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Abstract

Constrained Markov games offer a formal
mathematical framework for modeling multi-
agent reinforcement learning problems where
the behavior of the agents is subject to
constraints. In this work, we focus on
the recently introduced class of constrained
Markov Potential Games. While centralized
algorithms have been proposed for solving
such constrained games, the design of con-
verging independent learning algorithms tai-
lored for the constrained setting remains an
open question. We propose an independent
policy gradient algorithm for learning ap-
proximate constrained Nash equilibria: Each
agent observes their own actions and rewards,
along with a shared state. Inspired by the op-
timization literature, our algorithm performs
proximal-point-like updates augmented with
a regularized constraint set. Each proxi-
mal step is solved inexactly using a stochas-
tic switching gradient algorithm. Notably,
our algorithm can be implemented indepen-
dently without a centralized coordination
mechanism requiring turn-based agent up-
dates. Under some technical constraint qual-
ification conditions, we establish convergence
guarantees towards constrained approximate
Nash equilibria. We perform simulations to
illustrate our results.

1 INTRODUCTION

In multi-agent reinforcement learning (RL), several
agents interact within a shared dynamic and uncer-
tain environment evolving over time depending on the
individual strategic decisions of all the agents. Each
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agent aims to maximize their own individual reward
which may however depend on all players’1 decisions.
Besides reward maximization, agents may also con-
tend with satisfying constraints that are often dictated
by multi-agent RL applications. Prominent such real-
world applications include multi-robot control on co-
operative tasks (Gu et al., 2023) as well as autonomous
driving (Shalev-Shwartz et al., 2016; Liu et al., 2023)
where physical system constraints and safety consid-
erations such as collision avoidance are of primary im-
portance. In other applications, agents may be sub-
ject to soft constraints such as average users’ total la-
tency thresholds in wireless networks or average power
constraints in signal transmission. Each agent seeks
to maximize their reward while also accounting for
constraints which are coupled among agents. Con-
strained Markov games (Altman and Shwartz, 2000)
offer a mathematical framework to model multi-agent
RL problems incorporating coupled constraints.

In this work, we focus on a particular class of struc-
tured constrained Markov games: constrained Markov
Potential Games (CMPGs). Recently introduced
in Alatur et al. (2023) to incorporate constraints,
CMPGs naturally extend the class of Markov Poten-
tial Games (MPGs) that has been actively investigated
in the last few years (Macua et al., 2018; Leonardos
et al., 2022; Fox et al., 2022; Zhang et al., 2022b; Song
et al., 2022; Ding et al., 2022; Zhang et al., 2022a;
Maheshwari et al., 2023; Zhou et al., 2023). Inter-
estingly, this class of games is a class of mixed co-
operative/competitive Markov games including pure
identical interest Markov games (in which all the re-
ward and cost functions of the agents are identical) as
a particular case. The ability to cooperate between
learning agents is crucial to improve their joint wel-
fare and achieve social welfare for artificial intelligence
(see Dafoe et al. (2020, 2021) for an extensive discus-
sion about the need for promoting cooperative AI).

Independent learning has recently attracted increasing
attention thanks to its versatility as a learning proto-
col. We refer the reader to a recent nice survey on
the topic (Ozdaglar et al., 2021). In this protocol,

1We will use player and agent interchangeably.
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agents can only observe the realized state and their
own reward and action in each stage to individually
optimize their return. In particular, each agent does
not observe actions or policies from any other agent.
This protocol offers several advantages including the
following aspects: (a) Scaling: independent learning
dynamics do not scale exponentially with the num-
ber of players in the game (also known as the curse
of multi-agents); (b) Privacy protection: agents may
avoid sharing their local data and information to pro-
tect their privacy and autonomy; (c) Communication
cost: a central node that can bidirectionally commu-
nicate with all agents may not exist or may be too
expensive to afford. Therefore, this protocol is partic-
ularly appealing in several applications where agents
need to make decisions independently, in a decentral-
ized manner. For example, dynamic load balancing,
which consists in evenly assigning clients to servers
in distributed computing, demands for learning algo-
rithms that minimize communication overhead to en-
able low-latency response times and scalability across
large data centers. This task has been modeled as
an MPG (Yao and Ding, 2022). In other applications
such as the pollution tax model and distributed energy
marketplace detailed in section 5, coordination is in-
herently ruled out due to the competitive nature of the
players’ interactions. Independent learning algorithms
have been proposed for unconstrained multi-agent RL
problems such as zero-sum Markov games (Daskalakis
et al., 2020; Sayin et al., 2021; Chen et al., 2023) as
well as for unconstrained MPGs in a recent line of
works (Leonardos et al., 2022; Zhang et al., 2022a,b;
Ding et al., 2022; Maheshwari et al., 2023).

However, for constrained MPGs, existing algorithms
with convergence guarantees require coordination be-
tween players. Indeed, inspired by Song et al. (2022),
Alatur et al. (2023) recently proposed a coordinate as-
cent algorithm for CMPGs in which each agent up-
dates their policy in turn. At each time step, the
policies of other agents are fixed while the updating
agent faces a constrained Markov Decision Process
(CMDP) to solve. When this coordination is not pos-
sible as in the independent learning protocol, the prob-
lem becomes more challenging as the environment is
no longer stationary from the viewpoint of each agent
and the problem does not reduce to solving a CMDP at
each time step. This motivates the following question:

Can we design an independent learning al-
gorithm for constrained MPGs with non-
asymptotic global convergence guarantees?

In this paper, we answer this question in the affirma-
tive. Our contributions are as follows:

• We design an algorithm for independent learn-
ing of constrained ϵ-approximate Nash equilib-
ria (NE) in CMPGs. Inspired by recent works
in nonconvex optimization under nonconvex con-
straints, our algorithm implements an inexact
proximal-point update augmented with a regu-
larized constraint set. In particular, the inexact
proximal step is computed using a stochastic gra-
dient switching algorithm for solving the resulting
subproblem where both the objective and the con-
straint functions are strongly convex. Notably,
the algorithm can be run independently by the
different agents without taking turns.

• We analyze the proposed algorithm and establish
its sample complexity to converge to an ϵ- ap-
proximate NE of the CMPG with polynomial de-
pendence on problem parameters. Our analysis
requires new technical developments that do not
rely on results from the CMDP literature.

• We illustrate the performance of our algorithm on
two simple CMPG applications: a pollution tax
model and a marketplace for distributed energy
resources.

Table 1: Position of our work in the literature. ‘cen-
tralized’ means that the algorithm requires coordina-
tion between players who take turns in updating their
policy; for ‘independent’ learning, see section 2.

centralized independent

MPG
Nash-CA

Song et al. (2022)

Independent PGA
Leonardos et al. (2022)
Zhang et al. (2022b)
Ding et al. (2022)

CMPG
CA-CMPG

Alatur et al. (2023)
Algorithm 1
This work

Related Works We refer the reader to Table 1 for
a schematic positioning of our work in the recent lit-
erature. We next discuss some closely related work.

Markov Potential Games MPGs have been in-
troduced as a natural extension of normal form
potential games (Monderer and Shapley, 1996) to
the dynamic setting starting with state-based po-
tential games (Marden, 2012) and later Markov
games (Macua et al., 2018). Leonardos et al. (2022) in-
troduced a variant of MPGs and proposed independent
stochastic policy gradient methods with an O(ϵ−6)



Philip Jordan, Anas Barakat, Niao He

sample complexity to reach an ϵ-approximate NE.
Similar results were shown in Zhang et al. (2022b)
with model-based algorithms. This result was later
improved to an O(ϵ−5) sample complexity for large
state-action spaces with linear function approxima-
tion (Ding et al., 2022) and further to an O(ϵ−4.5) by
reducing the variance of the agent-wise stochastic pol-
icy gradients (Mao et al., 2022). Zhang et al. (2022a)
explored the use of the softmax policy parametriza-
tion instead of the direct parametrization. In partic-
ular, they established an O(ϵ−2) iteration complexity
in the deterministic setting and showed the benefits of
using regularization to improve the convergence rate.
Maheshwari et al. (2023) proposed a fully independent
and decentralized two timescale algorithm for MPGs
with asymptotic guarantees where players may not
even know the existence of other players. Narasimha
et al. (2022) provided verifiable structural assump-
tions under which a Markov game is an MPG and fur-
ther provided several algorithms for solving MPGs in
the deterministic setting. Song et al. (2022) proposed
an O(ϵ−3) sample complexity coordinate ascent algo-
rithm (Nash-CA) which requires coordination between
players. Guo et al. (2023) recently introduced the class
of α-MPGs which relaxes the definition of MPGs by
allowing α-deviations with respect to (w.r.t.) the po-
tential function. More recently, Zhou et al. (2023) in-
troduced a class of networked MPGs for which they
proposed a localized actor-critic algorithm with linear
function approximation. All the aforementioned works
focused on the unconstrained setting.

Constrained Markov Games and CMPGs
There has been a vast array of works in multi-agent RL
with safety constraints in practice (see e.g., ElSayed-
Aly et al. (2021); Gu et al. (2023) and the references
therein). Altman and Shwartz (2000) defined con-
strained Markov games and provided sufficient con-
ditions for the existence of stationary constrained NE.
Nonasymptotic theoretical convergence guarantees to
game theoretic solution concepts for constrained multi-
agent RL are relatively scarce in the literature. Chen
et al. (2022) introduced a notion of correlated equi-
libria for general constrained Markov games and pro-
vided a primal-dual algorithm for learning those equi-
libria. Ding et al. (2023) established regret guarantees
for episodic two-player zero-sum constrained Markov
games. Alatur et al. (2023) introduced the class of
constrained MPGs. Inspired by Nash-CA (Song et al.,
2022), they proposed a constrained variant of the
algorithm which enjoys an O(ϵ−5) sample complex-
ity. Crucially, this algorithm requires coordination
between agents and cannot be implemented indepen-
dently by the agents.

Inexact Proximal-Point The idea of using inex-
act proximal-point methods to solve nonconvex prob-
lems has been fruitfully exploited in the literature
for a couple of decades (see e.g., Hare and Sagas-
tizábal (2009); Davis and Grimmer (2019)). A re-
cent line of works (Boob et al. (2023); Ma et al.
(2020); and also Jia and Grimmer (2023)) extended
this idea in order to solve nonconvex optimization
problems with nonconvex functional constraints. The
initial nonconvex problem is transformed into a se-
quence of convex problems by adding quadratic regu-
larization terms to both the objective and constraints.
These works also established convergence rates to
Karush–Kuhn–Tucker (KKT) points under constraint
qualification conditions. Our present work is inspired
by this recent line of research. We point out though
that we deal with a multi-agent RL problem and we
provide convergence guarantees to approximate con-
strained NE. In these regards, our independent algo-
rithm design and our analysis require several new tech-
nical developments.

2 PRELIMINARIES

We consider an m-player constrained Markov Game
where the players repeatedly select actions for maxi-
mizing their individual value functions while satisfy-
ing some constraints defined as cost value function
bounds. More formally, the tabular game with ran-
dom stopping, which we focus on, is described by a
tuple G = (S,N , {Ai, ri, ci}i∈N , α, µ, P, κ) with:

• A finite set of states S of cardinality S := |S| and
a finite set of m agents N := {1, . . . ,m} .

• A finite set of actions Ai of cardinality Ai := |Ai|
for all i ∈ N with Amax := maxi∈N Ai. The joint
action space is denoted by A :=

∏
i∈N Ai .

• A reward function ri : S × A → [0, 1] and a cost
function ci : S × A → [0, 1] for each agent i ∈ N .
Throughout this paper, we will suppose that all
the cost functions are identical across the agents
and equal to a single cost function c.2

• A distribution µ over states from which the initial
state of the game is drawn.

• A probability transition kernel P : For any
state s ∈ S and any joint action a ∈ A, the
game transitions from state s to a state s′ ∈ S

2The case of multiple such common costs can be ad-
dressed with our approach with minor modifications. The
case where cost functions may differ between players is
more challenging and left for future work. See Remark 1
for details.
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with probability P (s′|s, a) and the game termi-
nates with probability κs,a > 0. We further de-
fine κ := mins∈S,a∈A κs,a and γ := 1− κ .

At each time step t ≥ 0 of a given episode of the game,
all the agents observe a shared state st ∈ S and choose
a joint action at ∈ A. Then, each agent i ∈ N re-
ceives a reward ri(st, at) and incurs a cost c(st, at) .
The game either stops at time t with probability κst,at

or proceeds by transitioning to a state st+1 drawn
from the distribution P (·|st, at) . We denote by Te
the random stopping time when the episode termi-
nates.3 For a similar setting in the unconstrained case,
see Daskalakis et al. (2020); Giannou et al. (2022).

Policies and Value Functions Each agent i ∈
N chooses their actions according to a randomized
stationary policy denoted by πi ∈ Πi := ∆ (Ai)

S

where ∆ (Ai) is the probability simplex over the fi-
nite action space Ai. The set of joint policies π =
(πi)i∈N is denoted by Π := ×i∈NΠi and we fur-
ther use the notation π−i = (πj)j∈N\{i} ∈ Π−i :=

×j∈N\{i}Π
j for joint policies of all agents other than i.

For any u ∈ {ri | i ∈ N} ∪ {c} and any joint pol-
icy π ∈ Π, we define the value function Vu(π) for every

state s ∈ S by Vu,s(π) := E[
∑Te

t=0 u(st, at)|s0 = s]. The
shorthand notation Vu(π) will stand for Vu,µ(π) :=
Es∼µ[Vu,s(π)] . For any policy π ∈ Π and s, s′ ∈ S,
the state visitation distribution is defined by dπs (s

′) :=

E[
∑Te

t=0 1{st=s′}|s0 = s] where 1 is the indicator func-
tion and we write dπµ(s

′) = Es∼µ[d
π
s (s

′)].

In the rest of this paper, we will aim to minimize both
rewards and costs to align with conventions from the
constrained optimization literature. The equivalence
to the common RL reward maximization formulation
follows from considering reward functions 1−ri instead
of ri for each i ∈ N .

Constrained MPGs In this paper, we consider an
m-player constrained MPG (CMPG) (Alatur et al.,
2023) which is a constrained version of a Markov Po-
tential Game (Macua et al., 2018; Leonardos et al.,
2022). In an MPG, for each state s ∈ S, there ex-
ists a so-called potential function Φs : Π → R such
that for all i ∈ N , it holds that Vri,s(πi, π−i) −
Vri,s(π

′
i, π−i) = Φs(πi, π−i)− Φs(π

′
i, π−i) for any poli-

cies (πi, π−i) ∈ Π, and π′
i ∈ Πi . We will also use the

notation Φ(π) := Es∼µ[Φs(π)]. Notice that the fully
cooperative setting when all the reward functions of
the players are identical is a particular instance of an
MPG. Note also that the potential function is typi-
cally unknown for the players interacting in the game.

3The discounted infinite horizon setting can also be ad-
dressed with minor adaptations.

The joint policies of the agents are constrained to the
set Πc := {π ∈ Π | Vc(π) ≤ α} of feasible policies. The
set of feasible policies for agent i ∈ N when the policy
of the other agents is fixed to π−i ∈ Π−i is denoted
by Πi

c(π−i) :=
{
πi ∈ Πi | (πi, π−i) ∈ Πc

}
.

Nash Equilibria For any ϵ ≥ 0, a joint policy π∗ ∈
Πc is called an ϵ-approximate constrained NE if for
every i ∈ N and any policy π′

i ∈ Πi
c(π

∗
−i), we have

Vri(π
∗) − Vri(π

′
i, π

∗
−i) ≤ ϵ . When ϵ = 0, such a pol-

icy π∗ is called a constrained NE policy and no agent
has an incentive to deviate unilaterally from a NE pol-
icy π∗. Observe that unilateral deviations are only
allowed within the set of feasible policies in our con-
strained setting. We refer the reader to Altman and
Shwartz (2000) for the existence of stationary con-
strained NEs.

Independent Learning Protocol All the players
interact via executing their policies for a fixed number
of episodes in order to find an approximate constrained
NE. Importantly, during the learning procedure, each
player executes their policy at each episode of the game
to sample a trajectory and exclusively observes their
own trajectory (st, ai,t, ri(st, at), c(st, at))0≤t≤Te

. In
particular, a player does not have access to the policies
of other players or their chosen actions. Such a proto-
col was considered for instance in two-player zero-sum
Markov games in Daskalakis et al. (2020); Chen et al.
(2023) as well as for unconstrained MPGs (Leonardos
et al., 2022; Ding et al., 2022; Maheshwari et al., 2023).

3 INDEPENDENT ALGORITHM
FOR CONSTRAINED MPGs

In this section, we present our independent iProxCMPG
algorithm for learning constrained NE in CMPGs. Be-
fore describing our approach, we discuss an alterna-
tive, natural but unsuccessful, approach to motivate
our algorithm design. This will allow us to highlight
the challenges arising from the combination of (a) the
presence of coupled constraints, (b) the multi-player
setting, and (c) the independent learning protocol.

Our starting point is the known result that any max-
imizer of the potential function is a NE of the game.
This result was initially proved by Monderer and Shap-
ley (1996) for normal form potential games and later
generalized to MPGs by Leonardos et al. (2022) and
to constrained MPGs more recently (Alatur et al.,
2023). Therefore, in order to find an (approximate)
constrained NE for our CMPG4, we will consider solv-

4Approximate KKT points of this problem will be re-
lated to approximate constrained NE of our CMPG.
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ing the following constrained optimization problem:

min
π∈Πc

Φ(π) , (1)

where Φ is the potential function for our CMPG using
the notations introduced in section 2. This problem
involves a nonconvex objective with a nonconvex con-
straint since the value function is a nonconvex function
of the policy in general (see e.g., Lemma 1 in Agar-
wal et al. (2021)). However, although nonconvex op-
timization problems with nonconvex constraints are
notoriously hard, it turns out that problem (1) is still
tractable in the single agent setting. In this case, the
problem boils down to a CMDP problem. Despite its
nonconvexity, the problem can be recast as a linear
program in the space of occupancy measures which is
a convex set (see Chapter 3 in Altman (1999)). Then,
strong duality permits to design primal-dual policy
gradient algorithms to solve the problem with conver-
gence guarantees (see e.g., Paternain et al. (2019)).

Given those positive results for single agent CMDPs, a
natural approach is to derive a primal-dual algorithm
for our multi-agent problem (1) as it was proposed
by Diddigi et al. (2020). In the latter work, a primal-
dual policy gradient algorithm was proposed using the
Lagrangian function L(π, λ) := Φ(π) + λ(Vc(π) − α)
where λ ≥ 0 is a Lagrange multiplier. This algorithm
can then be run independently by the different agents
using existing independent learning algorithms for the
unconstrained setting (Leonardos et al., 2022; Zhang
et al., 2022b; Ding et al., 2022). Unfortunately, it has
been recently shown by Alatur et al. (2023) that strong
duality does not hold in general for the CMPG prob-
lem. As a consequence, it is not clear how to obtain
guarantees for convergence to constrained NE using
this duality approach. This is due to the multi-agent
nature of our problem. In particular, since the con-
straint couples the agents’ individual policies, the set
of state-action occupancy measures induced by joint
policies of the players cannot be obviously split into
several convex problems involving the occupancy mea-
sures induced by each one of the players’ policies. The
well-known challenge of nonstationarity of the environ-
ment in multi-agent RL makes the design of indepen-
dent learning algorithms difficult. As a remedy, Alatur
et al. (2023) resort to coordination among players and
propose a coordinate ascent algorithm for CMDPs. At
each time step and for every player i, by fixing the
policy of other players but player i to π−i, player i
can learn a “best-response” policy by solving a CMDP
since the environment now becomes stationary from
agent i’s viewpoint.

Recall now that our main objective is to design an
independent learning algorithm in the sense of sec-
tion 2 in order to learn constrained NE for our CMPG.

We now describe our approach which takes a dif-
ferent route. Our algorithm is inspired by recent
work in nonconvex optimization under nonconvex con-
straints (Boob et al., 2023; Ma et al., 2020; Jia and
Grimmer, 2023). Following their ideas, we consider the
following proximal update with penalized constraints:

π(t+1) = argmin
π∈Π

{
Φ (π) +

1

2η

∥∥∥π − π(t)
∥∥∥2 ∣∣∣

Vc(π) +
1

2η

∥∥∥π − π(t)
∥∥∥2 + β ≤ α

}
(2)

where π(0) is a given initial joint policy, η > 0 is
a step size and β > 0 an additional slack. Ob-
serve that Vc(π

(t+1)) + β − α ≤ −∥π(t+1) − π(t)∥2/2η .
Hence, the policy π(t) is feasible with slack β, i.e.,
Vc(π

(t)) + β ≤ α, for every t ≥ 0. We introduce two
additional notations for convenience. Define for any
joint policies π, π′ ∈ Π, and η > 0,

Φη,π′(π) := Φ(π) +
1

2η
∥π − π′∥2 ,

V c
η,π′(π) := Vc(π) +

1

2η
∥π − π′∥2 ,

Πc
η,π′ :=

{
π ∈ Π | V c

η,π′(π) + β ≤ α
}
.

Our update rule in (2) can then be rewritten as:

π(t+1) = argmin
π∈Πc

η,π(t)

Φη,π(t)(π) . (3)

We immediately observe that the above update rule is
well-defined since Φη,π(t) and V c

η,π(t) are strongly con-

vex for every t ≥ 0 for a suitable step size η. This is in
contrast with the original problem where both the po-
tential function Φ and the constraint function Vc are
smooth but nonconvex. We also remark that if π(t)

converges, then the regularization term
∥∥π(t+1) − π(t)

∥∥
becomes small and the surrogate feasible region Πc

η,π(t)

approaches the original constraint set Πc up to the ad-
ditional slack β.

Now, we discuss how to solve the proximal problem
in (3) defining our main update rule. To solve this
strongly convex problem with strongly convex con-
straint, we adapt a gradient switching algorithm pro-
posed in Lan and Zhou (2020). At each iteration k, our
algorithm performs a projected gradient descent step
along either the gradient of the (regularized) objective
or the gradient of the constraint function depending on
whether an estimate of the constraint function satisfies
the relaxed constraint Vc(π

(t,k)) + β − α ≤ δk where
(δk) is a decreasing sequence converging to zero and
hence progressively enforcing the constraint. However,
it is not immediate from the above procedure how to
obtain an independent learning algorithm specifying
an update rule for each player without coordination
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between the players. Recall for instance that the po-
tential function Φ is unknown to the players in general
and full gradients of both the potential and constraint
functions w.r.t. the joint policy cannot be available to
each agent since we exclude coordination and central-
ization. To obtain our independent iProxCMPG, see
Algorithm 1, we propose to use agent-wise updates
where each agent runs the gradient switching algo-
rithm independently using only partial gradients of the
potential and constraint functions w.r.t. their individ-
ual policy. Notice that our subroutine algorithm devi-
ates from the one proposed in Lan and Zhou (2020) in
that we use the estimate of the constraint function Vc
instead of the regularized constraint function V c

η,π(t) .

This is because the regularized constraint function in-
volves the joint policy in the regularization while the
constraint value function can be estimated indepen-
dently. We further remark that for our analysis, the
index k̂ sampled in line 7 of Algorithm 1 is supposed
to be picked the same by all the players (see also Re-
mark 3 in Appendix A for further details).

Stochastic Setting When exact gradients and
value functions are not available, we estimate them
using sampled trajectories. For each joint pol-
icy π(t,k), every player i samples a trajectory τi :=

(s
(t,k)
j , a

(t,k)
i,j , r

(t,k)
i,j , c

(t,k)
j )0≤j≤Te of length Te+1 by ex-

ecuting their own policy π
(t,k)
i . Here, s

(t,k)
0 ∼ µ and

r
(t,k)
i,j , c

(t,k)
j respectively refer to the reward and cost

incurred by the i-th player at the j-th step. The gra-
dients ∇πi

Vri(π
(t,k)) and ∇πi

Vc(π
(t,k)) are replaced by

their sample estimates

∇̂V ri
πi
(π(t,k)) := R

(Te,t,k)
i ψTe

π
(t,k)
i

,

∇̂V c
πi
(π(t,k)) := C(Te,t,k) ψTe

π
(t,k)
i

,
(4)

where R
(Te,t,k)
i :=

∑Te

j=0 r
(t,k)
i,j , C(Te,t,k) :=

∑Te

j=0 c
(t,k)
j

and ψTe

π
(t,k)
i

:=
∑Te

j=0 ∇πi
log π

(t,k)
i

(
a
(t,k)
i,j | s(t,k)j

)
.

Each agent estimates Vc(π
(t,k)) by V̂c(π

(t,k)) :=
C(Te,t,k) independently, using the cost feedback infor-
mation they receive. Note that details of trajectory
sampling are omitted in Algorithm 1 for more com-
pact presentation (for the full version, see Algorithm 2
in Appendix A).

Remark 1. As potential avenues for future work, we
would like to point out two possible generalizations of
the considered CMPG setting in which our current
iProx-CMPG algorithm and analysis are not directly
applicable:

• Potential cost constraints. Suppose we do
not require the cost functions ci to be identi-
cal across all players i ∈ N but instead as-

sume that for each s ∈ S, there exists a so-
called cost potential function Φc,s : Π → R such
that for all i ∈ N , it holds that Vci,s(πi, π−i) −
Vci,s(π

′
i, π−i) = Φc,s(πi, π−i) − Φc,s(π

′
i, π−i) for

any policies (πi, π−i) ∈ Π, and π′
i ∈ Πi .

Note that in order to use the gradient switching
subroutine in our algorithm, it is essential that
all agents are able to estimate whether or not the
constraint holds for the current joint policy. In
the case of a potential cost, it is not clear how to
provide such estimates unless agents have knowl-
edge of the potential (e.g. as a known function
of the cost). This is an interesting question that
merits further investigation.

• Playerwise cost thresholds. Suppose each
player i ∈ N has an individual feasibility thresh-
old αi. The set of feasible policies is then redefined
as Φc := {π ∈ Π | ∀i ∈ N , Vci(π) ≤ αi} .
In this case, if all the cost functions ci are identi-
cal and if the thresholds αi can be communicated
among players, one can consider the hardest con-
straint α := mini∈N αi and use our approach to
find a policy solving this stricter problem (if such
policy exists). Otherwise, if cost functions are not
identical or if each agent has their private thresh-
old, our algorithm and analysis need further ad-
justments.

4 CONVERGENCE ANALYSIS
AND SAMPLE COMPLEXITY

In this section, we establish the iteration complexity
of Algorithm 1 in the deterministic setting before stat-
ing its sample complexity in the stochastic setting. We
first introduce our assumptions. The first one guaran-
tees the existence of a strictly feasible policy that is
available to the agents for initialization.

Assumption 1. The initial policy π(0) satis-
fies Vc(π

(0)) < α .

A few remarks are in order regarding this assumption:

• Similar assumptions have been made in the re-
lated constrained optimization literature when
dealing with nonconvex constraints (Boob et al.,
2023; Ma et al., 2020; Jia and Grimmer, 2023).
Otherwise, satisfying a constraint may require
finding a global minimizer which is computation-
ally intractable in a general nonconvex setting.
In our case, this corresponds to finding the global
minimizer of a potential function in a fully co-
operative unconstrained MPG. While this can
be achieved in a single agent setting thanks to
the gradient dominance property (Agarwal et al.,
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Algorithm 1 iProxCMPG: independent Proximal-policy algorithm for CMPGs

1: initialization: π(0) ∈ Πξ s.t. Vc(π
(0)) < α and suitably chosen η, β, T,K, {(νk, δk, ρk)}0≤k≤K

2: for t = 0, . . . , T − 1 do

3: π
(t,0)
i = π

(t)
i for i ∈ N

4: for k = 0, . . . ,K − 1 and i ∈ N simultaneously do

5: π
(t,k+1)
i =

PΠi,ξ

[
π
(t,k)
i − νk∇̂πiVri(π

(t,k))− νk

η (π
(t,k)
i − π

(t)
i )
]

if V̂c(π
(t,k)) + β − α ≤ δk

PΠi,ξ

[
π
(t,k)
i − νk∇̂πi

Vc(π
(t,k))− νk

η (π
(t,k)
i − π

(t)
i )
]

otherwise

6: B(t) = {⌊K/2⌋ ≤ k ≤ K | V̂c(π(t,k)) ≤ δk}
7: π

(t+1)
i = π

(t,k̂)
i where k̂ = 1 if B(t) = ∅ and else sampled s.t. for k ∈ B(t), P(k̂ = k) =

(∑
k∈B(t) ρk

)−1
ρk

8: output: π
(T )
i for i ∈ N

2021; Xiao, 2022), such a global optimality result
is not available in the literature for our multi-
agent setting to the best of our knowledge.

• While finding a strictly feasible policy is involved
in general, it may be possible to find such a pol-
icy in some special cases, such as when the state
space can be factored, the probability transitions
are independent across agents and the constraint
cost functions are separable (see examples 1 and 2
in Alatur et al. (2023) for more details).

In addition to initial feasibility, we require that
Slater’s condition holds for each subproblem given by
a proximal-point update. This is ensured by the fol-
lowing uniform Slater’s condition.

Assumption 2. Let η = 1
2LΦ

where LΦ is the smooth-

ness parameter5 of Φ. Then, there exists ζ > 0 such
that for any strictly feasible π′ ∈ Π, i.e., Vc(π

′) < α,
there exists π ∈ Π with V c

η,π′(π) ≤ α− ζ.

We make the following comments:

• First, we point out that a strictly feasible π′ sat-
isfies V c

η,π′(π′) = Vc(π
′) < α, i.e., existence of

a strictly feasible policy for the regularized con-
straint function V c

η,π′ is trivially given. Assump-
tion 2 additionally ensures that strict feasibility
holds with slack ζ where ζ is independent of π′.

• Similar constraint qualification conditions have
been widely used in the nonconvex constrained
optimization literature, see Boob et al. (2022),
Table 1 for an overview. In particular, Assump-
tion 2 is similar to the uniform Slater’s condition
of Ma et al. (2020). Assumption 3 in Boob et al.
(2023) is a strong feasibility assumption which im-
plies Assumption 2, and hence could also replace
it here. Strong feasibility assumes existence of a

5See also Lemma 8, item 3 for an expression of LΦ in
terms of m, γ, and Amax.

policy π such that Vc(π) ≤ α − diam(Π)2

η where

diam(Π) := maxπ,π′∈Π ∥π − π′∥.

• A uniform strict feasibility assumption similar
to Assumption 2 was used for centralized NE-
learning, see Alatur et al. (2023), Assumption 2.

Exact Gradients Case In the noiseless setting with
access to exact gradients, we achieve the following it-
eration complexity result.

Theorem 1. Let Assumptions 1 and 2 hold and
let the distribution mismatch coefficient D :=
maxπ∈Π

∥∥dπµ/µ∥∥∞ be finite. For any ϵ > 0, af-
ter running iProxCMPG, Algorithm 1, for ξ = 0,
suitably chosen η, β, T,K, and {(νk, δk, ρk)}0≤k≤K ,
there exists t ∈ [T ], such that π(t) is a con-
strained ϵ-NE. The total iteration complexity is given
by O(ϵ−4) where O(·) hides polynomial dependencies
in m,S,Amax, D, 1− γ, and ζ.

The full proof of Theorem 1 is deferred to Ap-
pendix B.1. We briefly outline the key steps below.

Proof idea. First, we show that K = O(ϵ−2) itera-
tions of the inner loop yield a policy that is feasible
and achieves potential value sufficiently close to the
exact proximal update (3). For T = O(ϵ−2), stan-
dard arguments then imply existence of t ∈ [T ] such
that ∥π(t+1) − π(t)∥ = O(ϵ). It can further be shown
that such π(t+1) satisfies a particular form of approx-
imate CMPG-specific KKT conditions for the origi-
nal constrained optimization problem (1). We then
leverage the multi-agent structure to argue that for
all i ∈ N , similar KKT conditions also hold w.r.t.

the playerwise problem min
πi∈Πi

c(π
(t+1)
−i )

Vri(πi, π
(t+1)
−i )

where π
(t+1)
−i is fixed. Finally, using playerwise gradi-

ent dominance (see e.g., Lemma D.3 in Leonardos et al.
(2022) or Lemma 2 in Giannou et al. (2022)), one can
bound the duality gap of player i’s constrained prob-
lem for all i ∈ N which implies that π(t+1) is a con-
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strained ϵ-NE. The total iteration complexity is given
by T ·K = O(ϵ−4).

Finite Sample Case In the stochastic setting,
when exact gradients are not available, the vari-
ance of the stochastic policy gradients in (4) can be
unbounded if the policies get closer to the bound-
aries of the simplex (see e.g., Eq. (13) in Giannou
et al. (2022)). Therefore, we consider exploratory ξ-
greedy policies to address this issue as in prior work
(Daskalakis et al., 2020; Leonardos et al., 2022; Ding
et al., 2022; Giannou et al., 2022). Define for any
ξ ≥ 0, i ∈ N the subset of ξ-greedy policies

Πi,ξ := {π ∈ Π | ∀s ∈ S : πi (· | s) ≥ ξ/Ai} ,

which is used in Algorithm 1. We are now ready to
state our sample complexity result.

Theorem 2. Let Assumptions 1 and 2 hold, and let D
(as in Theorem 1) be finite. Then, for any ϵ > 0, after
running iProxCMPG based on finite sample estimates
(see Algorithm 2) for suitably chosen η, β, ξ, T,K,B,
and {(νk, δk, ρk)}0≤k≤K , there exists t ∈ [T ], such that
in expectation, π(t) is a constrained ϵ-NE. The total
sample complexity is given by Õ(ϵ−7) where Õ(·) hides
polynomial dependencies inm,S,Amax, D, 1−γ, and ζ,
as well as logarithmic dependencies in 1/ϵ.

We refer the reader to Appendix B.2 for the proof of
Theorem 2. Below, we briefly explain how we obtain
our sample complexity result.

Proof idea. As in the exact gradients case, we require
T = O(ϵ−2) iterations of the outer loop. In the
stochastic setting, our independent implementation of
the CSA algorithm (Lan and Zhou, 2020) still con-
verges at a O(1/K)-rate due to strong convexity, but
requires sampling a batch of size B = O(ϵ−2) for es-
timating constraint function values at each iteration.
To counteract the variance of ξ-greedy gradient esti-
mates (which in our case grows as O(ϵ−1)), we need
to set K = O(ϵ−3). All in all, we end up with sample
complexity T · K · B = O(ϵ−7) for proving existence
of t ∈ [T ] such that E

[∥∥π(t) − π(t+1)
∥∥] = O(ϵ). Us-

ing similar arguments as for Theorem 1, this implies
that π(t+1) is a constrained ϵ-NE in expectation.

Remark 2. Comparing our result to the state-of-the-
art in the unconstrained case (O(ϵ−5), Ding et al.
(2022)), accounting for constraints comes at a cost,
increasing the sample complexity by a O(ϵ−2)-factor.
In the centralized setting, a similar gap can be observed
between best known results for unconstrained (O(ϵ−3),
Song et al. (2022)) vs. constrained (O(ϵ−5), Alatur
et al. (2023)) NE-learning. Whether this O(ϵ−2)-gap
can be narrowed is an interesting open question for
both centralized and independent learning.

5 SIMULATIONS

We test our stochastic iProxCMPG algorithm in two
simple applications that can be modeled as CMPGs
and for which coordination among players is unrealis-
tic. Both examples are inspired by unconstrained vari-
ants presented in Narasimha et al. (2022) who study
MPGs. Our code is publicly available6.

Pollution Tax Model Consider a simple environ-
ment with m agents representing e.g. factories, two
states, pollution-free and polluted, and two actions,
clean and dirty corresponding to low and high pro-
duction volume. Starting in the pollution-free state,
in each round, the environment transitions to the pol-
luted state if and only if at least one agent chooses
dirty. Each agent’s reward is the sum of its profit mi-
nus a pollution tax. In either state, the profit is Pc

when choosing clean and Pd when choosing dirty. The
pollution tax is zero in the pollution-free, and Tp in
the polluted state. As pointed out by Narasimha et al.
(2022), due to rewards being separable in the sense
that ri(s, ai, a−i) = r′i(s) + r′′i (ai, a−i) and state tran-
sition probabilities being state independent, the pol-
lution tax model satisfies a sufficient condition under
which a Markov game is an MPG. For our simulations,
we set Pc = 2, Pd = 4, and Tp = 4. Due to the lack
of incentives for agents to cooperate when promoting
environmental sustainability, requiring coordination is
unrealistic in this example. Moreover, note that the
purpose of the pollution tax is to counteract pollu-
tion by penalizing dirty actions. However, in practice,
there may be additional global requirements on the
minimum total production volume. To model this as
a CMPG, we charge a cost C per agent that chooses
clean and impose the constraint Vc(π) ≤ αC for ap-
propriately chosen αC .

We run iProxCMPG on the resulting m-agent CMPG
for m ∈ {2, 4, 8} and with C = 1, αC = 12. Hyper-
parameter choices are reported in Appendix E and
Table 2. Fig. 1 shows the mean and standard devi-
ation (shaded region) across independent runs of per-
iteration potential and constraint values. Note that
unlike in the theory part, we use the potential maxi-
mization perspective for experiments. We observe con-
vergence to a constrained NE under which the mini-
mum production requirements are approximately sat-
isfied.

Marketplace for Distributed Energy Resources
As more and more small-scale electricity producers en-
ter the electrical grids, a marketplace emerges. Each
participant needs to decide how much energy to sell

6https://github.com/philip-jordan/iProx-CMPG

https://github.com/philip-jordan/iProx-CMPG
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Figure 1: Potential (left, scaled to [0, 1]) and constraint
(right) values of iProxCMPG for the m-agent pollution
tax model.

given the current supply and demand. The compet-
itive nature of such marketplaces motivates studying
the convergence of independent algorithms to NEs un-
der the constraints imposed by market rules. The
CMPG we consider has states S = {0, . . . , S − 1} in-
dicating the grid’s current energy demand from high
at 0 to low at S− 1. Action ai ∈ Ai = {0, . . . , Ai − 1}
represents the units of energy agent i contributes, for
which it is rewarded with profit ri(s, ai, a−i) = c0a

2
i −

c1a
2
i

∑
i∈N ai − aic

s
2 where c0, c1, c2 are model param-

eters. State transitions are modeled by first sampling
w ∼ U({0, 1, . . . ,W}) which models uncertainty due
to e.g. weather, and then setting s′ = max{0,min{S−
1,
∑

i∈N ai−w}} with probability 0.9 and s′ = w oth-
erwise. For our simulations, we set S = A = W =
5, c0 = 2, c1 = 0.25, and c2 = 1.25. Narasimha et al.
(2022) show that the described game is indeed an MPG

with Φ(π) = Eπ,s0∼µ[
∑Te

t=0 ϕst(at)] and ϕs(ai, a−i) =
c0
∑

i∈N ai − c1
∑

i∈N a2i − c1
∑

1≤i<j≤m aiaj −mcs2.
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Figure 2: Potential (left) and constraint (right) values
of iProxCMPG for the m-agent energy marketplace.

We extend this game into a CMPG by having the sys-
tem incur a cost per unit of energy provided to the
grid, i.e., by defining c(s, a) =

∑
i∈N ai for all s ∈ S,

and requiring Vc(π) ≤ αe where we set αe = 16. Fig. 2
shows convergence to a constrained NE where players
satisfy the energy provision bound on average.

6 CONCLUSION

In this paper, we proposed an independent learning al-
gorithm for learning constrained NE in CMPGs. Our
work opens up a number of avenues for future work. It
would be interesting to investigate whether our sam-
ple complexity can be improved to match the better
sample complexity of centralized algorithms. Our al-
gorithm and theoretical guarantees require the agents
to run the same algorithm: This may be seen as im-
plicit coordination between agents. Designing fully in-
dependent learning dynamics for our constrained set-
ting, where the players may not even be aware of the
existence of other players is an interesting direction.
Going beyond the class of CMPGs for learning con-
strained NE is another research direction that is worth
exploring. Using function approximation to scale to
large state-action spaces beyond the tabular setting is
also a promising prospect for future work.
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A iProxCMPG: FULL STOCHASTIC ALGORITHM

In this section, for the convenience of the reader, we report the full pseudo-code of Algorithm 1 in the stochastic
setting where exact gradients are not available. See Algorithm 2.

Remark 3. For our analysis, the index k̂ sampled in line 11 of Algorithm 2 is supposed to be picked the same by
all the players. This sampling step does not require any state-action-reward samples, it is just an index sampling
that is useful for our proofs (even in the exact gradients case), see the constraint satisfaction inequality in the
proof of Theorem 3, page 28.

B PROOFS FOR SECTION 4

Notation For any integer n ≥ 1, we use the notation [n] := {1, . . . , n} throughout the proofs.

In this section, we provide complete proofs of our main results. We begin with the exact gradients case before
addressing the more involved finite sample case.

B.1 Proof of Theorem 1 — Exact Gradients Case

First, we restate Theorem 1.
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Algorithm 2 iProxCMPG: independent Proximal-policy algorithm for CMPGs

1: initialization: π(0) ∈ Πξ s.t. Vc(π
(0)) < α and suitably chosen η, β, ξ, T,K, {(νk, δk, ρk)}0≤k≤K

2: for t = 0, . . . , T − 1 do

3: π
(t,0)
i = π

(t)
i

4: for k = 0, . . . ,K − 1 and i ∈ N simultaneously do

5: sample B trajectories {{(a(b)i,j , s
(b)
j , r

(b)
i,j , c

(b)
j )}T̂

(b)
e

j=0 }Bb=1 by following π
(t,k)
i

6: set V̂ri(π
(t,k)) = 1

B

∑B
b=1

∑T̂ (b)
e

j=0 r
(b)
i,j and V̂c(π

(t,k)) = 1
B

∑B
b=1

∑T̂ (b)
e

j=0 c
(b)
j

7: ∇̂V ri
πi
(π(t,k)) = V̂ri(π

(t,k)) · 1
B

∑B
b=1

∑T̂ (b)
e

j=1 ∇ log πi(a
(b)
i,j | s(b)j )

8: ∇̂V c
πi
(π(t,k)) = V̂c(π

(t,k)) · 1
B

∑B
b=1

∑T̂ (b)
e

j=1 ∇ log πi(a
(b)
i,j | s(b)j )

9: π
(t,k+1)
i =

PΠi,ξ

[
π
(t,k)
i − νk∇̂πi

Vri(π
(t,k))− νk

η (π
(t,k)
i − π

(t)
i )
]

if V̂c(π
(t,k)) + β − α ≤ δk

PΠi,ξ

[
π
(t,k)
i − νk∇̂πi

Vc(π
(t,k))− νk

η (π
(t,k)
i − π

(t)
i )
]

otherwise

10: B(t) = {⌊K/2⌋ ≤ k ≤ K | V̂c(π(t,k)) ≤ δk}
11: π

(t+1)
i = π

(t,k̂)
i where k̂ = 1 if B(t) = ∅ and else sampled s.t. for k ∈ B(t), P(k̂ = k) =

(∑
k∈B(t) ρk

)−1
ρk

12: output: π
(T )
i for i ∈ N

Theorem 1. Let Assumptions 1 and 2 hold and let the distribution mismatch coefficient D := maxπ∈Π

∥∥dπµ/µ∥∥∞
be finite. For any ϵ > 0, after running iProxCMPG, Algorithm 1, with ξ = 0, suitably chosen η, β, T,K, and
{(νk, δk, ρk)}0≤k≤K , there exists t ∈ [T ], such that π(t) is a constrained ϵ-NE in expectation7. The total iteration
complexity is given by O

(
ϵ−4
)
where O(·) hides polynomial dependencies in m,S,Amax, D, 1− γ, and ζ.

Before analyzing the outer loop of Algorithm 1, we begin by focusing on the proximal-point update step. We first
introduce some useful notation. Then, we explain how we can use the switching gradient algorithm in Appendix C
for approximately solving the proximal-point update step independently. We proceed by establishing guarantees
that will be important in the analysis of the outer loop of Algorithm 1.

Notation Recall that for any policies π, π′ ∈ Π and any η > 0, Φη,π′(π) = Φ(π) + 1
2η ∥π − π′∥2, V c

η,π′(π) =

Vc(π) +
1
2η ∥π − π′∥2 and Πc

η,π′ =
{
π ∈ Π | V c

η,π′(π) ≤ α− β
}
. Moreover, recall the following constrained opti-

mization problem:

min
π∈Πc

η,π′
Φη,π′(π) . (ProxPb(η, π′))

In the following “≲” denotes inequality up to numerical constants. Moreover, let LΦ be the smoothness constant
of the functions Φ and Vc (see Lemma 8) and let Φmax be an upper bound8 on Φ. Recall that under Assumption 1,
the initial policy π(0) is strictly feasible. We denote the respective slack by ζ̄0 > 0, i.e., ζ̄0 := α− Vc(π

(0)).

Next, we state and prove the guarantees provided by our proximal-point update subroutine.

Lemma 1. Let Assumption 1 hold and let 0 < ϵ̄ ≤ ζ̄0. Set β = ϵ̄, η = 1
2LΦ

, and ξ = 0. Denote

by π̃(t+1) the unique optimal solution to (ProxPb(η, π(t))). There exist K = O
(
ϵ̄−2

)
and suitable choices of

{(νk, δk, ρk)}0≤k≤K , such that lines 4-6 of Algorithm 1 guarantee that for any t ∈ [T − 1],

E
[
Φη,π(t)(π(t+1))− Φη,π(t)(π̃(t+1))

]
≤ ϵ̄2,

E
[
Vc(π

(t+1))
]
≤ α ,

(5)

where the expectation is with respect to the randomness induced by the sampling of k̂ in line 11 of Algorithm 2.

Proof. We divide the proof into two steps.

7Notice that here we take the expectation w.r.t. the randomness which is induced by the sampling of k̂ in line 11 of
Algorithm 2.

8Such a bound is always trivially available.
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• Step 1: Equivalent centralized update rule for our algorithm. First, we argue that independently
running the subroutine given by the inner loop of Algorithm 1, i.e., lines 4-6, is equivalent to a centralized
execution of the stochastic switching subgradient algorithm (see Algorithm 3) applied to our proximal-point
update problem. Crucially, as observed by Leonardos et al. (2022), Proposition B.1, for any i ∈ N and
π ∈ Π, it holds that ∇πi

Φ(π) = ∇πi
Vri(π). We can extend this observation to our regularized potential and

value functions, namely for any π′ ∈ Π,

∇πi
Φη,π′(π) = ∇πi

Φ(π) +
1

η
(πi − π′

i)

= ∇πi
Vri(π) +

1

η
(πi − π′

i) ,

which is an expression that can be evaluated independently by player i, since access to the joint policy π is
not required. Together with separability of the projection operator PΠξ , see e.g. Leonardos et al. (2022),
Lemma D.1, we have(

PΠi,ξ

[
π
(t,k)
i − νk∇πiV

ri
η,π(t,k)(π

(t,k))
])

i∈N
= PΠξ

[
π(t,k) − νk∇πΦη,π(t,k)(π(t,k))

]
,

and similarly, for the constraint value function,(
PΠi,ξ

[
π
(t,k)
i − νk∇πi

V c
η,π(t,k)(π

(t,k))
])

i∈N
= PΠξ

[
π(t,k) − νk∇πV

c
η,π(t,k)(π

(t,k))
]
.

Moreover, since Vc(π
(t,k)) can be estimated equally by each player due to the cooperative nature of our

constraint, we can conclude that Algorithm 1 is equivalent to a centralized version where the independent,
simultaneous update in line 5 is replaced by the following centralized version:

π(t,k+1) =

PΠξ

[
π(t,k) − νk∇̂πΦη,π(t,k)(π(t,k))

]
if V̂c(π

(t,k)) + β − α ≤ δk,

PΠξ

[
π(t,k) − νk∇̂πV

c
η,π(t,k)(π

(t,k))
]

otherwise.

• Step 2: Induction on t. Next, to prove the claimed guarantee for all t ∈ [T − 1], we proceed by induction
on t. We will invoke results on the stochastic switching gradient algorithm (see CSA, Algorithm 3) that
are separately presented in Appendix C in the context of constrained optimization. By Assumption 1,
since ϵ̄ ≤ ζ̄0 and β = ϵ̄, we have Vc(π

(0)) ≤ α − β. That is, for t = 0, the initial feasibility condition
of our CSA result, Theorem 3 in Appendix C, holds for π(t). Note further that in our deterministic case,
Assumption 3 (which is required for Theorem 3) holds, since by Lemma 8 we have a bound on objective
and constraint gradient norms.

Hence, we can apply Theorem 3 in the deterministic setting, i.e., with batch size J = 1 and ac-
cess to exact gradients and constraint function values, to Φη,π(t) and V c

η,π(t) with µ = LΦ and M2 ≲

max
{
M2

G + µ2
G∆

4,M2
F + µ2

F∆
4
}
≲ M2

c + L2
Φdiam(Π)4 , in the notation of Theorem 3. After plugging in

the bounds on Mc, LΦ, and diam(Π) from Lemma 8, and choosing K as in the statement of this lemma,
Theorem 3 implies the desired bounds on constraint violation and optimality gap w.r.t. π̃(t+1) in (5). This
concludes the base case of the induction.

As induction hypothesis, suppose now that (5) holds for some t ∈ [T−1]. Then, due to β ≥ ϵ̄, Vc(π
(t+1))+β ≤

α+ ϵ̄ implies that the initial feasibility condition of Theorem 3 is satisfied and hence with the same argument
as above regarding Assumption 3, we can apply Theorem 3 to conclude that at the end of iteration t+ 1 of
Algorithm 1, the inner loop guarantees that

E
[
Φη,π(t+2)(π(t+2))− Φη,π(t+2)(π̃(t+2))

]
≤ ϵ̄2,

E
[
Vc(π

(t+2))
]
≤ α,

i.e., the inductive hypothesis also holds for t+ 1.
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We next determine the number of iterations of the outer loop of Algorithm 1 required for convergence in the
following sense.

Lemma 2. Let ϵ > 0 and set η = 1
2LΦ

. Suppose K is chosen such that the guarantee from Lemma 1 holds

for ϵ̄2 = ϵ2

4η . Then, after T = 4ηΦmax

ϵ2 iterations of the outer loop of Algorithm 1 where Φmax is an upper bound

of the potential function (i.e., ∀π ∈ Π,Φ(π) ≤ Φmax), there exists 0 ≤ t ≤ T − 1 such that E[∥π(t+1) − π(t)∥] ≤ ϵ.

Remark 4. Notice that we need an expectation in Lemma 2 in the exact gradients case because of the random
index sampling in Algorithm 1. See also Remark 3.

Proof. Let Ft denote the σ-field generated by the random variables given by the iterates π(t) up to iteration t.
Notice that this randomness is induced by the sampling of k̂ in line 11 of Algorithm 2. By Lemma 1, the inner
loop of Algorithm 1 guarantees that for any 0 ≤ t ≤ T − 1,

E
[
Φ(π(t+1)) +

1

2η
∥π(t+1) − π(t)∥2 | Ft

]
= E

[
Φη,π(t)(π(t+1)) | Ft

]
≤ E

[
Φη,π(t)(π̃(t+1)) | Ft

]
+ ϵ̄2

≤ Φη,π(t)(π(t)) + ϵ̄2

= Φ(π(t)) + ϵ̄2

where the second inequality is due to E
[
V c
η,π(t)(π

(t)) | Ft

]
= E

[
Vc(π

(t))
]
≤ α. Taking total expectation in the

above inequality, we obtain

E
[
∥π(t+1) − π(t)∥2

]
≤ 2η

(
E
[
Φ(π(t))

]
− E

[
Φ(π(t+1))

])
.

Summing the above inequality over 0 ≤ t ≤ T − 1, using the upper bound Φmax on the potential function and
plugging in our choices of η, T , and ϵ̄, we obtain

1

T

T−1∑
t=0

E
[
∥π(t+1) − π(t)∥2

]
≤ 2η

(
ϵ̄2 +

1

T

T−1∑
t=0

E
[
Φ(π(t))

]
− E

[
Φ(π(t+1))

])

≤ 2ηΦmax

T
+ 2ηϵ̄2

≤ ϵ2.

Using Jensen’s inequality, we conclude that there exists t ∈ [T − 1] such that E
[
∥π(t+1) − π(t)∥

]
≤ ϵ.

Next, we aim to prove that the event ∥π(t+1) −π(t)∥ ≤ ϵ implies Nash-gap(π(t+1)) = O(ϵ) where the constrained
Nash-gap is defined as

Nash-gap(π∗) := max
i∈N

max
π′
i∈Πi

c(π
∗
−i)

Vri(π
∗)− Vri(π

′
i, π

∗
−i) . (6)

As a result, we will be able to argue that E
[
∥π(t+1) − π(t)∥

]
≤ ϵ implies E

[
Nash-gap(π(t+1))

]
= O(ϵ), i.e., that

the policy π(t+1) is a constrained O(ϵ)-NE in expectation.

Towards this goal, we first show that a policy π(t+1) satisfying ∥π(t+1) − π(t)∥ = O(ϵ) (as in the previous

lemma) is a O(ϵ)-K̃KT policy for our initial constrained minimization problem. The ϵ-K̃KT conditions are a
slight modification of the standard ϵ-KKT conditions adapted to our specific requirements (see Definition 1 and
Definition 2 in Appendix D). In the following lemma, we will be referring to (in-)exact solutions as well as KKT

and K̃KT conditions for different problems. Therefore, we first introduce additional useful notation for clarity.

Notation We refer to the following constrained optimization problem as (InitPb):

min
π∈Π

Φ(π) . (InitPb)
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For the previously introduced (ProxPb(η, π(t))), we distinguish between the inexact solution resulting from the
update which we denote by π(t+1), and the exact solution which will be denoted by π̃(t+1) in the proof below.
Furthermore, we define the Lagrangians for the two problems as

L(π, λ) = Φ(π) + λ (Vc(π)− α) , (InitPb–L)
Lη,π′(π, λ) = Φη,π′(π) + λ

(
V c
η,π′(π)− α+ β

)
. (ProxPb(η, π′)–L)

Using Lemma 1 and Lemma 2, the following lemma shows that Algorithm 1 is guaranteed to generate an O(ϵ)-

K̃KT policy. Parts of the proof have appeared in a similar form in the optimization literature (see Lemma 3.5 and
Theorem 3.2 in Jia and Grimmer (2023), and Theorem 5 in Boob et al. (2023)). The lemma below differs from

these results, since we are in a smooth setting and prove convergence w.r.t. our notion of K̃KT conditions rather
than towards a point that is near an ϵ-KKT point. Moreover, our guarantee for the proximal update subroutine
is somewhat weaker due to the relaxed constraint satisfaction condition that we use to switch between update
types in the inner loop, see Lemma 1. Additionally, in order to achieve exact primal feasibility (instead of
ϵ-approximate), we employ a feasibility margin β.

Lemma 3. Let Assumptions 1 and 2 hold. Let ϵ > 0 and choose ϵ̄, K, β as in Lemma 1 and 2. If π(t+1) is a

policy such that ∥π(t+1)−π(t)∥ ≤ ϵ for some t ∈ [T −1], then π(t+1) is a (CKKT ϵ)-K̃KT policy of (InitPb) where

CKKT is a positive constant such that CKKT ≲ m2.5A1.5
maxS

(1−γ)4.5
√
ζ
.

Proof. First, note that (ProxPb(η, π(t))) is a strongly convex optimization problem with strongly convex con-
straints, which is sufficient for the existence of a unique optimum π̃(t+1). Since by Assumption 2, Slater’s
condition holds for (ProxPb(η, π′)) for any π′ ∈ Π, strong duality is given for (ProxPb(η, π(t))) and hence there
exists a finite dual variable λ̃(t+1) ≥ 0 forming a KKT pair with π̃(t+1). We first claim that ∥π̃(t+1)−π(t+1)∥ ≤ ϵ.
This can be seen as follows: By optimality of (π̃(t+1), λ̃(t+1)) for (ProxPb(η, π(t))), we have

λ̃(t+1)
(
V c
η,π(t)(π̃

(t+1))− α+ β
)
= 0 , (7)〈

∇πLη,π(t)(π̃(t+1), λ̃(t+1)), π(t+1) − π̃(t+1)
〉
≥ 0. (8)

From Lemma 8, we know that Lη,π(t)(·, λ̃(t+1)) is LΦ(1 + λ̃(t))-strongly convex. Therefore, after rearranging the
standard strong convexity lower bound, we get

LΦ

2

(
1 + λ̃(t+1)

)
∥π̃(t+1) − π(t+1)∥2

≤ Lη,π(t)(π(t+1), λ̃(t+1))− Lη,π(t)(π̃(t+1), λ̃(t+1))−
〈
∇πLη,π(t)(π̃(t+1), λ̃(t+1)), π(t+1) − π̃(t+1)

〉
(a)

≤ Φη,π(t)(π(t+1))− Φη,π(t)(π̃(t+1))︸ ︷︷ ︸
≤ϵ̄2

+λ̃(t+1)
(
Vc(π

(t+1))− α− β
)

︸ ︷︷ ︸
≤0

(b)

≤ ϵ̄2 ,

where step (a) follows by applying (7) and (8), and step (b) by Lemma 1, i.e. the guarantee for π(t+1) provided
by the algorithm’s inner loop. Then, it follows from the previous inequality that

∥π̃(t+1) − π(t+1)∥ ≤

√
2ϵ̄2

LΦ
≤ ϵ√

2
≤ ϵ. (9)

Using the fact that (π̃(t+1), λ̃(t+1)) is a KKT pair for (ProxPb(η, π(t))), we now argue that (π(t+1), λ̃(t+1)) is a

(CKKT ϵ)-K̃KT pair for (InitPb) (see Definition 2 in Appendix D). We check each one of the requirements of the
definition in what follows.

• Exact primal feasibility: By Lemma 1, we know that Vc(π
(t+1)) ≤ α for any 0 ≤ t ≤ T − 1.
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• Dual feasibility: This immediately holds by dual feasibility of (π̃(t+1), λ̃(t+1)) for (ProxPb(η, π(t))).

• Complementary slackness: When λ̃(t+1) = 0, we clearly have |λ̃(t+1)
(
Vc(π

(t+1))− α
)
| = 0 ≤ ϵ. Other-

wise, we have

Vc(π
(t+1))

(a)

≥ Vc(π̃
(t+1))−Mcϵ

(b)
= α− β − 1

2η
∥π̃(t+1) − π(t)∥2 −Mcϵ

(c)

≥ α− ϵ2

η
−
(
Mc +

1

2
√
η

)
ϵ ,

(10)

where (a) follows from Mc Lipschitz continuity of Vc (see Lemma 8-item (1)) and Eq. (9), (b) stems from
complementary slackness of (π̃(t+1), λ̃(t+1)) for (ProxPb(η, π(t))) which states that V c

η,π(t)(π̃
(t+1))−α+β = 0.

To obtain inequality (c), observe that using the bound from (9), our assumption on ∥π(t+1) − π(t)∥, and the
triangle inequality, we have ∥π̃(t+1) − π(t)∥ ≤ ∥π̃(t+1) − π(t+1)∥+ ∥π(t+1) − π(t)∥ ≤ 2ϵ.

Combining (10) with the upper bound Vc(π
(t+1)) ≤ α from primal feasibility, we get∣∣∣λ̃(t+1)

(
Vc(π

(t+1))− α
)∣∣∣ ≤ λ̃(t+1)

(
ϵ2

η
+Mcϵ+

ϵ

2
√
η

)
. (11)

We now show that the dual variable λ̃(t+1) is bounded by a constant depending on ζ using Assumption 2
and strong duality. Indeed, we have

λ̃(t+1) ≤
∥∥∇πΦ(π̃

(t+1))
∥∥+ η−1

∥∥π̃(t+1) − π(t)
∥∥√

ζη−1
≤ Mc + 4ϵη−1√

ζη−1
, (12)

where the first inequality follows from the proof of Lemma 1 in Ma et al. (2020), whereas the second
inequality uses Lipschitzness of the potential function (see Lemma 8) and the fact that

∥∥π̃(t+1) − π(t)
∥∥ ≤ 2ϵ.

Combining (11) and (12), and using the bounds onMc and LΦ from Lemma 8, we obtain the desired CKKTϵ-
complementary slackness.

• Variational Lagrangian stationarity: Suppose by contradiction that the Lagrangian stationarity con-

dition that comes with the 2ϵ(1+λ̃(t+1))
η -KKT conditions does not hold for π̃(t+1) and (InitPb). Then there

exists ν ∈ NΠ(π̃
(t+1), λ̃(t+1)) (normal cone to the convex set of policies Π) such that

∇πLη,π(t)(π̃(t+1), λ̃(t+1)) + ν = 0 and
∥∥∥∇πL(π̃(t+1), λ̃(t+1)) + ν

∥∥∥ > 2ϵ(1 + λ̃(t+1))

η

where the equality is by Lagrangian stationarity of π̃(t+1) for (ProxPb(η, π(t))) and the inequality is due
to the above assumed lack of Lagrangian stationarity of π̃(t+1) for (InitPb). Plugging in the definition of
Lη,π(t)(π̃(t+1), λ̃(t+1)) and combining the equality and inequality above, one can conclude that

2ϵ(1 + λ̃(t+1))

η
<
∥∥∥∇πL(π̃(t+1), λ̃(t+1)) + ν

∥∥∥ =
1 + λ̃(t+1)

η

∥∥∥π̃(t+1) − π(t)
∥∥∥ ,

which contradicts the inequality
∥∥π̃(t+1) − π(t)

∥∥ ≤ 2ϵ. Hence using the bound on λ̃(t+1) from (12), the

policy π̃(t+1) is a C̃ϵ-KKT policy for (InitPb) with C̃ = 2
η

(
1 + Mc+2ϵη−1√

ζη−1

)
.

By Lemma 13, this implies that

max
π′∈Π

〈
π̃(t+1) − π′,∇πL(π̃(t+1), λ̃(t+1))

〉
≤ diam(Π)C̃ϵ. (13)

Then, in view of showing the variational Lagrangian stationarity for the pair (π(t+1), λ̃(t+1)) for (InitPb),
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we can write

max
π′∈Π

〈
π(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
= max

π′∈Π

〈
π̃(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
+
〈
π(t+1) − π̃(t+1),∇πL(π(t+1), λ̃(t+1))

〉
≤ max

π′∈Π

〈
π̃(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
+
∥∥∥π(t+1) − π̃(t+1)

∥∥∥ · ∥∥∥∇πL(π(t+1), λ̃(t+1))
∥∥∥

≤ max
π′∈Π

〈
π̃(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
+ ϵ(1 + λ̃(t+1))Mc . (14)

We now bound the first term in the above inequality by using 2LΦ(1+ λ̃(t+1))-smoothness of ∇πL(·, λ̃(t+1))
and (13). Using the fact that maxπ∈Π (A(π) +B(π)) ≤ maxπ∈ΠA(π) + maxπ∈ΠB(π) for any functions
A(π), B(π), we have

max
π′∈Π

〈
π̃(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
≤ max

π′∈Π

〈
π̃(t+1) − π′,∇πL(π(t+1), λ̃(t+1))−∇πL(π̃(t+1), λ̃(t+1))

〉
+max

π′∈Π

〈
π̃(t+1) − π′,∇πL(π̃(t+1), λ̃(t+1))

〉
≤ max

π′∈Π

∥∥∥π̃(t+1) − π′
∥∥∥ · 2LΦ(1 + λ̃(t+1))

∥∥∥π̃(t+1) − π(t+1)
∥∥∥+ diam(Π)C̃ϵ

≤
(
2diam(Π)LΦ(1 + λ̃(t+1)) + diam(Π)C̃

)
ϵ .

Combining the above inequality with (14), we obtain

max
π′∈Π

〈
π(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
≤
(
(1 + λ̃(t+1))Mc + 2diam(Π)LΦ(1 + λ̃(t+1)) + diam(Π)C̃

)
ϵ.

Finally, we use the bound on λ̃(t+1) from (12), as well as bounds on diam(Π), LΦ, and Mc from Lemma 8, to

conclude that π(t+1) is a CKKTϵ-K̃KT policy for (InitPb).

To complete the analysis, it now remains to show that an O(ϵ)-K̃KT policy of (InitPb) is a constrained O(ϵ)-NE.
For this, we leverage the playerwise gradient domination property satisfied by the potential function and the
constraint value function. We first introduce some notations.

Notation For each player i ∈ N and each policy π−i ∈ Π−i, consider the playerwise constrained optimization
problem given by

min
πi∈Πi

c(π−i)
Vri (πi, π−i) . (PlayerPb(π−i))

The respective Lagrangian Lπ−i : Π
i × R≥0 → R is defined for every πi ∈ Πi and every λ ≥ 0 by

Lπ−i
(πi, λ) = Φ(πi, π−i) + λ (Vc(πi, π−i)− α) . (PlayerPb(π−i)–L)

Lemma 4. Let π ∈ Π be an ϵ-K̃KT policy of (InitPb). Then π is a constrained CNE ϵ-NE where CNE ≲ D
1−γ +1.

Proof. The proof of the lemma proceeds in two steps:

• Step 1. We show that if π is an O(ϵ)-K̃KT policy of (InitPb), then for all i ∈ N , πi is an O(ϵ)-K̃KT policy
of (PlayerPb(π−i)).

• Step 2. We conclude that each player cannot significantly improve its policy πi while staying within Πi
c(π−i)

which means π is a constrained O(ϵ)-NE.

We provide a proof of each one of the steps successively.
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• Step 1: Let λ ≥ 0 be a dual variable such that (π, λ) is an ϵ-K̃KT pair of (InitPb), and let i ∈ N
be arbitrary. We show that (πi, λ) is an ϵ-K̃KT pair of (PlayerPb(π−i)) by checking that the respective

K̃KT conditions hold. For dual and exact primal feasibility, as well as complementary slackness, this is
immediate since the conditions are equivalent for (InitPb) and (PlayerPb(π−i)). For variational Lagrangian
stationarity, observe that

max
π′
i∈Πi

〈
πi − π′

i,∇πiLπ−i(πi, λ)
〉
= max

π′
i∈Πi

⟨π − (π′
i, π−i),∇πL(π, λ)⟩

≤ max
π′∈Π

⟨π − π′,∇πL(π, λ)⟩

≤ ϵ ,

where the first equality is due to ∇πi
L (π, λ) = ∇πi

Lπ−i
(πi, λ) and the fact that all terms except for πi−π′

i

vanish in the first argument of the scalar product. The second inequality is because (π′
i, π−i) ∈ Π, and the

final step is by Lagrangian stationarity of π for (InitPb).

• Step 2: Let i ∈ N and consider the MDP Mλ, λ ≥ 0, with state space S, action space Ai, probability
transition kernel Pλ, reward rλ, and initial distribution µ where

Pλ(s
′ | s, ai) := Ea−i∼π−i((ai,·)|s) [P (s

′ | s, (ai, a−i))]

rλ(s, ai) := Ea−i∼π−i((ai,·)|s) [ri(s, (ai, a−i)) + λ c(s, (ai, a−i))] .

Observe that Lπ−i
(πi, λ) is the value function associated to the policy πi in the MDP Mλ, and hence

gradient domination holds (Agarwal et al., 2021), i.e., we have

Lπ−i
(πi, λ)− min

π̃i∈Πi
Lπ−i

(π̃i, λ) ≤
D

1− γ
max
π′
i∈Πi

〈
πi − π′

i,∇πi
Lπ−i

(πi, λ)
〉
,

where D is the distribution mismatch coefficient, supposed to be finite. Using Proposition 2 in Appendix D
for C1 = 0, and using the definition of the playerwise primal optimum, see (PlayerPb(π−i)), we then get

Vri(π)− min
π∗
i ∈Πci

(π−i)
Vi(π

∗
i , π−i) ≤

(
D

1− γ
+ 1

)
ϵ.

Since additionally we have exact primal feasibility of π for (InitPb), the result follows by definition of the
constrained ϵ-NE.

Finally, we put together above lemmas to prove the main theorem.

Proof of Theorem 1. Let ϵ̄2 = LΦϵ2

C2
KKTC2

NE
. Then with K = O

(
ϵ−2
)
, and T = O

(
ϵ−2
)
, Lemma 1 and Lemma 2

imply that there exists 0 ≤ t ≤ T − 1 such that E
[∥∥π(t+1) − π(t)

∥∥] ≤ ϵ
CKKTCNE

. We use Lemma 3 to conclude

that π(t+1) is a ϵ/CNE-K̃KT policy of (InitPb). Then, by Lemma 4, π(t+1) is a constrained ϵ-NE. The total
iteration complexity is bounded by T ·K = O

(
ϵ−4
)
.

B.2 Proof of Theorem 2 — Finite Sample Case

Moving on to the stochastic setting, we first restate Theorem 2.

Theorem 2. Let Assumptions 1 and 2 hold, and let D (as in Theorem 1) be finite. Then, for any ϵ > 0, after
running iProxCMPG based on finite sample estimates (see Algorithm 2) for suitably chosen η, β, ξ, T,K,B, and
{(νk, δk, ρk)}0≤k≤K , there exists t ∈ [T ], such that in expectation, π(t) is a constrained ϵ-NE. The total sample

complexity is given by Õ
(
ϵ−7
)
where Õ(·) hides polynomial dependencies in m,S,Amax, D, 1− γ, and ζ, as well

as logarithmic dependencies in 1/ϵ.

Similar to the deterministic case, we begin by proving the guarantees provided by the inner loop of Algorithm 2.
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Lemma 5. Let Assumption 1 hold, let ϵ̄ > 0 and set β = ϵ̄, η = 1
2LΦ

, ξ = ϵ̄
√
2η. Then, there exist K = Õ

(
ϵ̄−3

)
,

B = Õ
(
ϵ̄−2

)
, and suitable choices of {(νk, δk, ρk)}0≤k≤K , such that lines 4-11 of Algorithm 2 guarantee that for

any t ∈ [T − 1],

E
[
Φη,π(t)(π(t+1))− Φη,π(t)(π̃(t+1))

]
≤ ϵ̄2,

E
[
Vc(π

(t+1))
]
≤ α ,

(15)

where π̃(t+1) denotes the unique optimal solution to (ProxPb(η, π(t))).

Proof. The result follows similarly as for Lemma 1 in the deterministic case. We hence only point out differences.
In order to ensure bounded norms of gradient estimates, we use ξ-greedy policies. Then, according to Lemma 10,
the second moment of value and constraint gradient estimates is bounded by O(1/ξ). The concentration result
shown in Lemma 11 ensures that constraint value estimates follow a sub-exponential distribution. Therefore,
Assumption 3, see Appendix C on guarantees for our subroutine, is satisfied. We can thus apply the respective

Theorem 3 for optimizing over Πξ, and with µ = LΦ and M2 ≲ max
{
M2

G + µ2
G∆

4,M2
F + µ2

F∆
4
}
≲ 24A2

max

ξ(1−γ)4 +

L2
Φdiam(Π)4. After plugging bounds on LΦ, and diam(Π) from Lemma 8, and choosing K and B as stated,

Theorem 3 implies the desired bounds via the same arguments as in the proof of Lemma 1.

Next, we analyze the convergence of our main proximal-point method, Algorithm 2. More concretely, we
bound the required sample complexity for ensuring that for some ϵ > 0, there exist iterates π(t), π(t+1) such
that

∥∥π(t) − π(t+1)
∥∥ = O(ϵ). In the following, we will then prove that this implies convergence to a con-

strained O(ϵ)-NE.

Similarly to the deterministic case, we next determine the number of updates needed until convergence in the
following sense. The next lemma is analogous to its deterministic counterpart Lemma 2.

Lemma 6. Let ϵ > 0 and set η = 1
2LΦ

. Suppose K is chosen such that the guarantee from Lemma 5 holds

for ϵ̄2 = ϵ2

4η . Then after T = 4ηΦmax

ϵ2 iterations of the outer loop of Algorithm 2 where Φmax is an upper bound of

the potential function (i.e., ∀π ∈ Π,Φ(π) ≤ Φmax), there exists 0 ≤ t ≤ T − 1 such that E
[
∥π(t+1) − π(t)∥

]
≤ ϵ.

Proof. The proof follows the same lines as the proof of Lemma 2 upon replacing Lemma 1 by Lemma 5. We do
not reproduce it here for conciseness.

Next, as in the exact gradients case, we aim to prove that the event ∥π(t+1)−π(t)∥ ≤ ϵ implies Nash-gap(π(t+1)) =
O(ϵ), in order to argue that E

[
∥π(t+1) − π(t)∥

]
≤ ϵ implies E

[
Nash-gap(π(t+1))

]
= O(ϵ).

Recall that in Lemma 3 we have already shown ∥π(t+1) − π(t)∥ ≤ ϵ to imply that π(t+1) is a CKKTϵ-K̃KT

policy of (InitPb) which equivalently holds in the stochastic ξ-greedy setting. Arguing that a ϵ-K̃KT policy is
a constrained O(ϵ)-NE however requires an adapted proof, since here in each iteration we solve the subproblem

over Πξ instead of Π, i.e., the K̃KT conditions hold w.r.t. Πξ. The following lemma is an adjustment of Lemma 4
for this fact.

Lemma 7. Let π ∈ Πξ be an ϵ-K̃KT policy of (InitPb) (where K̃KT are w.r.t. Πξ) and ξ = ϵ. Then π is a

constrained ĈNE ϵ-NE where ĈNE ≲ D
1−γ + m

√
SAmaxD

(1−γ)4.5 + 1.

Proof. We divide the proof into two steps:

• Step 1: Analogously to step 1 of Lemma 4, one can show that (πi, λ) is an ϵ-K̃KT pair of (PlayerPb(π−i)).

• Step 2: Let i ∈ N and consider the MDP M̃λ (for λ ≥ 0) with state space S, action space Ai, transition
probability kernel P̃ , reward r̃λ, discount factor γ, and initial distribution µ where

P̃ (s′ | s, ai) := Ea−i∼π−i(·|s) [P (s
′ | s, (ai, a−i))] ,

r̃λ(s, ai) := Ea−i∼π−i(·|s) [ri(s, (ai, a−i)) + λ c(s, (ai, a−i))] .
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Observe that Lπ−i (πi, λ) is the value function associated to the policy πi for M̃λ, and hence gradient
domination holds (Agarwal et al., 2021). In our particular case of π being a ξ-greedy policy, we can also
show a similar inequality, even w.r.t. the non-ξ-greedy optimum. Let

π̂i := argmax
π′
i∈Πi

〈
πi − π′

i,∇πiLπ−i(πi, λ)
〉
,

π̂ξ
i := argmax

π′
i∈Πi,ξ

〈
πi − π′

i,∇πi
Lπ−i

(πi, λ)
〉
.

Then, we have

Lπ−i
(πi, λ)− min

π∗
i ∈Πi

Lπ−i
(π∗

i , λ)

≤ 1

1− γ

∥∥∥∥∥d
π∗
i ,π−i

µ

µ

∥∥∥∥∥
∞

〈
πi − π̂i∇πi

Lπ−i
(πi, λ)

〉
=

1

1− γ

∥∥∥∥∥d
π∗
i ,π−i

µ

µ

∥∥∥∥∥
∞

〈
πi − π̂ξ

i ,∇πiLπ−i(πi, λ)
〉
+
〈
π̂ξ
i − π̂i,∇πiLπ−i(πi, λ)

〉
.

We further bound the last term above as follows〈
π̂ξ
i − π̂i,∇πi

Lπ−i
(πi, λ)

〉
= max

πξ
i ∈Πi,ξ

〈
πξ
i ,∇πi

Lπ−i
(πi, λ)

〉
− max

πi∈Πi

〈
πi,∇πi

Lπ−i
(πi, λ)

〉
(a)

≤ ξ
√
S
∥∥∇πiLπ−i(πi, λ)

∥∥
(b)

≤ ξ
√
S(1 + λ)Mc .

In the above inequalities, (a) follows from using Lemma 9 to obtain

max
πξ
i ∈Πi,ξ

〈
πξ
i ,∇πiLπ−i(πi, λ)

〉
≤ max

πi∈Πi

〈
πi,∇πiLπ−i(πi, λ)

〉
+
∑
ai,s

ξ

Ai
[∇πiLπ−i(πi, λ)](ai | s) .

Using the fact that for any x ∈ Rd, ∥x∥1 ≤
√
d∥x∥2, we further get∑

ai,s

ξ

Ai
[∇πiLπ−i(πi, λ)](ai | s) =

ξ

Ai
∥∇πiLπ−i(πi, λ)∥1 ≤ ξ

Ai

√
AiS ∥∇πiLπ−i(πi, λ)∥ ≤ ζ

√
S ∥∇πiLπ−i(πi, λ)∥ .

The bound used in (b) follows from Lipschitz continuity, see Lemma 8. We conclude that

Lπ−i
(πi, λ)− min

π∗
i ∈Πi

Lπ−i
(π∗

i , λ) ≤
1

1− γ

∥∥∥∥∥d
π∗
i ,π−i

µ

µ

∥∥∥∥∥
∞

[〈
πi − π̂i∇πi

Lπ−i
(πi, λ)

〉
+ ξ

√
S(1 + λ)Mc

]
. (16)

Applying Proposition 2, see Appendix D.2, with ξ = ϵ, bounding the distribution mismatch coefficient by
D, and using the definition of the playerwise primal optimum, see (PlayerPb(π−i)), we then get

Vi(π)− min
π∗
i ∈Πci

(π−i)
Vi(π

∗
i , π−i) ≤

(
D

1− γ
+

(1 + λ)
√
SMcD

1− γ
+ 1

)
ϵ

≤

(
D

1− γ
+
m
√
SAmaxD

(1− γ)4.5
+ 1

)
ϵ.

where for the second inequality we use (12) and our bounds onMc and LΦ from Lemma 8. Since additionally,

we have exact primal feasibility of π for (InitPb) by the K̃KT conditions, the result follows by definition of
a constrained ϵ-NE.
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Finally, we put together above lemmas to prove our main theorem in the stochastic setting.

Proof of Theorem 2. Let ϵ̄2 = LΦϵ2

C2
KKTĈ2

NE

. Then with K = Õ
(
ϵ−3
)
, B = Õ

(
ϵ−2
)
, and T = O

(
ϵ−2
)
, Lemma 1

and Lemma 2 imply that there exists t ∈ [T − 1] such that E
[∥∥π(t+1) − π(t)

∥∥] ≤ ϵ
CKKTĈNE

. We use Lemma 3

to conclude that π(t+1) is a ϵ/ĈNE-K̃KT policy of (InitPb) in expectation. Then, by Lemma 4, π(t+1) is a
constrained ϵ-NE in expectation. The total sample complexity is bounded by T ·K ·B = Õ

(
ϵ−7
)
.

B.3 Other Technical Lemmas

The next lemma collects standard regularity properties of the value and potential functions.

Lemma 8. The following statements hold true.

1. The functions Φ and Vc are Mc-Lipschitz continuous over Π with Mc =
√
mAmax

(1−γ)2 . This immediately implies

that ∥∇Φ(π)∥ ≤Mc and ∥∇Vc(π)∥ ≤Mc, for all π ∈ Π.

2. For any i ∈ N and any π−i ∈ Π−i, the function Vri (·, π−i) is Li-smooth with Li =
2γAi

(1−γ)3 and hence Li-

weakly convex.

3. The functions Φ and Vc are LΦ-smooth with LΦ = m ·maxi Li =
2mγAmax

(1−γ)3 and hence LΦ-weakly convex.

4. For η = 1
2LΦ

and any π′ ∈ Π, the regularized function Φη,π′(π) = Φ(π)+LΦ ∥π − π′∥2 is LΦ-strongly convex
and the functions Φη,π′ , V c

η,π′ are both 2LΦ-smooth.

5. For any λ ∈ R, π′ ∈ Π and η = 1
2LΦ

, L (·, λ) = Φ(·) + λVc(·) is LΦ(1 + λ)-smooth, and Lη,π′ (·, λ) =
Φη,π′(·) + λV c

η,π′(·) is 2LΦ(1 + λ)-smooth. Hence Lη,π′ (·, λ) is also LΦ(1 + λ)-strongly convex.

Proof. Item 2 has been proved in Agarwal et al. (2021), Lemma D.3. Item 3 has been reported in Leonardos
et al. (2022), Lemma D.4. Item 4 immediately follows from item 3. We now prove item 5 for L, the result
for Lη,π′ follows similarly. Using the definition of the Lagrangian and the triangle inequality, for any λ ∈ R and
π, π′ ∈ Π,

∥∇πL (π, λ)−∇πL (π′, λ)∥ ≤ ∥∇Φ(π)−∇Φ(π′)∥+ λ ∥∇Vc(π)−∇Vc(π′)∥
≤ LΦ ∥π − π′∥+ λLΦ ∥π − π′∥
≤ LΦ(1 + λ) ∥π − π′∥ .

To show item 1, Lipschitz continuity of Φ and Vc, observe that for any i ∈ N , π ∈ Π and π′
i ∈ Πi, by using

Lemma 32 of Zhang et al. (2022a) in the second step, we have

|Φ(πi, π−i)− Φ(π′
i, π−i)| = |Vri(πi, π−i)− Vri(π

′
i, π−i)|

≤ 1

(1− γ)2
max
s∈S

∥πi(· | s)− π′
i(· | s)∥1

≤
√
Ai

(1− γ)2
max
s∈S

∥πi(· | s)− π′
i(· | s)∥2

≤
√
Ai

(1− γ)2
∥πi − π′

i∥2

where in the third step we use the fact that for any x ∈ Rd, ∥x∥1 ≤
√
d ∥x∥2. Then, the following decomposition
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yields the result: For any π, π′ ∈ Π,

|Φ(π)− Φ(π′)| =

∣∣∣∣∣∑
i∈N

Φ(π′
1, . . . , π

′
i−1, πi, πi+1, . . . , πm)− Φ(π′

1, . . . , π
′
i−1, π

′
i, πi+1, . . . , πm)

∣∣∣∣∣
≤
∑
i∈N

∣∣Φ(π′
1, . . . , π

′
i−1, πi, πi+1, . . . , πm)− Φ(π′

1, . . . , π
′
i−1, π

′
i, πi+1, . . . , πm)

∣∣
≤ 1

(1− γ)2

∑
i∈N

√
Ai ∥πi − π′

i∥

≤
√
mAmax

(1− γ)2
∥π − π′∥ ,

where in the second inequality we apply the above result for playerwise deviations, and the last step is again due
to the fact that for any x ∈ Rd, ∥x∥1 ≤

√
d ∥x∥2. The result follows similarly for Vc.

The next lemma is an immediate result showing that any ξ-greedy playerwise policy πi ∈ Πi,ξ (see definition in
the main part p. 7 which defines this set as a set of lower bounded policies away from zero) can be represented
as a convex combination of a uniform distribution over the action space Ai and a policy πi ∈ Πi.

Lemma 9. For any ξ > 0, i ∈ N ,

Πi,ξ ⊆
{
πi ∈ Πi | ∃π′

i ∈ Πi,∀ai ∈ Ai,∀s ∈ S : πi(ai | s) = ξ/Ai + (1− ξ)π′
i(ai | s)

}
.

Proof. Let ξ > 0, i ∈ N and let πξ
i ∈ Πi,ξ. Then for all ai ∈ Ai and s ∈ S, set

πi(ai | s) :=
πξ
i (ai | s)− ξ/Ai

1− ξ
.

Indeed πi ∈ Πi, since for all ai ∈ Ai and s ∈ S, we have πi(ai | s) ≥ 0 due to πξ
i (ai | s) ≥ ξ and

∑
ai∈Ai

πi(ai | s) =
1

1− ξ

( ∑
ai∈Ai

πξ
i (ai | s)︸ ︷︷ ︸
=1

−
∑

ai∈Ai

ξ/Ai︸ ︷︷ ︸
=ξ

)
= 1.

The following lemma shows that the estimators we use for the playerwise policy gradients are unbiased and enjoy
a bounded variance.

Lemma 10 (Daskalakis et al. (2020); Leonardos et al. (2022)). For any ξ > 0 and π ∈ Πξ, we have

Eπ

[
∇̂V ri

πi
(π)
]
= ∇πiVri(π) = ∇πiΦ(π) ,

Eπ

[∥∥∥∇̂V ri
πi
(π)
∥∥∥2] ≤ 24A2

max

ξ(1− γ)4
,

Eπ

[
V̂c(π)

2
]
≤ 1

(1− γ)2
.

The same holds for ∇̂V c
πi
(π) w.r.t. ∇πi

Vc(π) .

Finally, the following lemma shows that our constraint function estimates concentrate around their mean.

Lemma 11. For π ∈ Πξ, let V̂
(1)
c , . . . , V̂

(B)
c be independent copies of V̂c(π), and let V̂c := 1

B

∑B
i=1 V̂

(i)
c . Then

there exists C > 0 such that for any λ ≥ 0,

P
(∣∣∣V̂c − Vc(π)

∣∣∣ > λ√
B

)
≤ 4 exp (−C(1− γ)λ) + 2 exp

(
−C2(1− γ)2λ2

)
.
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Proof. For i ∈ [B], we decompose V̂
(i)
c = ĉ

(i)
0 + V̂

(i)
c,≥1 where ĉ

(i)
0 is the cost incurred at step 0, and let ĉ0 :=

1
B

∑B
i=1 c

(i)
0 , V̂c,≥1 := 1

B

∑B
i=1 V̂

(i)
c,≥1. Since 0 ≤ ĉ0 ≤ 1, by Hoeffding’s inequality, there exists C0 > 0 such that

for any λ ≥ 0,

P
(
|ĉ0 − E[ĉ0]| >

λ

2
√
B

)
≤ 2 exp

(
−C0λ

2
)
. (17)

Moreover, note that since for all s ∈ S, a ∈ A, 0 ≤ c(s, a) ≤ 1, we have that for all i ∈ [B], V
(i)
c,≥1 ≤ T

(i)
e

where T
(i)
e is the stopping time of the respective episode and an independent copy of Te. Assuming κs,a =

mins∈S,a∈A κs,a = 1 − γ for all s ∈ S, a ∈ A, Te follows a geometric distribution with parameter 1 − γ. By
definition of the geometric distribution and elementary computations, we get for any λ ≥ 0,

P(Te ≥ λ) ≤ γ⌈λ⌉ ≤ exp(⌈λ⌉ log γ) ≤ exp

(
−⌈λ⌉1− γ

3

)
≤ exp (−(1− γ)λ/3)

which by a standard characterization of sub-exponential random variables, see Proposition 2.7.1 in Vershynin

(2018), implies that Te, and therefore also V
(i)
c,≥1 for all i ∈ [B] are sub-exponential. Moreover, by the so-

called centering lemma for sub-exponential distributions, see section 2.7 in Vershynin (2018), for any random
variable X that is sub-exponential with parameter σ, there exists an absolute constant c such that X − E[X]

is sub-exponential with parameter cσ. Thus for all i ∈ [B], V
(i)
c,≥1 − E[V̂ (i)

c,≥1] is sub-exponential with parameter
in O(1/(1 − γ)). Then, we apply Bernstein’s inequality, see Theorem 2.8.1 in Vershynin (2018), to show that
there exist C1, C2 > 0 such that for any λ ≥ 0,

P
(∣∣∣V̂c,≥1 − E[V̂c,≥1]

∣∣∣ > λ

2
√
B

)
≤ 2 exp (−C1(1− γ)λ) + 2 exp

(
−C2

2 (1− γ)2λ2
)
. (18)

Finally, using a union bound we combine (17) and (18) to get the desired bound.

C STRONGLY CONVEX STOCHASTIC OPTIMIZATION WITH STRONGLY
CONVEX EXPECTATION CONSTRAINT

In this section, we describe a stochastic gradient switching algorithm for stochastic constrained optimization
under expectation constraints. Up to the modification of using a relaxed constraint (which is crucial for
enabling its independent implementation), our algorithm and analysis follow the Cooperative Stochastic Ap-
proximation (CSA) algorithm presented in Lan and Zhou (2020) which is inspired by Polyak’s subgradient
method (Polyak, 1967). Lan and Zhou (2020) hint at the fact that a 1/K convergence rate of the CSA algorithm
can be shown in the case of strongly convex objective and under expectation constraints. Here we explicitly
carry out this analysis by deriving a result in expectation and under a somewhat weaker assumption on the
distribution of the constraint function estimates.

Let X ⊆ Rd be a convex and compact set with diameter ∆ := maxx,x′∈X ∥x− x′∥ . Suppose θ are random
vectors supported on Θ ⊂ Rp, and let F : X ×Θ → R, G : X ×Θ → R be functions such that F (·, θ) and G(·, θ)
are µF and µG-weakly convex, respectively. For any x′ ∈ X, we define Fµ,x′(x, θ) := F (x, θ) + µF ∥x − x′∥2
and Gµ,x′(x, θ) := G(x, θ) + µG∥x − x′∥2. Let f(x) := Eθ[F (x, θ)], g(x) := Eθ[G(x, θ)] (where expectations are
supposed to be well-defined and finite) and fµ,x′(x) := f(x) + µF ∥x − x′∥2, gµ,x′(x) := g(x) + µG∥x − x′∥2 for
every x ∈ X .

The problem we aim to solve9 is given by

min
x∈X

fµ,x′(x) := Eθ[Fµ,x′(x, θ)]

s.t. gµ,x′(x) := Eθ[Gµ,x′(x, θ)] ≤ 0.
(19)

Recall that such a problem needs to be solved at each time step in our iProxCMPG algorithm. The point x′ is
arbitrarily fixed throughout the rest of this section.

Suppose we are only given access to first-order information of fµ,x′ , gµ,x′ and zeroth-order information of g via
a stochastic oracle that outputs unbiased and bounded-variance estimates.

9Note that the final guarantees we will obtain are actually in terms of a relaxed constraint satisfaction bound. This is
due to our modification of the original CSA algorithm.
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Assumption 3. For every x ∈ X, the estimators F ′
µ,x′(x, θ), G′

µ,x′(x, θ) and G(x, θ) are unbiased, i.e.,

Eθ

[
F ′
µ,x′(x, θ)

]
= ∇fµ,x′(x),Eθ

[
G′

µ,x′(x, θ)
]

= ∇gµ,x′(x) and Eθ [G(x, θ)] = g(x) . Moreover, there ex-
ist MF ,MG > 0 such that

Eθ

[
∥F ′(x, θ)∥2

]
≤M2

F ; Eθ

[
∥G′(x, θ)∥2

]
≤M2

G .

Furthermore, we suppose to have access to independent unbiased estimators Ĝ(1), . . . , Ĝ(J) of G(x, ·) for which
there exists σ > 0 such that for any λ ≥ 0, it holds that

Pθ

(
|Ĝ− g(x)| > λ/

√
J
)
≤ 4 exp (−λ/σ) + 2 exp

(
−λ2/σ2

)
, (20)

where Ĝ := 1
J

∑J
j=1 Ĝ

(j).

It can be easily seen that Assumption 3 also implies existence of M̃F , M̃G such that

Eθ

[∥∥F ′
µ,x′(x, θ)

∥∥2] ≤ 2Eθ

[
∥F ′(x, θ)∥2

]
+ 2µ2

F ∥x− x′∥4 ≤ 2M2
F + 2µ2

F∆
4 =: M̃2

F ,

Eθ

[∥∥G′
µ,x′(x, θ)

∥∥2] ≤ 2Eθ

[
∥G′(x, θ)∥2

]
+ 2µ2

G ∥x− x′∥4 ≤ 2M2
G + 2µ2

G∆
4 =: M̃2

G.

Remark 5. Notice that the concentration requirement of (20) is relaxed compared to the sub-Gaussian assump-
tion made in Lan and Zhou (2020) which is too strong to hold in our case. We refer the reader to Lemma 11
where we prove that this weaker tail bound assumption holds for our constraint function estimates.

C.1 A Primal Gradient Switching Algorithm

Algorithm 3 is designed as a primal algorithm that switches between taking a step along the objective or constraint
gradient, depending on whether the constraint is currently (estimated to be) satisfied or not.

Algorithm 3 CSA (adapted from Lan and Zhou (2020))

1: initialization: x1 ∈ X s.t. g(x1) ≤ ϵ and {δk}k∈[N ] , {νk}k∈[N ] , {ρk}k∈[N ] , s ∈ [N ]
2: for k = 1, . . . , N − 1 do

3: sample Ĝ
(1)
k , . . . , Ĝ

(J)
k from G(xk, ·) and set Ĝk = 1

J

∑J
j=1 Ĝ

(j)
k

4: xk+1 =

{
PX

[
xk − νkF

′
µ,x′(xk, θk)

]
if Ĝk ≤ δk

PX

[
xk − νkG

′
µ,x′(xk, θk)

]
else

5: let Bs := {s ≤ k ≤ N | Ĝk ≤ δk}
6: output: xk̂ where k̂ = 1 if Bs = ∅ and otherwise sampled s.t. for k ∈ Bs, P(k̂ = k) =

(∑
k∈Bs

ρk
)−1

ρk

In the analysis, we will denote Ms := {s ≤ k ≤ N | k ̸∈ Bs} and B := B1, M := M1.

We point out the following differences between Algorithm 3 and the original CSA algorithm, see Lan and Zhou
(2020), Algorithm 1.

(a) We relax the switching condition in line 4 by using an estimate of g(xk) instead of gµ,x′(xk) if we were to
exactly use the algorithm proposed in Lan and Zhou (2020). This modification is crucial for our application
as subroutine of an independent learning algorithm, as described in the proof of Lemma 1, see section B.1.
As a result, compared to Lan and Zhou (2020), we get a weaker guarantee in terms of constraint violation
which however is still sufficient for our purposes.

(b) Instead of constructing the output as a ρk-weighted average over iterates xk, we sample an iterate from
a ρk-weighted distribution, see line 6. This is because our relaxed constraint function g is not necessarily
convex (unlike gµ,x′) and hence we cannot easily bound the constraint value at an average over iterates.
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C.2 Convergence and Sample Complexity Guarantee

The following analysis uses the techniques presented in Lan and Zhou (2020) applied to the strongly convex case
with expectation constraint, under our modified Assumption 3 and Algorithm 3. The proofs follow along the
same lines, we highlight differences when appropriate.

First, we establish a basic recursion about CSA iterates that will be used repeatedly throughout the rest of the
analysis.

Proposition 1. For any s ∈ [N ], x ∈ X, and as as defined by (21), it holds that∑
k∈Ms

ρk (Gµ,x′(xk, θk)−Gµ,x′(x, θk)) +
∑
k∈Bs

ρk (Fµ,x′(xk, θk)− Fµ,x′(x, θk))

≤ (1− as)∆
2 +

1

2

∑
k∈Bs

ρkνk
∥∥F ′

µ,x′(xk, θk)
∥∥2 + 1

2

∑
k∈Bs

ρkνk
∥∥G′

µ,x′(xk, θk)
∥∥2 .

Proof. Let s ∈ [N ] and k ∈ Bs. Then, by non-expansiveness of the projection PX and strong convexity,

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − νk
〈
F ′
µ,x′(xk, θk), xk − x

〉
+

1

2
ν2k
∥∥F ′

µ,x′(xk, θk)
∥∥2

≤ ∥xk − x∥2 − νk

[
Fµ,x′(xk, θk)− Fµ,x′(x, θk) +

µF

2
∥xk − x∥2

]
+

1

2
ν2k
∥∥F ′

µ,x′(xk, θk)
∥∥2

≤
(
1− νkµF

2

)
∥xk − x∥2 − νk [Fµ,x′(xk, θk)− Fµ,x′(x, θk)] +

1

2
ν2k
∥∥F ′

µ,x′(xk, θk)
∥∥2 .

Similarly, if k ∈ Ms,

∥xk+1 − x∥2 ≤
(
1− νkµG

2

)
∥xk − x∥2 − νk [Gµ,x′(xk, θk)−Gµ,x′(x, θk)] +

1

2
ν2k
∥∥G′

µ,x′(xk, θk)
∥∥2 .

After defining

ak =

{
µF νk if k ∈ B
µGνk if k ∈ M

; Ak =

{
1 if k = 1

(1− ak)Ak−1 if k ≥ 2
; ρk =

νk
Ak

; (21)

the result follows by application of Lemma 21, Lan and Zhou (2020).

The next lemma provides a condition on {νk, δk, ρk}s≤k≤N that guarantees either low regret in terms of objective
value or that a large number of iterates satisfy the constraint with high probability.

Lemma 12. Let x∗ be an optimal solution of (19). If for some s ∈ [N ] and λ ≥ 0,

N − s+ 1

2
min
k∈Ms

ρkδk > (1− as)∆
2 +

1

2

∑
k∈Ms

ρkνkM̃
2
G +

1

2

∑
k∈Bs

ρkνkM̃
2
F +

λ√
J

∑
k∈Ms

ρk, (22)

then one of the following statements hold,

(a) Pθ(|Bs| ≥ (N − s+ 1)/2) ≥ 1− |Ms|
(
4 exp (−λ/σ) + 2 exp

(
−λ2/σ2

))
, or,

(b)
∑

k∈Bs
ρk (fµ,x′(xk)− fµ,x′(x∗)) ≤ 0.

Note that unlike in Lan and Zhou (2020), due to our modified choice of Algorithm 3’s output, well-definedness
of xk̂ does not require Bs ̸= ∅.

Proof. In Proposition 1, set x = x∗, take expectation w.r.t. θ on both sides, and apply Eθ

∥∥F ′
µ,x′(x, θ)

∥∥2 ≤ M̃2
F ,

Eθ

∥∥G′
µ,x′(x, θ)

∥∥2 ≤ M̃2
G. Then,∑

k∈Ms

ρk (gµ,x′(xk)− gµ,x′(x∗)) +
∑
k∈Bs

ρk (fµ,x′(xk)− fµ,x′(x∗))

≤ (1− as)∆
2 +

1

2

∑
k∈Ms

ρkνkM̃
2
G +

1

2

∑
k∈Bs

ρkνkM̃
2
F .

(23)
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If
∑

k∈Bs
ρk (fµ,x′(xk)− fµ,x′(x∗)) ≤ 0, then (b) holds. Otherwise, we make three observations. First, we have

that gµ,x′(x∗) ≤ 0. Second, it holds that g(xk) ≤ gµ,x′(xk). Third, for k ∈ Ms, by Assumption 3 and due to

Ĝk > δk, we get

Pθ

(
g(xk) < δk − λ√

J

)
≤ 4 exp (−λ/σ) + 2 exp

(
−λ2/σ2

)
. (24)

By a union bound this inequality holds for all k ∈ Ms with probability at most
|Ms|

(
4 exp (−λ/σ) + 2 exp

(
−λ2/σ2

))
. Combining these three observations with (23) yields that with

probability at least 1− |Ms|
(
4 exp (−λ/σ) + 2 exp

(
−λ2/σ2

))
, it holds that∑

k∈Ms

ρkδk ≤ (1− as)∆
2 +

1

2

∑
k∈Ms

ρkνkM̃
2
G +

1

2

∑
k∈Bs

ρkνkM̃
2
F +

λ√
J
.

Above inequality then implies (a) because if |Bs| < (N − s + 1)/2, i.e., |Ms| ≥ (N − s + 1)/2, then condition
(22) implies that∑

k∈Ms

ρkδk ≥ N − s+ 1

2
min
k∈Ms

ρkδk > (1− as)∆
2 +

1

2

∑
k∈Ms

ρkνkM̃
2
G +

1

2

∑
k∈Bs

ρkνkM̃
2
F +

λ√
J

∑
k∈Ms

ρk,

which is a contradiction.

Next, we state and prove the main guarantees provided by Algorithm 3.

Theorem 3. Under Assumption 3, let ϵ > 0, suppose x1 is such that g(x1) ≤ ϵ, and let fmax > 0 such that for all
x ∈ X, 0 ≤ f(x) ≤ fmax. Choose s = N/2,λ = σ2 log(N2/(4fmax)), set M = max{M̃G, M̃F }, µ = min{µG, µF },
and

νk =

{
2

µF (k+1) if k ∈ B
2

µG(k+1) if k ∈ M
; δk =

λ√
J
+

1

2k

(
4∆2

k
+

16M2

µ2

)
·

{
µF if k ∈ B
µG if k ∈ M

;

ak =

{
µF νk if k ∈ B
µGνk if k ∈ M

; Ak =

{
1 if k = 1

(1− ak)Ak−1 if k ≥ 2
; ρk =

νk
Ak

N = max

{
64µFM

2

µ2ϵ2
,

√
32∆2µF

ϵ
,
32σµF

µϵ2

}
; J = max

{
9λ2

ϵ2
,
32σµF

µϵ2

}
.

Then Algorithm 3 guarantees that

E
[
fµ,x′(xk̂)− fµ,x′(x∗)

]
≤ ϵ2, (25)

E
[
g(xk̂)

]
≤ ϵ. (26)

Proof. First, we observe that for any k ∈ Ms,

E
[√

J (g(xk)− δk)
]
=

∫ ∞

0

(
1− P

(√
J (g(xk)− δk) ≤ z

))
dz

−
∫ 0

−∞
P
(√

J (g(xk)− δk) ≤ z
)
dz

≥ −
∫ 0

−∞
4 exp (z/σ) + 2 exp

(
z2/σ2

)
dz

≥ −6σ

(27)

where the first inequality is by (24). Therefore, we have E[g(xk)] ≥ δk − 6σ√
J
. Moreover, by an argument similar

to our derivation in Lemma 11 but with Bernstein’s inequality applied to the sum
(∑

k∈Ms
ρk
)−1∑

k∈Ms
ρkĜk,

P

( ∑
k∈Ms

ρk

(
Ĝk − g(xk)

)
>

λ√
J |Ms|

∑
k∈Ms

ρk

)
≤ 4 exp (−λ/σ) + 2 exp

(
−λ2/σ2

)
.
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Therefore, following (27), we get

E

[ ∑
k∈Ms

ρkg(xk)

]
≥
∑

k∈Ms

ρkδk − 6σ√
J |Ms|

∑
k∈Ms

ρk. (28)

Next, we derive (25). Note that (22) holds for our choices of s, νk, δk, ρk. Then, if part (b) of Lemma 12 holds,
we have

E
[
f(xk̂)− f(x∗)

]
= Ek̂

[
E
[
f(xk)− f(x∗) | k̂ = k

]]
≤

(∑
k∈Bs

ρk

)−1 ∑
k∈Bs

ρkE [f(xk)− f(x∗)]

≤ 0.

Otherwise, if part (a) holds, then using above bound on E[g(xk)] together with convexity of fµ,x′ , (23) and (28),
it follows that

∑
k∈Ms

ρkδk − 6σ√
J |Ms|

∑
k∈Ms

ρk +
∑
k∈Bs

ρkE
[
fµ,x′(xk̂)− fµ,x′(x∗)

]
≤
∑

k∈Ms

ρkE [g(xk)] +
∑
k∈Bs

ρkE
[
fµ,x′(xk̂)− fµ,x′(x∗)

]
≤
∑

k∈Ms

ρkE [g(xk)] +
∑
k∈Bs

ρkE [fµ,x′(xk)− fµ,x′(x∗)]

≤ (1− as)∆
2 +

1

2

∑
k∈Ms

ρkνkM̃
2
G +

1

2

∑
k∈Bs

ρkνkM̃
2
F .

Denote by EBs
the event that |Bs| ≥ (N − s + 1)/2. Then, using the law of total expectation, our choice of

λ = σ2 log(N2/(4fmax)), ρkδk ≥ 0, and above inequality, we have

E
[
f(xk̂)− f(x∗)

]
≤ E

[
f(xk̂)− f(x∗) | EBs

]
· P (EBs)︸ ︷︷ ︸

≤1

+ E
[
f(xk̂)− f(x∗) | EBs

]
· P

(
EBs

)︸ ︷︷ ︸
≤|Ms|(4 exp(−λ/σ)+2 exp(−λ2/σ2))

≤

(∑
k∈Bs

ρk

)−1(
(1− as)∆

2 +
1

2

∑
k∈Ms

ρkνkM̃
2
G +

1

2

∑
k∈Bs

ρkνkM̃
2
F +

6σ√
J |Ms|

∑
k∈Ms

ρk

)
+

1

N

≤
(
N − s+ 1

2
min
k∈Bs

ρk

)−1
(
(1− as)∆

2 +
1

2

∑
k∈Ms

ρkνkM̃
2
G +

1

2

∑
k∈Bs

ρkνkM̃
2
F +

6σ√
J |Ms|

∑
k∈Ms

ρk

)
+

1

N
.

In order to show the constraint violation bound, note that by a similar argument as (27), for any k ∈ Bs,
E[g(xk)] ≤ δk + 6σ√

J
, and therefore

E
[
g(xk̂)

]
= Ek̂

[
E
[
g(xk) | k = k̂

]]
≤ Ek̂

[
δk̂
]
+

6σ√
J

=

∑
k∈Bs

ρkδk∑
k∈Bs

ρk
+

6σ√
J
.

In order to derive the guarantees (25) and (26), we plug in the choices of νk, δk, ak, ρk, N , and J stated in
Theorem 3. Observing that for any s ≤ k ≤ N , we have Ak = 2

k(k+1) , that for any k ∈ B, we have ρk = 2k
µF

as
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well as ρkνk = 4
µ2
F
, and for any k ∈ M, ρk = 2k

µG
, ρkνk = 4

µ2
G
.

E
[
f(xk̂)− f(x∗)

]
≤

∆2 + 2Nµ−2
F M̃2

F + 2Nµ−2
G M̃2

G + 2σ√
J
N3/2µ−1

G

N2/4 · µ−1
F

≤
∆2 + 4Nµ−2M2 + 2σ√

J
N3/2µ−1

N2/4 · µ−1
F

+
1

N

≤ 4µF∆
2

N2
+

16µFµ
−2M2

N
+

8σµ−1µF√
JN

+
1

N

≤ ϵ2/4 + ϵ2/4 + ϵ2/4 + ϵ2/4.

Moreover, for the constraint bound, it holds that

E
[
g(xk̂)

]
≤
∑

k∈Bs

(
4∆2/k + 16M2/µ2

)∑
k∈Bs

2k/µF
+

6σ√
J

≤ 8∆2µF

N2
+

16M2µF

µ2N
+

6σ√
J

≤ ϵ.

D BACKGROUND IN CONSTRAINED OPTIMIZATION AND A NOVEL
TECHNICAL LEMMA

Notation For any non-empty subset Y ⊂ Rd and any vector x ∈ Rd, the distance from x to the set Y is
defined as dist(x, Y ) := infy∈Y ∥x− y∥ where ∥ · ∥ is the standard 2-norm of the Euclidean space Rd.

In this section, we recall some useful definitions for constrained optimization. In particular, we recall the definition
of an approximate Karush-Kuhn-Tucker (KKT) point and a variation thereof. Then we prove a new technical
result that will be useful in our analysis.

D.1 Approximate KKT Points in Constrained Optimization

Let X ⊂ Rd be a closed convex set. Consider the following constrained optimization problem:

P ∗ = min
x∈X

f(x)

s.t. fc(x) ≤ 0 ,
(ConstrOpt)

where f, fc : X → R are differentiable (possibly nonconvex) functions.

The associated Lagrangian function L : X×R≥0 → R is defined for any x ∈ X,λ ≥ 0 by L (x, λ) = f(x)+λfc(x) .
The primal and dual problems can be respectively written as

P ∗ = inf
x∈X

sup
λ≥0

L (x, λ) ,

D∗ = sup
λ≥0

inf
x∈X

L (x, λ)︸ ︷︷ ︸
=:d(λ)

.

By weak duality, we know that P ∗ ≥ D∗.

For any x ∈ Rd, the normal cone to the set X at x is defined by:

NX(x) :=
{
g ∈ Rd | ∀y ∈ X, ⟨g, y − x⟩ ≤ 0

}
.
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Definition 1. Let ϵ ≥ 0. A point x ∈ X is an ϵ-KKT point of (ConstrOpt) if there exists a real λ such that
the following conditions hold:

fc (x) ≤ ϵ , (primal feasibility)

λ ≥ 0 , (dual feasibility)

|λfc (x)| ≤ ϵ , (complementary slackness)

dist (∇xL(x, λ),−NX(x)) ≤ ϵ . (Lagrangian stationarity)

We also call (x, λ) an ϵ-KKT pair. The point x is simply a KKT point of (ConstrOpt) if moreover ϵ = 0 .

We additionally define a slight modification of the above standard KKT conditions which turns out to be useful
in our analysis. More precisely, the definition replaces approximate Lagrangian stationarity by a variational form
thereof. Moreover, primal feasibility is now supposed to be exact. Other conditions remain unchanged.

Definition 2. Let ϵ ≥ 0 . A point x̃ ∈ X is an ϵ-K̃KT point of (ConstrOpt) if there exists a real λ̃ such that the
following conditions hold:

fc (x̃) ≤ 0 , (exact primal feasibility)

λ̃ ≥ 0 , (dual feasibility)∣∣∣λ̃fc (x̃)∣∣∣ ≤ ϵ , (complementary slackness)

max
x′∈X

〈
x̃− x′,∇xL(x̃, λ̃)

〉
≤ ϵ . (variational Lagrangian stationarity)

In particular, the point x̃ is said to be a K̃KT point of (ConstrOpt) when ϵ = 0.

The next lemma connects the first stationarity condition with a variational form thereof. In particular, this
result allows to connect the two definitions of approximate KKT points above.

Lemma 13. Let X ⊆ Rd be a convex and compact set. Let ϵ > 0 and let x, g ∈ Rd . If dist (g,−NX(x)) ≤ ϵ,
then maxx′∈X ⟨x− x′, g⟩ ≤ ∆ϵ , where ∆ := maxx,x′∈X ∥x− x′∥ is the diameter of the set X .

Proof. Let y0 ∈ −NX(x) . For any x′ ∈ X, we have

⟨x− x′, g⟩ = ⟨x− x′, g − y0⟩+ ⟨−y0, x′ − x⟩ ,
≤ ⟨x′ − x, g − y0⟩ ,
≤ ∥x′ − x∥ · ∥g − y0∥ ,

where the first inequality follows from the fact that y0 ∈ −NX(x), the second inequality stems from the Cauchy-
Schwarz inequality. Taking the infimum with respect to y0 in the last inequality gives the desired inequality
since dist (g,−NX(x)) = infy∈−NX(x) ∥g − y∥ ≤ ϵ .

D.2 A Novel Technical Lemma for Approximate Optimality under Gradient Dominance

We now state our technical lemma. This results shows that an approximate KKT point of (ConstrOpt) at which
a gradient domination inequality holds for the Lagrangian function is approximately optimal for the objective
function to be minimized.

Proposition 2. Let ϵ > 0 and let x̃ ∈ X be an ϵ-K̃KT point of (ConstrOpt). Suppose there exist con-
stants C0, C1 ≥ 0 such that the Lagrangian function associated to (ConstrOpt) satisfies for all λ ≥ 0 and for
all x ∈ X,

L (x, λ)− L (x∗λ, λ) ≤ C0 max
x′∈X

〈
x− x′,∇xL(x̃, λ̃)

〉
+ C1ϵ , (29)

where x∗λ is a minimizer of L (·, λ) . Then, we have

f(x̃)− P ∗ ≤ (C0 + C1 + 1)ϵ.
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Proof. Let (x̃, λ̃) be an ϵ-K̃KT pair. Then, we have

D∗ (a)
= max

λ≥0
d(λ) ≥ d(λ̃)

(b)
= min

x∈X
L(x, λ̃)

(c)

≥ L(x̃, λ̃)− (C0 + C1)ϵ

= f(x̃) + λ̃fc(x̃)− (C0 + C1)ϵ

(d)

≥ f(x̃)− (C0 + C1 + 1)ϵ

where (a) and (b) are by definition, and (d) is due to complementary slackness. To see (c), observe that by
Lagrangian stationarity and (29),

ϵ ≥ max
x′∈X

〈
x̃− x′,∇xL(x̃, λ̃)

〉
≥ 1

C0

(
L(x̃, λ̃)− L(x∗

λ̃
, λ̃)− C1ϵ

)
,

which implies that10

L(x̃, λ̃)− L(x∗
λ̃
, λ̃) ≤ (C0 + C1)ϵ.

Finally, we use weak duality, i.e. P ∗ ≥ D∗, to conclude that

f(x̃)− P ∗ = f(x̃)−D∗︸ ︷︷ ︸
≤(C0+C1+1)ϵ

+D∗ − P ∗︸ ︷︷ ︸
≤0

≤ (C0 + C1 + 1)ϵ.

E ADDITIONAL DETAILS ABOUT SIMULATIONS

We provide additional details regarding the implementation of our iProxCMPG (Algorithm 2) in practice:

(a) In our experiments, each episode terminates after a fixed number of steps Te = 10 corresponding to a
discount factor γ = 0.9 .

(b) In order to reduce the variance and enable the usage of larger step sizes, all constraint and value (gradient)
estimates are obtained by sampling a batch of B trajectories.

(c) For the subroutine, i.e. as solution to the proximal-point update, we do not consider a ρk-weighted average
over iterates but simply use the last iterate π(t,K).

(d) We choose δk = 0 for all k ∈ N.

Hyperparameters We report hyperparameter choices for our simulations in Table 2. Note that to ensure
convergence, as indicated by our theoretical results, a larger number of players m requires smaller step sizes and
larger sample batches. Step sizes η and νk were chosen by tuning over the range [0, 1].

Error Bars and Reproducibility The plots in Figs. 1 and 2 show the means of estimated potential values
across 10 independent runs, and the corresponding shaded region displays the respective standard deviation.
Obtaining results for all presented experiments thus requires simulating 60 runs in total. All experiments are
fully reproducible using the provided code and specified seeds.

Computing Infrastructure In order to reduce computation time by executing all runs in parallel, we con-
ducted the simulations within less than 4 hours on a cluster of 15 4-core Intel(R) Xeon(R) CPU E3-1284L v4
clocked at 2.90GHz and equipped with 8Gbs of memory.

10If C0 = 0, the same inequality immediately holds from (29).
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Table 2: Overview of hyperparameters used in our simulations.

Hyperparameters Number of players m Pollution tax Energy marketplace

Step size η (outer loop) - 0.1 0.1

Step size νk (inner loop)
2 0.005 0.002
4 0.002 0.001
8 0.0007 0.0003

Sample batch size B
2 1000 100
4 1000 150
8 2500 200

K (#iterations inner loop) - 20 20
T (#iterations outer loop) - 20 60

Discount factor γ - 0.9 0.9
Episode length Te - 10 10

Notation As used in the main part, U({1, · · · ,W}) refers to the uniform distribution over the finite
set {1, · · · ,W} where W ≥ 2 is an integer.
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