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Abstract

Traditional approaches to variational infer-
ence rely on parametric families of variational
distributions, with the choice of family play-
ing a critical role in determining the accu-
racy of the resulting posterior approximation.
Simple mean-field families often lead to poor
approximations, while rich families of distri-
butions like normalizing flows can be difficult
to optimize and usually do not incorporate
the known structure of the target distribution
due to their black-box nature. To expand
the space of flexible variational families, we
revisit Variational Rejection Sampling (VRS)
(Grover et al., 2018), which combines a para-
metric proposal distribution with rejection
sampling to define a rich non-parametric fam-
ily of distributions that explicitly utilizes the
known target distribution. By introducing
a low-variance reparameterized gradient es-
timator for the parameters of the proposal
distribution, we make VRS an attractive in-
ference strategy for models with continuous
latent variables. We argue theoretically and
demonstrate empirically that the resulting
method—Reparameterized Variational Rejec-
tion Sampling (RVRS)—offers an attractive
trade-off between computational cost and in-
ference fidelity. In experiments we show that
our method performs well in practice and that
it is well-suited for black-box inference, espe-
cially for models with local latent variables.

1 INTRODUCTION

Variational inference is a powerful method for approxi-
mate Bayesian inference with a number of appealing
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properties, including support for data subsampling and
model learning (Blei et al., 2017). Unfortunately, sim-
ple variational families like mean-field gaussian distri-
butions often result in poor posterior approximations,
while defining custom parametric families that better
reflect the correlation structure and tail behavior of the
exact posterior can be difficult, even for experts. This
has motivated research into more flexible variational
methods, including black-box methods like normalizing
flows (Rezende and Mohamed, 2015) as well as hybrid
methods that incorporate Markov Chain Monte Carlo
(MCMC) (Salimans et al., 2015).

While these methods are powerful, they come with sev-
eral disadvantages. Normalizing flows can be difficult to
optimize, exhibit tail behavior that is difficult to control
(Jaini et al., 2020), and introduce a large design space
characterized by many hard-to-set hyperparameters.
Moreover, due to their black-box nature normalizing
flows typically do not incorporate the known struc-
ture of the target distribution. This is arguably a lost
opportunity, especially in the context of probabilistic
programming systems, where this information is readily
available. The most powerful methods that combine
variational inference with MCMC are gradient-based
(Geffner and Domke, 2021; Zhang et al., 2021; Thin
et al., 2021), with the result that many (possibly expen-
sive) gradient steps may be required to generate a single
sample. Moreover, good performance relies on carefully
tuning the MCMC kernel, which can be challenging,
since posterior curvature can vary considerably across
latent space. In addition, these approaches typically
introduce auxiliary latent variables, leading to a looser
and more stochastic variational bound.

These considerations lead us to revisit a conceptually
simpler hybrid variational inference method dubbed
Variational Rejection Sampling (VRS) (Grover et al.,
2018). Like MCMC-based methods, the target distribu-
tion is directly incorporated into the definition of the
variational family, resulting in a non-parametric varia-
tional distribution. Since, however, rejection sampling
is much simpler than MCMC, the result is a consider-
ably simpler hybrid variational method that does not
require delicate tuning or differentiating through long
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MCMC chains. Unfortunately, VRS utilizes score func-
tion (i.e. REINFORCE-like (Williams, 1992)) gradient
estimators, which are known to be high variance, thus
limiting its usefulness to discrete latent variable models,
which are in any case not amenable to the reparameter-
ization trick. In this work we set out to show that by
introducing a reparameterized gradient estimator VRS
becomes an attractive inference strategy for continuous
latent variable models.

In summary our contributions include the following:

1. We introduce a reparameterized gradient estimator
for VRS.

2. We show that the resulting method—RVRS—is
especially well-suited for local latent variable mod-
els, including hierarchical models that additionally
include global latent variables.

3. We characterize the variational gap of (R)VRS as
a function of the rejection threshold parameter T .

2 PROBLEM SETTING

We are given a model with joint density of the form
pθ(x, z) = pθ(x|z)pθ(z) where the latent variable
z ∈ RD is governed by a prior pθ(z) and x in the
likelihood pθ(x|z) represents observed data. We aim to
devise a flexible variational approximation to the pos-
terior pθ(z|x) that can be learned with a low-variance
ELBO gradient estimator. Initially we do not assume
any particular conditional independence structure, but
in Sec. 4.4 we turn our attention to hierarchical models
with both global and local latent variables, which ben-
efit from additional consideration. We would like our
method to be generic in nature so that it is suitable
for black-box inference in a probabilistic programming
framework. Additionally we would like our method to
support model learning, i.e. learning θ in conjunction
with the approximate posterior.

3 BACKGROUND

3.1 Variational inference

The most common variant of variational inference intro-
duces a parametric variational distribution qϕ(z) and
proceeds to optimize the parameters ϕ to minimize the
Kullback-Leibler (KL) divergence between qϕ(z) and
the posterior pθ(z|x), i.e. KL(qϕ(z)||pθ(z|x)). This can
be done by maximizing the Evidence Lower Bound or
ELBO objective L where

L ≡ Eqϕ(z)[log pθ(x, z)− log qϕ(z)] ≤ log pθ(x) (1)

and log pθ(x) ≡ logEpθ(z) [pθ(x|z)]. Thanks to the in-
equality in Eqn. 1 the ELBO naturally enables joint

model learning and inference, i.e. we can maximize the
ELBO w.r.t. both variational parameters ϕ and model
parameters θ simultaneously. As noted in the introduc-
tion, a potential shortcoming of this fully parametric
approach is the difficulty of specifying suitable param-
eterizations for qϕ(z). For additional background see
e.g. (Blei et al., 2017).

3.2 Variational Rejection Sampling

The basic idea behind VRS is simple: define a flexible
variational distribution by taking a parametric proposal
distribution qϕ(z) and warping it towards the posterior
pθ(z|x) via a smoothed variant of rejection sampling.
In more detail, define the variational distribution as

rϕ,θ(z) ≡
qϕ(z)aϕ,θ(z)

Zr
with Zr ≡

∫
dz qϕ(z)aϕ,θ(z)

(2)
where

aϕ,θ(z) ≡ σ(log pθ(x, z)− log qϕ(z) + T ) (3)

= σ(−ℓTθ,ϕ(z))
is an acceptance probability with aϕ,θ(z) ∈ [0, 1] and
σ(·) is the logistic function. We have also introduced
the threshold parameter T ∈ R and the T -shifted log
ratio ℓTθ,ϕ(z). As T → ∞ we have aϕ,θ(z) → 1 and
rϕ,θ(z) → qϕ(z), recovering conventional variational
inference with qϕ(z) as the variational distribution. In
the opposite limit T → −∞ the acceptance probabil-
ity is low, aϕ,θ(z) → 0, and rϕ,θ(z) → pθ(z|x). For
intermediate T (i.e. T which leads to a few but not
many rejected samples) we get a rϕ,θ(z) that is closer
to the posterior pθ(z|x) than the proposal distribution
qϕ(z) at the cost of a moderate amount of additional
computation. Indeed as shown in Grover et al. (2018),
as T decreases for fixed qϕ(z) the ELBO increases
monotonically and thus KL(rϕ,θ(z)||pθ(z|x)) decreases
monotonically.

3.2.1 Sampling

Since aϕ,θ(z) ∈ [0, 1] it is straightforward to sample
from rϕ,θ(z), see Algorithm 1. The expected number of
draws from the proposal distribution is given by Z−1

r ,
see Sec. C.1. For this reason we expect the sweet spot
for VRS to occur for moderate values of Z−1

r ∼ 3− 20,
where the cost of rejection sampling is not too high,
but where the proposal distribution is still significantly
‘sculpted’ towards the posterior.

3.2.2 Gradient estimators

VRS is only practical if we can use gradient methods
to optimize the corresponding ELBO given by

L(ϕ,θ) = Erθ,ϕ(z) [log pθ(x, z)− log rϕ,θ(z)] (4)
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Algorithm 1 Sampler for rϕ,θ(z). Input: accep-
tance probability aϕ,θ(z) and proposal qϕ(z).
1: while True do
2: z ∼ qϕ(z)
3: if u < aϕ,θ(z) where u ∼ Uniform(0, 1) then
4: return z
5: end if
6: end while

As shown in Grover et al. (2018), gradients for the
parameters ϕ that define the proposal distribution
qϕ(z) can be computed using the following estimator

∇ϕL = COVrϕ,θ(z) [A(z), aϕ,θ(z)∇ϕ log qϕ(z)] (5)

with

A(z) ≡ log pθ(x, z)− log qϕ(z)− log aϕ,θ(z) (6)

and where COVrϕ,θ(z)[A(z), B(z)] denotes the covari-
ance between random variables A and B w.r.t. the
distribution rϕ,θ(z). Similarly the gradient estimator
for the model parameters θ is given by

∇θL =Erϕ,θ(z) [∇θ log pθ(x, z)]− (7)

COVrϕ,θ(z) [A(z), (1− aϕ,θ(z))∇θ log pθ(x, z)]

It is easy to show (see Sec. C.2) that in the limit that
aϕ,θ(z)→ 1 and rϕ,θ(z)→ qϕ(z) the gradient estima-
tor Eqn. 5 reduces to a conventional score function
(i.e. REINFORCE-like) gradient estimator, which is
known to exhibit high variance, essentially due to its
coarse credit assignment (Mohamed et al., 2020). It
is straightforward to compute unbiased Monte Carlo
estimates of Eqn. 5 and Eqn. 7, although doing so re-
quires drawing S > 1 samples from rϕ,θ(z) due to the
covariance terms, see Sec. C.3.

4 REPARAMETERIZED
VARIATIONAL REJECTION
SAMPLING

The REINFORCE-like covariance term in Eqn. 5 is
generally expected to be high variance and thus limit
the applicability of VRS. Fortunately, as we show
in Prop. 1, the VRS ELBO admits a reparameter-
ized (i.e. pathwise) gradient estimator for ϕ if qϕ(z)
is reparameterizable—a surprising capability, since
rϕ,θ(z) is not readily reparameterizable itself. Since
the suite of reparameterizable proposal distributions is
quite large—including e.g. Normal distributions, Dirich-
let distributions, and normalizing flows with reparam-
eterizable base distributions—the RVRS distribution
rϕ,θ(z) is quite flexible.

Proposition 1 If the proposal distribution qϕ(z) is
reparameterizable, then the VRS ELBO Eqn. 4 admits
the following reparameterized gradient estimator for ϕ
gradients

∇ϕL=Erϕ,θ(z)

[(
2A(z)∂aϕ,θ(z)

∂z
+aϕ,θ(z)

∂A(z)
∂z

)
·∇ϕz

]
(8)

where A(z) is defined as A(z) ≡ A(z)−Erϕ,θ(z′) [A(z′)]
and ∇ϕz is the velocity field1 corresponding to infinites-
imal displacement of qϕ(z) in ϕ-space. Eqn. 8 reduces
to a conventional reparameterized gradient in the limit
that aϕ,θ(z)→ 1 and rϕ,θ(z)→ qϕ(z). See Sec. A for
the proof and additional details.2

Fundamentally the existence of a pathwise gradient
estimator can be traced to three properties of rϕ,θ(z):
i) rϕ,θ(z) is proportional to a reparameterizable distri-
bution, namely qϕ(z); ii) rϕ,θ(z) depends on ϕ only
through qϕ(z); and iii) we can compute aϕ,θ(z) and
its gradients pointwise. We note that the derivation
of Prop. 1 is conceptually similar to that behind ‘dou-
bly reparameterized gradients’ (Tucker et al., 2018),
although in that case a gradient estimator that is al-
ready reparameterized is manipulated to transform a
score-function-like term to further reduce variance.

4.1 Model parameter gradients

Unfortunately it seems unlikely that the covariance
term in Eqn. 7 can be reparameterized in a straight-
forward way, since eliminating ∇θ log pθ(x, z) would
require e.g. a reparameterized sampler of pθ(z|x). How-
ever, we show empirically that this term can be safely
dropped at the cost of introducing some bias.3 This
is because this term encodes how the log evidence
estimate changes due to changes in ℓTθ,ϕ(z) in Eqn. 3—
i.e. how model parameters modulate the acceptance
probability and thus the resulting rejection-sampled
variational distribution—and not the ‘direct’ change
encoded by the term Erϕ,θ(z) [∇θ log pθ(x, z)].

4.2 Adapting the threshold T

Choosing an appropriate value of T in the vicinity
of Eqϕ(z) [log qϕ(z)− log pθ(x, z)] is crucial for good
performance of (R)VRS. In Grover et al. (2018) the
authors propose a strategy based on quantiles of

1For example if qϕ(z) = N (z|µ, σ2) then ∇µz = 1 and
∇σz = (z − µ)/σ.

2In particular in Sec. A.2 we describe how we leverage
automatic differentation and S > 1 samples from rϕ,θ(z)
to obtain an unbiased Monte Carlo estimate of Eqn. 8.

3This is a classic bias/variance trade-off: this term can be
retained (or re-introduced towards the end of optimization)
if the bias is a concern.
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log pθ(x, z)/qϕ(z). While we find that this strategy can
work, we prefer a gradient-based strategy for tuning the
threshold parameter T that allows direct control over
the computational cost of (R)VRS. Another advantage
of this approach is that because it is gradient-based
it offers the possibility of choosing T using amortized
inference, although we do not explore that possibility
here. Recall that Zr ≡

∫
dz qϕ(z)aϕ,θ(z) is the mean

acceptance probability of the rejection sampler and con-
sider the loss L(T ) = 1

2 (Zr −Ztgt)
2 where Ztgt ∈ (0, 1)

is a target acceptance probability. Then the gradient
∂L
∂T is given by

∂L
∂T

= Eqϕ(z) [aϕ,θ(z)−Ztgt]Eqϕ(z) [aϕ,θ(z)(1−aϕ,θ(z))]

(9)

which we can readily compute unbiased estimates of,
since we have S > 1 samples at our disposal. Through-
out this work we use Monte Carlo estimates of ∂L

∂T to
tune T ; see Sec. D in the supplement for details.

4.3 Models with only local latent variables

For models with only local latent variables like a VAE
(Kingma and Welling, 2013) sampling, ELBO estima-
tion, and ELBO gradient estimation for RVRS trivially
factorize across data points, and thus RVRS admits
unbiased mini-batch learning for such models. An ef-
ficient sampler for RVRS in this scenario requires a
flexible rejection sampling scheme that maximizes us-
age of computational resources. In particular during
training we can choose between: i) an unbiased sampler
that terminates when S > 1 latent samples have been
generated for every data point; and ii) a (potentially
much) faster biased sampler that terminates after gen-
erating a fixed number of proposals for each data point.
See Algorithm 2 & Algorithm 3 in the supplement for
details. As we report in Fig. 6 in Sec. G the small bias
introduced by the faster sampler has a correspondingly
small impact on performance.

4.4 Hierarchical models with global and local
latent variables

We now consider models with both a global latent
variable zG and local latent variables {zn}, with
n = 1, ..., N indexing the N observed data points
{xn}. We assume the following conditional indepen-
dence structure:

pθ(x1:N , zG, z1:N ) = pθ(zG)

N∏
n=1

pθ(xn|zn, zG)p(zn|zG)

While RVRS can be applied to the joint latent space
{zG, z1:N}, the resulting algorithm does not admit unbi-
ased data subsampling (i.e. mini-batch learning), since

aϕ,θ(z) depends on the entire dataset, limiting this ap-
proach to moderate N .4 To enable data subsampling
we adopt a hybrid approach in which the posterior
over zG is approximated by a parametric distribution
qϕ(zG) while the conditional posteriors pθ(zn|zG,xn)
are approximated by RVRS. This can be understood as
an instance of a ‘locally enhanced bound’ (Geffner and
Domke, 2022), and is analogous to the ‘Semi-DAIS’ ap-
proach explored in Jankowiak and Phan (2022) in the
context of UHA/DAIS. We refer to this semi-parametric
approach as Semi-RVRS. See Sec. E for details.

5 CONVERGENCE ANALYSIS

It is evident from the structure of rϕ,θ(z) in Eqn. 2
that as T → −∞ the variational distribution rϕ,θ(z)
converges to the exact posterior pθ(z|x) pointwise. But
can we say anything about the corresponding ELBO in
Eqn. 4? As we would expect, the variational gap goes
to zero in the same limit as eT , see Prop. 2. Notably
the relative simplicity of rejection sampling allows us
to prove a generic result, whereas an analogous result
for DAIS in (Zhang et al., 2021) is limited to linear
Gaussian models due to the complexity of analyzing
MCMC chains.

Proposition 2 (A) Assume that qϕ(z) is sufficiently
heavy-tailed so that ξ ≡ Epθ(z|x)

[
pθ(x,z)
qϕ(z)

]
is fi-

nite. Then the variational gap ∆ between log pθ(x)
and the ELBO is bounded from above as ∆ <
3
2e

T ξ for T < − log 2ξ. (B) An analogous bound
holds for the hierarchical modeling case considered in
Sec. 4.4, where the bound includes an additional term
KL
(
qϕ(zG)

∣∣∣∣∣∣ pθ(zG|x1:N )
)

that encodes the subopti-
mality of the parametric variational approximation for
the global latent variable zG. For additional details and
the proof see Sec. B in the supplement.

6 RELATED WORK

Many variational objectives that go beyond a conven-
tional ELBO have been proposed in the literature.
These include the importance weighted autoencoder
(IWAE) (Burda et al., 2015; Cremer et al., 2017), the
thermodynamic variational objective (Masrani et al.,
2019), and approaches that make use of Sequential
Monte Carlo (Le et al., 2017; Maddison et al., 2017;
Naesseth et al., 2018). Variational Rejection Sampling
(VRS) was proposed by Grover et al. (2018) and ap-
plied to models with discrete latent variables. An early

4This is of course equally true of other non-parametric
approaches like UHA/DAIS (Geffner and Domke, 2021;
Zhang et al., 2021), although see (Jankowiak and Phan,
2022).
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Method Standard VAE IWAE-10 IWAE-20 IWAE-40 UHA-10 UHA-20 RVRS-0.1 RVRS-0.05 RVRS-0.025

−ELBO 95.30± 0.14 91.21± 0.07 90.44± 0.07 89.81± 0.09 89.75± 0.09 88.46± 0.22 90.74± 0.16 90.00± 0.12 89.55± 0.12

ms / grad 0.70 1.06 1.49 1.97 5.17 9.73 1.19 1.36 1.75

Table 1: We report negative ELBO objectives (lower is better; mean ± standard deviation over 5 replicates)
computed on held-out test data together with gradient step times for the VAE experiment in Sec. 7.4. In all cases
we report results using the same objective used during training. Results are obtained with a RTX 2070 GPU.

Dataset Semi-DAIS-8 Semi-DAIS-16 Semi-DAIS-32 Semi-RVRS-0.50 Semi-RVRS-0.10 Oracle

Pol 37.8± 1.6 73.8± 1.6 99.8± 1.6 116.9± 0.9 140.2± 0.9 143.1± 0.4

Bike 49.5± 0.8 110.8± 0.7 155.8± 0.8 187.8± 0.7 223.5± 0.7 228.6± 0.5

Table 2: We report ELBO improvement above a mean-field baseline for the hierarchical model in Sec. 7.5 (mean
± standard deviation). Results are averaged across 5 replicates.

be especially attractive in cases where there are di-
minishing returns to e.g. using more layers (in the
case of normalizing flows) or more pushforwards (in
the case of MixFlows). Importantly in RVRS we only
need to differentiate through accepted samples z ∼ rϕ,θ,
which limits the computational cost of leveraging RVRS.
More broadly the design space of hybrid variational
algorithms remains only partially explored and involves
various algorithmic and computational trade-offs. As
such we expect that RVRS could be a useful compo-
nent in the design of future hybrid variational inference
methods.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] The assumptions of our gradient es-
timator are described in Prop. 1. Detailed
algorithm descriptions include Algorithm 1,
Algorithm 2, and Algorithm 3 as well as the
surrogate ELBO objective in Eqn. 22.

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. [Yes] Yes see in particular Prop. 2 and
Sec. 3.2.1.

(c) (Optional) Anonymized source code,
with specification of all dependen-
cies, including external libraries.
[Yes] We include executable code at
https://github.com/martinjankowiak/rvrs_example_code that
reproduces the main results for the logistic
regression experiment described in Sec. 7.2
and Fig. 4. Upon acceptance we plan to
submit our methodology as a pull request to
the open source NumPyro GitHub repository.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes] Proofs can be found in Sec. A and Sec. B
in the supplement.

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes] See Sec. F in the supplement.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
See Sec. F in the supplement.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes] We cite the UCI repository
(Asuncion and Newman, 2007).

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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Supplementary material for Reparameterized Variational
Rejection Sampling

A Gradient estimator for the parameters of the proposal distribution

A.1 Reparameterized ϕ gradient estimator

The covariance in Eqn. 5 can be converted into a pathwise gradient estimator. To see this consider the “fundamental
pathwise gradient identity” (see e.g. Jankowiak and Obermeyer (2018); Mohamed et al. (2020))7

Eqϕ(z) [f(z)∇ϕ log qϕ(z)] = Eqϕ(z)

[
∂f(z)

∂z
· ∇ϕz

]
(10)

where f(z) can depend on ϕ and where ∇ϕz is a velocity field for the parameter ϕ that can be derived via e.g. the
reparameterization trick if qϕ(z) is reparameterizable. Then use Eqn. 10 to derive the identity

Erϕ,θ(z) [f(z)∇ϕ log qϕ(z)] = Eqϕ(z)

[
aθ,ϕ(z)

Zr
f(z)∇ϕ log qϕ(z)

]
(11)

= Eqϕ(z)

[
∂

∂z

(
aθ,ϕ(z)

Zr
f(z)

)
· ∇ϕz

]
(12)

= Eqϕ(z)

[
1

Zr

∂

∂z
(aθ,ϕ(z)f(z)) · ∇ϕz

]
(13)

= Eqϕ(z)

[
aθ,ϕ(z)

Zr

(
f(z)

∂ log aθ,ϕ(z)

∂z
+

∂f(z)

∂z

)
· ∇ϕz

]
(14)

= Erϕ,θ(z)

[(
f(z)

∂ log aθ,ϕ(z)

∂z
+

∂f(z)

∂z

)
· ∇ϕz

]
(15)

If we make the substitution f(z)→ g(z)aθ,ϕ(z) in Eqn. 15 this identity can be re-expressed as

Erϕ,θ(z) [g(z)aθ,ϕ(z)∇ϕ log qϕ(z)] = Erϕ,θ(z)

[(
2g(z)

∂aθ,ϕ(z)

∂z
+ aθ,ϕ(z)

∂g(z)

∂z

)
·∇ϕz

]
(16)

Using the final form of the identity Eqn. 16 we can rewrite Eqn. 5 as follows:

∇ϕELBO = COVrϕ,θ(z) [A(z), aθ,ϕ(z)∇ϕ log qϕ(z)] (17)

= Erϕ,θ(z)

[
A(z)aθ,ϕ(z)∇ϕ log qϕ(z)

]
= Erϕ,θ(z)

[(
2A(z)∂aθ,ϕ(z)

∂z
+ aθ,ϕ(z)

∂A(z)
∂z

)
· ∇ϕz

]
where we have defined

A(z) ≡ A(z)− Erϕ,θ(z′) [A(z′)] (18)

and used that
∂

∂z
A(z) = ∂

∂z
A(z) (19)

We also note that Eqn. 17 can be expressed in covariance form as follows (although we prefer the more compact
form utilizing A(z)):

∇ϕELBO = COVrϕ,θ(z)

[
2A(z), ∂aθ,ϕ(z)

∂z
· ∇ϕz

]
+ Erϕ,θ(z)

[
aθ,ϕ(z)

∂A(z)
∂z

· ∇ϕz

]
(20)

Finally we note that, as we would expect, Eqn. 17 reduces to the standard reparameterized gradient in the limit
that aθ,ϕ(z)→ 1 and rϕ,θ(z)→ qϕ(z):

∇ϕELBO→ Eqϕ(z)

[
∂A(z)
∂z

· ∇ϕz

]
= Eqϕ(z)

[
∂

∂z
(log pθ(x, z)− log qϕ(z)) · ∇ϕz

]
(21)

7Note that Eqn. 10 is equal to ∇ϕEqϕ(z) [f(z)]− Eqϕ(z) [∇ϕf(z)] but this fact is not needed for our derivation.
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A.2 Automatic differentation and Monte Carlo details for ELBO and gradient estimation

To get unbiased estimates of Eqn. 8 we need8 to draw S > 1 samples simultaneously, i.e. just like VRS RVRS
utilizes a multi-sample objective. In particular if zs ∼ rϕ,θ for s = 1, ..., S and we use a reparameterized sampler for
qϕ(z) so that zs depends explicitly on ϕ according to the automatic differentiation system (e.g. torch.autograd),
we can define the following surrogate ELBO:

Lsurr =
2

S − 1

S∑
s=1

{
A(zs)− µA(z1:S)

}:
aθ,ϕ
:(zs) +

1

S

S∑
s=1

aθ,ϕ(zs)
:A:(zs) (22)

where f(z)
:

denotes stop_gradient(f(z)) and f
:
(z) denotes stop_gradient(f)(z) and

µA(z1:S) ≡
1

S

S∑
s=1

A(zs) (23)

To derive Eqn. 22 we used the identity

COVr(z)[A(z), B(z)] ≈ 1
S

S∑
s=1

A(zs)− 1
S−1

∑
s′ ̸=s

A(zs′)

B(zs) (24)

= 1
S

S∑
s=1

(
A(zs)− 1

S−1

(
−A(zs) +

S∑
s′=1

A(zs′)

))
B(zs) (25)

= 1
S

S∑
s=1

(
(1 + 1

S−1 )A(zs)− 1
S−1

S∑
s′=1

A(zs′)

)
B(zs) (26)

= 1
S

S∑
s=1

(
S

S−1A(zs)− S
S−1

1
S

S∑
s′=1

A(zs′)

)
B(zs) (27)

= 1
S−1

S∑
s=1

(
A(zs)− 1

S

S∑
s′=1

A(zs′)

)
B(zs) (28)

(29)

By construction when Lsurr in Eqn. 22 is run through autograd we get an unbiased estimate of Eqn. 8. For the
purposes of tracking the ELBO for evaluation we get a (biased) MC estimator as follows:

L =
1

S

S∑
s=1

A(zs) + logZr (30)

where

logZr = logEqϕ(z) [aθ,ϕ(z)] ≈ log
1

S

S∑
s=1

aθ,ϕ(z
′
s) (31)

where z′s ∼ qϕ for s = 1, ..., S. In practice we use a large number of samples (e.g. S ∼ 104 − 105) to evaluate
logZr.

A.3 Runtime considerations

Nothing about VRS or RVRS depends on the specific ansatz for aϕ,θ(z) in Eqn. 2, apart from the generic
requirement (for RVRS) that aϕ,θ(z) depend on ϕ through qϕ(z) and that aϕ,θ(z) ∈ [0, 1]. We can thus consider

8Note that another option would be to keep a running estimate of Erϕ,θ(z) [A(z)] and use this in Eqn. 17 and Eqn. 18.
This would result in a biased estimator, but the bias should be minimal given that ϕ and θ change slowly over the course
of optimization. This is an interesting option that can reduce computational cost by opening the door to single-sample
(i.e. S = 1) gradient estimation. While we do not explore this option empirically, we have every reason to expect that it
would work well.
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other forms of aϕ,θ(z). One potential problem with aϕ,θ(z) = σ(log pθ(x, z)− log qϕ(z) + T ) is that it can lead to
very small acceptance probabilities if T is poorly adapted. Consequently it can be useful to place guardrails that
mitigate against this possibility. In the following we consider the simple ansatz

aϕ,θ,ϵ(z) = ϵ+ (1− ϵ)aϕ,θ(z) = ϵ+ (1− ϵ)σ(log pθ(x, z)− log qϕ(z) + T ) (32)

where ϵ > 0 is some small fixed constant like ϵ = 10−3 or ϵ = 10−2. With this choice aϕ,θ,ϵ(z) ∈ (ϵ, 1) which
guarantees that Zr ≥ ϵ. Although this shouldn’t be necessary if sufficient care is taken with T adaptation, we
use the ansatz in Eqn. 32 in all our experiments to guard against the possibility of excessive runtimes. Here we
describe how this choice modifies Prop. 1.

We begin with the VRS formula

∇ϕELBO = COVrϕ,θ,ϵ(z) [A(z),∇ϕ log{qϕ(z)aϕ,θ,ϵ(z)}] (33)

In the limit that ϵ = 0 this simplifies to COVrϕ,θ(z) [A(z), aϕ,θ(z)∇ϕ log qϕ(z)], see Eqn. 66. A bit more algebra
is involved if ϵ > 0. Indeed we have

∇ϕ log aϕ,θ,ϵ(z) =
(1− ϵ)∇ϕaϕ,θ(z)

ϵ+ (1− ϵ)aϕ,θ(z)
=
∇ϕ log aϕ,θ(z)

ϵ
aϕ,θ(z)(1−ϵ) + 1

(34)

Since ∇ϕ log aϕ,θ(z) = (aϕ,θ(z)− 1)∇ϕ log qϕ(z) we can write

∇ϕ log{qϕ(z)aϕ,θ,ϵ(z)} =
(
1 +

aϕ,θ(z)− 1
ϵ

aϕ,θ(z)(1−ϵ) + 1

)
∇ϕ log qϕ(z) (35)

=
ζ + aϕ,θ(z)

2

ζ + aϕ,θ(z)
∇ϕ log qϕ(z) (36)

where we have defined ζ ≡ ϵ/(1− ϵ). Thus we have

∇ϕELBO = Erϕ,θ,ϵ(z)

[
A(z)∇ϕ log{qϕ(z)aϕ,θ,ϵ(z)}

]
(37)

= Erϕ,θ,ϵ(z)

[
A(z)ζ + aϕ,θ(z)

2

ζ + aϕ,θ(z)
∇ϕ log qϕ(z)

]
(38)

We can now appeal to the same logic in Eqn. 11 with

f(z)→ A(z)ζ + aϕ,θ(z)
2

ζ + aϕ,θ(z)
(39)

to write

∇ϕELBO = Erϕ,θ,ϵ(z)

[(
f(z)

∂ log aϕ,θ,ϵ(z)

∂z
+

∂f(z)

∂z

)
· ∇ϕz

]
(40)

We can then use Eqn. 40 to construct a Monte Carlo surrogate ELBO estimator like in Sec. A.2, though we spare
the reader the tedious derivation. The upshot is the following estimator:

Lsurr,ϵ =
1

S − 1

S∑
s=1

{
A(zs)− µA(z1:S)

}: ζ + aϕ,θ(z)
2

ζ + aϕ,θ(z)

:
log aϕ,θ,ϵ
:

(zs) +
ζ + aϕ,θ
:(z)2

ζ + aϕ,θ
:(z)

+

1

S

S∑
s=1

ζ + aϕ,θ(z)
2

ζ + aϕ,θ(z)

:
A:(zs) (41)

It is straightforward to check that this reduces to Eqn. 22 when ϵ = ζ = 0.
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B Proof of proposition 2

We want to bound the variational gap ∆ between log pθ(x) ≡ logEpθ(z) [pθ(x|z)] and the ELBO

∆ = log pθ(x)− ELBO (42)

as a function of T . We work under the assumption that qϕ(z) is sufficiently heavy-tailed so that the ratio pθ(x,z)
qϕ(z)

is well-behaved (see Eqn. 52 below for the precision condition).

We have

∆ = KL(rϕ,θ(z)||pθ(z|x)) = Erϕ,θ(z)

[
log

rϕ,θ(z)

pθ(z|x)

]
≥ 0 (43)

The KL divergence in Eqn. 43 can be decomposed into a positive contribution from where the logarithm is positive
and a negative contribution from where the logarithm is negative. Since the KL divergence is non-negative the
magnitude of the positive contribution is larger than or equal to the magnitude of the negative contribution.
Consequently to bound ∆ it suffices to bound the positive contribution.

The ratio in the log in Eqn. 43 is given by

rϕ,θ(z)

pθ(z|x)
=

qϕ(z)

Zrpθ(z|x)
aθ,ϕ(z) =

qϕ(z)

Zrpθ(z|x)
1

1 + e−T qϕ(z)
Zppθ(z|x)

(44)

=
1

Zrpθ(z|x)
qϕ(z) + e−T Zr

Zp

=
1

1 + f(z|T ) (45)

where Zppθ(z|x) = pθ(x, z) with Zp ≡ pθ(x) and

f(z|T ) ≡ e−T Zr

Zp
− 1 + Zr

pθ(z|x)
qϕ(z)

(46)

Thus log
rϕ,θ(z)
pθ(z|x) > 0 implies that f(z|T ) < 0 so that our task is to bound f(z|T ) from below. Since Zr

pθ(z|x)
qϕ(z) > 0

we have that

f(z|T ) > e−T Zr

Zp
− 1 (47)

We compute

Zr = Eqϕ(z) [aθ,ϕ(z)] = Eqϕ(z)

 1

1 + e−T qϕ(z)
Zppθ(z|x)

 (48)

so that

e−T

Zp
Zr = Eqϕ(z)

 e−T

Zp

1 + e−T qϕ(z)
Zppθ(z|x)

 = Eqϕ(z)

 1

eTZp +
qϕ(z)
pθ(z|x)

 (49)

= Eqϕ(z)

 1
qϕ(z)
pθ(z|x)

(
1 + eTZp

pθ(z|x)
qϕ(z)

)
 = Epθ(z|x)

 1

1 + eTZp
pθ(z|x)
qϕ(z)

 (50)

and therefore

e−T

Zp
Zr − 1 = Epθ(z|x)

 −eTZp
pθ(z|x)
qϕ(z)

1 + eTZp
pθ(z|x)
qϕ(z)

 > Epθ(z|x)

[
−eTZp

pθ(z|x)
qϕ(z)

]
= −eT ξ (51)
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where we have defined

ξ ≡ Epθ(z|x)

[
pθ(x, z)

qϕ(z)

]
= Epθ(z|x)

[Zppθ(z|x)
qϕ(z)

]
> 0 (52)

which is finite by assumption so that we can conclude

f(z|T ) > −eT ξ (53)

Since

log
rϕ,θ(z)

pθ(z|x)
= − log(1 + f(z|T )) (54)

and

− log(1− x) ≤ 3

2
x for 0 ≤ x ≤ 1

2
(55)

we conclude that

log
rϕ,θ(z)

pθ(z|x)
<

3

2
eT ξ for z such that log

rϕ,θ(z)

pθ(z|x)
≥ 0 and T < − log 2ξ (56)

and consequently

∆ <
3

2
eT ξ for T < − log 2ξ (57)

Since eT → 0 as T → −∞ we conclude that the variational gap can be made arbitrarily tight. Of course the
acceptance probability also goes to zero as ∼ eT in this limit so it becomes increasingly expensive to tighten the
gap.

B.1 Semi-RVRS: models with global and local latent variables

Instead of considering generic unstructured models as above, we now consider the scenario introduced in Sec. 4.4,
i.e. we consider models with both a global latent variable zG and local latent variables {zn}, where n = 1, ..., N
indexes the N observed data points {xn}. (See Sec. E for additional algorithmic details on Semi-RVRS). We
assume the following conditional independence structure:

pθ(x1:N , zG, z1:N ) = pθ(zG)

N∏
n=1

pθ(xn|zn, zG)pθ(zn|zG) (58)

We want to upper bound the variational gap, which is given by

∆ = KL

(
qϕ(zG)

∏
n

rϕn,θ(zn|zG)
∣∣∣∣∣∣ pθ(zG|x1:N )

∏
n

pθ(zn|zG,xn)

)
(59)

where we have exploited the assumed conditional independence structure to factorize the posterior. We now
appeal to the chain rule of KL divergences which reads

KL(q(a, b)||p(a, b)) = KL(q(a)||p(a)) + Eq(a) [KL(q(b|a)||p(b|a))] (60)

to obtain

∆ = KL
(
qϕ(zG)

∣∣∣∣∣∣ pθ(zG|x1:N )
)
+ Eqϕ(zG)

[
KL

(∏
n

rϕn,θ(zn|zG)
∣∣∣∣∣∣ ∏

n

pθ(zn|zG,xn)

)]
= KL

(
qϕ(zG)

∣∣∣∣∣∣ pθ(zG|x1:N )
)
+
∑
n

Eqϕ(zG)

[
KL
(
rϕn,θ(zn|zG)

∣∣∣∣∣∣ pθ(zn|zG,xn)
)]

(61)
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Note that each zn KL divergence in Eqn. 61 is precisely equal to the variational gap of a RVRS variational
distribution targeting the distribution pθ(zn|zG,xn) so we can apply the same bounding logic as above (in
particular exploiting the linearity in x of the inequality in Eqn. 55) to each latent variable zn and obtain the
following bound on the variational gap

∆ <
3

2
eT

N∑
n=1

ξn +KL
(
qϕ(zG)

∣∣∣∣∣∣ pθ(zG|x1:N )
)

(62)

which is valid for T < − log 2maxn ξn where we assume that Tn = T ∀n and we define

ξn ≡ Eqϕ(zG)Epθ(zn|zG,xn)

[
pθ(xn|zn, zG)pθ(zn|zG)

qϕn
(zn)

]
(63)

Evidently this bound is only meaningful if all ξn are finite, which will be true if each proposal distribution qϕn
(zn)

is sufficiently heavy-tailed.

C Additional discussion of VRS

C.1 Sampling cost

The number of proposal draws z ∼ qϕ(·) generated before a sample is accepted is governed by a geometric
distribution with success probability Zr ≡

∫
dz qϕ(z)aϕ,θ(z):

Prob(tth sample accepted) = Zr(1−Zr)
t−1 with t = 1, 2, ... (64)

Since the expected value of a geometric random variable is given by the reciprocal of the success probability, the
expected number of draws from the proposal distribution is given by Z−1

r . Evidently, rejection sampling becomes
expensive for small Zr.

That the logic behind Eqn. 64 is correct can be corroborated by using the same logic to compute the variational
density rϕ,θ(z) in terms of a geometric series:

rϕ,θ(z) =

∞∑
t=1

Prob
(
accept z at sampling step t

∣∣∣rejected previous t− 1 samples
)
Prob (reject t− 1 samples)

=

∞∑
t=1

qϕ(z)aϕ,θ(z)

(
1−

∫
qϕ(z

′)aϕ,θ(z
′)dz′

)t−1

= qϕ(z)aϕ,θ(z)

∞∑
t=0

(1−Zr)
t = qϕ(z)aϕ,θ(z)

1

1− (1−Zr)
=

qϕ(z)aϕ,θ(z)

Zr
(65)

See Bauer and Mnih (2019) for an analogous derivation.

C.2 Gradient estimators

The gradient estimator for proposal parameters ϕ for the VRS ELBO can be expressed in a number of equivalent
ways

∇ϕELBO = COVrϕ,θ(z) [A(z),∇ϕ log{qϕ(z)aϕ,θ(z)}] (66)

= COVrϕ,θ(z)

[
A(z), (1− σ(ℓTθ,ϕ(z)))∇ϕ log qϕ(z)

]
= COVrϕ,θ(z)

[
A(z), σ(−ℓTθ,ϕ(z))∇ϕ log qϕ(z)

]
= COVrϕ,θ(z) [A(z), aϕ,θ(z)∇ϕ log qϕ(z)]

where A(z) ≡ log pθ(x, z) − log qϕ(z) − log aϕ,θ(z). In the limit that T → ∞ we have aϕ,θ(z) → 1 and
rϕ,θ(z)→ qϕ(z). Thus in this limit Eqn. 66 becomes

∇ϕELBO→ COVqϕ(z) [log pθ(x, z)− log qϕ(z),∇ϕ log qϕ(z)] (67)
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Since we have ∫
dz qϕ(z)∇ϕ log qϕ(z) = ∇ϕ

∫
dz qϕ(z) = ∇ϕ1 = 0 (68)

we can simplify Eqn. 67 further as

∇ϕELBO→ Eqϕ(z) [(log pθ(x, z)− log qϕ(z))∇ϕ log qϕ(z)] (69)

which is precisely the conventional score function (i.e. REINFORCE-like) gradient estimator for the ELBO, used
e.g. in (Ranganath et al., 2014). The VRS gradient estimator for model parameters θ can also be expressed in a
number of different ways:

∇θELBO = Erϕ,θ(z) [∇θ log pθ(x, z)] + COVrϕ,θ(z) [A(z),∇θ log aϕ,θ(z)] (70)

= Erϕ,θ(z) [∇θ log pθ(x, z)]− COVrϕ,θ(z)

[
A(z), σ(ℓTθ,ϕ(z))∇θ log pθ(x, z)

]
= Erϕ,θ(z) [∇θ log pθ(x, z)]− COVrϕ,θ(z) [A(z), (1− aϕ,θ(z))∇θ log pθ(x, z)]

In the limit that T →∞ we have

∇θELBO→ Eqϕ(z) [∇θ log pθ(x, z)] (71)

which, as we would expect, is the conventional ELBO gradient estimator for model parameters.

C.3 Monte Carlo Estimation

Due to the covariance terms obtaining unbiased Monte Carlo estimates of the gradient estimators Eqn. 66 and
Eqn. 70 requires drawing S > 1 samples from rϕ,θ(z). To do so we appeal to the identity in Eqn. 24. For example
we can approximate the ϕ gradient estimator as follows:

∇ϕELBO = COVrϕ,θ(z) [A(z), aϕ,θ(z)∇ϕ log qϕ(z)] (72)

≈ 1
S−1

S∑
s=1

{
A(zs)− 1

SΣs′A(zs′)
}
aϕ,θ(zs)∇ϕ log qϕ(zs) (73)

D Adaptively tuning T

As detailed in Sec. 4.2 we can adjust the rejection threshold T using the gradient

∂L
∂T

= (Zr−Ztgt)Eqϕ(z)

[
∂aϕ,θ(z)

∂T

]
= Eqϕ(z) [aϕ,θ(z)−Ztgt]Eqϕ(z) [aϕ,θ(z)(1−aϕ,θ(z))]

To obtain an unbiased Monte Carlo estimate of this quantity we draw S > 1 samples from rϕ,θ(z) and use the
same logic used to derive Eqn. 24 to compute

∂L
∂T
≈ ∂̂L

∂T
= 1

S

S∑
s=1

{
aϕ,θ(zs)(1− aϕ,θ(zs))

(
1

S−1 (Σ
S
s′=1aϕ,θ(zs′)− aϕ,θ(zs))−Ztgt

)}
(74)

While this stochastic gradient estimator could be plugged into a variety of optimization algorithms, for simplicity
we use vanilla SGD (stochastic gradient descent) with a fixed learning rate of 1. In other words at each step t in
RVRS ELBO optimization we make the update

Tt+1 = Tt −
∂̂L
∂T

(75)

We find that this works well in practice—in particular on all the experiments reported here—although we expect
that more sophisticated schemes could perform better. We also note that perfect adaptation of T is not necessary,
since—provided T is in the right ballpark—the primary relevance of T is to determine the precise computation to
inference fidelity trade-off. For example if we set Ztgt = 0.30 but end up with Zr = 0.29 the result is that we used
a bit more computation then we intended—and obtained a slightly better variational approximation as a result.
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E Semi-RVRS

The variational distribution for Semi-RVRS is given by

qϕ(zG)

N∏
n=1

rϕn,θ(zn|zG) =
1

Zr
qϕ(zG)

N∏
n=1

qϕn
(zn)aϕn,θ(zn|zG) (76)

where we assume for simplicity that qϕn(zn) does not depend explicitly on zG (though this could easily be
accommodated). Here qϕ(zG) is some reparameterizable and parametric variational distribution and each
distribution rϕn,θ(zn|zG) is given by

rϕn,θ(zn|zG) ∝ qϕn
(zn)aϕn,θ(zn|zG) (77)

with

aϕn,θ(zn|zG) ≡ σ(log pθ(xn|zn, zG)pθ(zn|zG)− log qϕn
(zn) + Tn) (78)

and where each each Tn ∈ R is a rejection threshold parameter. For details on sampling from Eqn. 76 and ELBO
computation see the next section, Sec. E.1. For details on estimating the normalization constant Zr for the
purposes of evaluation see Sec. E.2.

E.1 ELBO computation and rejection sampling on a parallel machine

The ELBO for Semi-RVRS is given by

Eqϕ(zG)
∏

n rϕn,θ(zn|zG)

[
log pθ(zG) + Σn log{pθ(xn|zn, zG)p(zn|zG)}

− log qϕ(zG)− Σn log rϕn,θ(zn|zG)
]

(79)

To construct Monte Carlo gradient estimates of Eqn. 79 we proceed as follows. First we randomly choose a
mini-batch of data of size B specified by unique indices {i1, . . . , iB} and draw a sample of the global latent variable
zG ∼ qϕ(zG). Next we either run the (potentially slow) unbiased sampler defined in Algorithm 2; otherwise we
run the (potentially much faster) biased sampler defined in Algorithm 3. In Algorithm 2 we always return exactly
S samples z1:Sn for each data point n. Since a variable number of proposals may need to be drawn for each data
point before this is the case, the runtime of this algorithm can be pretty variable (although this variability can be
mitigated by dynamically reallocating compute resources, see Algorithm 2). Since however we have exactly S
samples for each data point it is straightforward to follow the recipe in Sec. A.1 to construct an unbiased gradient
estimator of the Semi-RVRS ELBO Eqn. 79. If instead we use Algorithm 3 some data points in the mini-batch
may have fewer than S accepted samples. Consequently we do not use these data points in constructing our
Monte Carlo ELBO gradient estimators (note that we need to appropriately re-scale terms in our Monte Carlo
estimator to account for the effectively variable mini-batch size). This introduces some bias, however it makes
our Semi-RVRS ELBO gradient estimators quite a bit faster (especially for small Ztgt), since we do not need to
waste compute on ‘stragglers’, i.e. data points that have fewer than S accepted samples. Note that the resulting
bias is not expected to be too severe, since the bias is exactly zero if the local acceptance probabilities of each
data point are equal (e.g. if they are all exactly equal to Ztgt). While this condition never holds exactly, it holds
approximately if the adaptation of the {Tn} is working well, and this is enough to ensure that the bias is minimal
provided that S′ in Algorithm 3 is sufficiently large so that most data points in each mini-batch (say > 80− 90%)
are accepted. As a rule of thumb one might choose S′ = ceil(S/Ztgt) or S′ = ceil(2S/Ztgt). See Fig. 6 in Sec. G
for empirical confirmation of this intuition.

Note that the above discussion has focused on the more general case of Semi-RVRS with both global and local
latent variables. However the basic logic of Algorithm 2 and Algorithm 3 is also applicable in the case with purely
local latent variables: just ignore the global latent variable. Indeed we use Algorithm 3 when training VAEs in
Sec. 7.4 and Algorithm 2 when evaluating VAE ELBOs after training.
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Algorithm 2 Unbiased sampler for the Semi-RVRS variational distribution in Eqn. 76. The same algorithm can
also be used for the case with only local latent variables. Optionally dynamically reallocate compute resources to
focus on data points that do not have S accepted samples. Input: subsample indices {i1, . . . , iB}, number of
samples S per data point, acc. prob. {aϕn,θ(zn)}, and proposals {qϕn

(zn)}.
1: for k ← 1 to B do ▷ Initialize the number of accepted samples for each data point
2: sk ← 0
3: end for
4: while min{s1, . . . , sB} < S do
5: if dynamically reallocating compute then
6: for k ← 1 to B do ▷ Compute how many samples are left to draw
7: wk ← max{S − sk, 0}
8: end for
9: end if

10: for k ← 1 to B do
11: if dynamically reallocating compute then
12: j ∼ Categorical( w1∑

m wm
, . . . , wB∑

m wm
)

13: else
14: j ← k
15: end if
16: n← ij
17: zn ∼ qϕn

(zn) ▷ Draw from proposal distribution
18: if u < aϕn,θ(zn) where u ∼ Uniform(0, 1) then ▷ Do rejection sampling
19: sj ← sj + 1 ▷ Keep track of number of accepted samples for each data point
20: z

sj
n ← zn

21: end if
22: end for
23: end while
24: return {z1:Si1

, . . . , z1:SiB
} ▷ Return exactly S samples for each data point

E.2 The Semi-RVRS normalization constant

The normalization constant Zr for the Semi-RVRS variational distribution in Eqn. 76 is given by

Zr ≡ Eqϕ(zG)

N∏
n=1

Eqϕn
(zn) [aϕn,θ(zn|zG)] (80)

To compute the corresponding ELBO for evaluation purposes we need to estimate the quantity logZr, since the
ELBO is given by

ELBO = Eqϕ(zG)Erϕ,θ(z1:N |zG) [log pθ(zG, z1:N )− log rϕ,θ(z1:N |zG)] (81)

= Eqϕ(zG)Erϕ,θ(z1:N |zG) [log pθ(zG, z1:N )− log qϕ(z1:N )− log aϕ,θ(z1:N |zG) + logZr]

where we for convenience we write

rϕ,θ(z1:N |zG) =
N∏

n=1

rϕn,θ(zn|zG) qϕ(z1:N ) =

N∏
n=1

qϕn
(zn)

aϕ,θ(z1:N |zG) =
N∏

n=1

aϕn,θ(zn|zG) (82)

Unfortunately it is difficult to construct an unbiased low variance estimator for logZr. Indeed, although the naive
plug-in Monte Carlo estimator for Eqn. 80 is consistent, it is biased and is generally expected to be high variance.
Consequently for the purposes of evaluation only9 we replace logZr with a lower bound that is easier to estimate.

9Recall that the ELBO gradient estimators we use, which are based on Prop. 1, are unbiased and low variance.
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Algorithm 3 Biased sampler for the Semi-RVRS variational distribution in Eqn. 76. Input: subsample indices
{i1, . . . , iB}, number of samples S per data point, number of candidates S′ ≥ S, acc. prob. {aϕn,θ(zn)}, and
proposals {qϕn

(zn)}. The same algorithm can also be used for the case with only local latent variables.
1: for k ← 1 to B do
2: for t← 1 to S′ do
3: ztik ∼ qϕik

(zik)
4: u ∼ Uniform(0, 1)
5: acctk ← u < aϕik

,θ(zik)
6: end for
7: j1:S′ ← argsort(acc1:S

′

k ) ▷ Acc. samples thus have larger indices than non-acc. samples
8: for t← 1 to S′ do
9: ztik ← z

jS−t+1

ik

10: acctk ← acc
jS−t+1

k

11: end for
12: maskk ← (

∑S
t=1 acc

t
k = S)

13: end for
14: return {(z1:Si1

,mask1), . . . , (z
1:S
iB

,maskB)} ▷ Return mask and S samples for each data point

Indeed we just appeal to Jensen’s inequality to obtain

logZr ≡ logEqϕ(zG)

N∏
n=1

Eqϕn
(zn) [aϕn,θ(zn|zG)] (83)

≥ Eqϕ(zG) log

N∏
n=1

Eqϕn
(zn) [aϕn,θ(zn|zG)] (84)

≡ Llb = Eqϕ(zG)

N∑
n=1

logEqϕn
(zn) [aϕn,θ(zn|zG)] (85)

While the plug-in Monte Carlo estimator for Llb in Eqn. 85 is still biased because the expectations w.r.t. zn
occur inside of a logarithm, the important point is that Llb is consistent and low variance. Indeed for local latent
variables that are relatively low-dimensional, the plug-in Monte Carlo estimator for Eqϕn

(zn) [aϕn,θ(zn|zG)] is
expected to be low-variance and so the bias will be correspondingly small. As such the use of Llb in evaluating
Semi-RVRS ELBOs is expected to yield high-fidelity low-variance approximations to the exact ELBO, and it is
these estimators that we report in our experiment in Sec. 7.5. To be precise we use the following nested Monte
Carlo estimator

logZr ≈
1

M1

M1∑
m1=1

N∑
n=1

log

{
1

M2

M2∑
m2=1

aϕn,θ(zn,m1,m2 |zG,m1)

}
(86)

with zG,m1
∼ qϕ(·) and zn,m1,m2

∼ qϕn
(·)

for n = 1, ..., N and m1 = 1, ...,M1 and m2 = 1, ...,M2

with M1 = 104 and M2 = 103.

F Experimental details

F.1 General RVRS details

We always use S = 2 samples to compute multi-sample RVRS ELBO gradient estimators during training. In all
cases we use either mean-field or multivariate10 Normal proposal distributions qϕ(z). Similar to (Geffner and
Domke, 2021) in the context of UHA, we initialize the RVRS proposal distribution with a variational distribution
obtained by maximizing a conventional ELBO. We initialize the rejection threshold T to minus the ELBO obtained

10With Cholesky-parameterized full-rank covariance matrices.
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with mean-field variational inference. We use the Adam optimization algorithm for all ELBO optimization Kingma
and Ba (2014). For RVRS we use an initial learning rate of 10−4 that is is decimated twice over the course of
training: after 1/3 and 2/3 of the total number of training iterations. Unless specified otherwise we used ϵ = 10−4

(see Eqn. 32).

F.2 Other experimental details

Like RVRS we initialize UHA base distributions with a variational distribution obtained by maximizing a
conventional ELBO. For UHA we use an initial learning rate of 10−4 that is is decimated twice over the course
of training: after 1/3 and 2/3 of the total number of training iterations. For UHA we limit the stepsize η to
ηmax = 0.25 and initialize step sizes to η = 0.005. UHA ELBOs are computed using a single sample Monte Carlo
estimate during training. For mean-field, IWAE, and flow training we use an initial learning rate of 10−3 that
is is decimated twice over the course of training: after 1/3 and 2/3 of the total number of training iterations.
Mean-field and normalizing flow ELBOs are computed using a single sample Monte Carlo estimate during training.
Just like for RVRS we use the Adam optimization algorithm for all variational baselines Kingma and Ba (2014).
For the Block Neural Autoregressive normalizing flow (De Cao et al., 2020) we use AutoBNAFNormal implemented
in NumPyro with default settings (in particular one layer).

F.3 Datasets

Apart from MNIST we use a number of UCI (Asuncion and Newman, 2007) datasets: MiniBooNE, SUSY, Higgs,
Adult, Bank, Mushroom, Thyroid, Spambase, Pol, & Bike.

F.4 Characterizing RVRS

The log density of the non-gaussian target in Fig. 1 is given by the formula

log ϕ(x+y√
2
|0, 1) + log ϕ(x−y√

2
|0, e

x+y√
2 ) (87)

where ϕ(x|µ, σ2) denotes the density of a Normal distribution with mean µ and variance σ2 evaluated at x. To
train variational approximations we train for 5 million gradient steps. We evaluate ELBOs with 1 million samples
and use ϵ = 10−6 for RVRS.

The gradient variance results depicted in Fig. 2 were obtained as follows. We use N = 100 data points from the
MiniBooNE UCI dataset, which has D = 51 covariate dimensions. Additional covariate dimensions are removed
(via subsetting the original covariates) or added as needed by sampling i.i.d. from a standard normal distribution.
Both VRS and RVRS mean-field gaussian proposal distributions are initialized by optimizing a conventional
ELBO for 1000 steps. The threshold T is set to minus the ELBO. Variance estimates are made with 5 × 105

samples.

The results in Fig. 3 were also obtained using N = 100 data points from the MiniBooNE UCI dataset. We train
for 2.4 million steps and consider Ztgt ranging from 0.004 to 0.40. See Fig. 9 for additional results pertaining to
this experiment.

F.5 Logistic regression

We do a total of 3× 105 training iterations for the normalizing flow due to its computational cost. For all other
methods we do a total of 9× 105 training iterations. The datasets we use were subsampled down to N = 100
training data points. This choice was made to ensure a non-trivial amount of non-gaussianity and to enable a
comparison with HMC. 105 samples were used for ELBO evaluation for all methods. Timing results are reported
using a machine with an AMD EPYC 7R13 CPU.

We used NUTS implemented in NumPyro to generate the samples used to compute Max Slice Wasserstein
distances. We used a diagonal mass matrix and 104 warmup steps. We generated 5× 105 post-warmup samples.
Every 5th sample was retained for a total of 105 samples. We then drew 105 independent samples from each
variational method. These samples were then used to compute Max Slice Wasserstein distances using POT
(Flamary et al., 2021). To compute each Wasserstein distance we use 1000 random projections and average results
across 10 replicates.
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F.6 Gaussian process classification

We used N = 256 data points for training for each dataset. We used a RBF kernel with per-dimension lengthscales
and a logistic link function with a Bernoulli likelihood. We trained for 6 × 105 iterations and used 2 × 104

samples for ELBO evaluation. For all methods the base/proposal distribution used is a multivariate Normal
distribution with a Cholesky-parameterized full-rank covariance matrix. Due to the delicate linear algebra we do
all computations in 64-bit precision.

F.7 Variational autoencoders

For all methods we used the same batch size (B = 100), trained for 1500 epochs, and evaluated using 5000 samples.
The training/test set consist of 60k/10k images, respectively. The latent variable has a standard Gaussian prior
and dimension D = 50. Both the encoder and decoder are multilayer perceptrons with two hidden layers of 200
hidden units and with tanh activation functions. All experiments were done on a RTX 2070 GPU with 8GB
of memory. We used the Adam optimizer and learning rates were decimated, i.e. reduced by a factor of 10, at
500 and 1000 epochs. When training with a conventional ELBO, IWAE, UHA, and RVRS the initial learning
rates were 10−3, 10−3, 10−4, and 10−4, respectively. For both UHA and RVRS encoder-decoder parameters were
initialized using the final optimized parameters obtained after training with a conventional ELBO. In UHA we
used the same set of (learned) step sizes and mass matrices for all data points, i.e. only the base distribution is
amortized. In RVRS we used the biased sampler Algorithm 3 with S = 2 and S′ = round(S/Ztgt) for training.
Evaluation was done with Algorithm 2.

We initialize the threshold parameter Tn in RVRS for each training data point to a 50-sample Monte Carlo estimate
of its corresponding negative ELBO (obtained with the mean field proposal qϕ(z)). Since we do not amortize Tn,
after training we need to choose Tn for each unseen test data point such that the acceptance probability of the
rejection sampler will approximately equal Ztgt. Hence for each test data point, we draw 50 samples {zn} from
the proposal distribution qϕ and choose {Tn} to minimize the objective L(Tn) =

1
2 (Zr,n −Ztgt)

2 for each data
point.

F.8 Hierarchical modeling

Both datasets we use have 5000 data points. We add additional Normally distributed noise to 25% of the
data points to drive the model into a regime where the Student’s t likelihood is needed to model the resulting
heavy-tailed noise. We use 6× 105 training iterations for all methods and a mini-batch size of 256. Due to the
special functions involved in the Gamma probability density function we do all computations in 64-bit precision.

G Additional experimental results

In Fig. 6 and Fig. 7 we report additional results pertaining to the experiment in Sec. 7.5. In Fig. 8 we compare
the training dynamics of VRS and RVRS. In Fig. 9 we explore the performance of our T adaptation scheme. In
Fig. 10 we report times per gradient step for the GP experiment in Sec. 7.3. In Table 3 we report additional
results for the VAE experiment in Sec. 7.4.

Method Standard VAE IWAE-10 IWAE-20 IWAE-40 UHA-10 UHA-20 RVRS-0.1 RVRS-0.05 RVRS-0.025

Train −ELBO 92.00± 0.10 88.66± 0.08 87.93± 0.03 87.35± 0.08 87.01± 0.08 86.04± 0.33 87.58± 0.08 87.10± 0.07 86.87± 0.06

Test −ELBO 95.30± 0.14 91.21± 0.07 90.44± 0.07 89.81± 0.09 89.75± 0.09 88.46± 0.22 90.74± 0.16 90.00± 0.12 89.55± 0.12

ms / grad 0.70 1.06 1.49 1.97 5.17 9.73 1.19 1.36 1.75

Table 3: We report negative ELBO objectives (lower is better; mean ± standard deviation over 5 replicates)
computed on training data and held-out test data together with gradient step times for the VAE experiment in
Sec. 7.4. Results obtained with a RTX 2070 GPU. This is the same table as in Table 1 but includes objectives
computed on the training set.
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