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Abstract

Real-world black-box optimization tasks of-
ten focus on obtaining the best reward, which
includes an intrinsic random quantity from
uncontrollable environmental factors. For
this problem, we formulate a novel risk-
seeking optimization problem whose goal is
to obtain the best possible reward within
a fixed budget under uncontrollable factors.
We consider two settings: (1) environmen-
tal model setting for the case that uncon-
trollable environmental variables can be com-
bined with surrogate models for optimization
and (2) heteroscedastic model setting for the
case that uncontrollable environmental vari-
ables are hard to model. We propose a novel
Bayesian optimization method called kernel
explore-then-commit (kernel-ETC) and pro-
vide the regret upper bound for both set-
tings. We demonstrate the effectiveness of
kernel-ETC through several numerical exper-
iments, including the hyperparameter tuning
task and the simulation function derived from
polymer synthesis real data.

1 INTRODUCTION

Black-box optimization problems with costly objective
functions frequently arise in a wide range of real-world
problems, including robotics (Lizotte et al., 2007), ex-
perimental design (González et al., 2015), and hyper-
parameter tuning of machine learning models (Snoek
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et al., 2012). Bayesian optimization (BO) (Frazier,
2018) is a powerful framework for solving black-box
optimization tasks efficiently.

Real-world optimization under the uncertainty of un-
controllable factors is also an important task. For
example, in materials development, a researcher con-
trols experimental parameters to create materials with
the desired physical properties. However, uncon-
trollable experimental conditions and errors influence
the resulting materials. In such cases, one typical
formulation is optimizing expectations over uncon-
trollable factors by assuming a risk-neutral attitude
of the learner (Toscano-Palmerin and Frazier, 2018;
Kirschner et al., 2020). Another well-studied formu-
lation is the risk-averse setting, in which some risk
measures, e.g., mean-variance measures (Iwazaki et al.,
2021b; Makarova et al., 2021), are optimized.

In contrast, some real-world applications seek one sin-
gle best reward in the presence of uncontrollable fac-
tors within limited budgets. In the above example of
materials development, it may suffice for the researcher
to obtain the desired material only once for scientific
discovery. Another example is hyperparameter tuning
with stochastic algorithms, in which we only pursue a
model with the smallest validation error under uncon-
trollable factors, such as dropout, stochastic gradient
descent, and random initializations. To achieve this
goal, the learner should query the input that can po-
tentially yield a high reward, even if most of the ob-
tained rewards are low. Therefore, existing BO meth-
ods are unsuitable for these problems; thus, developing
a BO algorithm for a risk-seeking setting is desired.

A key consideration in the above examples is how
to model the rewards and the uncontrollable factors.
The uncontrollable experimental conditions in mate-
rials development can often be incorporated as input
into a surrogate model, while the randomness in the
stochastic learning algorithms is difficult to incorpo-
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rate as input into a model. Thus, we formulate the
two types of BO problems under uncertainty: environ-
mental model setting (Kirschner et al., 2020; Iwazaki
et al., 2021b; Inatsu et al., 2022) and heteroscedastic
model setting (Kirschner and Krause, 2018; Makarova
et al., 2021). In the environmental model setting, the
learner models reward generation by using a function
of the form: f(x,W ), where x and W are called con-
trollable and uncontrollable variables, respectively. In
the heteroscedastic model setting, the learner assumes
the reward is generated from an unknown distribution,
with mean f(x), which can be heterogeneous over an
input space.

Our Contributions We study risk-seeking BO
problems in the environmental and heteroscedastic
model settings. In both settings, we propose novel
kernel-explore-then-commit (ETC) algorithms. We
analyze the performance of kernel-ETC through ex-
treme regret (the precise definitions are in Sec. 2 and
Sec. 3) and prove that the convergence of the extreme
regret is guaranteed in kernel-ETC. Finally, we demon-
strate the effectiveness of kernel-ETC via numerical
experiments, including the risk-seeking BO problems
of a polymer synthesis simulation function and a hy-
perparameter tuning task, which are derived from real-
world data.

Related Works Various strategies in standard BO
settings have been extensively studied in the past few
decades (Močkus, 1975; Srinivas et al., 2010; Wang
and Jegelka, 2017). Moreover, a lot of extended
settings are considered, such as parallel (Desautels
et al., 2014), constrained (Gardner et al., 2014), high-
dimensional (Kandasamy et al., 2015), and multi-
fidelity optimization (Kandasamy et al., 2019).

BO problems with uncontrollable environmental vari-
ables, which are related to our environmental model
setting in Sec. 2, are extensively studied. One standard
formulation is to optimize the risk-neutral expected
function of environmental variables (Toscano-Palmerin
and Frazier, 2018). Furthermore, Kirschner et al.
(2020) considers optimizing the distributionally robust
variants of the expected function. Other works focus
on risk-averse settings that seek to optimize some risk
measures, which are designed to avoid the uncertainty
of environmental variables. For example, value-at-risk,
conditional value-at-risk, and mean-variance risk mea-
sures are considered in Nguyen et al. (2021b), Nguyen
et al. (2021a), and Iwazaki et al. (2021b), respectively.
Based on the assumption for environmental variables
in the optimization phase, we can categorize the set-
tings of aforementioned works into two settings (Inatsu
et al., 2022). The first setting is the simulator-based
setting, which assumes the environmental variables are

controllable in the optimization phase and become un-
controllable after deploying the identified controllable
input during the optimization phase in the real system.
The second setting is uncontrollable setting, which as-
sumes the environmental variables are uncontrollable
in the optimization phase. Note that our work consid-
ers uncontrollable settings and is fundamentally differ-
ent from existing works that only consider simulator-
based settings, such as the works of Toscano-Palmerin
and Frazier (2018); Bogunovic et al. (2018); Iwazaki
et al. (2021a); Nguyen et al. (2021b,a).

Another related setting is heteroscedastic BO prob-
lems, whose formulation is similar to our heteroscedas-
tic model setting in Sec. 3. Kirschner and Krause
(2018) give the theoretical analysis of the heteroscedas-
tic BO problems under the risk-neutral formulation,
which focuses on the expected function of the heteroge-
neous noise. Makarova et al. (2021) consider the risk-
averse formulation by considering the mean-variance
objective function in the heteroscedastic noise model.
In particular, the algorithm of the exploration phase
in our kernel-ETC algorithm in Sec. 3 can be inter-
preted as the special case of the algorithm of Makarova
et al. (2021), which adaptively determines the weight
of mean-variance objectives.

Our work can be interpreted as the kernelized ex-
tension of max K-armed bandit problem (sometimes
referred to as extreme bandits) in the multi-armed
bandits field (Cicirello and Smith, 2005; Carpentier
and Valko, 2014). In particular, Achab et al. (2017);
Baudry et al. (2022) consider the ETC-based algo-
rithms in the finite-armed setting; some parts of our
analysis are inspired by their proofs. However, to ex-
tend the finite-armed problem to infinite action space
and correlated rewards, many non-trivial treatments
are required in the algorithm design and theoretical
analysis.

2 ENVIRONMENTAL MODEL
SETTING

Problem Setup Let f : X × W → R be an un-
known function whose input domain is defined as the
product of a controllable parameter set X ⊂ Rd1 and
an uncontrollable parameter set W ⊂ Rd2 . We also
assume that W is a finite set, on which a known
probability mass function p(w) is defined such that
p(w) > 0 for all w ∈ W. At each step t, a learner
chooses the controllable parameter xt ∈ X , whereas
the environment provides the uncontrollable parame-
ter wt ∼ p(w). Then, the learner obtains the noisy
observation yt = f(xt,wt) + ϵt, where ϵt ∼ N (0, σ2).
We further assume that the noises (ϵt)t∈N+

and the
uncontrollable parameters (wt)t∈N+ are independent.
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As the regularity assumptions, we assume that f
lies on some known reproducing kernel Hilbert space
(RKHS). Let k : (X × W) × (X × W) → R and
H(k) be a positive-definite kernel with ∀(x,w) ∈
(X ×W), k((x,w), (x,w)) ≤ 1 and its corresponding
RKHS, respectively. We assume that f is an element of
H(k) and has the bounded RKHS norm ∥f∥H(k) ≤ B.

Learner’s Goal and Regret Under the uncer-
tainty of the uncontrollable parameter w, the learner’s
goal is to observe the value of f(x,w) that is as high
as possible within a known total step size T , which
is specified a priori by the learner. As the analogous
to the finite-armed extreme bandit literature (Carpen-
tier and Valko, 2014), we define the following extreme
regret ∆(T ) as the performance metric:

∆(T ) = E
[
max
t∈[T ]

f(x∗,wt)

]
− E

[
max
t∈[T ]

f(xt,wt)

]
,

where x∗ ∈ argmaxx∈XE[maxt∈[T ]f(x,wt)] and [T ] =
{1, . . . , T}. It should be noted that the expectations
in the above definition are taken with respect to the
randomness of (wt)t∈[T ] and (ϵt)t∈[T ].

Failures of Existing Methods To minimize the
extreme regret, an algorithm must focus on querying
the input whose objective function value is high, re-
gardless of the value of p(w). Thus, existing works
that focus on maximizing other measures (such as ex-
pected function) generally do not lead to the minimiza-
tion of ∆(T ). Figure 1 shows an illustrative example.

Gaussian Process Modeling Our algorithm uses
the modeling information of Gaussian process (GP).
We assume GP(0, k) as the prior of f , where GP(0, k)
denotes the zero-mean GP defined by the kernel k. At
each step t, given the data {(xi,wi), yi}i∈[t] obtained
by the learner, the posterior distribution of f(x,w)
becomes a Gaussian distribution whose mean µt(x,w)
and variance σ2

t (x,w) are given respectively as

µt(x,w) = kt(x,w)⊤(Kt + σ2It)
−1yt,

σ2
t (x,w) = k((x,w), (x,w))

− kt(x,w)⊤(Kt + σ2It)
−1kt(x,w),

where yt = (y1, . . . , yt)
⊤ and kt(x,w) is a

t-dimensional vector whose i-th element is
k((x,w), (xi,wi)). Furthermore, Kt is a t × t kernel
matrix whose (i, j)-th element is k((xi,wi), (xj ,wj)).

We further define the following quantity γ(t), which is
called the maximum information gain (MIG):

γ(t) =
1

2
max

(x1,w1),...,(xt,wt)
ln det(It + σ−2Kt).
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Figure 1: A two-dimensional example problem illus-
trating that existing methods for seeking the maxi-
mum of expected function may not work to minimize
∆(T ) with T = 50. The red line and star represent
the value of E[maxt∈[50] f(x,wt)] and x∗, respectively.
In this problem, to minimize ∆(T ), we need to focus
on querying in the right-hand side area that rarely
yields the highest rewards. However, the algorithms
that seek the maximum of the expected function (blue
star) focus on querying in the left-hand side area.

The quantity γ(t) is often used to characterize the con-
fidence bounds or the regret in the standard BO liter-
ature (Srinivas et al., 2010; Chowdhury and Gopalan,
2017). In this paper, we leverage the following
Lemma 2.1 to construct confidence bounds using γ(t).

Lemma 2.1 (Theorem 3.11 in Abbasi-Yadkori
(2013)). Fix f ∈ H(k) with ∥f∥H(k) ≤ B and δ ∈
(0, 1). Let us assume that the noise term ϵt indepen-
dently follows N (0, σ2). Then, with probability at least
1−δ, the following inequality holds for any t ∈ N+ and
(x,w) ∈ X ×W:

|f(x,w)− µt−1(x,w)|
≤ (B +

√
2(γ(t) + ln δ−1))σt−1(x,w).

Proposed Algorithm Our proposed algorithm is
based on an ETC strategy. The ETC algorithm purely
explores the search space X until some fixed amount
of step size T̃ ≤ T is reached. After this exploration
period, the ETC algorithm exploits the knowledge col-
lected so far to obtain high values of f(xt,wt). Our
main challenge is devising how to explore the vast X by
leveraging the kernel-based smoothness assumption.

Algorithm 1 is a pseudo-code of our proposed algo-
rithm: kernel-ETC. Here, let x̂∗ be the point that is
chosen after the exploration period. We design the ex-
ploration and exploitation strategy based on the fol-
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Algorithm 1 The kernel-ETC algorithm for environ-
mental model setting.

Input: GP prior GP(0, k), exploration ratio α ∈
(0, 1], width of confidence bound {β(t)}t∈N+

.

1: T̃ ← ⌈α(T − 1)⌉.
2: for t = 1 to T̃ do
3: xt ← argmaxx∈X ẼW

[
maxj∈[T ]ucbt(x,Wj)

]
.

4: Observe yt and update GP posterior.
5: end for
6: t̃← maxt∈[T̃ ]ẼW

[
maxj∈[T ]lcbt(xt,Wj)

]
.

7: x̂∗ ← xt̃.
8: for t = T̃ + 1 to T do
9: Set xt as xt = x̂∗ and observe yt.

10: end for

lowing decomposition of the upper bound of ∆(T ):

∆(T ) ≤ E[∆1(T )] + E[∆2(T )], (1)

where ∆1(T ) and ∆2(T ) are defined as follows:

∆1(T ) = ẼW

[
max
t∈[T ]

f(x∗,Wt)−max
t∈[T ]

f(x̂∗,Wt)

]
,

∆2(T ) = ẼW

[
max
t∈[T ]

f(x̂∗,Wt)− max
t∈[T ]\[T̃ ]

f(x̂∗,Wt)

]
.

The proof of Eq. (1) is in Lemma A.1 in Ap-
pendix A. In Eq. (1), ẼW [·] is the expecta-
tion operator taken for the independent ran-
dom variables W := (W1, . . .WT )

⊤, where
W1, . . . ,WT ∼i.i.d. p(w). Namely, ẼW [g(W )] :=∑

(w(1),...,w(T ))∈WT g(w(1), . . . ,w(T ))
∏T
t=1 p(w

(t))

for any (measurable) function g. As shown in
Lemma A.2 in Appendix A, the second term con-
verges to zero when T̃ is chosen as Θ(T ). Thus,
intuitively, xt and x̂∗ should be designed to maximize
ẼW

[
maxt∈[T ]f(x̂

∗,Wt)
]
such that the remaining first

term becomes small. From this insight, we adopt
the GP upper confidence bound (GP-UCB)-based
strategy against ẼW

[
maxt∈[T ]f(x,Wt)

]
to choose xt

in the exploration period t ≤ T̃ :

xt ∈ arg max
x∈X

ẼW

[
maxt∈[T ]ucbt(x,Wt)

]
, (2)

where ucbt is defined as ucbt(x,w) = µt−1(x,w) +
β1/2(t)σt−1(x,w) with the parameter β(t), which
specifies the width of confidence bounds. In addi-
tion, x̂∗ is defined based on the lower confidence bound
of ẼW

[
maxt∈[T ]f(x,Wt)

]
, which is common strategy

for GP-UCB-based algorithms (Bogunovic et al., 2018;
Kirschner et al., 2020; Iwazaki et al., 2021b):

x̂∗ = xt̃ where t̃ ∈ arg max
t∈[T̃ ]

ẼW

[
maxj∈[T ]lcbt(xt,Wj)

]
,

where lcbt(x,w) = µt−1(x,w)− β1/2(t)σt−1(x,w).

The computations of xt and x̂∗ require the expectation
of the maximum of T independent random variables,
which is analytically solved because of the finiteness
assumption of W (see Appendix D.1 for details).

Theoretical Analysis The following theorem gives
the upper bound of ∆(T ) for the environmental model
setting. Full proof is given in Appendix A.

Theorem 2.1. Fix f ∈ H(k) with ∥f∥H(k) ≤ B.

When running Algorithm 1 with β1/2(t) = B +√
2(γ(t) + ln(2T )) and α ∈ (0, 1], the following upper

bound of the extreme regret ∆(T ) holds:

∆(T ) ≤ 2B(1− p)(1−α)T +
2B

T

+ 2C

√√√√β(T̃ )(Q− 1) lnT

T̃ lnQ

{
4γ(T̃ )

ln(1 + σ−2)
+ 8 ln(12T )

}
,

where T̃ = ⌈α(T − 1)⌉, p = minw∈Wp(w), Q = 2p−1,
and C > 0 is an absolute constant.

The first term 2B(1−p)(1−α)T comes from the second
term of Eq. (1), and the rest comes from the first term
of Eq. (1). When we fix α, p(·), and σ−2, the first term
2B(1 − p)(1−α)T decays exponentially as T increases
and is ignorable compared with the third term. The
second term is also ignorable compared with the third
term. Thus, the overall order of the regret is domi-
nated by the third term. Then, the order of the re-
gret bound is O(γ(T )(lnT )/

√
T ). In our bound, there

is the additional logarithmic dependence which does
not appear in the simple regret bound of the standard
GP-UCB algorithm (Chowdhury and Gopalan, 2017);
however, the no-regret guarantees hold for commonly
used kernels such as the squared exponential (SE) ker-
nel: kSE(x, x̃) := exp(−∥x − x̃∥22/(2ℓ2)). Actually,
since γ(T ) = O((lnT )d1+d2) holds in the SE kernel,
∆(T ) becomes O((lnT )d1+d2+1/

√
T ) → 0 (as T →

∞).

Proof Sketch As previously mentioned, the second
term of Eq. (1) converges to zero (Lemma A.2). The
remaining interest is the first term E[∆1(T )] of Eq. (1)
here. To bound ∆1(T ), we first derive the following
high probability upper bound by resorting to similar
arguments of the proof of Srinivas et al. (2010):

∆1(T ) ≤
2β1/2(T̃ )

T̃

T̃∑
t=1

ẼW

[
max
j∈[T ]

σt−1(xt,Wj)

]
. (3)

To use the well-known result of Srinivas et al. (2010),

which describes the upper bound of
∑T̃
t=1 σt−1(xt,wt)

by using the MIG (Lemma A.3 in Appendix A), we
next leverage the following Lemma 2.2.
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Lemma 2.2 (Exercise 2.5.10 in Vershynin (2018)).
Let X1, . . . , Xn be independent and identically dis-
tributed random variables with n ≥ 2. Suppose
∥X1∥ψ2

< ∞, where ∥X1∥ψ2
is defined as ∥X1∥ψ2

=
inf{a > 0 | E[exp(X2

1/a
2)] ≤ 2}.

Then, there exist an absolute constant C > 0, and the
inequality: E[maxi∈[n] |Xi|] ≤ C∥X1∥ψ2

√
lnn holds.

The quantity ∥X∥ψ2 is called the sub-Gaussian norm
of random variable X (see, e.g., Chapter 2.5 in Ver-
shynin (2018)). Roughly speaking, our idea is to an-
alyze the upper bound of ẼW

[
maxj∈[T ] σt−1(xj ,Wt)

]
via the sub-Gaussian norm ∥σt−1(xj ,Wt)∥ψ2

, in-
stead of directly analyzing it. By applying

Lemma 2.2,
∑T̃
t=1 ẼW

[
maxt∈[T ] σt−1(xt,Wt)

]
≤√

lnT
∑T̃
t=1 ∥σt−1(xj ,Wt)∥ψ2

holds. Finally, we

bound
∑T̃
t=1 ∥σt−1(xj ,Wt)∥ψ2 from above by using the

inequality about the MIG (Lemma A.5 in Appendix A)
and obtain the upper bound of Eq. (3).

Discussions The drawback of our analysis is that
an undesirable dependence on |W| implicitly appeared
in our regret upper bound. From the definition of p,
p ≤ 1/|W| holds; thus Q = O(|W|), which leads to our

regret bound of O(
√
|W|γT lnT/T ). This indicates

that our algorithm does not guarantee to work on the
regime of

√
T ≪ |W|. However, note that the same

dependence of p−1 also appears in the existing analy-
sis of the uncontrollable setting (Inatsu et al., 2022).
We leave the additional analysis to study whether the
O(
√
|W|) dependence is avoidable as future work.

3 HETEROSCEDASTIC MODEL
SETTING

Problem setup Let f : X → R be an unknown
function whose input domain X ⊂ Rd is a compact
and convex set. At each step t, the learner chooses
xt ∈ X and obtain a reward yt := f(xt) + ηt(xt).
The random variable ηt(x) is an additional stochastic
term whose variance depends on the input. We as-
sume that the random variables (ηt(x))t∈N+,x∈X are
independent. Furthermore, ηt(x) follows a zero-mean
Gaussian distribution whose variance is given as ρ2(x),
where ρ : X → [0,∞) is an unknown function. It
should be noted that the minimization of extreme re-
gret without specifying the class of reward distribu-
tions is infeasible (Streeter and Smith, 2006). Thus,
we assume Gaussian rewards commonly used in the
output model of BO (e.g., Sec. 5 in Frazier (2018)).

The learner’s goal is to obtain a reward that is as high
as possible within a known total step size T . The ex-

treme regret ∆(T ) in this setting is defined as follows:

∆(T ) = E
[
max
t∈[T ]

{f(x∗) + ηt(x
∗)}
]
− E

[
max
t∈[T ]

yt

]
,

where x∗ ∈ argmaxx∈XE[maxt∈[T ] {f(x) + ηt(x)}].

Regularity Assumptions As with the regularity
assumptions in Sec. 2, we assume that f is an ele-
ment of RKHS with ∥f∥H(kf ) ≤ Bf < ∞, where
kf : X × X → R is a known positive definite ker-
nel such that kf (x,x) ≤ 1 holds for all x ∈ X . To
efficiently estimate ρ, we assume that the function ρ
lies on some RKHS H(kρ) with ∥ρ∥H(kρ) ≤ Bρ < ∞.
Here, kρ : X × X → R is a known positive definite
kernel such that kρ(x,x) ≤ 1 holds for all x ∈ X ,
which can be different from kf . Moreover, we assume
that the range of ρ is bounded with known constants:
ρ, ρ. Namely, ρ(x) ∈ [ρ, ρ] holds for all x ∈ X . It
should be noted that similar boundness assumptions
were also used in previous heteroscedastic BO litera-
ture (Makarova et al., 2021).

Estimation of ρ(·) As used in Makarova et al.
(2021), we adopt the repeated experiment strategy to
make the confidence bound of ρ(·) during the explo-
ration period of our ETC-based algorithm. Namely,
the learner selects an input at once and then repeat-
edly queries the same input in the subsequent m steps.
We call this one block of the same m query points a
batch. At the end of each i-th batch, Makarova et al.
(2021) proposed to leverage the unbiased estimator

m̂(i) :=
∑m
l=1(y

(i)
l − ŷ(i))2/(m − 1) of the variance

ρ2(x), where y
(i)
l is the l-th reward obtained within

batch i, and ŷ(i) :=
∑m
l=1 y

(i)
l /m is the sample mean

of rewards within batch i. Hereafter, we let x(i) be the
query point chosen by the learner and ζ̃(i) be the error
ζ̃(i) := ρ2(x(i))−m̂(i) of m̂(i). If we assume that the er-
ror ζ̃(i) is sub-Gaussian, the confidence bound of ρ2(·)
can be obtained through a GP model, which lever-
ages m̂(i) as the outputs of training data (Makarova
et al., 2021). However, the sub-Gaussian assumption
of ζ̃(i) is not valid under the assumption that ηt is
Gaussian (Lemma B.10 in Appendix B). To avoid this
problem, we use the fact that the square root of m̂(i)

has sub-Gaussian property even though m̂(i) and ζ̃(i)

themselves do not. Namely, we construct a GP-model
of ρ(·) instead of ρ2(·) by plugging the following unbi-
ased estimator ŝ(i) of ρ(x(i)) into the training outputs:

ŝ(i) =

{√
2

m− 1

Γ(m/2)

Γ((m− 1)/2)

}−1√
m̂(i),

where Γ(·) is a gamma function. The posterior mean

µ
(i)
ρ (x) and variance σ

(i)2
ρ (x) of the constructed GP-
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model of ρ(x) at the end of batch i are defined as

µ(i)
ρ (x) = k(i)

ρ (x)⊤(K(i)
ρ + λ2

ρIi)
−1ŝ(i),

σ(i)2
ρ (x) = kρ(x,x)− k(i)

ρ (x)⊤(K(i)
ρ + λ2

ρIi)
−1k(i)

ρ (x),

where ŝ(i) = (ŝ(1), . . . , ŝ(i))⊤ and k
(i)
ρ (x) is the i- di-

mensional vector whose j-th elemnt is kρ(x,x
(j)). Fur-

thermore, K
(i)
ρ is a i× i kernel matrix whose (j, l)-th

element is kρ(x
(j),x(l)), and λρ > 0 is a pre-specified

noise variance parameter.

Estimation of f(·) To efficiently estimate f(·) un-
der the unknown ρ(·) without breaking the theo-
retical guarantee, we leverage the UCB-based esti-
mation of the noise level to construct a GP model
of f(·) as in Makarova et al. (2021). Let Σ̂(i) ∈
Ri×i be a UCB-based noise matrix, which is de-
fined as Σ̂(i) = diag

(
ρ(x(1))2, . . . , ρ(x(i))2

)
/m, where

ρ(x) = max{min{ρ, ucb(i)ρ (x)}, ρ} and ucb(i)ρ (x) =

µ
(i−1)
ρ (x)+β

1/2
ρ (i)σ

(i−1)
ρ (x) with parameter βρ(i) > 0.

By using Σ̂(i), the posterior mean µ
(i)
f (x | Σ̂(i)) and

variance σ
(i)2
f (x | Σ̂(i)) of f at the end of batch i are

respectively defined as follows:

µ
(i)
f (x | Σ̂(i)) = k

(i)
f (x)⊤(K

(i)
f + Σ̂(i))−1ŷ(i),

σ
(i)2
f (x | Σ̂(i)) =

kf (x,x)− k
(i)
f (x)⊤(K

(i)
f + Σ̂(i))−1k

(i)
f (x),

where ŷ(i) = (ŷ(1), . . . , ŷ(i))⊤. Furthermore, k
(i)
f (x)

and K
(i)
f are defined by replacing k

(i)
ρ (x) and K

(i)
ρ of

kρ with kf .

Proposed Algorithm We propose a kernel-ETC
algorithm in the heteroscedastic model setting, and
Algorithm B.2 in Appendix B shows the pseudo-
code. In the exploration period, our algorithm
is designed to find the maximizer of the quantity
f(x) + θT ρ(x) based on Lemma B.4 in Appendix B,
which describes the decomposition of the regret sim-
ilar to Eq. (1). Here, θT := ẼZ

[
maxt∈[T ]Zt

]
de-

notes the expected maximum of the T indepen-
dent standard Gaussian random variables. The ex-
pectation operator ẼZ [·] is defined as ẼZ [g(Z)] =∫
g(z(1), . . . , z(T ))

∏T
t=1 ϕ(z

(t))dz(1) . . . dz(T ) for any
measurable function g : RT → R. The function ϕ(·) is
the probability density function of N (0, 1).

To find the maximizer of f(x) + θT ρ(x), we
choose the query point x(i) of batch i as

x(i) = argmaxx∈X [ucb
(i)
f (x) + θTucb

(i)
ρ (x)], where

ucb
(i)
f (x) = µ(i−1)(x | Σ̂(i−1)) + β

1/2
f (i)σ

(i−1)
f (x |

Σ̂(i−1)) with a pre-specified parameter βf (i) > 0. We

also define the query point x̂∗ of the exploitation pe-
riod based on the LCB similar to Sec. 2. The definition
of x̂∗ is x̂∗ = x(̃i) with ĩ = argmaxi∈[M ][lcb

(i)
f (x) +

θT lcb
(i)
ρ (x)], where M := ⌊T̃ /m⌋ and T̃ := ⌈α(T − 1)⌉

are the number of batches and step size in the explo-
ration period, respectively. Furthermore, α is the ex-

ploration ratio. Here, we set lcb
(i)
f (x) = µ

(i−1)
f (x |

Σ̂(i−1)) − β
1/2
f (i)σ

(i−1)
f (x | Σ̂(i−1)) and lcb(i)ρ (x) =

µ
(i−1)
ρ (x)− β

1/2
ρ (i)σ

(i−1)
ρ (x).

Theoretical Analysis The following Theorem 3.1
gives the regret upper bound of the kernel-ETC algo-
rithm. Full proofs are described in Appendix B.

Theorem 3.1. Fix any τ ∈ (0, 1), m ≥ 2, and
ρ ≥ ρ > 0. Assume f ∈ H(kf ) with ∥f∥H(kf ) ≤
Bf , ρ ∈ H(kρ) with ∥ρ∥H(kρ) ≤ Bρ, and ∀x ∈ X ,
ρ(x) ∈ [ρ, ρ] . When running Algorithm B.2 with

β
1/2
f (i) = Bf +

√
2(γf (i) + 1 + ln 2T ), β

1/2
ρ (i) = Bρ+√

2(γρ(i) + ln 2T ) , λρ = cκ(m)ρ, and α = T τ/T , the
following holds:

∆(T ) = O
(√

(lnT + γf (T τ ))γf (T τ )

T τ

+
T τ
√
lnT

T
+

√
(lnT + γρ(T τ ))γρ(T τ ) lnT

T τ

)
,

(4)

where κ(m) = (m − 1)1/4Γ((m − 1)/2)/Γ(m/2), and
c > 0 is an absolute constant. Furthermore, γf (i) :=

0.5maxx(1),...,x(i) ln det(Ii + mρ−2K
(i)
f ) and γρ(i) :=

0.5maxx(1),...,x(i) ln det(Ii+λ−2
ρ K

(i)
ρ ) are MIGs at the

end of batch i, which are derived from the GP models
of f and ρ, respectively.

The detailed version of Theorem 3.1 that describes
the explicit upper bound without order notation is
also given as Theorem B.1 in Appendix B. By sub-
stituting γf and γρ with the known upper bound of
MIGs, Eq. (4) becomes more explicit. For example,
when both kf and kρ are SE kernels, the regret upper

bound Eq. (4) becomes ∆(T ) = O(
√
(lnT )2d+1/T τ +

T τ−1
√
lnT ) and ∆(T )→ 0 (as T →∞).

One clear difference between Theorem 3.1 and The-
orem 2.1 of Sec. 2 is that the exploration ratio α is
chosen adaptively with respect to T in Theorem 3.1,
whereas Theorem 2.1 assumes α is fixed. Actually, in
our analysis, the regret upper bound for fixed α be-
comes ∆(T ) = O(

√
lnT ), as shown in Theorem 3.1

that describes the explicit upper bound without order
notation is also given as Theorem B.1 in Appendix B.
Intuitively, this phenomenon arises from the fact that
uncontrollable additional terms ηt have unbounded
support in contrast to the setting of Sec. 2. Conse-
quently, to keep no-regret guarantees, we must spend
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more exploitation costs than constant fractions of the
total step size.

4 MAXIMUM VARIANCE
REDUCTION-BASED VARIANTS

Our ETC-based algorithm relies on the confidence
bound whose width β(t) increases as

√
γ(t), and the

resulting regret upper bound does not vanish in several
important kernels such as those of the Matérn family.
Recently, Vakili et al. (2021) showed that the width of
the confidence bound with the fixed confidence level
can be improved from O(

√
γ(t)) to O(1) for non-

adaptive strategy, whose query points selections are in-
dependent of observation noises. Here, we consider the
maximum variance reduction (MVR)-based variants of
our kernel-ETC algorithm, whose exploration strategy
is non-adaptive since the query points only rely on the
posterior variances of GP. The pseudo-codes of our
MVR-based algorithms are in Appendix C. In the en-
vironmental model setting, the following Theorem 4.1
shows the regret upper bound of our MVR-based al-
gorithm, which improves the regretO(γ(T )(lnT )/

√
T )

of Theorem 2.1 to O(
√
γ(T )(lnT )/

√
T ).

Theorem 4.1. Fix f ∈ H(k) with ∥f∥H(k) ≤ B.
Suppose that X is a finite set. When running Algo-
rithm C.3 in Appendix C with α ∈ (0, 1], the following
upper bound of the extreme regret ∆(T ) holds:

∆(T ) ≤ 2B(1− p)(1−α)T +
2B

T

+ 2C

√√√√β(T )(Q− 1) lnT

T̃ lnQ

{
4γ(T̃ )

ln(1 + σ−2)
+ 8 ln(12T )

}
,

where T̃ = ⌈α(T − 1)⌉ p = minw∈Wp(w), Q = 2p−1,

and β1/2(T ) = B +
√
2 ln(4|X ||W|T ). Furthermore,

C is an absolute constant.

Theorem 4.1 assumes that the input space X is finite
in order to simplify the proof. The extensions to con-
tinuous input spaces are easily made by resorting to
the discretizing arguments of the input space (Vak-
ili et al., 2021; Li and Scarlett, 2022). We also pro-
pose an MVR-based kernel-ETC algorithm in the het-
eroscedastic model setup. The details and its regret
upper bound are in Appendix C.2.

We emphasize that previous works report that UCB-
based algorithms work well in practice when the width
of the confidence bound is tuned as a hyperparme-
ter (Srinivas et al., 2010). Furthermore, in our nu-
merical experiments, we found that UCB-based kernel-
ETC tends to outperform MVR-based ones; thus, we
believe both of them are useful 1.

1Whitehouse et al. (2023), which proves the tight regret

5 NUMERICAL EXPERIMENTS

We show the performance of the kernel-ETC in nu-
merical experiments. The details are shown in Ap-
pendix E, including the results with standard errors.

We compare our algorithm with Random, which ex-
plores the search space X uniformly at random. Fur-
thermore, in the environmental model setting exper-
iments, we adopt MVABO (Iwazaki et al., 2021b),
which aims to optimize mean-variance objectives.
Specifically, we employ MVABO with parameters
set to maximize either the mean or the variance.
We denote the versions of MVABO that focus on
maximizing the mean or variance as Mean-MVABO or
Variance-MVABO, respectively. In the heteroscedas-
tic model setup, we adopt standard GP-UCB with
noise parameter ρ2 and the risk-averse heteroscedas-
tic BO (RAHBO) algorithm from (Makarova et al.,
2021). Similar to MVABO, we consider maximization
of the mean (variance) in RAHBO, which is denoted
as Mean-RAHBO (Variance-RAHBO). It should be noted
that the original MVABO and RAHBO focus on min-
imizing the variance; however, to adapt to our risk-
seeking setting, we modify the original algorithms to
maximize the variance. The details of the modified
version of MVABO and RAHBO in our experiments
are in Appendix E. Furthermore, we conduct either
kernel-ETC or MVR-based kernel-ETC with α = 0.75
and α = 0.95 (τ = 0.75 and τ = 0.95) in environmen-
tal (heteroscedastic) model setting2.

In all experiments, we use the SE kernel kSE(x, x̃) :=
σ2
ker exp(−∥x − x̃∥22/(2ℓ2)) with fixed lengthscale pa-

rameter ℓ and outputscale parameter σker. The speci-
fied ℓ and σker are described in Appendix E.

Synthetic Benchmark Functions We conduct ex-
periments with synthetic functions whose desired in-
puts of existing methods are different from our risk-
seeking formulation. In the environmental model set-
ting, we use the function depicted in Fig. 1, and we also
create a 1D-synthetic function in the heteroscedastic
model setting. The precise definitions and illustrations
of both functions are given in Appendix E.

We conduct experiments with 100 different random
seeds and report average extreme regrets. The left-
most figures in Fig. 2 and Fig. 3 show the results with
the synthetic benchmark functions in the environmen-
tal and heteroscedastic model settings, respectively.
We confirm the extreme regret decreases as T increases
for kernel-ETC, but not for other methods. Specifi-

bound of GP-UCB strategy, appears online as a preprint.
We leave extensions based on their results as future work.

2Additional experiments about the performance sensi-
tivity to the settings of α and τ are in Appendix F.
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Figure 2: The average extreme regret of the numerical experiments in the environmental model settings.

cally, we find the regrets of existing methods in the het-
eroscedastic model setting tend to become larger as T
increases. This is reasonable since the first term of the
extreme regret becomes large at the order ofO(

√
lnT );

thus, the regret of existing methods diverges if their
query points are concentrated on sub-optimal points.

2D RKHS Test Functions We further run ex-
periments with 2D RKHS test functions, which are
constructed as with the experiments in Chowdhury
and Gopalan (2017). In the environmental model set-
ting, the first (second) dimensions of test functions
are used as controllable (uncontrollable) inputs. We
set X and W as 50 and 10 uniformly-spaced grids
of [0, 1], respectively. Furthermore, we run experi-
ments with two types of probability mass functions:
puniform and pGaussian, where puniform(w) = 1/|W| and
pGaussian(w) = ϕ(w)/

∑
w∈W ϕ(w). In heteroscedastic

model setting, X is defined as X = X̃ × X̃ , where X̃
is 25 uniformly spaced grids of [0, 1].

We generate 20 test functions and then run 10 experi-
ments with different initial points in each test function.
Namely, we run 200 trials of experiments in total. The
second and third figures from left in Fig. 2 show the re-
sults in the environmental model setting. The result of
the heteroscedastic model setting is shown in the right
figure in Fig. 3. We confirm that our methods reduce
the regret with increasing T , in contrast to others.

Polymer Synthesis Simulation Function As a
potential application of our environmental model
setting, we conducted an experiment with a 2D-
simulation function, which is created using real data of
polymer synthesis (Belabed et al., 2012). In this exper-
iment, the control parameter is the mixing ratio of two
polymers. The uncontrollable parameter is the ingre-
dient of the polymer subcomponent, whose uncertainty
arises from the manufacturing process. The learner’s
goal is to obtain the polymer whose glass transition
temperature is high. The rightmost figure in Fig. 2
shows the results with 100 different random seeds. We

Random
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Mean-RAHBO
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Figure 3: The average extreme regret of the numerical
experiments in the heteroscedastic model settings.

Table 1: The average best validation loss with stan-
dard errors obtained from CNN tuning tasks with 10
different random seeds.

GP-UCB Variance-RAHBO kernel-ETC
1.457 ± 0.006 1.494 ± 0.011 1.446 ± 0.005

confirm kernel-ETC outperforms the existing methods.

Hyperparameter Tuning of Convolutional Neu-
ral Network As a demonstration of our het-
eroscedastic model setting, we conduct experiments
on a hyperparameter tuning task of a convolu-
tional neural network (CNN) with the CIFAR-10
dataset (Krizhevsky, 2009). We build a 3-layer CNN
with 8 channels and define tuning parameters as
epochs, batch size, and learning rate of stochastic gra-
dient descent optimizer. Our goal is to obtain the
model whose validation error is low with 100 trials
of training. We omit random, MVR-kernel-ETC, and
kernel-ETC with τ = 0.75 since their performances
tend to be worse than kernel-ETC with τ = 0.95 in
previous experiments. Moreover, we omit Mean-RAHBO
whose objective function is the same as GP-UCB. Ta-
ble 1 shows the results, in which we observe the supe-
riority of kernel-ETC.
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6 CONCLUSIONS

We formulate the risk-seeking BO problems under un-
controllable uncertainty factors and propose a novel
kernel-ETC algorithm. Specifically, we consider the
two types of settings based on the treatment of the
uncontrollable factors. In both settings, we prove the
regret upper bound of kernel-ETC and show that our
kernel-ETC algorithm has no-regret guarantees.
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Achab, M., Clémençon, S., Garivier, A., Sabourin,
A., and Vernade, C. (2017). Max k-armed ban-
dit: On the extremehunter algorithm and beyond.
In Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD
2017.

Baudry, D., Russac, Y., and Kaufmann, E. (2022). Ef-
ficient algorithms for extreme bandits. In Proc. In-
ternational Conference on Artificial Intelligence and
Statistics (AISTATS).

Belabed, C., Benabdelghani, Z., Granado, A., and
Etxeberria, A. (2012). Miscibility and specific inter-
actions in blends of poly (4-vinylphenol-co-methyl
methacrylate)/poly (styrene-co-4-vinylpyridine).
Journal of applied polymer science.

Bogunovic, I., Scarlett, J., Jegelka, S., and Cevher,
V. (2018). Adversarially robust optimization with
Gaussian processes. In Proc. Neural Information
Processing Systems (NeurIPS).

Carpentier, A. and Valko, M. (2014). Extreme ban-
dits. Proc. Neural Information Processing Systems
(NeurIPS).

Chowdhury, S. R. and Gopalan, A. (2017). On ker-
nelized multi-armed bandits. In Proc. International
Conference on Machine Learning (ICML).

Cicirello, V. A. and Smith, S. F. (2005). The max k-
armed bandit: A new model of exploration applied
to search heuristic selection. In Proc. Conference on
Artificial Intelligence (AAAI).

Desautels, T., Krause, A., and Burdick, J. W. (2014).
Parallelizing exploration-exploitation tradeoffs in
Gaussian process bandit optimization. Journal of
Machine Learning Research.

Frazier, P. I. (2018). A tutorial on Bayesian optimiza-
tion. arXiv preprint arXiv:1807.02811.

Gardner, J. R., Kusner, M. J., Xu, Z. E., Weinberger,
K. Q., and Cunningham, J. P. (2014). Bayesian op-
timization with inequality constraints. Proc. Inter-
national Conference on Machine Learning (ICML).
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Supplementary Material:
Risk Seeking Bayesian Optimization under Uncertainty for

Obtaining Extremum

A PROOFS OF SECTION 2

Lemma A.1. Fix any natural number T̃ < T and algorithm. Suppose that xt = x̂∗ holds for any t ∈ [T ] \ [T̃ ],
where x̂∗ is the random variable defined based on the history up to step T̃ . Then, the following inequality holds:

∆(T ) ≤ E
[
ẼW

[
max
t∈[T ]

f(x∗,Wt)

]
− ẼW

[
max
t∈[T ]

f(x̂∗,Wt)

]]
+E

[
ẼW

[
max
t∈[T ]

f(x̂∗,Wt)

]
− ẼW

[
max

t∈[T ]\[T̃ ]
f(x̂∗,Wt)

]]
.

Proof. Let HT̃ := (x1,w1, y1, . . . ,xT̃ ,wT̃ , yT̃ ) be the history up to step T̃ . Then,

∆(T ) = E
[
max
t∈[T ]

f(x∗,wt)

]
− E

[
max
t∈[T ]

f(xt,wt)

]
≤ E

[
max
t∈[T ]

f(x∗,wt)

]
− E

[
max

t∈[T ]\[T̃ ]
f(xt,wt)

]

= ẼW

[
max
t∈[T ]

f(x∗,Wt)

]
− E

[
max

t∈[T ]\[T̃ ]
f(x̂∗,wt)

]

= ẼW

[
max
t∈[T ]

f(x∗,Wt)

]
− E

[
E

[
max

t∈[T ]\[T̃ ]
f(x̂∗,wt)

∣∣∣∣∣ HT̃
]]

= ẼW

[
max
t∈[T ]

f(x∗,Wt)

]
− E

[
ẼW

[
max

t∈[T ]\[T̃ ]
f(x̂∗,Wt)

]]

= E
[
ẼW

[
max
t∈[T ]

f(x∗,Wt)

]
− ẼW

[
max
t∈[T ]

f(x̂∗,Wt)

]]
+ E

[
ẼW

[
max
t∈[T ]

f(x̂∗,Wt)

]
− ẼW

[
max

t∈[T ]\[T̃ ]
f(x̂∗,Wt)

]]
.

Lemma A.2. Fix any algorithm and f ∈ H(k) with ∥f∥H(k) ≤ B <∞. Let T̃ be a natural number that T̃ < αT

holds with some α ∈ (0, 1]. Furthermore, suppose that xt = x̂∗ holds for any t ∈ [T ]\ [T̃ ], where x̂∗ is the random
variable defined based on the history up to step T̃ . Then, the following inequality holds:

E

[
ẼW

[
max
t∈[T ]

f(x̂∗,Wt)

]
− ẼW

[
max

t∈[T ]\[T̃ ]
f(x̂∗,Wt)

]]
≤ 2B(1− p)(1−α)T ,

where p is defined as p = minw∈Wp(w).
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Proof. Let us define px as px =
∑

w∈W 1l{f(x,w) ̸= maxw̃∈Wf(x, w̃)}p(w) for any x ∈ X . Then, for any
x ∈ X ,

ẼW

[
max
t∈[T ]

f(x,Wt)

]
− ẼW

[
max

t∈[T ]\[T̃ ]
f(x,Wt)

]
=
{
(1− pTx)− (1− pT−T̃

x )
}
max
w∈W

f(x,w)

+ ẼW

[
1l

{
max
t∈[T ]

f(x,Wt) ̸= max
w∈W

f(x,w)

}
max
t∈[T ]

f(x,Wt)

]
− ẼW

[
1l

{
max

t∈[T ]\[T̃ ]
f(x,Wt) ̸= max

w∈W
f(x,w)

}
max

t∈[T ]\[T̃ ]
f(x,Wt)

]
≤ (pT−T̃

x − pTx)B + pTxB + pT−T̃
x B (A.5)

≤ 2BpT−T̃
x

≤ 2BpT−αT
x

≤ 2B(1− p)(1−α)T ,

where (A.5) follows from the inequality ∥f∥∞ ≤ ∥f∥H(k) ≤ B. Therefore,

E

[
ẼW

[
max
t∈[T ]

f(x̂∗,Wt)

]
− ẼW

[
max

t∈[T ]\[T̃ ]
f(x̂∗,Wt)

]]
≤ 2B(1− p)(1−α)T .

Lemma A.3. The following inequality holds for any T ∈ N:

T∑
t=1

σ2
t−1(xt,wt) ≤

2γ(T )

ln(1 + σ−2)
.

Lemma A.3 follows from the proofs of Srinivas et al. (2010). See Lemma 5.3 and Lemma 5.4 in Srinivas et al.
(2010) for more details.

Lemma A.4 (Lemma 3 in Kirschner and Krause (2018) or Lemma 7 in Kirschner et al. (2020)). Let St be any
non-negative stochastic process adapted to a filtration {Ft}, and define mt as mt = E[St | Ft−1]. Suppose that
there exists K ≥ 1 which St ≤ K holds for any t ∈ N. Then, for any T ≥ 1, the following inequality holds with
probability at least 1− δ:

T∑
t=1

mt ≤ 2

T∑
t=1

St + 8K ln
6K

δ
.

Lemma A.5. For any t ∈ [T̃ ], let us define ∥σt−1(xt,W1)∥ψ2
as

∥σt−1(xt,W1)∥ψ2
= inf

{
a > 0

∣∣∣∣ ẼW

[
exp

(
σ2
t−1(xt,W1)

a2

)]
≤ 2

}
. (A.6)

Then, for any algorithm and δ ∈ (0, 1), the following inequality holds with probability at least 1− δ:

T̃∑
t=1

∥σt−1(xt,W1)∥ψ2
≤

√√√√ T̃ (Q− 1)

lnQ

{
4γ(T̃ )

ln(1 + σ−2)
+ 8 ln

6

δ

}
, (A.7)

where Q = 2p−1 with p = minw∈Wp(w).
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Proof. If there exists w ∈ W that σ2
t−1(xt,w) > 0 holds, E

[
exp

(
σ2
t−1(xt,W1)∥σt−1(xt,W1)∥−2

ψ2

)]
= 2 holds.

Then, for any w ∈ W,

exp(σ2
t−1(xt,w)∥σt−1(xt,W1)∥−2

ψ2
) = p(w)−1

2−
∑

w̃∈W\{w}

p(w̃) exp(σ2
t−1(xt, w̃)∥σt−1(xt,W1)∥−2

ψ2
)

 ≤ 2p−1

⇒ σ2
t−1(xt,w)∥σt−1(xt,W1)∥−2

ψ2
≤ lnQ.

Since the inequality exp(a) ≤ 1 + a(exp(a)− 1)/a holds for any a ∈ [0, a],

ẼW

[
exp

(
σ2
t−1(xt,W1)∥σt−1(xt,W1)∥−2

ψ2

)]
= 2

⇒ ẼW

[
1 +

(Q− 1)σ2
t−1(xt,W1)∥σt−1(xt,W1)∥−2

ψ2

lnQ

]
≥ 2

⇒ Q− 1

lnQ
ẼW

[
σ2
t−1(xt,W1)

]
≥ ∥σt−1(xt,W1)∥2ψ2

. (A.8)

In addition, Eq. (A.8) also holds if σ2
t−1(xt,w) = 0 for all w ∈ W. Thus, by applying Lemma A.4 with

St = σ2
t−1(xt,wt) and B = 1, the following inequality holds with probability at least 1− δ:

T̃∑
t=1

∥σt−1(xt,W1)∥2ψ2
≤ Q− 1

lnQ

T̃∑
t=1

ẼW

[
σ2
t−1(xt,W1)

]
=

Q− 1

lnQ

T̃∑
t=1

E
[
σ2
t−1(xt,wt) | Ht−1

]
≤ Q− 1

lnQ

2

T̃∑
t=1

σ2
t−1(xt,wt) + 8 ln

6

δ


≤ Q− 1

lnQ

{
4γ(T̃ )

ln(1 + σ−2)
+ 8 ln

6

δ

}
. (A.9)

Here, we set Ht as Ht = (x1,w1, y1, . . . ,xt,wt, yt). Moreover, Eq. (A.9) follows from Lemma A.3. By applying

Schwarz inequality to
∑T̃
t=1 ∥σt−1(xt,W1)∥ψ2 , we have

∑T̃
t=1 ∥σt−1(xt,W1)∥ψ2 ≤

√
T̃
∑T̃
t=1 ∥σt−1(xt,W1)∥2ψ2

.

We complete the proof by combining the inequality
∑T̃
t=1 ∥σt−1(xt,W1)∥ψ2

≤
√

T̃
∑T̃
t=1 ∥σt−1(xt,W1)∥2ψ2

with

Eq. (A.9).

A.1 Proof of Theorem 2.1

We describe the full proof of Theorem 2.1 below.

Proof of Theorem 2.1. Let us define the event E as follows:

T̃∑
t=1

∥σt−1(xt,W1)∥ψ2
≤

√√√√ T̃ (Q− 1)

lnQ

{
4γ(T̃ )

ln(1 + σ−2)
+ 8 ln 12T

}
and ∀t ∈ N+, ∀(x,w) ∈ X ×W, |f(x,w)− µt−1(x,w)| ≤ β1/2(t)σt−1(x,w).

(A.10)

It should be noted that the event E is true with probability at least 1 − 1/T , by applying the union bound to
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Lemma 2.1 and Lemma A.5. Thus, under the event E, the following inequality holds:

E
[
ẼW

[
max
j∈[T ]

f(x∗,Wj)

]
− ẼW

[
max
j∈[T ]

f(x̂∗,Wj)

]]
= E

[
1l{Ec}

{
ẼW

[
max
j∈[T ]

f(x∗,Wj)

]
− ẼW

[
max
j∈[T ]

f(x̂∗,Wj)

]}]
+ E

[
1l{E}

{
ẼW

[
max
j∈[T ]

f(x∗,Wj)

]
− ẼW

[
max
j∈[T ]

f(x̂∗,Wj)

]}]
≤ 2B

T
+ E

[
1l{E}

{
ẼW

[
max
j∈[T ]

f(x∗,Wj)

]
− ẼW

[
max
j∈[T ]

f(x̂∗,Wj)

]}]
. (A.11)

Furthermore, under the event E, the following inequality holds for any t ∈ [T̃ ]:

ẼW

[
max
j∈[T ]

f(x∗,Wj)

]
− ẼW

[
max
j∈[T ]

f(x̂∗,Wj)

]
≤ ẼW

[
max
j∈[T ]

ucbt(xt,Wj)

]
− ẼW

[
max
j∈[T ]

lcbt(xt,Wj)

]
≤ ẼW

[
max
j∈[T ]

{ucbt(xt,Wj)− lcbt(xt,Wj)}
]

≤ 2β(T̃ )1/2ẼW

[
max
j∈[T ]

σt−1(xt,Wj)

]
≤ 2β(T̃ )1/2C∥σt−1(xt,W1)∥ψ2

√
lnT , (A.12)

where ∥·∥ψ2 is defined in Eq. (A.6) and C is the absolute constant of Lemma 2.2. In Eq. (A.12), we use Lemma 2.2
with Xi = σt−1(xt,Wi). By taking arithmetic mean in both sides of Eq. (A.12),

ẼW

[
max
j∈[T ]

f(x∗,Wj)

]
− ẼW

[
max
j∈[T ]

f(x̂∗,Wj)

]

≤ 2T̃−1β(T̃ )1/2C
√
lnT

T̃∑
t=1

∥σt−1(xt,W1)∥ψ2

≤ 2C

√√√√β(T̃ )(Q− 1) lnT

T̃ lnQ

{
4γ(T̃ )

ln(1 + σ−2)
+ 8 ln 12T

}
. (A.13)

In the last line, we use Lemma A.5. By combining Lemma A.1 with Eq. (A.11), (A.13), and Lemma A.2, we
complete the proof.

B DETAILS OF SECTION 3

B.1 Pseudo-code of kernel-ETC in Heteroscedastic Model Setting

Algorithm B.2 shows the pseudo-code of our kernel-ETC algorithm in the heteroscedastic model setting.

B.2 Proof of Theorem 3.1

Definition B.1 (Sub-exponential random variable and sub-exponential norm). Define sub-exponential norm
∥X∥ψ1

of random variable X as

∥X∥ψ1 = inf

{
t > 0

∣∣∣∣ E [exp( |X|t
)]
≤ 2

}
.

Furthermore, if ∥X∥ψ1
<∞, X is called sub-exponential random variable.
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Algorithm B.2 The kernel-ETC algorithm for heteroscedastic model setting.

Input: Kernel kf , kρ, exploration ratio α, variance parameter λρ > 0, number of repetition m ≥ 2, lower and
upper bound of ρ(·): ρ, ρ, width of confidence bounds {βf (i)}i∈N+

, {βρ(i)}i∈N+
.

1: T̃ ← ⌈α(T − 1)⌉.
2: t← 1.
3: M ← ⌊T̃ /m⌋.
4: Initialize GP prior of f(·) and ρ(·).
5: θT ← ẼZ

[
maxt∈[T ]Zt

]
.

6: for i = 1 to M do
7: x(i) ← argmaxx∈X

{
ucb

(i)
f (x) + θTucb

(i)
ρ (x)

}
.

8: for j = 1, . . . ,m do
9: xt ← x(i).

10: Observe yt = f(xt) + ηt(xt).
11: t← t+ 1.
12: end for
13: Update GP posterior of f(·) and ρ(·).
14: end for
15: ĩ← argmaxi∈[M ]

{
lcb

(M)
f (x) + θT lcb

(M)
ρ (x)

}
.

16: x̂∗ ← x(̃i).
17: for t = mM + 1 to T do
18: xt ← x̂∗.
19: Observe yt.
20: end for

The following Lemma B.1 describes the relation between a sub-exponential norm and a variance proxy of sub-
Gaussian random variable.

Lemma B.1. If X2 is a sub-exponential random variable, X − E[X] is a c1
√
∥X2∥ψ1-sub-Gaussian random

variable, where c1 > 0 is an absolute constant. That is, the following inequality holds for all λ ∈ R:

E [exp (λ (X − E[X]))] ≤ exp

(
λ2c21∥X2∥ψ1

2

)
.

Lemma B.1 directly follows by applying Lemma 2.7.6 and Eq. (2.16) of Vershynin (2018).

Lemma B.2. Fix any natural number m ≥ 2. If X is a chi-square random variable with m−1 degree of freedom,
then ∥X∥ψ1

≤ c2
√
m− 1 holds with an absolute constant c2 > 0.

Proof. Let Z1, . . . , Zm−1 be m − 1 independent standard normal random variables. Since X equals
∑m−1
i=1 Z2

i

in distribution, ∥X∥ψ1
= ∥∑m−1

i=1 Z2
i ∥ψ1

holds. Here, it is easy to see that a moment generating function of
Z2
1 − E[Z2

1 ] satisfies the following:

E[exp(λ(Z2
1 − E[Z2

1 ]))] =
1√

1− 2λ
exp(−λ) ≤ exp(2λ2) for all |λ| ≤ 1

4
.

Therefore, due to the independence of (Zi)i∈[m−1], the following inequality (B.14) holds for all 0 ≤ λ ≤ 1/4:

E

[
exp

(
λ

(
m−1∑
i=1

Z2
i − E

[
m−1∑
i=1

Z2
i

]))]
≤ exp(2(m− 1)λ2). (B.14)

Equation (B.14) implies

E

[
exp

(
λ

(
m−1∑
i=1

Z2
i − E

[
m−1∑
i=1

Z2
i

]))]
≤ exp

(
(max{

√
2(m− 1), 4})2λ2

)
for all |λ| ≤ 1

max{
√
2(m− 1), 4}

.

(B.15)
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Equation (B.15) implies that ∥∑m−1
i=1 Z2

i − E[
∑m−1
i=1 Z2

i ]∥ψ1 ≤ c̃2 max{
√
2(m− 1), 4} holds with some absolute

constant c̃2 > 0 (e.g., Proposition 2.7.1 in Vershynin (2018)). Finally, by applying the centering lemma (e.g.,

Exercise 2.7.10 in Vershynin (2018)), we can obtain the inequality: ∥∑m−1
i=1 Z2

i ∥ψ1
≤ ĉ2c̃2 max{

√
2(m− 1), 4}

with some absolute constant ĉ2 > 0. Since max{
√
2(m− 1), 4} ≤ 4

√
m− 1 for any m ≥ 2, we complete the

proof by setting c2 as c2 = 4ĉ2c̃2.

Lemma B.3. Fix any m ≥ 2 and j ∈ N+. Suppose ρ(·) satisfies ∥ρ∥∞ ≤ ρ with some ρ > 0. Let us define ζj as
ζj = ρ(x(j))− ŝ(j), where x(j) and ŝ(j) are defined in Sec. 3. Then, ζj is c3κ(m)ρ-sub-Gaussian random variable
with κ(m) = (m− 1)1/4Γ((m− 1)/2)/Γ(m/2). Here, c3 > 0 is an absolute constant.

Proof. From the definition of ŝ(j),

ŝ(j) =

{√
2

m− 1

Γ(m/2)

Γ((m− 1)/2)

}−1
√√√√ 1

m− 1

m∑
l=1

(
y
(j)
l − ŷ(j)

)2

=
ρ(x(j))√

2

Γ((m− 1)/2)

Γ(m/2)

√√√√ 1

ρ2(x(j))

m∑
l=1

(
y
(j)
l − ŷ(j)

)2
.

Since y
(j)
l independently follows N (f(x(j)), ρ2(x(j))),

∑m
l=1(y

(j)
l −ŷ(j))2/ρ2(x(j)) follows a chi-square distribution

with m− 1 degree of freedom. Thus, from Lemma B.2,

∥ŝ(j)2∥ψ1
≤ ρ2

2

Γ((m− 1)/2)2

Γ(m/2)2
c2
√
m− 1. (B.16)

Finally, by using Lemma B.1, Eq. (B.16), and the fact that E[ŝ(j)] = ρ(x(j)) holds, we find ζj is c3κ(m)ρ-sub-

Gaussian random variable with c3 = c1
√
c2/2.

Lemma B.4. Fix any natural number T̃ < T and algorithm. Suppose that xt = x̂∗ holds for any t ∈ [T ] \ [T̃ ],
where x̂∗ is the random variable defined based on the history up to step T̃ . Then, if ρ(x) ≤ ρ for all x ∈ X , the
following inequality holds:

∆(T ) ≤ E [{f(x∗) + θT ρ(x
∗)} − {f(x̂∗) + θT ρ(x̂

∗)}] + ρ

{
ẼZ

[
max
t∈[T ]

Zt

]
− ẼZ

[
max

t∈[T ]\[T̃ ]
Zt

]}
.
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Proof.

∆(T ) = E
[
max
t∈[T ]

{f(x∗) + ηt(x
∗)}
]
− E

[
max
t∈[T ]

{f(xt) + ηt(xt)}
]

≤ E
[
max
t∈[T ]

{f(x∗) + ηt(x
∗)}
]
− E

[
max

t∈[T ]\[T̃ ]
{f(xt) + ηt(xt)}

]

= f(x∗) + E
[
max
t∈[T ]

ηt(x
∗)

]
− E

[
f(x̂∗) + max

t∈[T ]\[T̃ ]
ηt(x̂

∗)

]

= f(x∗) + ρ(x∗)ẼZ

[
max
t∈[T ]

Zt

]
− E

[
f(x̂∗) + ρ(x̂∗)ẼZ

[
max

t∈[T ]\[T̃ ]
Zt

]]
= f(x∗) + ρ(x∗)θT − E [f(x̂∗) + ρ(x̂∗)θT ]

+ E
[
f(x̂∗) + ρ(x̂∗)ẼZ

[
max
t∈[T ]

Zt

]]
− E

[
f(x̂∗) + ρ(x̂∗)ẼZ

[
max

t∈[T ]\[T̃ ]
Zt

]]

≤ E [{f(x∗) + θT ρ(x
∗)} − {f(x̂∗) + θT ρ(x̂

∗)}] + E

[
ρ

{
ẼZ

[
max
t∈[T ]

Zt

]
− ẼZ

[
max

t∈[T ]\[T̃ ]
Zt

]}]

= E [{f(x∗) + θT ρ(x
∗)} − {f(x̂∗) + θT ρ(x̂

∗)}] + ρ

{
ẼZ

[
max
t∈[T ]

Zt

]
− ẼZ

[
max

t∈[T ]\[T̃ ]
Zt

]}
.

As used in a proof of Theorem 1 in Makarova et al. (2021), we use the following Lemma B.5 and Lemma B.6,
which state confidence bounds of ρ and f , respectively.

Lemma B.5. Fix any δ ∈ (0, 1), m ≥ 2, and ρ ∈ H(kρ). Suppose ∥ρ∥H(kρ) ≤ Bρ and ∀x ∈ X , ρ(x) ∈ [ρ, ρ].

Furthermore, let βρ(i) and λρ be β
1/2
ρ (i) = Bρ +

√
2(γρ(i) + δ−1) and λρ = cκ(m)ρ, respectively. Then, the

following statement holds with probability at least 1− δ:

∀i ∈ N+, ∀x ∈ X , |ρ(x)− µ(i−1)
ρ (x)| ≤ β1/2

ρ (i)σ(i−1)
ρ (x). (B.17)

Here, µ
(i)
ρ (x), σ

(i)
ρ (x), and γρ(i) are defined in Sec. 3, and c is the absolute constant, which is the same as the

constant c3 in Lemma B.3.

Lemma B.6. Fix any δ ∈ (0, 1), m ≥ 2, and f ∈ H(kf ) with ∥f∥H(kf ) ≤ Bf . Let βf (i) be β
1/2
f (i) =

Bf +
√
2(γf (i) + 1 + δ−1). Then, under the condition that the event (B.17) holds, the following statement holds

with probability at least 1− δ:

∀i ∈ N+, ∀x ∈ X , |f(x)− µ
(i−1)
f (x | Σ̂(i−1))| ≤ β

1/2
f (i)σ

(i−1)
f (x | Σ̂(i−1)).

Here, µ
(i)
f (x | Σ̂(i)), σ

(i)
f (x | Σ̂(i)), and γf (i) are defined in Sec. 3.

By noting that ζt is cκ(m)ρ-sub-Gaussian random variable (Lemma B.3), Lemma B.5 follows from a direct
application of Theorem 3.11 in Abbasi-Yadkori (2013). Furthermore, Lemma B.6 immediately follows by using
Eq.(25) of Makarova et al. (2021) and Lemma 7 in Kirschner and Krause (2018), which is the heteroscedastic
model version of Theorem 3.11 in Abbasi-Yadkori (2013).

The following Lemma B.7 describe a relation between the sums of posterior variances and the MIGs, which are
provided in Appendix A.4 in Makarova et al. (2021).

Lemma B.7. For any m ≥ 2 and M ∈ N+, the following holds:

M∑
i=1

σ
(i−1)
f (x(i) | Σ̂(i−1)) ≤

√
2Mγf (M)

ln(1 +mρ−2)
and

M∑
i=1

σ(i−1)
ρ (x(i)) ≤

√
2Mγρ(M)

ln(1 + λ−2
ρ )

.
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Lemma B.8. Fix α ∈ (0, 1), m ≥ 2, f ∈ H(kf ) with ∥f∥H(kf ) ≤ Bf , and ρ ∈ H(kρ) with ∥ρ∥H(kρ) ≤ Bρ.
Suppose ∀x ∈ X , ρ(x) ∈ [ρ, ρ] holds for some ρ and ρ with ρ ≥ ρ > 0. Then, when running Algorithm B.2

with β
1/2
f (i) =

√
2(ln 2T + 1 + γf (i)) + Bf , β

1/2
ρ (i) =

√
2(ln 2T + γρ(i)) + Bρ, and λρ = cκ(m)ρ, the following

inequality holds:

E [{f(x∗) + θT ρ(x
∗)} − {f(x̂∗) + θT ρ(x̂

∗)}]

≤ (2B + ρ
√
2 lnT )

T
+

√
8mβf

(
αT+1
m

)
α(T −m− 1) ln(1 +mρ−2)

γf

(
αT + 1

m

)

+

√
16mβρ

(
αT+1
m

)
lnT

α(T −m− 1) ln(1 + c−2κ(m)−2ρ−2)
γρ

(
αT + 1

m

)
,

where κ(m) = (m − 1)1/4Γ((m − 1)/2)/Γ(m/2), and c > 0 is an absolute constant, which is the same as the
constant c3 in Lemma B.3.

Proof. Let us assume the following event (B.18) holds:

∀x ∈ X , ∀i ∈ N+, f(x) ∈
[
lcb

(i)
f (x),ucb

(i)
f (x)

]
and ρ(x) ∈

[
lcb(i)ρ (x),ucb(i)ρ (x)

]
(B.18)

Then, for any i ∈ [M ],

{f(x∗) + θT ρ(x
∗)} − {f(x̂∗) + θT ρ(x̂

∗)}
≤ ucb

(i)
f (x∗) + θTucb

(i)
ρ (x∗)− lcb

(̃i)
f (x(̃i))− θT lcb

(̃i)
ρ (x(̃i))

≤ ucb
(i)
f (x(i)) + θTucb

(i)
ρ (x(i))− lcb

(i)
f (x(i))− θT lcb

(i)
ρ (x(i))

= 2β
1/2
f (i)σ

(i−1)
f (x(i) | Σ̂(i−1)) + 2θTβ

1/2
ρ (i)σ(i−1)

ρ (x(i)), (B.19)

where M = ⌊T̃ /m⌋, T̃ = ⌈α(T −1)⌉ and ĩ = argmaxi∈[M ]{lcb(M)
f (x)+θT lcb

(M)
ρ (x)}. By taking arithmetic mean

in Eq. (B.19),

{f(x∗) + θT ρ(x
∗)} − {f(x̂∗) + θT ρ(x̂

∗)}

≤ 2

M

M∑
i=1

β
1/2
f (i)σ

(i−1)
f (x(i) | Σ̂(i−1)) +

2θT
M

M∑
i=1

β1/2
ρ (i)σ(i−1)

ρ (x(i))

≤
2β

1/2
f (M)

M

M∑
i=1

σ
(i−1)
f (x(i) | Σ̂(i−1)) +

2θTβ
1/2
ρ (M)

M

M∑
i=1

σ(i−1)
ρ (x(i)) (B.20)

≤
2β

1/2
f (M)

M

√
2M

ln(1 +mρ−2)
γf (M) +

2θTβ
1/2
ρ (M)

M

√
2M

ln(1 + c−2κ(m)−2ρ−2)
γρ(M) (B.21)

=

√
8βf (M)

M ln(1 +mρ−2)
γf (M) + θT

√
8βρ(M)

M ln(1 + c−2κ(m)−2ρ−2)
γρ(M), (B.22)

where:

• Eq. (B.20) follows from monotonicity of βf (i) and βρ(i).

• Eq. (B.21) follows from Lemma B.7.

Since the event (B.18) holds with probability at least 1 − 1/T by taking union bound in Lemma B.5 and
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Lemma B.6, the following inequality holds:

E [{f(x∗) + θT ρ(x
∗)} − {f(x̂∗) + θT ρ(x̂

∗)}]
= E [1l{(B.18) is true} [{f(x∗) + θT ρ(x

∗)} − {f(x̂∗) + θT ρ(x̂
∗)}]]

+ E [1l{(B.18) is false} [{f(x∗) + θT ρ(x
∗)} − {f(x̂∗) + θT ρ(x̂

∗)}]]

≤ (2B + θT ρ)

T
+

(
1− 1

T

)[√
8βf (M)

M ln(1 +mρ−2)
γf (M) + θT

√
8βρ(M)

M ln(1 + c−2κ(m)−2ρ−2)
γρ(M)

]
(B.23)

≤ (2B + ρ
√
2 lnT )

T
+

√
8βf (M)

M ln(1 +mρ−2)
γf (M) +

√
16βρ(M) lnT

M ln(1 + c−2κ(m)−2ρ−2)
γρ(M) (B.24)

≤ (2B + ρ
√
2 lnT )

T
+

√
8mβf

(
αT+1
m

)
α(T −m− 1) ln(1 +mρ−2)

γf

(
αT + 1

m

)

+

√
16mβρ

(
αT+1
m

)
lnT

α(T −m− 1) ln(1 + c−2κ(m)−2ρ−2)
γρ

(
αT + 1

m

)
,

(B.25)

where:

• Eq. (B.23) follows from Eq. (B.22) and the fact that ∥f∥∞ ≤ ∥f∥H(kf ) ≤ Bf and ∥f∥∞ ≤ ∥ρ∥∞ ≤ ρ hold.

• Eq. (B.24) follows from a upper bound of the expectation for T standard normal random variables: θT ≤√
2 lnT .

• Eq. (B.25) follows from α(T −m− 1)/m ≤M ≤ (αT + 1)/m.

The final inequality (B.25) is the desired inequality of the lemma; thus, the proof is completed.

Lemma B.9. Fix any natural number T̃ < T . Then,

ẼZ

[
max
t∈[T ]

Zt

]
− ẼZ

[
max

t∈[T ]\[T̃ ]
Zt

]
≤ T̃

T

(√
2 lnT +

1

2π
+

1

2
√
2π lnT

)
+

1

2T−T̃−1
. (B.26)

A proof strategy of Lemma B.9 follows discussions in Appendix A.4 of Baudry et al. (2022).
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Proof of Lemma B.9.

ẼZ

[
max
t∈[T ]

Zt

]
− ẼZ

[
max

t∈[T ]\[T̃ ]
Zt

]

= ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T ]\[T̃ ]

Zt

}{
max
t∈[T ]

Zt − max
t∈[T ]\[T̃ ]

Zt

}]
+ ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt

}{
max
t∈[T ]

Zt − max
t∈[T ]\[T̃ ]

Zt

}]

= ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt

}{
max
t∈[T̃ ]

Zt − max
t∈[T ]\[T̃ ]

Zt

}]

= ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt

}
max
t∈[T̃ ]

Zt

]
− ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt

}
max

t∈[T ]\[T̃ ]
Zt

]

≤ ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt

}
max
t∈[T̃ ]

Zt

]
− ẼZ

[
1l

{
max

t∈[T ]\[T̃ ]
Zt ≤ 0

}
max

t∈[T ]\[T̃ ]
Zt

]

≤ ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt

}
max
t∈[T̃ ]

Zt

]
− ẼZ

[
1l

{
max

t∈[T ]\[T̃ ]
Zt ≤ 0

}
ZT

]

= ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt

}
max
t∈[T̃ ]

Zt

]
−


T−1∏
t=T̃

P̃ (Zt ≤ 0)

 ẼZ [1l {ZT ≤ 0}ZT ]

= ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt

}
max
t∈[T̃ ]

Zt

]
+

1√
2π2T−T̃−1

, (B.27)

where Eq. (B.27) follows from P̃ (Zt ≤ 0) = 1/2 and ẼZ [1l {ZT ≤ 0}ZT ] = −2/
√
2π. Here, for any q > 0,

ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt

}
max
t∈[T̃ ]

Zt

]

≤ qẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt

}]
+ ẼZ

[
1l

{
max
t∈[T ]

Zt = max
t∈[T̃ ]

Zt and max
t∈[T̃ ]

Zt > q

}
max
t∈[T̃ ]

Zt

]

≤ q

T̃∑
j=1

P̃
(
max
t∈[T ]

Zt = Zj

)
+ ẼZ

[
1l

{
max
t∈[T̃ ]

Zt > q

}
max
t∈[T̃ ]

Zt

]

≤ T̃

T
q + ẼZ

[
1l

{
max
t∈[T̃ ]

Zt > q

}
max
t∈[T̃ ]

Zt

]
. (B.28)

Furthermore, by using the fact that E[X] =
∫∞
0

P(X > x)dx holds for any non-negative random variable X,

ẼZ

[
1l

{
max
t∈[T̃ ]

Zt > q

}
max
t∈[T̃ ]

Zt

]

=

∫ ∞

0

P̃

(
1l

{
max
t∈[T̃ ]

Zt > q

}
max
t∈[T̃ ]

Zt > x

)
dx

=

∫ q

0

P̃

(
1l

{
max
t∈[T̃ ]

Zt > q

}
max
t∈[T̃ ]

Zt > x

)
dx+

∫ ∞

q

P̃

(
1l

{
max
t∈[T̃ ]

Zt > q

}
max
t∈[T̃ ]

Zt > x

)
dx. (B.29)

By noting 1l{maxt∈[T̃ ] Zt > q}maxt∈[T̃ ] Zt > x⇔ maxt∈[T̃ ] Zt > q holds for any x ∈ [0, q], the following inequality
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holds for the first term of Eq. (B.29):∫ q

0

P̃

(
1l

{
max
t∈[T̃ ]

Zt > q

}
max
t∈[T̃ ]

Zt > x

)
dx

= qP̃

(
max
t∈[T̃ ]

Zt > q

)

= qP̃

 ⋃
j∈[T̃ ]

{Zj > q}


≤ q

T̃∑
j=1

P̃ (Zj > q)

≤ T̃√
2π

exp

(
−q2

2

)
, (B.30)

where Eq. (B.30) follows from an inequality: P̃(Zt ≥ q) ≤ ϕ(q)/q of tail probability for a standard normal random
variable. Moreover, by noting 1l{maxt∈[T̃ ] Zt > q}maxt∈[T̃ ] Zt > x ⇔ maxt∈[T̃ ] Zt > x holds for any x ∈ [q,∞),

the following inequality holds for the second term of Eq. (B.29):∫ ∞

q

P̃

(
1l

{
max
t∈[T̃ ]

Zt > q

}
max
t∈[T̃ ]

Zt > x

)
dx

=

∫ ∞

q

P̃

(
max
t∈[T̃ ]

Zt > x

)
dx

≤
T̃∑
j=1

∫ ∞

q

P̃ (Zj > x) dx

≤ T̃

∫ ∞

q

1

x
√
2π

exp

(
−x2

2

)
dx

≤ T̃

∫ ∞

q

x

q2
√
2π

exp

(
−x2

2

)
dx

≤ T̃

q2
√
2π

[
− exp

(
−x2

2

)]∞
q

=
T̃

q2
√
2π

exp

(
−q2

2

)
. (B.31)

By choosing q as q =
√
2 lnT , we can obtain Eq. (B.26) by using Eq. (B.27), (B.28), (B.29), (B.30), and (B.31).

The following Theorem B.1 is a detailed version of Theorem 3.1.

Theorem B.1. Fix α ∈ (0, 1], m ≥ 2, f ∈ H(kf ) with ∥f∥H(kf ) ≤ Bf , and ρ ∈ H(kρ) with ∥ρ∥H(kρ) ≤ Bρ.
Suppose ∀x ∈ X , ρ(x) ∈ [ρ, ρ] holds for some ρ and ρ with ρ ≥ ρ > 0. Then, when running Algoritm B.2 with

β
1/2
f (i) =

√
2(ln 2T + 1 + γf (i)) +Bf , β

1/2
ρ (i) =

√
2(ln 2T + γρ(i)) +Bρ, and λρ = cκ(m)ρ, the following upper

bound of extreme regret holds:

∆(T ) ≤ (2B + ρ
√
2 lnT )

T
+

√
8mβf

(
αT+1
m

)
α(T −m− 1) ln(1 +mρ−2)

γf

(
αT + 1

m

)

+

√
16mβρ

(
αT+1
m

)
lnT

α(T −m− 1) ln(1 + c−2κ(m)−2ρ−2)
γρ

(
αT + 1

m

)
+ αρ

(√
2 lnT +

1

2π
+

1

2
√
2π lnT

)
+

ρ

2(1−α)T−2
,

(B.32)
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where κ(m) = (m−1)1/4Γ((m−1)/2)/Γ(m/2), and c > 0 is an absolute constant. Especially, by setting α = T τ/T
with τ ∈ (0, 1), then

∆(T ) = O
(
B

T
+

√
mβf (T τ/m)γf (T τ/m)

(T τ −m) ln(1 +mρ−2)
+

ρT τ
√
lnT

T
+

√
mβρ(T τ/m)γρ(T τ/m) lnT

(T τ −m) ln(1 +mc−2κ(m)−2ρ−2)

)
.

Proof. By combining Lemma B.4, Lemma B.8, and Lemma B.9 with T̃ = ⌈α(T − 1)⌉, the following inequality
holds:

∆(T ) ≤ (2B + ρ
√
2 lnT )

T
+

√
8mβf

(
αT+1
m

)
α(T −m− 1) ln(1 +mρ−2)

γf

(
αT + 1

m

)
+

ρ

2T−⌈α(T−1)⌉−1

+

√
16mβρ

(
αT+1
m

)
lnT

α(T −m− 1) ln(1 + c−2κ(m)−2ρ−2)
γρ

(
αT + 1

m

)
+

ρ⌈α(T − 1)⌉
T

(√
2 lnT +

1

2π
+

1

2
√
2π lnT

)
.

(B.33)

Equation (B.32) is derived from Eq. (B.33) since ⌈α(T − 1)⌉ ≤ αT + 1 and 1/T ≤ 1 hold.

B.3 Additional Lemma

Lemma B.10 (Unbiased sample variance m̂(i) is not sub-Gaussian random variable). Let Y1, . . . , Ym be random
variables which independently follows N (a, b2) with any a ∈ R, b > 0. Define M̂ as

M̂ =
1

m− 1

m∑
l=1

(Yl − Y )2,

where Y =
∑m
l=1 Yl/m. Then, M̂ − b2 is not sub-Gaussian random variable. Namely, the following statement

holds:

∀λ1 ≥ 0, ∃λ2 ∈ R, E[exp(λ2(M̂ − b2))] > exp

(
λ2
1λ

2
2

2

)
(B.34)

Proof. For any λ2 ∈ R, we have

E
[
exp

(
λ2(M̂ − b2)

)]
= exp(−(m− 1))E

[
exp

(
λ2b

2

m− 1

1

b2

m∑
l=1

(Yl − Y )2

)]
.

Here, it should be noted that 1
b2

∑m
l=1(Yl − Y )2 follows chi-square distribution. Since a moment-generating

function of chi-square distribution becomes infinity when the input is greater than 1/2, Eq. (B.34) holds by
choosing λ2 as λ2 > (m− 1)/(2b2).

C DETAILS OF SECTION 4

C.1 Environmental Model Setting

Algorithm C.3 shows a pseudo-code of MVR-based kernel-ETC algorithm. The differences between UCB-based
and MVR-based kernel-ETC in the environmental model setting are described as follows.

• The query strategy in the exploration period (Line 3 in Algorithm 1 and Algorithm C.3): Algorithm 1
chooses xt based on UCB, which depends on the noise terms (ϵt), whereas Algorithm C.3 chooses xt based
on a posterior variance of GP, which are independent of (ϵt).

• The query point x̂∗ of exploitation phase (Lines 6-7 in Algorithm 1 and Line 6 in Algorithm C.3): The
query pointx̂∗ is defined based on LCB in the UCB-based exploration strategy of Algorithm 1, whereas
the posterior means are used in MVR-based exploration strategy of Algorithm C.3. These definitions of x̂∗

based on LCBs and posterior means are the same as in the theoretical analysis of simple regret in UCB and
MVR-based BO algorithms, respectively (Bogunovic et al., 2018; Vakili et al., 2021).
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Algorithm C.3 The MVR-based kernel-ETC algorithm for environmental model setting.

Input: GP prior GP(0, k), exploration ratio α ∈ (0, 1].
1: T̃ ← ⌈α(T − 1)⌉.
2: for t = 1 to T̃ do
3: xt ← argmaxx∈X ẼW

[
maxj∈[T ]σt−1(x,Wj)

]
.

4: Observe yt and update GP posterior.
5: end for
6: x̂∗ ← argmaxx∈X ẼW

[
maxj∈[T ]µT̃ (x,Wj)

]
.

7: for t = T̃ + 1 to T do
8: xt ← x̂∗.
9: Observe yt.

10: end for

C.1.1 Proof of Theorem 4.1

We first describe the following Lemma C.1, which gives tight confidence bounds under a non-adaptive learner’s
strategy.

Lemma C.1 (Theorem 1 in Vakili et al. (2021)). Fix f ∈ H(k) with ∥f∥H(k) ≤ B, δ ∈ (0, 1), T̃ ∈ N+, and
X with |X | < ∞. Let us assume that the noise term ϵt independently follows N (0, σ2). Furthermore, suppose
that the learner’s decisions (xt)t∈N+ are independent of the noise terms (ϵt)t∈N+ . Then, with probability at least
1− δ, the following inequality holds for any (x,w) ∈ X ×W:

|f(x,w)− µT̃ (x,w)| ≤
(
B +

√
2 ln

2|X ||W|
δ

)
σT̃ (x,w).

Now, we show a proof of Theorem 4.1 below.

Proof of Theorem 4.1. Let us consider the following event (C.35):

T̃∑
t=1

∥σt−1(xt,W1)∥ψ2
≤

√√√√ T̃ (Q− 1)

lnQ

{
4γ(T̃ )

ln(1 + σ−2)
+ 8 ln 12T

}
and ∀(x,w) ∈ X ×W, |f(x,w)− µT̃ (x,w)| ≤ β1/2(T )σT̃ (x,w).

(C.35)

By noting that the event (C.35) holds with probability at least 1 − 1/T from Lemma A.5 and Lemma C.1, we
have,

E
[
ẼW

[
max
j∈[T ]

f(x∗,Wj)

]
− ẼW

[
max
j∈[T ]

f(x̂∗,Wj)

]]
≤ 2B

T
+ E

[
1l{(C.35) is true}

{
ẼW

[
max
j∈[T ]

f(x∗,Wj)

]
− ẼW

[
max
j∈[T ]

f(x̂∗,Wj)

]}]
. (C.36)
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Furthermore, under the event (C.35), we have:

ẼW

[
max
j∈[T ]

f(x∗,Wj)

]
− ẼW

[
max
j∈[T ]

f(x̂∗,Wj)

]
≤ ẼW

[
max
j∈[T ]

{
µT̃ (x

∗,Wj) + β1/2(T )σT̃ (x
∗,Wj)

}]
− ẼW

[
max
j∈[T ]

{
µT̃ (x̂

∗,Wj)− β1/2(T )σT̃ (x̂
∗,Wj)

}]
≤ ẼW

[
max
j∈[T ]

{
µT̃ (x

∗,Wj) + β1/2(T )σT̃ (x
∗,Wj)

}]
− ẼW

[
max
j∈[T ]

µT̃ (x
∗,Wj)

]
+ ẼW

[
max
j∈[T ]

µT̃ (x̂
∗,Wj)

]
− ẼW

[
max
j∈[T ]

{
µT̃ (x̂

∗,Wj)− β1/2(T )σT̃ (x̂
∗,Wj)

}]
≤ ẼW

[
max
j∈[T ]

{
µT̃ (x

∗,Wj) + β1/2(T )σT̃ (x
∗,Wj)− µT̃ (x

∗,Wj)
}]

+ ẼW

[
max
j∈[T ]

{
µT̃ (x̂

∗,Wj)− µT̃ (x̂
∗,Wj) + β1/2(T )σT̃ (x̂

∗,Wj)
}]

= β1/2(T )

{
ẼW

[
max
j∈[T ]

σT̃ (x
∗,Wj)

]
+ ẼW

[
max
j∈[T ]

σT̃ (x̂
∗,Wj)

]}
≤ 2β1/2(T )max

x∈X
ẼW

[
max
j∈[T ]

σT̃ (x,Wj)

]
.

From the monotonicity of the posterior variance and the definition of xt, the following inequality holds for any
t ∈ [T̃ ]:

max
x∈X

ẼW

[
max
j∈[T ]

σT̃ (x,Wj)

]
≤ ẼW

[
max
j∈[T ]

σt−1(xt,Wj)

]
≤ C∥σt−1(xt,Wj)∥ψ2

√
lnT ,

where we use Lemma 2.2 in the second inequality. By taking arithmetic mean over t ∈ [T̃ ], we have,

ẼW

[
max
j∈[T ]

f(x∗,Wj)

]
− ẼW

[
max
j∈[T ]

f(x̂∗,Wj)

]
≤ 2Cβ1/2(T )

√
lnT

T̃

T̃∑
t=1

∥σt−1(xt,Wj)∥ψ2

≤ 2C

√√√√β(T )(Q− 1) lnT

T̃ lnQ

{
4γ(T̃ )

ln(1 + σ−2)
+ 8 ln 12T

}
. (C.37)

Finally, by using Lemma A.1 with Eq. (C.36), (C.37), and Lemma A.2, we have

∆(T ) ≤ 2B(1− p)(1−α)T +
2B

T
+ 2C

√√√√β(T )(Q− 1) lnT

T̃ lnQ

{
4γ(T̃ )

ln(1 + σ−2)
+ 8 ln(12T )

}
.

C.2 Heteroscedastic Model Setting

Algorithm C.4 shows a pseudo-code of the MVR-based kernel-ETC algorithm in the heteroscedastic model
setting. The differences between UCB-based and MVR-based kernel-ETC in the heteroscedastic model setting
are as follows:

• The query strategy in the exploration period (Line 7 in Algoritm B.2 and Line 7 in Algorithm C.4).

• The query point x̂∗ in the exploitation period (Lines 15-16 in Algoritm B.2 and Line 15 in Algorithm C.4).

• The noise matrix used in the GP model of f : Algoritm B.2 plugs the UCB-based noise matrix Σ̂(i) into the
GP model of f , whereas Algorithm C.4 uses the noise matrix λ2

fIi with fixed variance parameter λf > 0.
This modification is needed to guarantee that the query strategy of Algorithm C.4 is non-adaptive.
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Algorithm C.4 The MVR-based kernel-ETC algorithm for heteroscedastic model setting.

Input: Kernel kf , kρ, exploration ratio α ∈ (0, 1], variance parameters λf , λρ > 0, number of repetition m ≥ 2,
lower and upper bound of ρ(·): ρ, ρ, width of confidence bounds βf (T ), βρ(T ).

1: T̃ ← ⌈α(T − 1)⌉.
2: t← 1.
3: M ← ⌊T̃ /m⌋.
4: Initialize GP prior of f(·) and ρ(·).
5: θT ← ẼZ

[
maxt∈[T ]Zt

]
.

6: for i = 1 to M do
7: x(i) ← argmaxx∈X

{
β
1/2
f (T )σ

(i−1)
f (x | λ2

fIi−1) + β
1/2
ρ (T )θTσ

(i−1)
ρ (x)

}
.

8: for j = 1, . . . ,m do
9: xt ← x(i).

10: Observe yt = f(xt) + ηt(xt).
11: t← t+ 1.
12: end for
13: Update GP posterior of f(·) and ρ(·).
14: end for
15: x̂∗ ← argmaxi∈[M ]

{
µ
(M)
f (x) + θTµ

(M)
ρ (x)

}
.

16: for t = mM + 1 to T do
17: xt ← x̂∗.
18: Observe yt.
19: end for

C.2.1 Regret Upper Bound of Algorithm C.4

We show the regret upper bound of Algorithm C.4 in the following Theorem C.1.

Theorem C.1. Fix α ∈ (0, 1], m ≥ 2, X ⊂ Rd with |X | < ∞, f ∈ H(kf ) with ∥f∥H(kf ) ≤ Bf , and ρ ∈ H(kρ)
with ∥ρ∥H(kρ) ≤ Bρ. Suppose ∀x ∈ X , ρ(x) ∈ [ρ, ρ] holds for some ρ and ρ with ρ ≥ ρ > 0. Then, when running

Algorithm C.4 with β
1/2
f (T ) = ρm−1λ−1

f

√
2 ln(4|X |T ) + Bf and β

1/2
ρ (T ) = cκ(m)ρλ−1

ρ

√
2 ln(4|X |T ) + Bρ, the

following upper bound of extreme regret holds:

∆(T ) ≤ (2B + ρ
√
2 lnT )

T
+

√
8mβf (T )

α(T −m− 1) ln(1 + λ−2
f )

γf

(
αT + 1

m

)

+

√
16mβρ (T ) lnT

α(T −m− 1) ln(1 + λ−2
ρ )

γρ

(
αT + 1

m

)
+ αρ

(√
2 lnT +

1

2π
+

1

2
√
2π lnT

)
+

ρ

2(1−α)T−2
,

(C.38)

where κ(m) = (m−1)1/4Γ((m−1)/2)/Γ(m/2), and c > 0 is an absolute constant. Especially, by setting α = T τ/T
with τ ∈ (0, 1), then

∆(T ) = O
(
B

T
+

√
mβf (T τ/m)γf (T τ/m)

(T τ −m) ln(1 +mρ−2)
+

ρT τ
√
lnT

T
+

√
mβρ(T τ/m)γρ(T τ/m) lnT

(T τ −m) ln(1 +mc−2κ(m)−2ρ−2)

)
.

To prove Theorem C.1, we first describe the following Lemma C.2 and Lemma C.3, which give tight confidence
bounds of ρ and f under a non-adaptive learner’s strategy, respectively.

Lemma C.2. Fix any δ ∈ (0, 1), m ≥ 2, M ∈ N+, and ρ ∈ H(kρ). Suppose ∥ρ∥H(kρ) ≤ Bρ and ∀x ∈ X , ρ(x) ∈
[ρ, ρ]. Furthermore, assume the learner’s decisions (xt)t∈N+

are independent of (ηt)t∈N+
. Then, the following

statement holds with probability at least 1− δ:

∀x ∈ X , |ρ(x)− µ(M)
ρ (x)| ≤

(
Bρ +

cκ(m)ρ

λρ

√
2 ln

2

δ

)
σ(M)
ρ (x), (C.39)

where κ(m) = (m− 1)1/4Γ((m− 1)/2)/Γ(m/2), and c > 0 is an absolute constant.
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Lemma C.3. Fix any δ ∈ (0, 1), m ≥ 2, M ∈ N+, f ∈ H(kf ) with ∥f∥H(kf ) ≤ Bf , and ρ(·) with ∥ρ∥∞ ≤ ρ.
Suppose that the learner’s decisions (xt)t∈N+ are independent of (ηt)t∈N+ . Then, the following statement holds
with probability at least 1− δ:

∀x ∈ X , |f(x)− µ
(M)
f (x | λ2

fIM )| ≤
(
Bf +

ρ

mλf

√
2 ln

2

δ

)
σ
(M)
f (x | λ2

fIM ).

It should be noted that the error terms m̂(i) − f(x(i)) and ŝ(i) − ρ(x(i)), which are included into GP model of f
and ρ, are ρ/m and cκ(m)ρ-sub-Gaussian random variables, respectively (Lemma B.3). Thus, Lemma C.2 and
Lemma C.3 are obtained by direct applications of Theorem 1 in Vakili et al. (2021).

Next, similar to Lemma B.7, the following Lemma C.4 gives the relation between the summations of posterior
variances and the MIGs for our MVR-based algorithm.

Lemma C.4. For any m ≥ 2 and M ∈ N+, the following holds:

M∑
i=1

σ
(i−1)
f (x(i) | λ2

fIi) ≤
√

2Mγf (M)

ln(1 + λ−2
f )

and

M∑
i=1

σ(i−1)
ρ (x(i)) ≤

√
2Mγρ(M)

ln(1 + λ−2
ρ )

.

Lemma B.7 uses Σ̂(i) as the noise matrix for GP-model of f , whereas Lemma C.4 uses λ2
fIi, which is the same as

standard homoscedastic GP-model with fixed noise variance parameter λ2
f . Thus, Lemma C.4 is simply obtained

from Lemma 5.3 in Srinivas et al. (2010).

We describe the proof of Theorem C.1 below.

Proof of Theorem C.1. From Lemma C.3 and Lemma C.2, the following event (C.40) holds with probability at
least 1− 1/T :

∀x ∈ X , |f(x)− µ
(M)
f (x | λ2

fIM )| ≤ β
1/2
f (T )σ

(M)
f (x | λ2

fIM ) and |ρ(x)− µ(M)
ρ (x)| ≤ β1/2

ρ (T )σ(M)
ρ (x) (C.40)

where M = ⌊T̃ /m⌋ with T̃ = ⌈α(T − 1)⌉. When the event (C.40) holds, we have,

ẼZ

[
max
t∈[T ]

{f(x∗) + ρ(x∗)Zt}
]
− ẼZ

[
max
t∈[T ]

{f(x̂∗) + ρ(x̂∗)Zt}
]

= f(x∗) + ρ(x∗)ẼZ

[
max
t∈[T ]

Zt

]
− f(x̂∗)− ρ(x̂∗)ẼZ

[
max
t∈[T ]

Zt

]
≤ µ

(M)
f (x∗ | λ2

fIM ) + β
1/2
f (T )σ

(M)
f (x∗ | λ2

fIM )− µ
(M)
f (x̂∗ | λ2

fIM ) + β
1/2
f (T )σ(M)(x̂∗ | λ2

fIM )

+
{
µ(M)
ρ (x∗) + β1/2

ρ (T )σ(M)
ρ (x∗)

}
θT −

{
µ(M)
ρ (x̂∗)− β1/2

ρ (T )σ(M)
ρ (x̂∗)

}
θT

≤ β
1/2
f (T )

{
σ
(M)
f (x∗ | λ2

fIM ) + σ
(M)
f (x̂∗ | λ2

fIM )
}
+ β1/2

ρ (T )
{
σ(M)
ρ (x∗) + σ(M)

ρ (x̂∗)
}
θT

≤ 2β
1/2
f (T )max

x∈X
σ
(M)
f (x | λ2

fIM ) + 2θTβ
1/2
ρ (T )max

x∈X
σ(M)
ρ (x).

From the definition of x(i) and monotonicity of posterior variances,

β
1/2
f (T )max

x∈X
σ
(M)
f (x | λ2

fIM ) + θTβ
1/2
ρ (T )max

x∈X
σ(M)
ρ (x)

≤ β
1/2
f (T )σ

(i−1)
f (x(i) | λ2

fIi−1) + θTβ
1/2
ρ (T )σ(i−1)

ρ (x(i))

for any i ∈ [M ]. Thus, we have,

ẼZ

[
max
t∈[T ]

{f(x∗) + ρ(x∗)Zt}
]
− ẼZ

[
max
t∈[T ]

{f(x̂∗) + ρ(x̂∗)Zt}
]

≤
2β

1/2
f (T )

M

M∑
i=1

σ
(i−1)
f (x(i) | λ2

fIi−1) +
2θTβ

1/2
ρ (T )

M

M∑
i=1

σ(i−1)
ρ (x(i))

≤
√

8βf (T )γf (M)

M ln(1 + λ−2
f )

+

√
16βρ(T )γρ(M) lnT

M ln(1 + λ−2
ρ )

. (C.41)
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Algorithm D.5 The computation of ẼW [maxj∈[T ] g(x,Wj)].

Input: Input x, function g, total step size T , probability mass function p(w).
Output: ẼW [maxj∈[T ] g(x,Wj)].
1: Y ← {g(x,w) | w ∈ W}.
2: Calculate the probability mass function p̃ : Y → [0, 1] of g(x,W1) as p̃(y) =

∑
w∈W;g(x,w)=y p(w).

3: Sort and index the elements of Y as y1, . . . , y|Y| by descending order.
4: gmax ← 0, ptotal ← 0.
5: for i = 1 to |Y| − 1 do

6: pmax ← 1−
[∑|Y|

l=i+1 p̃(yl)
]T
− ptotal.

7: gmax ← gmax + pmaxyi.
8: ptotal ← ptotal + pmax.
9: end for

10: gmax ← gmax + (1− ptotal)y|Y|.
11: return gmax.

In Eq. (C.41), we use Lemma C.4 and the upper bound of the expectation for T standard normal random
variables: θT ≤

√
2 lnT . Furthermore, due to α(T −m− 1)/m ≤M ≤ (αT + 1)/m,

ẼZ

[
max
t∈[T ]

{f(x∗) + ρ(x∗)Zt}
]
− ẼZ

[
max
t∈[T ]

{f(x̂∗) + ρ(x̂∗)Zt}
]

≤

√√√√ 8mβf (T )γf (
αT+1
m )

α(T −m− 1) ln(1 + λ−2
f )

+

√
16mβρ(T )γρ(

αT+1
m ) lnT

α(T −m− 1) ln(1 + λ−2
ρ )

(C.42)

By noting the event (C.40) holds with probability at least 1− 1/T , we have,

E
[
ẼZ

[
max
t∈[T ]

{f(x∗) + ρ(x∗)Zt}
]
− ẼZ

[
max
t∈[T ]

{f(x̂∗) + ρ(x̂∗)Zt}
]]

≤ 2Bf + ρ
√
2 lnT

T
+ E

[
1l {(C.40) is true}

{
ẼZ

[
max
t∈[T ]

{f(x∗) + ρ(x∗)Zt}
]
− ẼZ

[
max
t∈[T ]

{f(x̂∗) + ρ(x̂∗)Zt}
]}]
(C.43)

≤ 2Bf + ρ
√
2 lnT

T
+

√√√√ 8mβf (T )γf (
αT+1
m )

α(T −m− 1) ln(1 + λ−2
f )

+

√
16mβρ(T )γρ(

αT+1
m ) lnT

α(T −m− 1) ln(1 + λ−2
ρ )

. (C.44)

where:

• Eq. (C.43) follows from the fact that ∥f∥∞ ≤ ∥f∥H(k) ≤ Bf , ∥ρ∥∞ ≤ ρ, and θT ≤
√
2 lnT .

• Eq. (C.44) follows from Eq. (C.42).

By combining Lemma B.4 with Eq. (C.44) and Lemma B.9, Eq. (C.38) is obtained.

D COMPUTATIONAL DETAILS

D.1 Computation of the Maximum in Environmental Model Setting

Our kernel-ETC algorithm for environmental model setting requires us to compute the maximum of the expec-
tation, whose form is ẼW [maxj∈[T ] g(x,Wj)] for some function g. For example, ẼW [maxj∈[T ] ucbt(x,Wj)] and

ẼW [maxj∈[T ] lcbT̃ (x,Wj)] are needed to compute Line 3 and Line 6 in Algorithm 1, respectively. We can obtain

ẼW [maxj∈[T ] g(x,Wj)] exactly by calculating the probability mass function of maxj∈[T ] g(x,Wj). We show the
details in Algorithm D.5.
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D.2 Computation of θT in Heteroscedastic Model Setting

To our knowledge, the way to compute θT := EZ [maxj∈[T ] Zt] exactly for any T ∈ N+ is unknown. Thus, we
need to resort to some approximation method to estimate θT . In our experiments, we adopt the Monte-Carlo
estimate of θT with 1000 samples. It should be noted that the estimation of θT is only required at the beginning
of our algorithm only once, so the computational time of each step is not affected.

E DETAILS OF EXPERIMENTS

E.1 Methods

We describe the details of the methods that are used in numerical experiments.

MVABO (Iwazaki et al., 2021a) : As described in Sec. 5, we use the modified version of the original algo-
rithm. Original MVABO is formulated to maximize scalarized objective function G(x) := bEw[f(x,w)] −
(1− b)

√
Vw[f(x,w)], where b is a parameter that controls the balance between the mean and variance. To

adapt our risk-seeking setting, we consider the modified objective function G̃(x) := bEw[f(x,w)] + (1 −
b)
√
Vw[f(x,w)]. Original MVABO chooses xt as xt ∈ argmaxx∈X bucb(e)(x) − (1 − b)

√
ucb(v)(x), where

ucb(e)(x) and ucb(v)(x) are UCB of ẼW [f(x,W1)] and ṼW [f(x,W1)]. See Lemma 3.1 in Iwazaki et al.

(2021a) for the precise definitions of ucb(e)(x) and ucb(v)(x). We extend the query strategy of the original
MVABO to the maximization strategy of the modified objective function G̃ by flipping the sign before the

variance. Namely, we choose xt as xt ∈ argmaxx∈X bucb(e)(x) + (1 − b)
√
ucb(v)(x). We set b = 1.0 and

b = 0.0 in Mean-RAHBO and Variance-RAHBO, respectively. Finally, we set the parameter βt, which specifies

the width of the confidence interval, as β
1/2
t = 3.

RAHBO (Makarova et al., 2021) : As with the MVABO, we modify the original query strategy xt ∈
argmaxx∈Xucbft (x)− blcbvart (x) to xt ∈ argmaxx∈Xucbft (x)+ bucbvart (x). The function ucbft (x), ucb

var
t (x),

and lcbvart (x) are defined as the UCB of f , the UCB of ρ2, and the LCB of ρ2, respectively. See Makarova
et al. (2021) for the precise definitions. The above modifications of the query strategy correspond to con-
sidering the modified objective function M̃V(x) := f(x) + bρ2(x) of RAHBO, which is different from the
original objective function MV(x) = f(x) − bρ2(x). In Mean-RAHBO, we set b = 0. In Variance-RAHBO,
we only focus on the variance term and choose xt as xt ∈ argmaxx∈Xucbvart (x). We set βt and βvar

t , as
βt = 3 and βvar

t = 3, respectively. These parameters specify the width of the confidence intervals of f and

ρ2 and are required to calculate ucbft (x), ucb
var
t (x), and lcbvart (x), respectively. Finally, we set the variance

parameter of the GP model of ρ2 as 2ρ4/(m− 1) by following the discussions of Appendix A.2 in Makarova
et al. (2021).

GP-UCB (Srinivas et al., 2010) : We adopt the standard GP-UCB in the heteroscedastic model settings.
As described in Sec. 5, we set the noise parameter of GP as ρ2. Furthermore, we set the confidence width
parameter β1/2(t) as β1/2(t) = 3.

Kernel-ETC and MVR-based kernel-ETC : In environmental model settings, we set β1/2(t) as β1/2(t) = 3.

Similarly, in heteroscedastic model setting, we set β
1/2
f (t) and β

1/2
ρ (t) as β

1/2
f (t) = 3 and β

1/2
ρ (t) = 3,

respectively. Moreover, we set the λρ = κ(m)ρ/4. Furthermore, in standard kernel-ETC for both settings,
we define x̂∗ as the same as in the MVR-based algorithms. That is, we define x̂∗ as in Line 6 of Algorithm C.3
and Line 15 of Algorithm C.4 in environmental and heteroscedastic model settings, respectively. In practice,
such modifications are also made in the estimated solutions of existing UCB-based algorithms to improve
the performance (Nguyen et al., 2021b).

Finally, except for the hyperparameter tuning experiment of CNN, we set ρ and ρ as ρ = maxx∈X ρ(x) and
ρ = minx∈X ρ(x), respectively. In the CNN tuning experiments, we first select 100 sets of hyperparameters over

X uniformly at random. Then, we compute the unbiased standard deviation ŝ(i) with m = 3 by training the
CNN in such 100 sets of hyperparameters, and set ρ and ρ as the maximum and minimum of the computed ŝ(i),
respectively.
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Figure E.4: The visualization of the synthetic function used in the heteroscedastic model setting. In the top
figure, the blue line shows f , and the widths of the blue shaded areas are defined as 2ρ(x). From the bottom figure,
we can see that the maximum of f(x), ρ(x), and E[maxt∈[100]{f(x) + ηt(x)}] are different; thus, Mean-RAHBO,
Variance-RAHBO, and kernel-ETC are expected to show different behaviors in this problem.

.

E.2 Details of Objective Functions

E.2.1 Synthetic Benchmark Functions

The synthetic benchmark function experiments in the environmental model setting are conducted with the
following function fenv : [0, 1]2 → R:

fenv(x,w) = 0.75xw15x + 0.5max{1− x, 0.5}+ 0.05 sin(10w + x)−min{x, 1− x} sin(9w)− 0.25.

We set the probability mass p(w) as pGaussian := ϕ(w)/
∑
w∈W ϕ(w) in this experiment. The shapes of f are

depicted in Fig. 1.

Furthermore, we create the synthetic mean function fhetero : [0, 1]→ R and the variance function ρ2hetero : [0, 1]→
R+ for the heteroscedastic model setting respectively as follows:

fhetero(x) = 2.5min{x− 0.4, 0.0}+ 0.5 sin(10x) + 2.25(1− x) + x cos(20x)− 1.0,

ρ2hetero(x) =

(
10−4 +

0.4

|10(0.62− x)|2 + 2.5
+

1

|30(1− x)|2 + 2.0

)2

.

Figure E.4 shows the visualization of fhetero and ρ2hetero.

In synthetic function experiments, we set the kernel hyperparameters as ℓ = 0.2 and σ2
ker = 1.0 for both settings.

E.2.2 2D-RKHS Test Functions

We construct the test function as with the experiments in Chowdhury and Gopalan (2017). We first make 50
pairs of training inputs and function values. Training inputs are chosen uniformly at random in two-dimensional
unit hypercube [0, 1]2, and their corresponding function values are generated from GP. After that, we fit the GP
model by using these 50 training input and function value pairs and then use the GP posterior mean as a test
function. Moreover, in generating the test function of ρ in heteroscedastic variance model setting, we shift the
function values by adding ρ − ρmin if ρmin < ρ, where ρmin is the minimum of the generated test function, and

ρ = 10−4. To generate the test functions, we adopt the SE kernel with σ2
ker = 1 and ℓ = 0.2.
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E.2.3 Simulation Function of Polymer Synthesis

The synthetic benchmark function is based on real data from polymer syntehsis. The objective function fsim :
X ×W → R has a controllable parameter x ∈ X , an uncontrollable parameter w ∈ W, and one output value.
We define the controllable and uncontrollable parameter sets as X = {(i− 1)/19 | i ∈ [20]} and W = {(i− 1)/9 |
i ∈ [10]}, respectively. The probability mass p(w) is assumed to be uniform, i.e., p(w) = 1/10 for all w ∈ W. We
use the following modeling for the function fsim:

fsim(x,w) =
Tg(x,w)− 400

15
, (E.45)

Tg(x,w) = Tg,A(45w + 5) · (1− x) + 410x+ q(45w + 5) · (1− x)x, (E.46)

Tg,A(z) = 374.374 + 0.815146 z − 0.0215356 z2 + 0.000269113 z3, (E.47)

q(z) = 4.94286 + 3.71676 z − 0.0906406 z2 + 0.000778145 z3. (E.48)

The problem is to maximize fsim in the environmental model setting. In this experiment, we use σ2
ker = 1 and

ℓ = 0.2.

The form of fsim is obtained from the following considerations. We consider a hypothetical experiment involving
the blending of two ingredients A and B whose respective fractions are given by wA and wB . It is assumed that
ingredient A is further made up of its subcomponents. One subcomponent is assumed to be important since it
affects a certain target property of the final mixture, which we wish to optimize. We will call the fraction of this
subcomponent within ingredient A to be ws. We assume that the subcomponent fraction ws has an uncertainty
that arises from an uncontrollable parameter in the manufacturing process. Since the weights must sum to unity,
i.e., wA + wB = 1, only one of them is truly an independent variable. Without loss of generality, we choose
wB as the independent variable. The goal of this experiment is to maximize the objective function fsim that
models a certain property of the final mixture. We use the data from Belabed et al. (2012) which reports on
the glass transition temperature Tg in the blends of poly(4-vinylphenol-co-methyl methacrylate) (PSMA) and
poly(styrene-co-4-vinylpyridine) (PS4VP). The Tg values are reported for various fractions of PSMA and PS4VP
and for different values of the subcomponent of PS4VP, namely the fraction of 4VP, w4VP. In our numerical
experiment, we make the identification of wB = wPSMA and ws = w4VP. The objective function to maximize is
Tg of the final blend. We follow the paper’s use of the Kwei equation (Kwei, 1984) to model Tg,

Tg =
wATg,A + kwBTg,B

wA + kwB
+ qwAwB . (E.49)

The formula takes into account the intermolecular interactions which make the Tg model less trivial compared
to the classical Fox equation. The parameters k = 1 and Tg,B = 410K are fixed using data. The subcomponent
fraction ws affects both the parameters q and Tg,A. We perform a fit to the data using a third-degree polynomial
function to obtain the expressions for q and Tg,A in terms of ws. The objective function is identified as fsim :=
(Tg−400)/15 by rescaling the output. After substituting x := wB and w := (ws−5)/45 for input normalization,
we obtain Eqs. (E.45)–(E.48).

E.2.4 Hyperparameter Tuning of CNN

We build a 3-layer CNN, whose first and third layers are convolution layers with 8 channels, and the second
layer is the 2× 2 max-pooling layer. The input domain X is defined as X = Xlr ×Xbs ×Xepoch, where Xlr, Xbs,
and Xepoch are the domain of learning rate, batch size, and epoch, respectively. We define Xlr, Xbs, and Xepoch

respectively as

Xlr = {10−5+4.5 x−1
19 | x ∈ [20]},

Xbs = {⌊27(x−1)/19⌋ | x ∈ [20]},
Xepoch = [20].

When running the experiments, we transform the original validation error in log scale and multiply the log-scaled
validation error by −1. Then, we define this negative log-scaled validation error as the reward yt. To simplify the
experiments, we use randomly chosen 5000 (2500) training (validation) data from the original 50000 CIFAR-10
data.

Finally, we set σ2
ker and l of kf as σ2

ker = 1.0 and ℓ = 0.5, respectively. For kρ, we set σ2
ker = 0.1 and ℓ = 0.5.
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Table E.2: The average extreme regret of the experiments with synthetic benchmark function in the environ-
mental model setting. The numbers in parentheses correspond to one standard error.

T=50 T=100 T=150 T=200
Random 0.341 (0.024) 0.276 (0.021) 0.197 (0.018) 0.121 (0.013)

Mean-MVABO 0.299 (0.030) 0.317 (0.029) 0.318 (0.029) 0.318 (0.029)
Variance-MVABO 0.240 (0.028) 0.169 (0.022) 0.162 (0.021) 0.162 (0.021)

kernel-ETC (α = 0.75) 0.246 (0.026) 0.082 (0.017) 0.021 (0.009) 0.000 (0.000)
kernel-ETC (α = 0.95) 0.184 (0.025) 0.039 (0.013) 0.000 (0.000) 0.000 (0.000)

MVR-kernel-ETC (α = 0.75) 0.234 (0.026) 0.131 (0.019) 0.029 (0.010) 0.000 (0.000)
MVR-kernel-ETC (α = 0.95) 0.209 (0.026) 0.082 (0.017) 0.003 (0.003) 0.000 (0.000)

Table E.3: The average extreme regret of the RKHS test function experiments with puniform in the environmental
model setting.

T=50 T=100 T=150 T=200
Random 0.198 (0.043) 0.096 (0.027) 0.061 (0.018) 0.039 (0.012)

Mean-MVABO 0.156 (0.032) 0.127 (0.025) 0.124 (0.024) 0.123 (0.024)
Variance-MVABO 0.130 (0.036) 0.055 (0.021) 0.051 (0.020) 0.051 (0.020)

kernel-ETC (α = 0.75) 0.065 (0.033) 0.001 (0.001) 0.000 (0.001) 0.000 (0.000)
kernel-ETC (α = 0.95) 0.061 (0.030) 0.002 (0.004) 0.000 (0.001) 0.000 (0.000)

MVR-kernel-ETC (α = 0.75) 0.103 (0.034) 0.014 (0.014) 0.006 (0.008) 0.001 (0.001)
MVR-kernel-ETC (α = 0.95) 0.128 (0.038) 0.048 (0.023) 0.020 (0.014) 0.014 (0.013)

E.3 Details of Experimental Results

We give the details of the experimental results, including the standard errors. As for the environmental model
settings experiments, Tabs. E.2, E.3, E.4, and E.5 show the results of the synthetic benchmark function, RKHS
test function with puniform, RKHS test function with pGaussian, and polymer synthesis simulation function, re-
spectively. Furthermore, Tabs. E.6 and E.7 show the experiment results of the synthetic benchmark function and
RKHS test functions in the heteroscedastic model setting, respectively.

F SENSITIVITY ANALYSIS

By using the synthetic function used in the experiments of Sec. 5, we analyze the performance sensitivity of
kernel-ETC with respect to the parameters α and τ . We conduct experiments of kernel-ETC by setting α and
τ as α, τ = {0.70, 0.75, 0.80, 0.85, 0.90, 0.95}. Other settings are the same as the experiments with synthetic
benchmark functions in Sec. 5. Figures F.5 and F.6 show the results in the environmental and heteroscedastic
model setting, respectively. In the environmental model setting, we can confirm that our algorithms work well in
various parameter settings. On the other hand, in the heteroscedastic setting, we find that values of τ between
0.8 and 0.9 work well, whereas values of τ = 0.70, 0.75, 0.95 have worse performance than τ = 0.8, 0.85, 0.90 in
both kernel-ETC and MVR-based variants.
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Figure F.5: The average extreme regrets with kernel-ETC (top) and MVR-based kernel-ETC (top) in the envi-
ronmental model setting.
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Figure F.6: The average extreme regrets with kernel-ETC (top) and MVR-based kernel-ETC (top) in the het-
eroscedastic model setting.
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Table E.4: The average extreme regret of the RKHS test function experiments with pGauss in the environmental
model setting.

T=50 T=100 T=150 T=200
Random 0.205 (0.043) 0.104 (0.027) 0.063 (0.018) 0.042 (0.014)

Mean-MVABO 0.161 (0.036) 0.129 (0.028) 0.128 (0.028) 0.127 (0.028)
Variance-MVABO 0.148 (0.038) 0.068 (0.024) 0.061 (0.023) 0.058 (0.023)

kernel-ETC (α = 0.75) 0.042 (0.024) 0.001 (0.001) 0.000 (0.000) 0.000 (0.000)
kernel-ETC (α = 0.95) 0.045 (0.023) 0.001 (0.001) 0.000 (0.000) 0.000 (0.000)

MVR-kernel-ETC (α = 0.75) 0.105 (0.035) 0.023 (0.020) 0.003 (0.004) 0.001 (0.001)
MVR-kernel-ETC (α = 0.95) 0.152 (0.043) 0.062 (0.029) 0.028 (0.018) 0.019 (0.016)

Table E.5: The average extreme regret of the experiments with polymer synthesis simulation function in the
environmental model setting.

T=25 T=50 T=75 T=100
Random 0.068 (0.008) 0.043 (0.005) 0.028 (0.004) 0.017 (0.003)

Mean-MVABO 0.061 (0.006) 0.028 (0.004) 0.014 (0.002) 0.012 (0.001)
Variance-MVABO 0.094 (0.008) 0.049 (0.005) 0.030 (0.004) 0.023 (0.003)

kernel-ETC (α = 0.75) 0.028 (0.005) 0.016 (0.003) 0.005 (0.001) 0.001 (0.000)
kernel-ETC (α = 0.95) 0.043 (0.006) 0.020 (0.003) 0.006 (0.001) 0.002 (0.001)

MVR-kernel-ETC (α = 0.75) 0.051 (0.007) 0.026 (0.004) 0.010 (0.003) 0.007 (0.002)
MVR-kernel-ETC (α = 0.95) 0.063 (0.007) 0.038 (0.005) 0.021 (0.004) 0.013 (0.003)

Table E.6: The average extreme regret of the experiments with synthetic benchmark function in the heteroscedas-
tic model setting.

T=100 T=200 T=300 T=400
Random 0.157 (0.005) 0.173 (0.006) 0.174 (0.006) 0.175 (0.006)
GP-UCB 0.142 (0.003) 0.165 (0.003) 0.181 (0.003) 0.188 (0.003)

Mean-RAHBO 0.141 (0.005) 0.162 (0.005) 0.168 (0.005) 0.177 (0.005)
Variance-RAHBO 0.165 (0.005) 0.183 (0.005) 0.189 (0.006) 0.178 (0.009)

kernel-ETC (τ = 0.75) 0.121 (0.007) 0.091 (0.009) 0.068 (0.007) 0.045 (0.008)
kernel-ETC (τ = 0.95) 0.104 (0.006) 0.081 (0.007) 0.078 (0.007) 0.059 (0.007)

MVR-kernel-ETC (τ = 0.75) 0.172 (0.005) 0.145 (0.009) 0.130 (0.009) 0.115 (0.010)
MVR-kernel-ETC (τ = 0.95) 0.141 (0.005) 0.122 (0.008) 0.103 (0.008) 0.089 (0.008)

Table E.7: The average extreme regret of the experiments with RKHS test function in the heteroscedastic model
setting.

T=100 T=200 T=300 T=400 T=500
Random 4.088 (0.365) 4.203 (0.331) 4.201 (0.324) 4.003 (0.332) 3.942 (0.328)
GP-UCB 3.869 (0.370) 3.861 (0.318) 3.858 (0.292) 3.758 (0.310) 3.701 (0.331)

Mean-RAHBO 3.661 (0.353) 3.783 (0.351) 3.950 (0.349) 3.953 (0.340) 3.927 (0.370)
Variance-RAHBO 5.004 (0.415) 5.280 (0.382) 5.443 (0.424) 5.444 (0.456) 5.390 (0.441)

kernel-ETC (τ = 0.75) 3.777 (0.416) 3.520 (0.367) 3.136 (0.400) 2.788 (0.458) 2.305 (0.437)
kernel-ETC (τ = 0.95) 3.183 (0.399) 2.320 (0.310) 2.320 (0.336) 1.631 (0.357) 1.346 (0.387)

MVR-kernel-ETC (τ = 0.75) 3.858 (0.403) 3.456 (0.413) 3.166 (0.393) 2.993 (0.441) 2.609 (0.484)
MVR-kernel-ETC (τ = 0.95) 3.643 (0.372) 3.277 (0.353) 3.114 (0.339) 2.673 (0.410) 2.520 (0.394)
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