al., 2006), contraction hierarchies (Geisberger et al.,
2008), and more (Bast et al., 2006, 2007; Bauer and
Delling, 2010; Goldberg and Harrelson, 2005; Hilger
et al., 2009; ich Lauther, 2006; Sanders and Schultes,
2005). Theoretical justification for the efficiency of
these methods came shortly after with the introduc-
tion of highway dimension (Abraham et al., 2010).
These techniques have seen widespread adoption in
routing engines.

Efficiency is not the only requirement for a useful path
search engine. Users want customized routes that
adapt to real-world conditions. In particular, path
search engines need to find the shortest path subject to
current real-world traffic and road-closure conditions.
This requires designing a path search engine that can
handle edge weight modifications. In the 2010s, cus-
tomizable route planning (CRP) (Delling et al., 2011)
was developed to handle changing edge weights.

All of these techniques involve redoing expensive pre-
processing every time the graph changes. For instance,
CRP starts with a partition of the input graph and pre-
computes shortcuts between boundary nodes of each
cluster. When traffic conditions change, CRP needs to
rebuild all shortcuts associated with clusters in which
an edge weight changed. Traffic conditions generally
change throughout the input road network, necessitat-
ing recomputation of almost all shortcuts.

One may wonder, though, when recomputation needs
to be done. In particular, if the traffic conditions on
a short surface street change, only routes with nearby
origin and destination are likely to be affected, so no
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recomputation of shortcuts should be necessary. In
this work, we show both theoretically and experimen-
tally that this recomputation is indeed unnecessary for
most edge weight changes. We show, under random
traffic, only a small number of real traffic values need
to be queried in order to obtain a good approximation
to the origin-destination distance with traffic (Theo-
rem 1.2).

1.1 Theoretical Result: Independent Models

We now briefly discuss our theoretical results, leaving
formal definitions to Section 2. In both our theoretical
and experimental results, we always use random noise
to model traffic, though not always noise that is inde-
pendent across all edges. In our theoretical results, the
graph is always undirected, though in experiments the
graphs are directed. We always start with a weighted
graph (e.g. road network) G, with weights intuitively
representing free-flow traffic values. To generate traf-
fic, multiply each edge weight by a random number
in [1, ρ] to produce a graph G′, representing a road
network with traffic. Given an origin-destination pair
s−t, our goal is to compute an s−t path that is as short
as possible within G′ without actually querying many
edges in G′. This, in the application, would amount to
computing an approximate traffic-aware shortest path
without much real traffic information. Specifically,
given a bound on the number of probes required, we
can obtain a traffic-aware distance data structure from
a no-traffic one when edge weights are independently
chosen:

Theorem 1.1. Suppose that Algorithm 1 probes at
most K0 edges and that, given an δ > 0 and a
graph G, there exists a data structure X that takes
K1 time to initialize and is equipped with a method
ApproxNoTrafficDistance(s, t,G) that outputs a (1+
δ)-approximation to dG(s, t) in K2 time. Then, given
ϵ > 0, an m-edge graph G, a (traffic) weight distri-
bution D in which edges are independent, and query
access to a hidden graph G′ as described previously,
there exists a data structure Y that takes Õ(m +
K1) time to initialize and is equipped with a method
ApproxTrafficDistance(s, t,D, G,G′) that computes
a (1 + ϵ)-approximation to dG′(s, t) with probability at
least 1− 1/m8 in Õ(K2

0K2) time.

We prove this result in Appendix A.1. As per (Abra-
ham et al., 2010), K1 = Õ(m) and K2 = polylog(n)
in practice. Therefore, if we can bound the number of
probes K0, then we obtain a data structure for traffic
routing with polylogarithmic runtime per query. Thus,
we focus on the problem of showing that few probes to
G′ are required to compute shortest paths inG′. Doing
this for arbitrary graphs G′ is impossible, as in graphs
G′ with a large number of parallel edges, one has to

query all of the parallel edges in order to find an ap-
proximately shortest s− t path. However, this behav-
ior is not realistic in practice, as it would require the
existence of lots of potentially optimal disjoint paths
between a given origin and destination. This is im-
plausible in road networks, as most shortest paths use
highways at some point and there are not many high-
ways to choose from. This observation motivated the
work of Abraham et al. (2010) and led them to only
consider the class of graphs that have what they called
low highway dimension1. Since we only care (and can)
find approximately shortest paths, we can show results
for a broader class of graphs – graphs with low contin-
uous doubling dimension (cdd).

A graph has doubling dimension α if the ball of radius
2R around any vertex v can be written as the union
of balls of radius R around a collection of at most 2α

other vertices. This definition is motivated by what
happens in Rα, as any α-dimensional ball of radius
2R can be covered with at most 6α balls of radius R.
Road networks are often assumed to have low doubling
dimension (Abraham et al., 2006, 2016; Feldmann and
Marx, 2018). For our purposes, we need a slightly
stronger property: we need the the graph where each
edge is chopped up into infinitesimally small segments
to have low doubling dimension as well. This is called
continuous doubling dimension (cdd). Our main result
shows that if G has low cdd, only a small number of
edges need to be queried:

Theorem 1.2. If the graph G has cdd α, then Algo-
rithm 1 probes at most ((ρ log n)/ϵ)O(α) edges, and re-

turns a number, δ̂, that satisfies |δ̂ − δ| ≤ ϵδ with high
probability. Here δ is the actual shortest path length
from s to t in G′.

Theorem 1.2 states that the number of probes required
to estimate the length of the shortest path in G′ is
small. In practice, we of course want to produce a
path from s to t with short length in G′, not just know
the length of that path. This unfortunately requires a
large number of probes in general:

Theorem 1.3. Any adaptive probing strategy with
query complexity at most n/1002 returns a path P in
G′ with quality q(P ) > 9/8 − 1/10 > 1 with proba-
bility at least 1 − 2n−100 where q(P ) is the ratio be-
tween length of path P and the shortest path in G′;
i.e., q(P ) := ℓG′(P )/dG′(s, t).

Luckily, the example is somewhat pathological. Intu-
itively, this example enables getting on and off of a
highway many times in a row, which does not make

1For the formal definition of (continuous) highway di-
mension, see Appendix A.2.

2The constant 100 can be generalized to any c. We
chose 100 for simplicity and purpose of our results.
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sense for any near-shortest path in real road networks.
The following assumption captures this idea:

Assumption 1 (Polynomial Paths). G has the prop-
erty that, for any origin-destination pair s − t, the
number of distinct possible s − t shortest paths (over
choices of each edge’s random multiplier) is at most
U = poly(|V (G)|)

We show that we can in fact find a short path in G′ if
G satisfies the polynomial paths assumption, which it
likely does in practice:

Theorem 1.4. Algorithm 1, with the threshold
cϵ2L/(ρ4 log n) replaced with cϵ2L/(ρ4 log nU), finds
a (1 + ϵ)-approximate shortest path in G′ with
probability at least 1 − n−100 and queries at most
((ρ log nU)/ϵ)O(α) edges if both of the following hold:

1. G satisfies the polynomial paths assumption.

2. G has cdd at most α.

The proofs of Theorems 1.3 and 1.4 can be found in
Appendices A.6 and A.7.

1.2 Theoretical Results: Correlated Model

Up to this point, randomness for different edges has al-
ways been independent. This is unreasonable in prac-
tice, as traffic on nearby segments of a highway is likely
to be very correlated. We model this correlation as fol-
lows.

We start with a weighted graph G = (V,E,w).
Suppose that there are m hidden variables y =
(y1, y2, . . . , ym). Each hidden variable yi follows an in-
dependent distribution Di within the range [λi, λi · ρ].
To generate real-time traffic, each edge e ∈ E has ac-
tual weight in the following form:

w′
e(y) =

(
m∑
i=1

λe
i · yi

)β

· we, (1)

where {λe
i}i∈[m],e∈E are known non-negative real num-

bers, called dependence parameters. These parameters
indicates the influence of hidden variable yi on the edge
e.

Think about this model as follows. Each i represents
a specific origin-destination pair that users may travel
on, with aggregation allowed between long distance
pairs. For instance, one i could represent the centers
of two major cities, or the centers of two suburbs. yi
represents the number of people traveling between the
origin and destination per hour at a randomly chosen
time. Thus, yi is random. Furthermore, conditioned
on the chosen time of day, different yi’s are likely to

be independent random variables. Each edge has total
traffic as a linear combination (i.e.

∑m
i=1 λ

e
i ·yi) of the

all the demands that affect it. f(t) = tβ is a power
function mapping the total traffic on an edge to its
traversing time, where β is generally set to 4 in the
literature (Manual, 1964; Çolak et al., 2016; Benita
et al., 2020).

Instead of probing on edges, in this model we are al-
lowed to probe on the demands (i.e. yi’s). We use
the term “under basic demands” to represent the sce-
nario when all the hidden variables are at their lowest
possible values, i.e. y = (λ1, λ2, . . . , λm).

For each hidden variable yi, define cluster i as Ci =
{e : λe

i > 0}, i.e. the set of edges that are actually
influenced by yi. In this model, we apply the same
idea as Algorithm 1 to probe the demands with the
largest cluster sizes, after a normalization step. The
full algorithm can be found in Appendix A.3.

We have the following theorem which bounds the num-
ber of demand probes in order to estimate the shortest
path length:

Theorem 1.5. Given a weighted graph G = (V,E,w)
and a pair of vertices s and t. Suppose there are
some hidden random variables {yi}i∈[m], each follows
an independent bounded distribution within the range
[λi, ρ · λi]. Suppose that G satisfies the following:

1. G has continuous highway dimension h under ba-
sic demands;

2. Every Ci represents a shortest path under basic
demands;

3. Every edge in G only falls in at most ℓ different
clusters;

In the actual graph G′ = (V,E,w′), w′ satisfies Equa-
tion (1) with dependence parameters {λe

i}i∈[m],e∈E.

Then, Algorithm 3 uses at most
(

logn·ρβ ·ℓ
ϵ2

)O(log h)

probes on the demands and returns a (1 + ϵ)-
approximate shortest path length from s to t in G′ with
high probability.

If one wants an exact constant dependency on log h in
the exponent, it is safe to replace O(log h) with 6 log h.
When n≫ h, the constant can be close to 4. In prac-
tice, one should think of h as being constant, as road
networks are known to have low highway dimension as
discussed earlier. β = 4 in practice as discussed earlier.
ℓ is likely constant in practice due to the fact that one
can aggregate demands between distant locations, thus
resulting in a small number of truly distinct paths that
traverse a given highway segment. Thus, the number
of queries stated in this theorem is polylogarithmic in
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practice. We will analyze the algorithm and present
some ideas of proving the above theorem in Section 3.4.
Apart from our main result, Theorem 1.2, the detailed
proofs of all theorems and lemmas are provided in the
Appendix.

1.3 Experimental Results

Our algorithms work by querying edges or paths with
high edge weight in G. We show that querying edges
does in fact improve the ability to find an approxi-
mately shortest path in G′. We illustrate this using
several regional road networks obtained from Open
Street Maps (OSM) data (OpenStreetMap contribu-
tors, 2017).

1.4 Related Work

Our problem is closely related to first passage percola-
tion which is a classic problem in probability theory.
Given a graph G with random edge weights drawn
from independent distributions, the goal is to under-
stand the behavior of the s-t distance in the weighted
version of G as a random variable. In most of the
literature, G is a d-dimensional grid for some con-
stant d (e.g. Kesten (1993)) and s and t are faraway
points within the grid. (This is to minimize the vari-
ance of the distance relative to its mean.) There is
some work (e.g. Aldous (2016)) that studies first pas-
sage percolation on general graphs. However, what
one can prove in general graphs is inherently limited
by the presence of edges with high edge weight. We
deal with this challenge in Theorem 1.2 by probing the
edge weights of high-weight edges, and arguing (like in
Kesten (1993)) that the remaining edges have low to-
tal variance. For more background, see Kesten (1987,
1993); Steif (2009); Auffinger et al. (2015).

With the same setting, a more related question is
the Canadian Traveler Problem where the goal is still
to find the shortest path but the edge weight is re-
vealed once we reach one of its endpoints. This allows
some adaptive routing strategies to optimize the path
(Papadimitriou and Yannakakis, 1991; Nikolova and
Karger, 2008), but there are still no known efficient al-
gorithms. Recent works (Bnaya et al., 2009; Bhaskara
et al., 2020) also allow probing in advance and predict-
ing models to find the optimal shortest path in prac-
tice. The setting is also closely related to Stochastic
Shortest Path Problem where we want to find the path
with the minimum total expected weight. Papers are
widely ranged from computing the deterministic op-
timal strategy (Bertsekas and Tsitsiklis, 1991) to an
online learning setting in the context of regret min-
imization (Rosenberg and Mansour, 2019; Rosenberg
et al., 2020; Tarbouriech et al., 2021; Cohen et al.,

2021).

In our paper, we show a much simpler strategy to
probe significant edges on a graph with special prop-
erties which are shown to be true in many real traf-
fic networks (Schultes and Sanders, 2007; Geisberger
et al., 2008; Abraham et al., 2010; Zhu et al., 2013).

2 PRELIMINARIES AND
PROBLEM SETTING

2.1 Notation

Let G = (VG, EG, w
G) be a weighted undirected graph

with weight wG
e for each edge e. Let ℓG(P ) be the

length of path P in graph G. Let PG(u, v) be the
shortest path from u to v with length dG(u, v). Given
r > 0 and u ∈ V , let BG

u (r) = {v ∈ V | dG(u, v) ≤ r}
be the ball of radius r centered at u. We may omit the
script G when it is clear from the context.

2.2 Setting: Independent Model

In this paper, we prove theoretical results in two set-
tings: the independent setting and the correlated set-
ting. The results in the independent setting rely on
fewer assumptions and are simpler, while the results
in the correlated setting are more relevant to the prob-
lem of routing under real-world traffic conditions. We
already defined the correlated setting in Section 1.2.
In this section, we define the independent setting and
give the probing algorithm used (Algorithm 1). It is
helpful to look at this algorithm, as the algorithm in
the correlated setting (Algorithm 3) is a generalization
of Algorithm 1.

In the independent setting, we are given a weighted
undirected graph G = (V,E,w), source s and destina-
tion t. We often refer to the number of vertices |V |
as n. Consider the following edge weight distribution,
D, where the weight of each edge e is sampled from a
distribution Ωe bounded between [we, ρwe] (the distri-
bution can vary from edge to edge).

A new graph G′ = (V,E,w′) is a random graph ob-
tained by re-weighting the edges of G according to
w′ ∼ D. Call the new weights w′ the actual weights,
and the new graph G′ = (V,E,w′) the actual graph. 3

Note that only G and D are known to us – we do not
know w′, but we can probe an edge e ∈ E to learn its
actual weight w′

e.

Our goal is to estimate the shortest path length from s

3One might wonder why we refer to the random variable
as the actual value. This is motivated by the setting when
the real value is unknown to us, as we have seen in real
traffic.
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to t in G′ using as few probes as possible – and ideally
recover such a path. For this purpose, we propose the
following algorithm. We will see how to choose the
parameters c and ϵ later in the theoretical analysis of
this algorithm.

Algorithm 1

procedure ApproximateLength(s, t,D, G,G′)

L← dG(s, t)

w′′ ∼ D
G′′ ← (V,E,w′′)

H ← G′′[G ∩BG
s (ρL)]

for e ∈ EH do

if we > cϵ2L/(ρ4 log n) then

wH
e ← w′

e

return dH(s, t)

The main idea is to simulate our own version of G′

with the given information, G and D. We adjust some
edge weights until our simulation is close enough to
G′. Then, we output the shortest path length in our
simulation.

To construct our version of G′, we first create a graph
G′′ by re-weighting the edges of G according to w′′ ∼
D. Our simulation H is then created as an induced
subgraph of G′′[G ∩ BG

s (ρL)] where L is the length
of s − t shortest path in G. In other words, H is
the graph G′′ which includes only nodes v such that
dG(s, v) ≤ ρL.

We adjust some edge weights of H by probing the
actual edge weight w′

e when we is above a threshold
cϵ2L/(ρ4 log n). Our main result, Theorem 1.2, guar-
antees that the length of s−t shortest path in the sim-
ulation graph H is approximately equal to dG′(s, t).

While Theorem 1.2 bounds the approximation error
of ApproximateLength for all graphs, it requires an
assumption in order to bound the number of queried
edges. To approximate the length of the path, it suf-
fices for the graph to have low doubling dimension. To
actually produce a path whose length is approximately
shortest in G′, we need Assumption 1.

3 THEORETICAL ANALYSIS

In this section, we will show that our algorithm
from Section 2 succeeds with high probability in re-
covering a near-optimal shortest path for graphs with
small continuous doubling dimension (Theorem 1.2).

3.1 Continuous Doubling Dimension

We first start with a definition of the doubling dimen-
sion.

Definition 3.1 (Doubling Dimension (Abraham et al.,
2010)). A graph has doubling dimension α if every ball
can be covered by at most 2h balls of half the radius;
i.e. a graph G has doubling dimension α if for any
u ∈ V, r > 0, there exists a set S ⊆ V with size at
most 2α such that Bu(r) ⊆

⋃
v∈S Bv(r/2).

For our results, we require a slightly different notion of
doubling dimension, which we call continuous doubling
dimension. Just like the difference between highway
dimension and continuous highway dimension from
Abraham et al. (2010), in our continuous doubling di-
mension, we actually measure the doubling dimension
of the graph after it is made continuous by subdividing
all its edges into infinitesimally small segments accord-
ing to their weights. The two versions of doubling di-
mensions do not serve as upper bound for each other,
but they perform similarly in real-world networks. We
use the continuous version since our proof crucially
uses the fact that the union of balls in the definition
must cover the entirety of each edge.

Definition 3.2 (Continuous Doubling Dimension).
Consider a graph G. For a value k, replace each edge
with a path of length k to obtain a graph Gk, where
each new edge has a weight equal to 1/k times the orig-
inal weight. The continuous doubling dimension (cdd)
of G is defined to be the limit as k goes to infinity of
the doubling dimension of Gk.

First, we will start with a simple result which says that
in a graph with low cdd, there cannot be too many
edges with large weight.

Lemma 3.3. Let G = (V,E,w) be a weighted graph
with cdd α. If G has diameter L, then there are at

most O
((

3L
r

)α)
edges with weight larger than r > 0.

Proof. We first show that the number of edges with a
weight larger than r is less than the number of balls
of radius r

3 needed to cover the graph. This follows
from two facts: (1) by definition, the midpoint of each
high-weighted edge has to be covered by at least one of
these balls, and (2) no ball of radius r

3 can cover two
such midpoints simultaneously because the distance
between them is at least r.

To compute the number of balls of radius r
3 needed to

cover a ball of radius L we apply the cdd definition
recursively. Because G has cdd α and is contained
inside a ball of radius L, it can be covered with at most
2α⌈log

3L
r ⌉ balls of radius r

3 . This proves the lemma.
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3.2 Concentration of Shortest Path Lengths

We state a lemma that will be used to show the con-
centration bound in our main result. The lemma is
shown for a more general case where edge weights are
correlated and form (possibly joint) clusters {Ci}mi=1.
Each cluster Ci corresponds to an independent ran-
dom variable yi. Denote y = (y1, y2, . . . , ym). An
edge e has original weight we and a multiplier func-
tion fe of all the variables y, but only depends on the
variables whose corresponding clusters contain e (i.e.
{yi : e ∈ Ci}). These corresponding hidden variables
are called its dependent variables. The actual travers-
ing time on an edge e when the hidden variables being
y is fe(y) · we.

The concentration bound is as follows:

Lemma 3.4. Given a weighted graph with G =
(V,E, {we}e∈E), a set of multiplier functions on edges
{fe}e∈E, source s and destination t, and a weight
threshold W ∈ R+. There are m clusters {Ci}mi=1 each
with cluster weight ci =

∑
e∈Ci

we. Each edge e ∈ E
is included in at most ℓ different clusters.

Consider the random variable distribution of y, de-
noted by D′. For each cluster Ci, if ci > W , then the
random variable yi has fixed value y′i; otherwise, the
random variable is drawn from independent distribu-
tions such that for each edge e ∈ E, the function fe is
bounded between [1, ρ′].

Then, for two sets of random variables y1,y2 drawn
independently at random from D′, we have

Pr(|δ(y1)− δ(y2)| ≥ τ)

≤ 8 exp

(
−τ2

16ρ′(ρ′ − 1)2 ·W · ℓ · supy δ(y)

)
,

where δ(y) is the length of shortest path from s to t in
Gy = (V,E, {we · fe(y)}e∈E).

The proof is provided in Appendix A.4.

3.3 Analysis of Algorithm: Independent
Model

Our main result for the independent model is the fol-
lowing.

Theorem 1.2. If the graph G has cdd α, then Algo-
rithm 1 probes at most ((ρ log n)/ϵ)O(α) edges, and re-

turns a number, δ̂, that satisfies |δ̂ − δ| ≤ ϵδ with high
probability. Here δ is the actual shortest path length
from s to t in G′.

Proof. First, we need to show that the simulation
graph H does not exclude any possible shortest path.
Consider any path P from s with a length greater than

ρL in G. Its actual length ℓG′(P ) cannot be smaller
than ρL (since w′

e ≥ we for all e). On the other hand,
the s-t shortest path in G has length at most ρL in
the actual graph, G′, therefore P cannot be the short-
est path. This implies that our simulation graph, H,
contains all possible shortest paths in the actual graph
G′.

By definition, the graph G∩BG
s (ρL) has a diameter no

greater than ρL and we probe every edge with weight
greater than cϵ2L/(ρ4 log n). By Lemma 3.3, the num-
ber of such edges (and thus the number of probes) is
at most ((ρ log n)/ϵ)O(α).

Note that in graph H, each edge e with we > W :=
cϵ2L/(ρ4 log n) is probed and so has a fixed value,
whereas the remaining edges are random and can take
any value in the interval [we, ρwe]. Because both edge
weight of H and G′ is drawn from the same distribu-
tion, D with equal large edge weight. Thus, we can
apply Lemma 3.4 where each cluster is a singleton,
and τ = ϵδ for some appropriately chosen constant
c = 1/16 and obtain the desired concentration bound
on the shortest path length

Pr(|δ̂ − δ| ≥ ϵδ) ≤ 8 exp

(
−δ2ρ3 log n

(ρ− 1)2L · supz δ(z)

)
≤ 8/n,

where the inequality follows from L ≤ δ and
supz δ(z) ≤ ρL ≤ ρδ.

3.4 Analysis of Algorithm: Correlated Model

In Algorithm 3, we first conduct a normalization step.
After the normalization step, we obtain a graph G̃ with
all its edge weights {w̃e}e∈E equal to the traversing
time under basic demands. Since the original travers-
ing time satisfies Equation (1), for each set of hidden
random variables y, we can represent the traversing
time on an edge e by w′

e(y) = w̃e · fe(y), where the
multiplier function fe(y) is bounded between [1, ρβ ].

We define the normalized size of a cluster Ci as its
actual size under the basic demand, that is

∑
e∈Ci

w̃e

in Algorithm 3. To prove Theorem 1.5, we first present
a lemma where we show that a ball cannot intersect
with too many clusters with large normalized cluster
sizes. The proof is omitted here and can be found in
Appendix A.5.

Lemma 3.5. Given any graph G and a set of clus-
ters {Ci}mi=1. If the graph has continuous highway di-
mension h, each cluster is a shortest path in G and
each edge appears in at most ℓ different clusters, any
R-radius ball centered at a point s intersects with at

most h3 · ℓ ·
(
R
Γ

)log h
Γ-large clusters.

Using the above lemma and the concentration bound
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stated in Lemma 3.4, we can prove Theorem 1.5 as
follows.

Proof of Theorem 1.5. Algorithm 3 probes all the hid-
den variable in the set: {yi : Ωi > Γ′}, where

Γ′ = ϵ2·L
16·log 2n·ρ3β ·ℓ . By the second property in The-

orem 1.5, the total number of probes is the number of
Γ′-large shortest paths that intersect with the ρβ · L-
radius ball. By applying Lemma 3.5 with Γ = Γ′ and
R = ρβ · L on G̃, the number of probes is bounded by

h3 · ℓ ·
(
ρβ · L
Γ′

)log h

= h3 · ℓ ·
(
ρβ · L · 16 · log 2n · ρ3β · ℓ

ϵ2 · L

)log h

=

(
log n · ρβ · ℓ

ϵ2

)O(log h)

.

After the normalization step each edge in G̃ only varies
within a multiplicative factor of ρβ , we extract the sub-
graph with all the candidate shortest paths and denote
it by H in the algorithm. Since any shortest path in
G̃ has length at most ρβ · L. H has radius at most
ρβ · L. Suppose the real hidden random variable is y
and Algorithm 3 uses fake sample y′ to generate the
shortest path. The real shortest path length is δ(y)
and Algorithm 3 returns the length δ(y′). In Algo-
rithm 3 we have probed all the clusters with normal-

ized size more than ϵ2·L
16·log 2n·ρ3β ·ℓ . Since y and y′ can

be viewed as two sets of random variables indepen-
dently drawn from the same distribution, by applying

Lemma 3.4 with W = ϵ2·L
16·log 2n·ρ3β ·ℓ , ρ

′ = ρβ , τ = ϵ ·L,
graph G = (V,E, {w̃e∈E}) and functions {fe}e∈E , we
have Pr

[
|δ(y)−δ(y′)| > ϵ ·L

]
≤ 1/n. Therefore, Algo-

rithm 3 outputs a length which is (1+ϵ)-approximation
to the real shortest path length with high probability,
completing the proof.

4 EXPERIMENTS

In this section, we observe that edge probes do indeed
help estimate s−t distances in G′ in the correlated set-
ting. We even observe this in the special case in which
each edge is affected by exactly one hidden variable.

4.1 Experiment Setup

In our experiments, we take a road network from Open
Street Maps (OSM). In our experiments, we construct
a graph, where each vertex represents a road segment
and each arc represents a valid transition between a
pair of road segments. We construct graphs for two
different regions:

1. Baden-Wurttemberg, a state in southwestern Ger-
many

2. Washington State, USA

We chose both regions as they are somewhat different,
large enough to have medium length trips, and small
enough to fit on one machine. In both regions, we run
one experiment. For each region, we generate a set of
100 queries. Each query is a single pair of points in
the graph, selected uniformly at random subject to the
constraint that the points are between 5 and 20 miles
of one another. For context, the maximum distance
between any pair of points as the crow flies in Baden-
Wurttemberg and Washington is approximately 180
and 400 miles respectively.

We use simulated traffic generated via the model de-
scribed in Section 1.2. In our experiments, we use
β = 1 for simplicity. We obtained clusters {Ci}i as
follows:

1. Consider all OSM segments that are on highways
(priority 0 in OSM) or are highway exit ramps
(priority 1 in OSM). Let X be the set of arcs in
the graph corresponding to these segments.

2. Hash these segments to the unique S2 cell at level
8 that contains them. Define {Ci}i to be the re-
sulting partition of X.

3. For each arc e not in X, add a singleton cluster
{e} to the family {Ci}i.

Note that each arc in the graph is in exactly one Ci. As
in Section 1.2, associate a hidden random variable yi
with Ci, where all of the hidden random variables are
chosen independently and uniformly from the interval
[1, 2]. For all arcs e ∈ X, λe

i = 1, where i is the
unique value for which e ∈ Ci. For any other pair
(e, i), λe

i = 0. For an arc e, we is the travel time in
seconds required to cross the arc.

We use a simplified version of Algorithm 3 to pro-
duce an approximate path, where the threshold is
changed for simplicity. In particular, we have a thresh-
old scale ts which is used to adjust the threshold.
Its main purpose is to see the effect of the num-
ber of clusters queried on path length approxima-
tion performance. For each region (Washington and
Baden-Württemberg), we enumerate the threshold
scale ts within the value set {1×10−5, 1.2×10−5, 1.4×
10−5, 1.6 × 10−5, 1.8 × 10−5, 2 × 10−5, 4 × 10−5, 5 ×
10−5, 6×10−5, 7×10−5, 8×10−5, 9×10−5, 1×10−4, 1×
10−3, 3 × 10−3, 0.01, 0.03, 0.1, 0.3, 1}. For each pair of
points in the 100 origin-destination pairs we generate,
denote by L the no-traffic shortest path length between
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Figure 1: The probed approximation ratio of Baden-
Württemberg

the points. We probe all the clusters with total weight
above the following threshold:

Γ =
L̂ · ϵ2

log n · ts
,

where L̂ = Lmin · 2⌊log2(L/Lmin)⌋ is the largest power
of 2 multiplied by the minimum no-traffic path length
Lmin between any generated point pair, such that the
product is no more than L.

Specifically, let H be the graph constructed in that al-
gorithm; that is the graph with arc weights obtained
by probing all clusters with total arc weight above the
threshold Γ. For the query pair (s, t), let PH and PG′′

denote the s−t shortest path inH andG′′ respectively,
where G′′ is an identically sampled copy of G′; i.e. the
graph with no probes. Define the probed approxima-
tion ratio for the query pair (s, t) to be the ratio of
the length of PH in the real graph G′ to the length
of the s − t shortest path in G′. Define the no-probe
approximation ratio for the query pair (s, t) to be the
ratio of the length of PG′′ in G′ to the length of the
shortest path in G′.

After selecting each threshold scale, we count the frac-
tion of probed clusters with respect to the total num-
ber of clusters in the entire graph. We pick the maxi-
mum fraction among all 100 queries and use this spe-
cific fraction as a “probed fraction upper bound” cor-
responding to that threshold scale. In Figure 1 and
Figure 2, we present the plot with this fraction upper
bound of each threshold scale as the x-axis 4, and the
90% percentile of the probed approximation ratio as
the y-axis. The drastic drop in the first few nodes sup-
ports our intuition that the path length approximation
performance can be improved by a few probes.

4We use the logarithmic scale on the x-axis when plot-
ting.

Figure 2: The probed approximation ratio of Wash-
ington

We assessed the efficacy of probing by studying statis-
tics of the probed and no-probed approximation ratios
for the 100 queries. In Baden-Württemberg,

1. 90 out of 100 of all query pairs had a probed
approximation ratio below 1.012 (i.e. 1.2% dis-
tortion), with an average of .01% of all clusters
probed per query pair.

2. the 90th out of 100 of all query pairs had a no-
probe approximation ratio of 1.061 (i.e. 6.1% dis-
tortion)

In Washington,

1. 90 out of 100 of all query pairs had a probed
approximation ratio below 1.018 (i.e. 1.8% dis-
tortion), with an average of .34% of all clusters
probed per query pair.

2. the 90th out of 100 of all query pairs had a no-
probe approximation ratio of 1.103 (i.e. 10.3%
distortion)

Thus, in both cases, a small percentage of clusters
results in a much shorter path as measured in the
real traffic graph in both Washington and Baden-
Württemberg.

5 CONCLUSION

Path search is a fundamental problem in computer sci-
ence. In many applications – like finding driving direc-
tions in road networks – edge weights are inherently
hidden. Thus, we would like to find shortest paths
with as few queries to real edge weights as possible. In
this work, we modeled traffic using random, possibly
correlated, edge weights and observed that we could
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(a) approximate the s− t traffic-aware distance or (b)
compute an approximate traffic-aware s−t path with a
small number of queries under certain realistic assump-
tions. Even better, (a) can be done in a small amount
of runtime. Furthermore, we observed that these as-
sumptions are fundamentally required in order to be
able to find paths with a small number of queries, the-
oretically speaking. Experimentally, though, we ob-
served that these results are quite pessimistic.

In future work, it would be great to turn these ob-
servations into practical data structures for answering
shortest path queries with traffic using no or little pre-
processing. CRP (Delling et al., 2011) requires work to
recompute shortcuts whenever edge weights in a clus-
ter change. One could avoid that by clustering the
graph into correlated pieces (highways) and applying
our algorithm for correlated costs.

It would also be interesting to generalize the obser-
vations in this paper to other optimization problems.
Our proof is quite simple and is not inherently tied
to the shortest path problem. This could lead to sim-
pler dynamic data structures for many problems when
uncertainty in the input is random rather than adver-
sarial.
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S. Çolak, A. Lima, and M. C. González. Understand-
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A APPENDIX: MISSING PROOFS
AND DEFINITIONS

In this section, we provide the missing proofs and def-
initions.

A.1 Approximate Traffic Distance Data
Structure

Theorem 1.1. Suppose that Algorithm 1 probes at
most K0 edges and that, given an δ > 0 and a
graph G, there exists a data structure X that takes
K1 time to initialize and is equipped with a method
ApproxNoTrafficDistance(s, t,G) that outputs a (1+
δ)-approximation to dG(s, t) in K2 time. Then, given
ϵ > 0, an m-edge graph G, a (traffic) weight distri-
bution D in which edges are independent, and query
access to a hidden graph G′ as described previously,
there exists a data structure Y that takes Õ(m +
K1) time to initialize and is equipped with a method
ApproxTrafficDistance(s, t,D, G,G′) that computes
a (1 + ϵ)-approximation to dG′(s, t) with probability at
least 1− 1/m8 in Õ(K2

0K2) time.

We now give the data structure
ApproxTrafficDistance. Recall that Algorithm
1 probes all edges in the required neighborhood with
weight above a certain threshold and computes the
s− t distance in the graph H obtained by sampling a
fresh copy of G′ (the graph G′′) and substituting the
probed edge weights. This algorithm can be slow due
to the call to Dijkstra on H. Instead, one can call a
distance oracle on G′′ with the probed edges deleted
from the graph. This contains all of the information
needed from G′′. To compute the s− t distance in G′,
make a graph I consisting of s, t, and the endpoints
of all probed edges with non-probed edges weighted
by the length of the shortest path that does not use
any probed edge. I has at most O(K0) vertices, so
running Dijkstra on this graph is fast.

Proof of Theorem 1.1. We first bound the runtime of
the algorithm. For preprocessing, computing w′′ and
G′′ takes O(m) time and preprocessing the no-traffic
data structure on G takes O(K1) time. Computing
all Eis and G′′

i s takes Õ(m) time, as this is only
done log((maxf wf )/(minf wf )) times, for a total of

O(m log((maxf wf )/(minf wf ))) = Õ(m) time. Com-

puting each Fi takes Õ(m) time by Miller et al. (2013),
for a total of Õ(m) time. Preprocessing the G′′

i data
structures takes Õ(K1) time. Computing all of the sets
ES takes Õ(m) by the degree property of the sparse
cover; specifically computing ES takes O(|E(G[S])|)
time, so the total work for Fi is

5Theorem 3.1 Awerbuch and Peleg (1990), k = logn.

Algorithm 2 The preprocessing and query methods
of the data structure ApproxTrafficDistance.

procedure PreproApproxTrafficDistance

(D, G,G′, ϵ)

w′′ ∼ D
G′′ ← (V,E,w′′)

PreprocessApproxNoTrafficDistance(G, ϵ/10)

for i ∈ [log(minf wf ), log(maxf wf )] do

Ei ← e ∈ E(G) for which

we > cϵ22i/(ρ4 log n)

G′′
i ← G′′\Ei

PreprocessApprox-

NoTrafficDistance(G′′
i , ϵ/10)

Fi ← sparse cover5for {BG
u (ρ2i)}u∈V (G)

for S ∈ Fi do

ES ← Ei ∩G[S]

procedure QueryApproxTrafficDistance

(s, t,D, G,G′)

L←QueryApproxNoTrafficDistance(s, t,G)

i← logL

S ← a set in Fi that contains all of B
G
s (100ρ2i)

(exists by definition of sparse cover)

X ← {s, t} ∪ {endpoints of edges in ES}
I ← complete directed graph on X, where

wI
uv ←QueryApproxNoTrafficDistance(u, v,G′′

i )

for all u, v ∈ X

for e ∈ ES do

wI
e ← min(w′

e, w
I
e)

return dI(s, t)
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∑
S∈Fi

O(|E(G[S])|)

=
∑
S∈Fi

∑
e∈E(G[S])

O(1)

=
∑

e∈E(G)

O(number of S ∈ Fi with e ∈ E(G[S]))

≤
∑

e∈E(G)

O
(
(log n)n1/(logn)

)
= Õ(m)

This completes the preprocessing time bound. For
query time, computing L takes K2 time, i takes O(1)
time, and S takes O(1) time, as only a pointer to
S needs to be stored. Since |ES | ≤ K0 by the ra-
dius bound of the sparse cover, constructing I takes
Õ(K2

0K2) time. Substituting the probed edge weights
takes K0 time and running Dijkstra in I takes Õ(K2

0 )
time. Thus, the total query time is Õ(K2

0K2), as de-
sired.

Now, we bound the approximation error of the re-
turned number. By Theorem 1, the shortest path in
G′′

i with probed edges from G′ added is a (1 + ϵ/10)-
approximation to the shortest path in G′. Let v0 =
s, v1, v2, . . . , vk−1, vk = t denote the subsequence of
vertices visited by the path that are also in I. If
{vi, vi+1} ∈ ES , then the probed value from G′ is
present in I. If {vi, vi+1} /∈ ES , then the subpath
between vi and vi+1 does not use any probed edge, so
the vi − vi+1 subpath is also a shortest path in G′′

i .
This means that wI

vivi+1
is a (1+ ϵ/10)-approximation

to the length of the subpath, so the shortest path in I
is a (1 + ϵ/10)2 < (1 + ϵ)-approximation to the length
of the shortest path in G′, as desired.

A.2 Definition of Highway Dimension

We use P (v, w) to denote the shortest path between
a pair of vertices v and w. The definition of highway
dimension is as follows:

Definition (Highway Dimension (Abraham et al.,
2010)). Given a graph G = (V,E), the highway di-
mension of G is the smallest integer h such that

∀ r ∈ R+,∀u ∈ V,∃S ⊆ Bu,4r, |S| ≤ h, such that

∀ v, w ∈ Bu,4r, if |P (v, w)| > r and P (v, w) ⊆ Bu,4r,

then P (v, w) ∩ S ̸= ∅.

Similar as the continuous double dimension, we also
define the continuous highway dimension of a graph

by chopping each edge into infinitely many smaller seg-
ments:

Definition (Continuous Highway Dimension). Con-
sider a graph G. For a value k, replace each edge with
a path of length k to obtain a graph Gk, where each
new edge has a weight equal to 1/k times the original
weight. The continuous highway dimension of G is de-
fined to be the limit as k goes to infinity of the highway
dimension of Gk.

The continuous highway dimension can be used to up-
per bound the continuous doubling dimension (see Def-
inition 3.2), by the following lemma:

Lemma A.1 (Upper bound of continuous doubling
dimension). If a graph G has continuous doubling di-
mension α and continuous highway dimension h, we
have 2α ≤ h.

Proof. Omitted. See Claim 1 in Abraham et al. (2010)
for the proof.

A.3 Algorithm of Probing Demands

See Algorithm 3 for the algorithm.

Algorithm 3

procedure ProbingDemands

(s, t,G, {Di}i∈[m], {λi}i∈[m], {λe
i}i∈[m],e∈E ,y)

for i ∈ [m], e ∈ E do

w̃e ← we ·
(∑

i∈[m] (λ
e
i · λi)

)β
G̃← (V,E, w̃) ▷ Compute the edge weights

under basic demands

L← dG̃(s, t)

H ← G̃[G̃ ∩BG̃
s (ρβ · L)]

for i ∈ [m] do

Ωi ←
∑

e∈EH∩Ci
w̃e ▷ Compute the cluster

size of demand yi

if Ωi >
ϵ2·L

16·log 2n·ρ3β ·ℓ then

y′i ← yi ▷ Probe on yi if the effective size

is large

else

y′i ∼ Di ▷ Sample from Di otherwise

for e ∈ EH do

wH
e ← (

∑m
i=1 λ

e
i · y′i)

β · we

return dH(s, t)
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A.4 Concentration of Shortest Path Lengths

Here, we prove Lemma 3.4 that is used to establish
our main results, restated as follows:

Lemma 3.4. Given a weighted graph with G =
(V,E, {we}e∈E), a set of multiplier functions on edges
{fe}e∈E, source s and destination t, and a weight
threshold W ∈ R+. There are m clusters {Ci}mi=1 each
with cluster weight ci =

∑
e∈Ci

we. Each edge e ∈ E
is included in at most ℓ different clusters.

Consider the random variable distribution of y, de-
noted by D′. For each cluster Ci, if ci > W , then the
random variable yi has fixed value y′i; otherwise, the
random variable is drawn from independent distribu-
tions such that for each edge e ∈ E, the function fe is
bounded between [1, ρ′].

Then, for two sets of random variables y1,y2 drawn
independently at random from D′, we have

Pr(|δ(y1)− δ(y2)| ≥ τ)

≤ 8 exp

(
−τ2

16ρ′(ρ′ − 1)2 ·W · ℓ · supy δ(y)

)
,

where δ(y) is the length of shortest path from s to t in
Gy = (V,E, {we · fe(y)}e∈E).

Proof. For our proof, we will need the following version
of Talagrand’s concentration inequality.

Theorem A.2 (Theorem 9.4.14 of Zhao (2020)). Let
Ω = Ω1 × · · · ×Ωk equipped with the product measure.
Let f : Ω→ R be a function. Suppose for every x ∈ Ω,
there is some α(x) ∈ Rk

≥0 such that for every y ∈ Ω,

f(x) ≤ f(y) + dα(x)(x, y).

where dα(x)(x, y) =
∑

αi1xi ̸=yi
is the weighted Ham-

ming distance. Then, for every t ≥ 0,

Pr(|f −Mf | ≥ t) ≤ 4 exp

(
−t2

4 supx∈Ω |α(x)|2

)
where MX is the median for the random variable X;
i.e., Pr(X ≥MX) ≥ 1/2 and Pr(X ≤MX) ≤ 1/2.

We will apply Theorem A.2 to show that the length of
the shortest path is concentrated around its median.
Here, Ω is the joint distribution of hidden variables D′

and Ωi is the distribution of the hidden variable yi.

We show that the condition for Theorem A.2 holds for
f := −δ with the following. For any weight vector y
and x drawn from D′, let py (resp. px) be the shortest
path from s to t in Gy = (V,E, {we ·fe(y)}e∈E) (resp.

Gx = (V,E, {we ·fe(x)}e∈E)) and define α(x)i = (ρ′−
1) ·
∑

e∈px∩Ci
we if ci < W ; and 0 otherwise. We have

δ(y) ≤
∑
e∈px

we · fe(y)

=
∑
e∈px

we · fe(x) +
∑
e∈px

we · (fe(y)− fe(x))

We partition the set {e : e ∈ px} into two parts. The
first part E1 consists the edges whose dependent vari-
ables remain the same as y, i.e. E1 = {e ∈ px :
∀i, e ∈ Ci → xi = yi}. The rest edges are in E2:
E2 = {e ∈ px : ∃ i, e ∈ Ci, xi ̸= yi}. We have

δ(y) = δ(x) +
∑
e∈E1

we · (fe(y)− fe(x))+∑
e∈E2

we · (fe(y)− fe(x))

= δ(x) +
∑

e∈px:∃ i,e∈Ci,xi ̸=yi

we · (fe(y)− fe(x))

≤ δ(x) +
∑

i:xi ̸=yi

∑
e∈px∩Ci

we · (ρ′ − 1)

= δ(x) + dα(x)(x,y).

Observe that

sup
x
|α(x)|2 = sup

x

m∑
i=1

|α(x)i|2

≤ sup
x

(
m∑
i=1

|α(x)i|

)
· sup

x,i
α(x)i

≤ ρ′ · sup
x

δ(x) · ℓ · (ρ′ − 1) · sup
x,i

α(x)i

≤ ρ′ · sup
x

δ(x) · ℓ · (ρ′ − 1)2 ·W.

Applying Theorem A.2, we have

Pr(|δ(x)−Mδ| ≥ τ)

≤ 4 exp

(
−τ2

4ρ′(ρ′ − 1)2 ·W · ℓ · supz δ(z)

)
.

The theorem then follows by plugging in τ/2 and ap-
plying a union bound.

A.5 Bounds on the Intersected Large
Clusters

Lemma 3.5. Given any graph G and a set of clus-
ters {Ci}mi=1. If the graph has continuous highway di-
mension h, each cluster is a shortest path in G and
each edge appears in at most ℓ different clusters, any
R-radius ball centered at a point s intersects with at

most h3 · ℓ ·
(
R
Γ

)log h
Γ-large clusters.
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Proof. We first prove that an r-radius ball can only in-
tersect with h2 ·ℓ different clusters with total weight in
the range (r, ∞). If a path is intersecting the r-radius
ball and has total length larger than r, it must con-
tain a subset of edges with total weight greater than r
that form a shortest path inside the 4r-radius ball cen-
tered at s. By the definition of the highway dimension,
the shortest path inside the 4r-radius ball contains at
least one of the highway points. By the third property,
we know that each highway point inside an edge (not
vertex) is covered by at most ℓ different clusters. A
highway point on a vertex v falls on at most ℓ · d(v)
different clusters, where d(v) is the degree of the ver-
tex v. Denote the continuous doubling dimension of
the graph by α, we have α ≤ log h (by Lemma A.1).
Since we have 2α as an upper bound of the degree of a
vertex, we have d(v) ≤ h. Therefore, the r radius ball
will intersect with at most h2 · ℓ clusters with size in
the range (r, ∞).

Since the continuous doubling dimension of G is
bounded by log h, we can cover the R-radius ball with
h⌈logR/r⌉ r-radius balls. Let r = Γ. Each r-radius ball
intersects with at most h2 · ℓ Γ-large clusters, the to-
tal number of Γ-large clusters intersecting with the
R-radius ball is at bounded by h⌈logR/Γ⌉ · h2 · ℓ ≤
h3 · ℓ ·

(
R
Γ

)log h
.

A.6 Finding a Short Path in G′ Requires
Lots of Probes

In Section 3, we showed that the s − t distance in
the real graph G′ can be approximated using a small
number of probes to edge weights in G′. Even better,
these probes are done non-adaptively ; i.e. the edges
are probed in one batch. One may wonder whether it
is possible to always produce a short path in G′. By
short path, we mean the path whose length is approx-
imately equal to the shortest path between s and t.
We show that this is indeed impossible, even with a
large number of adaptively chosen probes. In order
to formally describe the result, we first need to define
adaptive probing strategies:

Definition A.3 (Adaptive probing strategies). Con-
sider a hidden graph G′. An adaptive probing strategy
is an algorithm A that takes a pair (s, t) of vertices
in G′ along with the unweighted edges of G′ and out-
puts an s − t path P . The algorithm is also given the
weights of some edges in G′, given as follows. The
algorithm picks a sequence of edges e1, e2, . . . , ek and
sees their edge weights w1, w2, . . . , wk respectively in
G′. The choice of the eis is allowed to be adaptive, in
the sense that the choice of ei is a function of s, t, and
w1, w2, . . . , wi−1.

The query complexity of the algorithm A is the num-

ber k. The quality of the path P , denoted q(P ), is the
ratio q(P ) := ℓG′(P )/dG′(s, t), where ℓG′(P ) denotes
the length of P in G′.

Figure 3: High-query example for finding a path in G′

In the following proof, we set ρ to be 2 for simplicity.
We can scale the edge weight easily by considering
1 + (we − 1) · (ρ− 1) instead, and the same result still
follows.

We now define an example graph in which it is hard
to find a short path using an adaptive probing strat-
egy. This example is depicted in Figure 3. Make an
n-vertex graph G with vertices v1, v2, . . . , vn. Between
any two consecutive vertices vi, vi+1, there are two
edges ei and fi. A hidden graph G′ is generated by
giving edge weights to each of the edges in G. For
ei and fi, the edge weights are denoted ui and li re-
spectively. The uis and lis are sampled uniformly and
independently from the interval [1, 2] as usual. When
G and G′ are used in this subsection, they will always
refer to the graphs G and G′ defined in this paragraph.

Now, consider an adaptive probing strategyA. We will
ask it to compute a path between s = v1 and t = vn.
Note the following:

Proposition A.4. dG′(s, t) =
∑n−1

i=1 min(ui, li)

Proof. Any path from s to t uses exactly one edge
from the set {ei, fi} for each i. Therefore, dG′(s, t) ≥∑n−1

i=1 min(ui, li). The minimum weight edges, though,
also yield a path from s to t, so dG′(s, t) ≤∑n−1

i=1 min(ui, li) as well, as desired.

Throughout our analysis, we use the classic Chernoff-
Hoeffding bound:

Theorem A.5 (Hoeffding’s inequality). Let
X1, . . . , Xn be independent random variables such that
ai ≤ Xi ≤ bi for all i. Let X =

∑n
i=1 Xi. Then,

Pr(|X − E[X]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
for all t > 0.

We use Chernoff to upper bound the denominator of
the quality value:

Proposition A.6. With probability at least 1−1/n100,
dG′(s, t) ≤ 4n/3 + n/100.
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Proof. We apply Chernoff with Xi = min(ui, li) ∈
[1, 2]. Thus, by Theorem A.5,

Pr
(
|X − E[X]| ≥ n/100

)
≤ 2e−Θ(n) ≤ n−100

Furthermore, E[Xi] = 4/3 for all i, because

E[Xi] =

∫ 2

1

(Pr[Xi > x] + 1)dx

= 1 +

∫ 2

1

Pr(ui > x) Pr(li > x)dx

= 1 +

∫ 2

1

(2− x)2dx

= 4/3

Thus, E[X] ≤ 4n/3, which means that dG′(s, t) = X ≤
4n/3 + n/100 with probability at least 1 − 1/n100 as
desired.

Thus, to get a lower bound on the quality (approxima-
tion ratio), we just need to lower bound the numerator.
We show the following:

Lemma A.7. Any adaptive probing strategy with
query complexity at most n/100 outputs a path P
with ℓG′(P ) ≥ 3n/2 − n/20 with probability at least
1− 1/n100.

Proof. Let A be an adaptive probing strategy with
query complexity k for some k ≤ n/100. The probed
values w1, w2, . . . , wk are random variables. Consider
some fixing of these random variables. This fixing
induces a fixed choice of edges g1, g2, . . . , gk queried
by the algorithm and a choice of one path P . Let
S ⊆ {1, 2, . . . , n − 1} be the minimum set of indices
for which g1, g2, . . . , gk ⊆ ∪i∈S{ei, fi}. In particular,
|S| ≤ k and for every i /∈ S, neither li nor ui were
queried by A.

For any i, let hi be the single edge among {ei, fi} that
the path P uses and let Xi be the weight of hi in
G′ (either li or ui). The Xis are random variables.
Conditioned on w1, w2, . . . , wk, the Xis for i /∈ S are
independent because the choice of path P is not a func-
tion of li or ui. Thus, we may apply Chernoff to lower
bound their sum. By Theorem A.5,

Pr

(∣∣∣∣∑
i/∈S

Xi − E
[∑
i/∈S

Xi | w1, . . . , wk

]∣∣∣∣
> n/50

∣∣∣ w1, . . . , wk

)
≤ 2e−Θ(n)

< n−100

Furthermore, for any i /∈ S,

E[Xi|w1, . . . , wk] = 3/2

and because |S| ≤ k ≤ n/100,

E[
∑
i/∈S

Xi|w1, . . . , wk] = (3/2)(n−|S|−1) > 3n/2−n/50

Combining these statements shows that

Pr

(∑
i/∈S

Xi ≤ 3n/2− n/20
∣∣∣w1, . . . , wk

)
≤ n−100

By the tower law of conditional expectations,

Pr

(∑
i/∈S

Xi ≤ 3n/2− n/20

)

= E

[
Pr

(∑
i/∈S

Xi ≤ 3n/2− n/20
∣∣∣w1, . . . , wk

)]
≤ E[n−100]

≤ n−100

By definition, it is always the case that ℓG′(P ) ≥∑
i/∈S Xi, so ℓG′(P ) > 3n/2 − n/20 with probability

at least 1− n−100, as desired.

We are now ready to show the main lower bound:

Theorem 1.3. Any adaptive probing strategy with
query complexity at most n/100 returns a path P in
G′ with quality q(P ) > 9/8 − 1/10 > 1 with proba-
bility at least 1 − 2n−100 where q(P ) is the ratio be-
tween length of path P and the shortest path in G′;
i.e., q(P ) := ℓG′(P )/dG′(s, t).

Proof. Lemma A.7 shows that ℓ(P ) ≥ 3n/2 − n/20
with probability at least 1 − n−100 over the choice
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of edge weights in G′. Proposition A.6 shows that
dG′(s, t) ≤ 4n/3 + n/100 with probability at least
1 − n−100 over the choice of G′. Thus, by a union
bound,

q(P ) ≥ (3n/2−n/20)/(4n/3−n/100) > 9/8−1/10 > 1

with probability at least 1− 2n−100, as desired.

A.7 Getting around the lower bound

There is something very unrealistic about the Figure
3 example, though. Specifically, there are exponen-
tially many possible shortest paths from s to t. This
does not make intuitive sense in road networks – such
paths could only arise if a car exited and re-entered a
highway a large number of times. Thus, the following
assumption makes sense:

Assumption 1 (Polynomial Paths). G has the prop-
erty that, for any origin-destination pair s − t, the
number of distinct possible s − t shortest paths (over
choices of each edge’s random multiplier) is at most
U = poly(|V (G)|)

Mathematically, for any origin-destination pair s − t,
let S be a set of all possible graph G̃ = (V,E, w̃) con-
structed by sampling w̃ ∼ D, then the size of set of
possible shortest paths {PG̃(s, t)|G̃ ∈ S} is polynomial
in |V |.
Theorem 1.4. Algorithm 1, with the threshold
cϵ2L/(ρ4 log n) replaced with cϵ2L/(ρ4 log nU), finds
a (1 + ϵ)-approximate shortest path in G′ with
probability at least 1 − n−100 and queries at most
((ρ log nU)/ϵ)O(α) edges if both of the following hold:

1. G satisfies the polynomial paths assumption.

2. G has cdd at most α.

In the analysis, we make use of a one-sided McDi-
armid’s Inequality:

Theorem A.8 (Theorem 6.1 of Chung and Lu
(2006), with martingale given by sum of first i vari-
ables and applied on negation to get two sidedness).
Let X1, . . . , Xn be independent random variables with
|Xi − E[Xi]| ≤ M for all i. Let X =

∑n
i=1 Xi. Then,

for any λ > 0,

Pr[|X − E[X]| ≥ λ] ≤ 2e
− λ2∑n

i=1
Var(Xi)+Mλ/3 .

Proof. By the edge count bound of Theorem 1.2, the
algorithm only probes ((ρ log nU)/ϵ)O(h) edges, so it

suffices to show that the algorithm finds an (1 + ϵ)-
approximate path in G′. By the polynomial paths as-
sumption, the shortest s − t path in G′ is one of U
different paths P1, P2, . . . , PU . We start by showing
that, with probability at least 1− 4/((nU)100),

(1− ϵ)ℓG′(Pi) ≤ ℓH(Pi) ≤ (1 + ϵ)ℓG′(Pi)

for each i. To do this, think about the construction
of H slightly differently. Think of the construction of
H as replacing the low edge weights in G′ with edge
weights in G′′. In particular, all large edge weights
are deterministic, and all small ones are randomized.
Break the edges of Pi into two sets A and B, depending
on whether their weight in G′ (within a factor of ρ
of the same value for G) is greater than or less than
cϵ2L/(ρ4 log nU) respectively. Recall that w′

e and w′′
e

denote the weights of e in G′ and G′′ respectively. We
now use Theorem A.8 to bound the error. Note that
for e ∈ B,

Var(w′′
e ) ≤ E[(w′′

e )
2]

≤ ρ2(w′
e)

2

≤ ρ2(w′
e)max

f∈B
w′

f

≤ w′
e · cϵ2L/(ρ2 log nU)

Therefore,∑
e∈B

Var(w′′
e ) ≤ ℓG′(Pi) · cϵ2L/(ρ2 log nU)

≤ cϵ2L2/(ρ log nU)

since ρL ≥ ℓG′(Pi) (otherwise Pi cannot be a can-
didate shortest path). Using M = cϵ2L/(ρ4 log nU),
Xe = w′′

e for all e ∈ B and Xe = w′
e for all e ∈ A, and

λ = ϵL/2 shows that

Pr[|X − E[X]| ≥ ϵL/2] ≤ 2/(nU)100

where X =
∑

e∈A w′
e +

∑
e∈B w′′

e , which is also the
length of Pi. This inequality also uses the fact that c <
1/800.6 Notice that G′ and H are both samples from
the distribution over edge weights that this probability
bound pertains to. Thus,

Pr[|ℓH(Pi)− E[X]| ≥ ϵL/2] ≤ 2/(nU)100

6Recall that we set c to be 1/16 in the proof of Theo-
rem 1.2; however, it is true for any c ≤ 1/16, so we can set
it to be less than 1/800 and every result still remains true.
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and

Pr[|ℓG′(Pi)− E[X]| ≥ ϵL/2] ≤ 2/(nU)100

By Union bound,

Pr[|ℓG′(Pi)− ℓH(Pi)| ≥ ϵℓG′(Pi)] ≤ 4/(nU)100

because L ≤ ℓG′(Pi). This is the first desired probabil-
ity bound. Now, we discuss how to use it to prove the
theorem. Union bound over all U paths to show that
all of these inequalities hold simultaneously with prob-
ability at least 1 − n−100. Let P denote the shortest
path in G′. Applying the inequalities to Pi = P shows
that P is only a (1+ϵ)-factor longer in H. This means
that the path Q that the algorithm returns has length
at most (1 + ϵ)ℓG′(P ). Q is one of the Pis, because it
is the shortest path in H, which is a valid sample from
the distribution that G′ is sampled. Thus, we may ap-
ply the inequality to it to show that the length of Q
in G′ is at most 1+ϵ

1−ϵ · ℓG′(P ) ≤ (1 + 3ϵ)ℓG′(P ). Thus,
Q is a (1+ 3ϵ)-approximate path in G′ as desired.
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