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Abstract

Randomized trace estimation is a popular
technique to approximate the trace of an
implicitly-defined matrix A by averaging the
quadratic form x>Ax across several samples
of a random vector x. This paper focuses
on the application of randomized trace esti-
mators on asynchronous computing environ-
ments where the quadratic form x>Ax is
computed partially by observing only a ran-
dom row subset of A for each sample of the
random vector x. Our asynchronous frame-
work treats the number of rows, as well as
the row subset observed for each sample, as
random variables, and our theoretical analy-
sis establishes the variance of the randomized
estimator for Rademacher and Gaussian sam-
ples. We also consider an extension where the
entries of A are stochastically rounded. We
also present error analysis and sampling com-
plexity bounds for the proposed asynchronous
randomized trace estimator. Our numerical
experiments illustrate that the asynchronous
variant can be competitive even when a small
number of rows is updated per each sample.

1 Introduction

The problem of computing the trace of an implicitly-
defined symmetric matrix A ∈ RN×N appears in sev-
eral applications in engineering, machine learning, and
data analysis, e.g., see [38, 37, 36, 41, 23, 24]. Typically,
the implicitly-defined matrix has the form A = f(G)
where G ∈ RN×N is an application-dependent symmet-
ric matrix and f(·) is a certain (real or complex-valued)
function. For example, some well-known choices for
the function f in graph analytics and machine learn-
ing are f(β) = β3 (triangle counting), f(β) = eβ
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(Estrada index), f(β) = log(β) (log-determinant),
f(β) = βp/2 (Schatten-p norms), and f(β) = β log(β)
(Von-Neumann Entropy).

Assuming that A is accessible only via a Matrix-Vector
product routine (MV), i.e., each time we can only ob-
serve Av for a specific (but arbitrary) vector v ∈ RN ,
the simplest approach to compute the trace of A,
Tr(A), is to sum the N individual diagonal entries
of A by evaluating N quadratic forms of A (from
now on quadratic forms) e>j Aej where ej denotes the
jth column of the N × N identity matrix. Unfortu-
nately, this requires N MV products with matrix A
and quickly becomes impractical for anything but small
matrix sizes. Instead, practical efficient algorithms to
approximate Tr(A) exploit randomization. In a nut-
shell, randomized trace estimators aim for an approx-
imation of the form Tr(A) ≈

[∑k=M
k=1 x>kAxk

]
/M ,

where the vectors xk ∈ RN are typically samples of
a random vector x such that the estimator is unbi-
ased, i.e., Tr(A) = E[x>Ax]. For example, when
each individual entry of the N -dimensional vectors
{xk}k=Mk=1 is equal to ±1 with equal probability (i.e.
the Rademacher distribution), the estimator is known
as Hutchinson’s randomized trace estimator and has
minimum variance over the field of real random vec-
tors [21]. Similarly, when {xk}k=Mk=1 are independent
and their entries are i.i.d standard normal variables,
the randomized estimator is known as Gaussian ran-
domized trace estimator. An extensive analysis of the
Hutchinson and Gaussian trace estimators, including a
probabilistic (ε, δ) convergence analysis, can be found
in the seminal work [2]. Several enhancements and/or
variance reduction techniques of randomized estimators
can be found in [7, 29, 31, 37, 13, 22, 30].

Contributions. In this paper we consider the problem
of randomized trace estimation when the quadratic
forms x>kAxk, k = 1, . . . ,M , are computed inexactly
in the sense that only a random subset of the N entries
of the MV product Axk are observed. As specific
contributions of this paper:

• We propose a computational framework to estimate
the trace of an implicit matrix A under the constraint
that the quadratic forms x>kAxk are only partially
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correct and equal to xkQ(Tk)xk where a) the ith row
of the matrix Q(Tk) is identical to the ith row of A if
i ∈ Tk ⊆ [N ] = {1, 2, . . . , N} and zero otherwise, and
b) the subset Tk is an independent random subset of
[N ] for any value of k. We will refer to this framework
as asynchronous due to its similarity with the classical
asynchronous framework presented in [4].

• We analyze the variance of the asynchronous ran-
domized estimator and derive close form expres-
sions when the vectors x1, . . . ,xM , are sampled from
Rademacher and Gaussian distributions.

• We present error analysis which establishes proba-
bilistic (ε, δ)-error bounds with a sampling complexity
bound which order-wise (with respect to error tol-
erance ε and probability parameter δ) matches the
bounds of classical Hutchinson’s trace estimator [2].

• We propose an extension of the asynchronous frame-
work to computing environments equipped with
stochastic rounding where a real number is approx-
imated by randomly selecting neighboring quanti-
zation levels with probability proportional to the
distance to the opposite quantization level.

Notation. We use lowercase bold letters to denote
vectors and uppercase bold letters to denote matrices.
Moreover, we use uppercase Greek letters to denote
integers. We denote by ei ∈ {0, 1}N the ith column
of the N ×N identity matrix we will use the notation
Aij to denote the (i, j) entry of the matrix A. For
any N × N matrix A, we will denote its Frobenius
norm by ‖A‖F =

√∑i=N
i=1

∑j=N
j=1 A2

ij . The diagonal
matrix holding the N diagonal entries of the matrix
A is denoted by D(A). We will use P[·] and E[·] to
denote the probability and expectation, respectively.

2 Related work

Randomized trace estimators. Monte Carlo ran-
domized trace estimators where Tr(A) is approximately
estimated as the average of the quadratic transforma-
tion x>Ax were first introduced by Girard in [17].
This approach was later extended and popularized by
Hutchinson [21]. The first extensive theoretical error
analysis for the method was presented by Avron and
Toledo in [2], and the analysis was slightly improved
in [31]. The randomized trace estimator has been
adapted to solve various matrix computation problems
(such as estimating log-determinant, numerical rank,
Schatten p-norms, Estrada index, Von-Neumann en-
tropy, spectral density, trace of matrix inverse, diagonal
and other spectral approximations), which can all be
posed as implicit trace estimation problems, e.g., see
[19, 3, 12, 27, 20, 37, 36, 38, 8].

Given the wide range of applications for such implicit
trace estimation methods, in recent years, several pa-

pers have appeared in the literature [16, 26, 29, 30, 6,
13], which have proposed various variance reduction
techniques to improve the randomized trace estimator
method. The general idea of these variance reduction
techniques is to first compute a low rank approxima-
tion of A for which the trace can be computed exactly
followed by an estimation of the trace of the residual
using the randomised trace estimator. The randomized
trace estimator and its variants have also been adapted
for dynamic matrix trace estimation in [11, 40].

3 Trace estimates with asynchronous
quadratic forms

Asynchronous computations arise naturally in
distributed-memory implementations for the compu-
tation of stationary points via iterative algorithms in
order to reduce idle time between different processing
elements via reducing synchronization points. While
asynchronous iterations typically lead to slower
convergence, the ever-increasing gap between the time
required to share a floating-point number between
different processing elements and the time needed to
perform a single floating-point operation by one of the
processing elements, has led to a revived interest in the
analysis and application of asynchronous algorithms in
numerical linear algebra [39, 32, 33, 1, 18, 15, 4].

Traditionally, asynchronous algorithms are prevalent
in the solution of systems of equations of the form
z = G(z), G : RN → RN where the ith entry satisfies
[z]i = gi(z), i = 1, . . . , N . An asynchronous method
for computing z can be then defined mathematically as

[z]ki =

{
[z]ki , if i /∈ Tk
gi

(
[z]

s1(k)
1 , . . . , [z]

sN (k)
N

)
, if i ∈ Tk

,

where [z]ki denotes the ith component of the iterate at
time instant k, Tk is the set of indices updated at instant
k, and sj(k) is the last instant the jth component was
updated before being read at instant k [15, 4].

In this work we study the problem of randomized trace
estimation from an asynchronous viewpoint. The asyn-
chronous setting considered in this paper does not in-
volve a fixed-point iterative process since each quadratic
form x>kAxk can be computed independently. Instead,
we consider the scenario where indices which are not
part of the update subset Tk are simply replaced by
zero. In the following we assume that the implicitly-
defined matrix A is symmetric and positive-definite,
however, with the exception of the high-probability
analysis, our theoretical results stand for symmetric
non-definite matrices as well.
Definition 1. Let T denote a random subset of
T ∈ N integers (without replacement) from the set
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{1, 2, . . . , N}. We define the asynchronous MV y =
A |T x between the matrix A ∈ RN×N and a vector
x ∈ RN as a function of T such that:

[y]i =

{
[Ax]i if i ∈ T
0 if i /∈ T .

In other words, the operator |T is equivalent to per-
forming the regular MV Ax as if the i-th row of A is
replaced by a N -length zero row vector for each i /∈ T .

Unless mentioned otherwise, throughout this paper we
assume that the random integer variable T and the
subset T are independent. Given T , the random subset
of T picks any T ≡ |T | integers of {1, 2, . . . , N} with
equal probability, i.e., any of the

(
N
T

)
possible row sets

of A is picked with probability
(
N
T

)−1
.

The MV product y = A |T x presented in Definition
1 fits any application of numerical computing where
only a random subset of the entries of the exact MV
Ax are observed, leading to a quadratic form x>Ax
which is only partially complete. One such application
is the streaming model of linear algebra where the
rows of the matrix A are sampled from some random
distribution either due to limits in physical resources,
e.g., system memory, or due a stochastic nature of the
matrix process [9]. In the first case, only a random row
subset of fixed cardinality of A can be accessed at any
given time. In the second case, random row subsets
of random cardinality become available, and these two
sources of randomness are independent.

Another important practical scenario where the frame-
work of Definition 1 is directly applicable is the prob-
lem of straggling in large-scale distributed controller-
worker architectures with a large number of (hetero-
geneous) processing elements. Since each processing
element might have different computation and network
bandwidth, which also vary over time, performing a
MV product in parallel can be bottlenecked by un-
predictably slow or unresponsive workers which are
commonly referred to as stragglers [28, 5]. Even a
tiny probability of a processing element becoming a
straggler per sample can cause a big increase in the
wall-clock time of the trace estimation of the matrix
A. The analysis presented in this paper gives a very
simple solution to the problem of straggling without
using any additional hardware. The only requirement
is to simply allocate a fixed amount of time per MV
product and only utilize the entries of the MV product
associated with indices whose computations were com-
pleted during the given time-frame. This leads to load
balancing and robust computations.

Definition 2. Let k = 1, 2, . . . ,M, M ∈ N, and de-
note by Tk a random subset of |Tk| ∈ N integers (without

replacement) from 1 to N . The deterministic integer
|Tk| is an instance of the integer-valued random variable
T ∈ {1, 2 . . . , N}. Then, for any N-length instances
x1, . . . ,xM , of a random vector x, we define the asyn-
chronous randomized trace estimator

ΓM =
1

M

k=M∑

k=1

x>k (A |Tk xk)

=
1

M

k=M∑

k=1

∑

i∈Tk
[xk]>i [A |Tk xk]i.

The second equality of ΓM follows by recalling that the
i-th entry of the product A|Tkxk is nonzero if and only
if i ∈ Tk.

Throughout the rest of the paper we assume that the
vectors x1, . . . ,xM , are instances of a random vector
x ∈ RN sampled from a distribution such that E[x] = 0
and all N dimensions are statistically independent and
have variance equal to one, i.e., E[xx>] = I.

Consider now the diagonal random matrix formed by
the summation of T canonical outer products

DT =
∑

i∈T
eie
>
i ,

where both the cardinality T and the row subset T are
random variables. When T ≡ N , as in the synchronous
case, the matrix DT is equal to the N × N identity
matrix. The asynchronous randomized trace estimator
can be then written equivalently as

ΓM =
1

M

k=M∑

k=1

x>kDTkAxk

=
1

M

k=M∑

k=1

x>kQ(Tk)xk,

(1)

where Q(Tk) = DTkA and DTkAx = A|Tkx.

4 Analysis of the asynchronous
randomized trace estimator

Lemma 1. Let Q denote a random matrix and x
denote an independent random vector of the same length
as Q such that E[x] = 0 and E[xx>] = I. Then,

E[x>Qx] = Tr(E[Q]).

Lemma 1 states that we can apply randomized trace
estimation to approximate the trace of a random matrix
Q in a similar fashion as for a deterministic matrix
A. If the sample space of the random matrix Q is
formed by all possible matrices Q(T ) = DTA such
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that, for a given sample integer value of a uniform T in
the interval [1, N ], the random subset of T picks any
T ≡ |T | integers of {1, 2, . . . , N} with equal probability,
then ΓM (1) is an unbiased estimator of Tr(E[Q]).

The main question now becomes whether we can exploit
ΓM to approximate the trace of the matrix A. As
we show in the following Proposition, the answer is
affirmative.
Proposition 1. Let µT = E[T ] denote the expectation
of the random variable T . Then,

E[Q] =
µT
N

A, and E [ΓM ] =
µT
N

Tr(A),

i.e., the randomized estimator
N

µT
ΓM is an unbiased

estimator of Tr(A).

Proposition 1 tells us that the asynchronous random-
ized estimator ΓM is an unbiased estimator of Tr(A) up
to multiplication with the factor µT /N . Note here that
when T ≡ N , we have µT = N , T = {1, 2, . . . , N} and
Q(T ) = A, i.e., ΓM becomes a synchronous random-
ized trace estimator. Next, we consider the variance
Var(x>Qx) of a single sample of the asynchronous
randomized trace estimator ΓM .
Theorem 1. Let σ2

T denote the variance of the random
variable T , and define the scalars

K1 =
(σ2

T + 1
N
µ2
T − µT )

N(N − 1)
, K2 =

(NµT − σ2
T − µ2

T )

N(N − 1)
,

and K3 =

(
(N − 2)µT + σ2

T + µ2
T

)

N(N − 1)
.

The variance of a single sample of the asynchronous
randomized trace estimator ΓM is equal to

2µT
N
‖A‖2F +K1Tr (A)

2
+K2Tr

(
D(A)2

)
,

when x ∈ N (0, I), and equal to

2µT
N
‖A‖2F +K1Tr (A)

2 −K3Tr
(
D(A)2

)
,

when x is a Rademacher random vector.

Theorem 1 tells us that the variance of the estimator
Γm depends on scalar multiples of the three following
terms involving the matrix A: ‖A‖2F , Tr (A)

2, and
Tr
(
D(A)2

)
. Notice that when T ≡ N we have σ2

T = 0
and µT = N . Plugging these values in Theorem 1 gives
us K1 = K2 = 0, K3 = 2, and Var(x>Qx) = 2‖A‖2F
when x ∈ N (0, I), and Var(x>Qx) = 2(‖A‖2F −∑N

i=1A
2
ii) when x is a Rademacher, which are identical

to those in the synchronous case [2].

In the general asynchronous case, T can be less than
N , and we can distinguish three important cases:

1. T is a fixed integer (deterministic) in the range
1 ≤ T ≤ N ,

2. T takes an integer values in [1, N ] with equal prob-
ability, and

3. T is obtained by choosing each element in [1, N ]
with probability p. Note that for a fixed T , each
subset T such that T ≡ |T | occurs with the same
probability.

The variance of the trace estimator ΓM for these three
cases is shown in the following three corollaries.
Corollary 1. Let T take some fixed integer value be-
tween 1 and N . The variance of the asynchronous
randomized trace estimator ΓM is then equal to

T

N

[
2‖A‖2F +

N − T
N − 1

(
Tr(D(A)2)− 1

N
Tr(A)2

)]
,

when x ∈ N (0, I), and is equal to

T

N

[
2‖A‖2F −

T +N − 2

N − 1
Tr(D(A)2)− N − T

N2 −N Tr(A)2
]

when x is a Rademacher random vector.

The variance reported in Corollary 1 concerns the bi-
ased estimator ΓM . In practice we exploit the unbiased

estimator
N

µT
ΓM for which

N

µT
E [ΓM ] ≡ Tr(A). The

variances for the unbiased estimator are listed in the
following remark. Note that now the variance no longer
approaches zero as N increases.
Remark 1. The variance of the unbiased estimator
N

µT
ΓM is equal to

N

T

[
2‖A‖2F +

N − T
N − 1

(
Tr(D(A)2)− 1

N
Tr(A)2

)]
,

when x ∈ N (0, I), and

N

T

[
2‖A‖2F −

T +N − 2

N − 1
Tr(D(A)2)− N − T

N2 −N Tr(A)2
]

when x is a Rademacher random vector.

Figure 1 plots the magnitude of the variance coefficients
associated with the terms Tr

(
D(A)2

)
, ‖A‖2F , and

Tr (A)
2, for the unbiased Gaussian estimator shown

in Remark 1 where for simplicity we pick N = 200.
As expected, when T = N , the coefficients of the
terms Tr

(
D(A)2

)
and Tr (A)

2 become zero, and the
variance of a single sample becomes 2‖A‖2F as in the
synchronous case. On the other hand, when T = 1, the
variance of the unbiased estimator is approximately
equal to N(‖A‖2F + Tr

(
D(A)2

)
) and can be quite

high for large-scale problems. Nonetheless, as T → N ,
the variance coefficients of the terms Tr

(
D(A)2

)
and

Tr (A)
2 approach zero. In particular, the variance con-

tribution of the terms Tr
(
D(A)2

)
and Tr (A)

2 plateaus
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Figure 1: Magnitude of the coefficients multiplying
the terms Tr

(
D(A)2

)
, ‖A‖2F , and Tr (A)

2, for the
unbiased Gaussian estimator (Remark 1).

around T ≈ N

2
but varies faster around the endpoints

1 and N .

The following corollaries list the variance of a single
sample of the (biased) estimator ΓM for the cases where
T either takes any integer value in [1, N ] with equal
probability (Corollary 2) or the row subset T is ob-
tained by choosing each element in [1, N ] with some
fixed probability p (Corollary 3).
Corollary 2. Let the random variable T be any of the
values 1, 2, . . . , N , with equal probability, i.e., P[T =
t] = pt = 1/N, t = 1, 2, . . . , N . The variance of the
asynchronous randomized trace estimator ΓM is then
equal to

N + 1

N

[
‖A‖2F +

1

12

(
(1− 3

N
)Tr(A)2 + 2Tr(D(A)2)

)]

when x ∈ N (0, I), and is equal to

N + 1

N

[
‖A‖2F +

1

12

(
(1− 3

N
)Tr(A)2 − 10Tr(D(A)2)

)]

when x is a Rademacher random vector.

Proof. Follows from Theorem 1 and the fact that µT =
N+1
2 and Var(T ) = N2−1

12 .

Corollary 3. For 0 < p ≤ 1, let T be random subsets
of {1, · · · , N} with probability equal to p|T |(1−p)N−|T |,
i.e. each element in {1, · · · , N} is chosen independently
with probability p, then the variance of the asynchronous
randomized trace estimator ΓM is then equal to

2p‖A‖2F + p(1− p) Tr(D(A)2),

when x ∈ N (0, I), and is equal to

2p‖A‖2F − p(1 + p) Tr(D(A)2),

when x is a Rademacher random vector.

Proof. Follows by noticing that µT = Np and
Var(T ) = Np(1− p).

To compare the sampling schemes in Corollary 2 and
Corollary 3, let p = N+1

2N , i.e., the sampling rate µT
is the same for both schemes. Then, for Corollary 3,
Var(T ) = 2N2−1

4N which grows on the order of N , in
contrast to Var(T ) for Corollary 2 which grows on the
order of N2. We also note that the variance of the mean
in the (unbiased) estimator N

µT
ΓM is NVar(x>Qx)

MµT
, i.e.,

the standard error of the mean is
√
Nσ(x>Qx)√

MµT
.

4.1 Sampling complexity

Finally, when A is symmetric and semi-definite, we can
establish relative error bounds for the asynchronous
trace estimator, i.e., (ε, δ)-approximation error bounds.
These results yield us a) lower bounds on the number
random samples required to achieve a desired ε ∈ R
error guarantee; b) a convergence rate for the trace
estimation with respect to sampling complexity; and c)
a computational complexity of the algorithm to achieve
a desired ε error. We then have the following result.
Theorem 2. Let A ∈ RN×N be a symmetric positive
semi-definite matrix, and δ ∈ (0, 12 ], ε ∈ (0, 1]. The
asynchronous randomized trace estimator 1

pΓM with
row selection probability p, is an (ε, δ)-approximator of
Tr(A),

Pr

(∣∣∣∣
1

p
ΓM − Tr(A)

∣∣∣∣ ≤ εTr(A)

)
≥ 1− δ,

for sampling complexity with a fixed constant C, which
only depends on the sub-Gaussianity of the random
vectors x:

• M >
C log(1/δ)

pε2
, for the case where rows are cho-

sen with probability p (i.e., Corollary 3), and

• M >
CN log(1/δ)

µT ε2
, for the i.i.d. observation vari-

able T with mean µT , since p = µT

N .

The proof of Theorem 2 (the details of which are in
the supplement) depends on a sparse variant of the
Hanson-Wright inequality, similar to the ones in [42].

5 Extension to stochastic rounding

We can consider the asynchronous setting as a case
of approximate and inaccurate computing where only
a random approximation Q of the matrix A is used
each time, but requiring that the expectation of the
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Figure 2: A = eG. Left to right: fixed T = dNpe, uniform T , fixed p.

random variable is proportional to A (as expressed
by E[Q] =

µT
N

A). Another important method of ran-
dom approximation is stochastic rounding [10], where
a real number is approximated by neighboring quan-
tization levels with probability proportional to the
distance to the opposite quantization level. More pre-
cisely, if q1 ≤ x ≤ q2 lies between quantization levels
q1 and q2, the stochastic rounding of x is defined as
sr(x) = q1 with probability q2−x

q2−q1 and sr(x) = q2 oth-
erwise. We define sr(x) when x is a vector or matrix
by applying stochastic rounding to each element of
x independently. It is easy to see that E[sr(x)] = x
and Var(sr(x)) = x(q1 + q2 − x) − q1q2. Let us de-
note r(x) = x − q1 and ∆(x) = q2 − q1 in which
case we can write Var(sr(x)) = r(x)(∆(x)− r(x)), and
E[sr(x)2] = q2r(x) + xq1. In the sequel, we will assume
that ∆ does not depend on x, i.e. all the quantiza-
tion levels are equally spaced. Let Ã be the random
matrix where each entry Ãij = sr(Aij) independently.
Then E[Ã] = A and Q(Tk) = DTkÃ with E[Q(Tk)] =

E[DTk ]A as before. Similarly, E[Tr(Ã)] = Tr(A),
Var(Tr(Ã)) =

∑
i r(Aii)(∆− r(Aii)) and E[Tr(Ã)2] =

Var(Tr(Ã)) + E[diag(Ã)Ã].
Definition 3. Let T denote a random subset of
T ∈ N integers (without replacement) from the set
{1, 2, . . . , N}. We define the stochastically rounded
asynchronous matrix-vector product (SRAMVP) y =
A |T x between A ∈ RN×N and a vector x ∈ RN as a
function of T such that:

[y]i =

{[
Ãx
]
i

if i ∈ T
0 if i /∈ T .

In other words, the operator |T is equivalent to the regu-
lar matrix-vector multiplication Ax with the difference
that the matrix entries are replaced with a stochastic
rounding representation and the ith row of A is re-
placed by an N-length zero row vector unless i ∈ T .
We assume that the stochastic rounding is independent
from the random subset T .

As for the random vectors x, note that by symmetry

Table 1: Matrices used in this section. The variables N ,
nnz(A), and Tr(A) denote the size, number of non-zero
entries, and trace of matrix A, respectively.

Id Matrix name N nnz(A) Tr(A)
1 Pajek/yeast 2361 13828 536
2 SNAP/ca-HepTh 9877 51971 25
3 Botonakis/thermomech_TC 102158 711558 585.871
4 SNAP/web-Stanford 281903 2312497 0
5 LAW/cnr-2000 325557 3216152 87442

the Rademacher vectors can be considered a stochastic
rounding of Gaussian vectors with two quantization
levels when the stochastic rounding is independent
from the Gaussian random variable. More generally,
we replace x with sr(x) and obtain

Γ̃M =
1

M

k=M∑

k=1

sr(xk)>Q(Tk)sr(xk). (2)

Assuming the quantization levels are symmetric around
0, then for x symmetric around 0 (e.g., Gaussian) we
have E

[
sr(x)sr(x)>

]
∝ I and Eq. (2) after scaling is

an unbiased estimator of Tr(A).
Theorem 3. The variance of the stochastically
rounded asynchronous randomized trace estimator Γ̃M
is equal to

2µT

N
E
[
‖Ã‖2F

]
+K1E

[
Tr(Ã)2

]
+K2Tr

(
E
[
D(Ã)2

])
,

when x ∈ N (0, I), and equal to

2µT

N
E
[
‖Ã‖2F

]
+K1E

[
Tr(Ã)2

]
−K3Tr

(
E
[
D(Ã)2

])
,

when x is a Rademacher random vector, where K1, K2,
and K3 are defined in Theorem 1.

6 Numerical experiments

In this section we illustrate the numerical performance
of the asynchronous randomized trace estimator applied
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Figure 3: A = G3. Left to right: fixed T = dNpe, uniform T , fixed p.
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Figure 4: Left to right: fixed T = dNpe, uniform T , fixed p.
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to the collection of sparse matrices listed in Table 1.
Additional matrices and numerical results, including
experiments with stochastic rounding, can be found in
our supplement.

While our framework targets implicitly-defined matri-
ces, for simplicity in our experiments we form each
matrix explicitly and sample T and the corresponding
row subsets Tk using a random generator. As our ac-
curacy metric we use the relative error achieved by the
estimator, defined as |TrM (A)− Tr (A) |/|Tr (A) | for
any approximation TrM (A) of the trace Tr (A). If the
trace of a matrix is zero (e.g., SNAP/web-Stanford)
we pre-process it by shifting with the identity matrix
so as to avoid division by zero. Our experiments are
conducted in Python 3.9 with NumPy and SciPy li-
braries for matrix computations in 64-bit arithmetic
on a system equipped with an Apple M1 Max chip and
64 GB of LPDDR5 memory. Due to space limitations,
the results shown in this section assume x1, . . . ,xM
are sampled from the Rademacher distribution.

Our experiments evaluate three separate scenarios for
T as described in Corollaries 1, 2, and 3, respectively:
a) a fixed value of T in the interval [1, 2, . . . , N ], b) ran-
dom T sampled uniformly from the set {1, 2, . . . , N},
and c) a fixed probability p of choosing an element
from {1, 2, . . . , N} in the subset T . For “a)" we set
T = dNpe where p = 0.6; this value of p is also used
throughout “c)". This implies that options “a)" and
“c)" exploit about 60% of the rows of A when form-
ing the quadratic forms x>kAxk. Comparisons using
various values of p are deferred to our supplement.
For each test matrix and scenario we use M = 1000
Rademacher samples and perform each run ten times
using a different random seed. We then accumulate
all results and compute the mean and standard devi-
ation of the relative error. The performance of the
asynchronous (dashed lines) and synchronous (solid
lines) trace estimators is demonstrated in Figure 4,
where the shaded areas correspond to the standard
deviation of each sample. In summary, the accuracy of
the asynchronous randomized trace estimator is gener-
ally inferior to that of its its synchronous counterpart.
This behavior is generally expected due to the higher
variance of the asynchronous estimator. Nonetheless,
in practice the accuracy achieved by the asynchronous
estimator can be very close to that of the synchronous
estimator even when only half of the rows are retained
for each Rademacher sample.

Our last set of experiments considers the application of
trace estimation in two important graph analytics tasks.
The first task is that of counting the number of triangles
of a graph G, an important summarization feature in
the analysis of patterns in networks [34, 35, 25]. This
quantity is given by Tr(A ≡ G3/3!) where G is the

adjacency matrix of G. Our results for the triangle
counting problem are listed in Figure 3. The second
task considers the determination of the Estrada index,
a topological index of protein folding suggested by
Ernesto Estrada as a measure of the degree of folding
of a protein [14]. This quantity is given by Tr(A ≡ eG)
where G represents the adjacency matrix of the protein
network. Due to space limitations, we only plot the
performance of the estimators for the Pajek/yeast
matrix in Figure 2, deferring additional results to our
supplement.

7 Conclusion

This paper considered the problem of randomized trace
estimation following an asynchronous setting under
which quadratic forms x>Ax are computed partially
and is equivalent to observing only a random row subset
of the matrix A. Our theoretical results indicate that,
up to scaling, the asynchronous randomized trace esti-
mator is an unbiased estimator of Tr(A). Both Gaus-
sian and Rademacher vector sampling was discussed,
while extensions to environments with stochastic round-
ing were analyzed. Our numerical experiments, in-
cluding problems from graph analytics, suggest that
asynchronous randomized estimators generally exhibit
higher variance but can achieve an accuracy that is on
par with that in the synchronous case.

Several possible directions are left as future work. For
example, while our analysis assumed that each row
subset is picked with equal probability, in practice it
might be beneficial to pick rows with higher norm
more often, which is akin to an importance sampling
scheme. Another important direction is to extend the
asynchronous estimator to compute the main diagonal
of an implicit matrix, i.e., compute all N individual
diagonal entries of A. This problem is of great interest
in several applications in physics and statistics. Finally,
a limitation that needs to be overcome in order to make
asynchronous estimators practical and apply them in
real production codes is the efficient formation of the
asynchronous quadratic x>Ax.
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Supplementary material

A Theoretical Analysis

A.1 Proof of Lemma 1

Proof. The proof follows directly by applying the conditional independence of the random variables Q and x in
tandem with the cyclic property of the Tr(.) linear operator:

E[x>Qx] = E[Tr(x>Qx)] = E[Tr(Qxx>)] = Tr(E[Qxx>]) = Tr(E[xx>]E[Q]) = Tr(E[Q]).

A.2 Proof of Proposition 1

Proof. Following Lemma 1, the expectation E [ΓM ] is equal to Tr(E [Q]), where Q is a random matrix whose
samples are of the form Q(Tk). Thus, it suffices to show that

E[Q] =
µT
N
A.

To this end, we apply the same approach as in [5, Lemma 1]. By the Law of Total Expectation [1], the expectation
E[Q] can be written as ET [ET [Q|T ]] where the outer expectation is with respect to the cardinality T of the
random integer set T and the inner expectation is with respect to the content of T . Denoting by P[Q = Q(T )|T ]
the probability that Q(T ) is realized for a random row subset T of cardinality T , we have

ET [Q|T ] =
∑

T
P[Q = Q(T )|T ]Q(T )

=
∑

T

(
N

T

)−1
DTA

=

(
N

T

)−1(
N − 1

T − 1

)
A

=
T

N
A.

The proof follows by noticing that ET [ET [Q|T ]] = ET
[
T

N
A

]
=

E[T ]

N
A.

A.3 Proof of Theorem 1

The proof of this Theorem is derived by combining the following theoretical results.

Lemma A.1. The variance of a single sample of the asynchronous randomized trace estimator ΓM is equal to

Var(x>Qx) = Tr(2E
[
Q2
]
) + Var(Tr(Q)),

when x ∈ N (0, I), and
Var(x>Qx) = Tr(2E

[
Q2 − diag(Q)2

]
) + Var(Tr(Q)),

when x is a Rademacher random vector.

Proof. Recall that the variance of the randomized trace estimator for a constant N × N matrix K is equal
to Var(x>Kx) = 2Tr(K2) when the samples of x are drawn from the standard normal distribution and



Var(x>Kx) = 2Tr(K2 − diag(K2)) when the samples of x are drawn from the Rademacher distribution.
Returning to the asynchronous setting, notice that by assumption the variance of the random vector x is finite.
Thus, we can apply Eve’s law (also known as “law of total variance") [6]. More specifically, focusing on random
Q, we can write

Var(x>Qx) = EQ[Varx(x>Qx)|Q] + VarQ(Ex[x>Qx|Q]).

The first term is equal to the expectation of the variance of the quadratic form x>Qx when Q is a ran-
dom matrix. Thus, EQ[Varx(x>Qx)|Q] = E[2Tr(Q2)] for the Rademacher case and EQ[Varx(x>Qx)|Q] =
Tr(2E

[
Q2 − diag(Q)2

]
) for the Gaussian case. Likewise, the second term is equal to Var(Tr(QE[xx>])). Recalling

once again that E[xx>] = I concludes the proof.

The variance of the asynchronous estimator depends mainly on the terms Tr(2E
[
Q2
]
) and Var(Tr(Q)). In the

following, we analyze each term separately.
Lemma A.2. The term Var(Tr(Q)) satisfies

Var(Tr(Q)) = E[Tr(Q)2]− µ2
T

N2
Tr(A)2. (1)

Proof. The expectation E[Tr(Q)] of Tr(Q) is equal to
µT
N

Tr(A). By definition, we have

Var(Tr(Q)) = E[(Tr(Q)− E[Tr(Q)])2] = E[Tr(Q)2]− E[Tr(Q)]2 = E[Tr(Q)2]− µ2
T

N2
Tr(A)2.

According to Lemma A.2, the computation of Var(Tr(Q)) requires that of E
[
Tr(Q)2

]
. The latter quantity is

listed in the following lemma.
Lemma A.3. The term E

[
Tr(Q)2

]
satisfies

E
[
Tr(Q)2

]
=

1

N(N − 1)

(
(NµT − σ2

T − µ2
T ) Tr(D(A)2) + (σ2

T + µ2
T − µT ) Tr(A)2

)
.

Proof. Starting from EQ

[
Tr(Q)2

]
, we can write:

EQ

[
Tr(Q)2

]
= ET


ET

(∑

i∈T
Aii

)2



= ET


∑

T

(
N

T

)−1(∑

i∈T
Aii

)2



= ET


∑

T

(
N

T

)−1

∑

i∈T
A2
ii +

∑

i∈T

∑

j 6=i
AiiAjj






= ET



(
N

T

)−1


(
N − 2

T − 1

) i=N∑

i=1

A2
ii +

(
N − 2

T − 2

)( N∑

i=1

Aii

)2





= ET
[
T (N − T )

N(N − 1)
Tr(D(A)2) +

T (T − 1)

N(N − 1)
Tr(A)2

]
.

The first three equalities follow from the definition of trace and the expansion of the square of sum. The fourth
equality follows by counting the number of times each term appears in all possible sets of size T . Indeed, the

cross terms AiiAjj appear
(
N − 2

T − 2

)
times while the square terms A2

ii appear
(
N − 1

T − 1

)
times. The final equality

then follows immediately.



Finally, the derivation of Var(x>Qx) requires an expression for the quantity E[2Tr(Q2)].

Lemma A.4. The term 2E[Tr(Q2)] satisfies

2E[Tr(Q2)] =
2µT
N

Tr
(
A2
)
. (2)

Proof. First, notice that E[Tr(Q2)] = E[‖Q‖2F ]), and

EQ

[
‖Q‖2F

]
= ET

[
ET
∑

i∈T
‖Ai‖22

]

= ET

[∑

T

(
N

T

)−1∑

i∈T
‖Ai‖22

]

= ET

[(
N

T

)−1(
N − 1

T − 1

) i=N∑

i=1

‖Ai‖22

]

= ET
[
T

N
‖A‖2F

]
=
µT
N
‖A‖2F .

Similarly, for the Radamacher vectors case, we have

Tr(2E
[
Q2 − diag(Q)2

]
) =

2µT
N

(
Tr(A2)− Tr(D(A)2

)

Combining Lemmas A.1, A.2, A.3, and A.4, for Gaussian vectors, we get

Var(x>Qx) =
2µT
N

Tr
(
A2
)

+
1

N(N − 1)

(
(σ2
T +

1

N
µ2
T − µT ) Tr(A)2 + (NµT − σ2

T − µ2
T ) Tr(D(A)2)

)

and for Radamacher vectors, we have

Var(x>Qx) =
2µT
N

Tr
(
A2
)

+
1

N(N − 1)

(
(σ2
T +

1

N
µ2
T − µT ) Tr(A)2 − ((N − 2)µT + σ2

T + µ2
T ) Tr(D(A)2)

)

A.4 Proof of Theorem 2

For the standard stochastic trace estimator, we can obtain the (ε, δ) error bounds and the bound on the sampling
complexity using the Hanson-Wright inequality [4], see [2]. In the asynchronous setting, in order to prove Theorem
2 and obtain the bound on sampling complexity, we consider a sparse variant of the Hanson-Wright inequality,
see [7, 3]. We have the following Lemma, which is a modification of the main results (Theorem 1.1 and particularly
Corollary 2.3) in [7].

Lemma A.5 (Sparse Hanson-Wright). Let x ∈ RN be a random vector of mean zero, i.i.d. sub-Gaussian
random entries with constant sub-Gaussian parameter C, ξ ∈ {0, 1}N be a random vector independent of x, with
independent Bernoulli random variables ξi such that P [ξi = 1] = p, Dξ = D(ξ) and A ∈ RN×N be a given matrix.
Then, there exists a constant c only depending on C such that for every t ≥ 0,

Pr
(∣∣x>DξAx− E[x>DξAx]

∣∣ ≥ t
)
≤ 2 exp

(
−cmin

(
t2

p‖A‖2F
,

t

‖A‖2

))
, (3)

Proof. The proof of the lemma follows the proof of Theorem 1.1 in [7]. We can write:

x>DξAx =
∑

i

∑

j

xiξiAijxj =
∑

i

x2i ξiAii +
∑

i 6=j
xixjξiAij .



Note that for the diagonal sum, we have E[
∑
i x

2
i ξiAii] = p

∑
i E[x2i ]Aii, and for the off-diagonal sums,

E[
∑
i6=j xixjξiAij ] = 0. For these two terms, we obtain the same tail bounds as in [7]. For the diagonal

sum, we can use Lemma 3.1 in [7] directly, and we have

Pr

(∣∣∣∣∣
∑

i

x2i ξiAii − p
∑

i

E[x2i ]Aii

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−c1 min

(
t2

p
∑
iA

2
ii

,
t

maxi(Aii)

))
.

For the off-diagonal sum, we can use similar arguments as in [7, Eqn. 8] and obtain the following by setting
pi = p, pj = 1 in that equation,

Pr



∣∣∣∣∣∣
∑

i 6=j
xixjξiAij

∣∣∣∣∣∣
≥ t


 ≤ 2 exp

(
−c2 min

(
t2

p
∑
iA

2
ij

,
t

‖A‖2

))
.

Combining these two, we get the sought result.

Next, we use the above Lemma to get the result:

Lemma A.6. Let A ∈ RN×N be a given PSD matrix, δ ∈ (0, 1/2], ε ∈ (0, 1], x1, . . . ,xM , be M random vectors
of mean zero, i.i.d. sub-Gaussian random entries with constant sub-Gaussian parameter, ξ1, . . . , ξM be M random
vectors independent of xi,’s with independent Bernoulli random variables ξi such that P [ξi = 1] = p, and
Dξi = D(ξi). For fixed constants c, C, we have

Pr

(∣∣∣∣∣
1

pM

M∑

k=1

x>kDξkAxk − Tr(A)

∣∣∣∣∣ ≤ εTr(A)

)
≥ 1− δ, (4)

if M > C log(1/δ)
pε2 .

Proof. Let DξĀ ∈ RMN×MN be a block diagonal matrix with ξ = [ξ1, . . . , ξM ]> and Dξ = D(ξ) given by

DξĀ =




Dξ1A 0 · · · 0
0 Dξ2A · · · 0

0 0
. . .

...
0 0 · · · DξmA




Let x = [x1, . . . ,xM ]> ∈ RMN , then using Lemma A.5, we have

Pr
(∣∣x>DξĀx− E[x>DξĀx]

∣∣ ≥ t
)
≤ 2 exp

(
−cmin

(
t2

p‖Ā‖2F
,

t

‖Ā‖2

))
,

Next, we have x>DξĀx =
∑M
k=1 x

>
kDξkAxk, E[x>DξĀx] = pTr(Ā) = pM Tr(A), and ‖Ā‖2F =

M‖A‖2F , ‖Ā‖2 = ‖A‖2, setting t′ = t/(pM), we get

Pr

(∣∣∣∣∣
1

pM

M∑

k=1

x>kDξkAxk − Tr(A)

∣∣∣∣∣ ≥ t
′
)
≤ 2 exp

(
−cmin

(
pMt′2

‖A‖2F
,
pMt′

‖A‖2

))
.

Setting t′ = εTr(A), choosing δ ≥ 2 exp
(
−cpMt′2

‖A‖2F

)
, noting for SPD matrices Tr2(A) ≥ ‖A‖2F and that for

δ < 1/2, we have log(2/δ) ≤ 2 log(1/δ), we obtain the result for a constant C when

M >
C log(1/δ)

pε2
.

For the different cases in Theorem 2, we get the appropriate sampling complexity by setting p = µT /N .



Table 1: Additional set of test matrices. The variables N , nnz(A), and Tr(A) denote the size, number of non-zero
entries, and trace of matrix A, respectively.

Id Matrix name N nnz(A) Tr(A)
1 Pajek/Roget 1022 5075 1
2 Arenas/email 1133 10902 0
3 TKK/plbuckle 1282 30644 3.208e+08
4 SNAP/wiki-Vote 8297 103689 0
5 SNAP/ca-CondMat 23133 186936 58

A.5 Proof of Theorem 3

The proof relies on the previous Lemmas and the following Lemmas whose proofs are similar to those of Lemmas
A.4 and A.3, respectively.

Lemma A.7. The term E[2Tr(Q2)] = Tr(2E[Q2]) satisfies

E[2Tr(Q2)] =
2µT
N

Tr
(
E
[
Ã2
])
.

Lemma A.8. The term E
[
Tr(Q)2

]
satisfies

E
[
Tr(Q)2

]
=

(NµT −Var(T )− µ2
T ) Tr(E[D(Ã)Ã]) + (Var(T ) + µ2

T − µT )E[Tr(Ã)2]

N(N − 1)
.

B Additional numerical experiments

In this section we present additional numerical experiments to accompany the main paper. More specifically, in
addition to presenting results on asynchronous randomized trace estimation with Gaussian vectors, as well as
stochastic rounding, we include five additional test matrices reported in Table 1.

Figure 1 presents the accuracy of the Rademacher asynchronous and synchronous randomized trace estimators
when applied to the matrices in Table 1.

Figures 2 and 3 present the accuracy of the Gaussian asynchronous and synchronous randomized trace estimators
when applied to all reported matrices (including the main paper).

Figures 4 and 5 present the accuracy of the Rademacher/Gaussian asynchronous and synchronous randomized
trace estimators with stochastic rounding when applied to a i.i.d. dense matrix of size N = 1000.

Finally, Figures 6-10 present a comparison1 of the asynchronous and synchronous randomized trace estimators
as p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, for the five largest matrices listed in the main paper and our supplement. Notice
that the synchronous randomized trace estimator does not depend on p but we list its accuracy on each figure
for comparison purposes. The same is true for the asynchronous randomized estimator when T is uniform (no
dependence on p) but we plot the same figure across each different row of subfigures for the sake of completeness.
In summary, the accuracy of the asynchronous randomized trace estimator improves as p increases, and becomes
more similar to that obtained by the synchronous randomized trace estimator. The latter is expected since
increasing p forces the asynchronous estimator to sample more rows per sample (i.e., if we were to use p = 1
we would retrieve the classical synchronous trace estimator). Moreover, the two different sampling mechanisms
outlined in Corolarries 1 and 3 of our main paper lead to similar accuracy when p is small. On the other hand, as
p approaches one, the sampling mechanism outlined in Corollary 1 leads to a better matching of the accuracy
achieved by the synchronous trace estimator.

1For economy, we only list the case where the random vector x is sampled from the Rademacher distribution.
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Figure 1: [Rademacher samples] Left to right: fixed T , uniform T , fixed p; p = 0.6, T = dNpe.
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Figure 2: [Gaussian samples] Left to right: fixed T , uniform T , fixed p; p = 0.6, T = dNpe.
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Figure 3: [Gaussian samples] Left to right: fixed T , uniform T , fixed p; p = 0.6, T = dNpe.
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Figure 4: [Rademacher samples] Stochastic rounding. Matrix of size N = 1000 with entries sampled from
standard normal distribution scaled by 1000. Left to right: fixed T , uniform T , fixed p; p = 0.6, T = dNpe. Top
to bottom: Different numbers of quantization levels: 2, 4, 8, 16, 32.
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Figure 5: [Gaussian samples] Stochastic rounding. Matrix of size N = 1000 with entries sampled from standard
normal distribution scaled by 1000. Left to right: fixed T , uniform T , fixed p; p = 0.6, T = dNpe. Top to bottom:
Different numbers of quantization levels: 2, 4, 8, 16, 32.
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Figure 6: [Rademacher samples] Comparing the asynchronous and synchronous randomized trace estimators for
various values of p (matrix: SNAP/ca-CondMat). Left to right: fixed T , uniform T , fixed p; T = dNpe. Top to
bottom: p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 7: [Rademacher samples] Comparing the asynchronous and synchronous randomized trace estimators for
various values of p (matrix: Botonakis/thermotech). Left to right: fixed T , uniform T , fixed p; T = dNpe. Top
to bottom: p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 8: [Rademacher samples] Comparing the asynchronous and synchronous randomized trace estimators
for various values of p (matrix: LAW/cnr-2000). Left to right: fixed T , uniform T , fixed p; T = dNpe. Top to
bottom: p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 9: [Rademacher samples] Comparing the asynchronous and synchronous randomized trace estimators
for various values of p (matrix: SNAP/wiki-Vote). Left to right: fixed T , uniform T , fixed p; T = dNpe. Top to
bottom: p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
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Figure 10: [Rademacher samples] Comparing the asynchronous and synchronous randomized trace estimators for
various values of p (matrix: SNAP/web-Stanford). Left to right: fixed T , uniform T , fixed p; T = dNpe. Top to
bottom: p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.



[5] O. Teke and P. P. Vaidyanathan. Random node-asynchronous updates on graphs. IEEE Transactions on
Signal Processing, 67(11):2794–2809, 2019.

[6] N. A. Weiss, P. T. Holmes, and M. Hardy. A course in probability. Pearson Addison Wesley Boston,
Massachusetts, USA, 2006.

[7] S. Zhou. Sparse Hanson–Wright inequalities for subgaussian quadratic forms. Bernoulli, 25(3):1603–1639,
2019.


