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Abstract

Variational autoencoders (VAEs) face a noto-
rious problem wherein the variational poste-
rior often aligns closely with the prior, a phe-
nomenon known as posterior collapse, which
hinders the quality of representation learn-
ing. To mitigate this problem, an adjustable
hyperparameter β and a strategy for anneal-
ing this parameter, called KL annealing, are
proposed. This study presents a theoretical
analysis of the learning dynamics in a min-
imal VAE. It is rigorously proved that the
dynamics converge to a deterministic pro-
cess within the limit of large input dimen-
sions, thereby enabling a detailed dynami-
cal analysis of the generalization error. Fur-
thermore, the analysis shows that the VAE
initially learns entangled representations and
gradually acquires disentangled representa-
tions. A fixed-point analysis of the determin-
istic process reveals that when β exceeds a
certain threshold, posterior collapse becomes
inevitable regardless of the learning period.
Additionally, the superfluous latent variables
for the data-generative factors lead to overfit-
ting of the background noise; this adversely
affects both generalization and learning con-
vergence. The analysis further unveiled that
appropriately tuned KL annealing can accel-
erate convergence.
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1 INTRODUCTION

Deep latent variable models are generative models that
convert latent variables generated from a prior distri-
bution into samples that closely resemble data through
a neural network. Variational autoencoders (VAEs)
(Kingma and Welling, 2013; Rezende et al., 2014), one
of the deep latent variable models, have been applied
in various fields such as image generation (Child, 2020;
Vahdat and Kautz, 2020), text generation (Bowman
et al., 2015), music generation (Roberts et al., 2018),
clustering (Jiang et al., 2016), dimensionality reduc-
tion (Akkari et al., 2022), data augmentation (Norouzi
et al., 2020), and anomaly detection (An and Cho,
2015; Park et al., 2022). The objective function of the
VAE can be decomposed into the reconstruction er-
ror (distortion) and KL divergence term (rate), which
have different roles and a trade-off relationship. In
practice, VAEs are generally trained with the β-VAE
objective (Higgins et al., 2016), which balances the
reconstruction error and KL divergence term by intro-
ducing a weight parameter β.

In addition to data generation tasks, β-VAEs are state-
of-the-art models for representation learning. In par-
ticular, β-VAEs have gained attention owing to their
capability for obtaining representations in which a sin-
gle latent variable is sensitive to changes in a single
generative factor and is relatively invariant to changes
in other factors (Higgins et al., 2016). This property
of representations is called “disentanglement”. For ex-
ample, a disentangled representation of 3D objects is
sensitive to a single independent data-generative fac-
tor, such as object identity, position, scale, and color.
In β-VAE, the degree of disentanglement can be con-
trolled by tuning the weight β. However, this β-tuning
causes a notorious problem in which the variational
posterior qϕ(z|x) tends to align with the prior p(z)
during learning, thereby hindering the quality of rep-
resentation learning. This phenomenon is commonly
referred to as “posterior collapse”.
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Although several studies have theoretically analyzed
the relationship between β tuning, disentanglement,
and posterior collapse, the understanding remains lim-
ited. In particular, the learning dynamics of β-VAEs
have not been fully explored thus far. On the other
hand, several attempts have been made to mitigate the
posterior collapse (Yang et al., 2017; Dieng et al., 2019;
Zhao et al., 2017; Kim et al., 2018). Among these, the
simplest strategy is monotonic KL annealing, in which
the weight β is scheduled to gradually increase during
training (Bowman et al., 2015). Although this heuris-
tic method is recognized for its effectiveness, it cannot
be guaranteed owing to its limited theoretical under-
standing.

This study theoretically analyzes a minimal model
known as a linear VAE (Lucas et al., 2019), which
captures the essence of β-VAEs. Our results elucidate
the formation process of disentangled features, the re-
lationship between β and the posterior collapse, and
the effect of superfluous latent variables on the gener-
ative factors. In addition, we reveal the influence of
KL annealing on the generalization performance.

Contributions. This study develops a theory of
learning dynamics for VAEs. Specifically, this study
rigorously proved that the one-pass gradient descent
dynamics (SGD) converges to a deterministic pro-
cess characterized by ordinary differential equations
(ODEs) within the limit of large input dimensions,
thereby providing the asymptotically exact dynamics
of the generalization error. Consequently, the rela-
tionships between the generalization error, the poste-
rior collapse, the disentanglement, and β are revealed
in two scenarios: the “model-matched case” wherein
the number of generative factors in the training data
matches the dimension of the latent space, and the
“model-mismatched case” wherein the latent dimen-
sion exceeds the number of the generative factors. The
main contributions of this study are as follows.

• An asymptotic exact analysis of the learning dy-
namics by the one-pass SGD is derived. The re-
sults demonstrate that the learning dynamics con-
verge to a deterministic process characterized by
ODEs within the limit of large input dimensions.

• The stability analysis of the fixed points of the
limiting ODEs indicates that when β exceeds a
certain threshold, posterior collapse is inevitable
regardless of the learning time.

• Theoretical analysis of the well-known replica
method in statistical mechanics and the dynam-
ics of SGD are shown to have a complementary
relationship. Specifically, a steady state of the
SGD dynamics coincides exactly with the global

optimum derived by the replica method, indicat-
ing the reachability to the global optimum using
SGD.

• The numerical integration of the ODEs uncovers
a phenomenon, wherein the VAE initially learns
entangled representations and gradually acquires
those that are disentangled. The stability of fixed
points indicates that disentangled representations
can be achieved for any β.

• The analysis of the model-mismatched case
demonstrates that the superfluous latent variable
overfits the background noise with a small β, de-
grading generalization. The stability of the fixed
points reveals that while an optimal generaliza-
tion is achieved for the same β value in both the
model-matched and model-mismatched cases, the
convergence time for the model-mismatched case
is significantly longer.

• Appropriately tuned KL annealing accelerates the
convergence of learning. Additionally, the stabil-
ity analysis provides a specific annealing rate be-
yond which the convergence decelerates.

1.1 Preliminaries

Here, we summarize the notations. The expression
∥ · ∥F denotes the Frobenius norm. IN ∈ RN×N de-
notes an N ×N identity matrix, whereas 0N denotes
the vector (0, . . . , 0)⊤ ∈ RN . DKL[·∥·] denotes the
Kullback–Leibler (KL) divergence.

2 BACKGROUND

2.1 Variational Autoencoders

The VAE (Kingma and Welling, 2013) is a latent gen-
erative model. Let D = {xµ}Pµ=1 with xµ ∈ RD be
the training data, and pD(x) indicate the empirical
distribution of the training dataset. In practical ap-
plications, VAEs are typically trained using the β-VAE
objective (Higgins et al., 2016) defined by

EpD

[
Eqϕ [− log pθ(x|z)] + βDKL[qϕ(z|x)∥p(z)]

]
=∆ EpD [l(θ, ϕ;x, β)], (1)

where p(z) is a prior for the latent variables, and the
parameter β ≥ 0 is introduced to control the trade-
off between the first and second terms in Eq. (1).
Distributions pθ(x|z) characterized by parameters θ
and qϕ(z|x) by ϕ are commonly referred to as the de-
coder and encoder, respectively. Subsequently, VAEs
optimize both the encoder parameters ϕ and decoder
parameters θ by minimizing the objective of Eq. (1).
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Note that when β = 0, the objective becomes a deter-
ministic autoencoder that focuses more on minimizing
the first term, which is referred to as the reconstruction
error.

2.2 Posterior Collapse and KL Annealing

A notorious problem in VAE optimization is that the
variational posterior qϕ(z|x) frequently aligns closely
with the prior p(z), a phenomenon which is known as
posterior collapse, hindering the quality of represen-
tation learning. Several attempts have been made to
mitigate this problem (Yang et al., 2017; Dieng et al.,
2019; Zhao et al., 2017; Kim et al., 2018), among which
a simple remedy called monotonic KL annealing has
been proposed in (Bowman et al., 2015), where β = 0
is set at the beginning of the training and gradually in-
creases until β = 1 is reached. In practice, β is defined
as follows:

βt+1 ← βt + ε (2)

where t denotes the index of each step of the parameter
updates using an optimization algorithm, and ε ∈ R
represents the annealing rate. Monotonic annealing
has become a standard method for training VAEs, par-
ticularly in numerous natural language processing ap-
plications. Although this heuristic is simple and often
effective, it is not theoretically guaranteed. Addition-
ally, cyclical KL Annealing (Fu et al., 2019) was uti-
lized, which repeatedly applies monotonic KL anneal-
ing in a cyclical manner.

3 SETTING

Generative Model for Dataset. We derive our
theoretical results for dataset D = {xµ}Pµ=1 drawn
from spiked covariance model (SCM) (Wishart, 1928;
Potters and Bouchaud, 2020), which has been widely
studied in statistics to analyze the performance of un-
supervised learning methods such as principle compo-
nent analysis (PCA) (Ipsen and Hansen, 2019; Biehl
and Mietzner, 1993; Hoyle and Rattray, 2004), sparse
PCA (Lesieur et al., 2015), and deterministic autoen-
coders (Refinetti and Goldt, 2022). Specifically, the
dataset are sampled according to

xµ =

√
ρ

N
W ∗cµ +

√
ηnµ, (3)

where W ∗ ∈ RN×M∗
is a deterministic unknown fea-

ture matrix with M∗ features, cµ ∈ RM∗
is a ran-

dom vector drawn from a standard normal distribution
N (0M , IM ), nµ is a background noise vector whose
components are i.i.d. from the standard normal distri-
bution N (0N , IN ), and η ∈ R and ρ ∈ R are the scalar
parameters that control the strength of the noise and

Figure 1: The architectures of spiked covariance model
(SCM) and linear variational autoencoder (VAE).

signal, respectively. Despite W ∗ not being orthogo-
nal, W ∗cµ can be rewritten as (W ∗R)(R−1c), where
R is a matrix that orthogonalizes and normalizes the
columns of W ∗. This can be considered as an equiva-
lent system in which the new feature vector is R−1c.
Therefore, without the loss of generality, we assume
that (W ∗)⊤W ∗ = IM .

Spectral of Covariance Matrix of the Dataset.
The spectrum of the empirical covariance matrix of
D is characterized by W ∗ and c. When cµ = 0, the
dataset are Gaussian vectors, whose empirical covari-
ance matrix with P = O(N) samples has a Marchenko-
Pastur distribution characterized by the noise strength
η (Marchenko and Pastur, 1967). In contrast, by
sampling the c ∼ p(c), the covariance matrix has
M∗ eigenvalues, i.e., “spike”, with the columns of
W ∗ as the corresponding eigenvectors. The remain-
ing N −M∗ eigenvalues, i.e., “bulk”, of the empirical
covariance matrix still follow the Marchenko-Pastur
distribution. This spectral is similar to that of the
empirical covariance matrix of real datasets such as
CIFAR10 and MNIST as explained in Refinetti and
Goldt (2022). Moreover, the validity of the assump-
tion of SCM (i.e., Gaussian model) as a realistic data
distribution has recently been supported by “Gaus-
sian Equivalence”, which indicates that the learning
dynamics with real data, irrespective of the machine
learning models, closely agree with those with the
Gaussian model with the empirical covariance matrix
of the data (Liao and Couillet, 2018; Mei and Monta-
nari, 2022; Hu and Lu, 2022; Goldt et al., 2022).

Linear VAE Model The linear VAE model (Dai
et al., 2018; Lucas et al., 2019; Sicks et al., 2021) con-
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sists of a linear decoder and encoder given by

pW (x|z) = N
(
x;

1√
N

Wz, IN

)
, (4)

qV,D(z|x) = N
(
z;

1√
N

V ⊤x, D

)
, (5)

p(z) = N (z;0N , IN ), (6)

where the diagonal covariance matrix D ∈ RM×M in-
dicates the learning parameters, and W ∈ RN×M and
V ∈ RN×M also indicate the learning parameters. We
assume a fixed identity covariance matrix IN because
it is often used in practice. The architectural diagram
is shown in Fig. 1.

Training Algorithm. The VAE is trained to learn
the generative model using the following optimization
problem:

(W̄ (D), V̄ (D), D̄(D))
= argmin

W,V,D
R(W,V,D;D, β, λ), (7)

where

R(W,V,D;D, β, λ) =∆
P∑

µ=1

l(W,V,D;xµ, β)

+
λ

2
∥W∥2F +

λ

2
∥V ∥2F . (8)

Here, l(W,V,D;x, β) is defined by Eq. (1), and the last
two terms regulate the magnitudes of the parameters
W and V which is called weight decay, where λ >
0 is a regularization parameter. Many practitioners
often include a weight decay term in VAE training
(Kingma and Welling, 2013; Louizos et al., 2017). This
study broadens the theory to cover such situations.
The following theoretical results are also applicable to
scenarios without weight decay by setting λ = 0.

We consider a standard training algorithm using the
stochastic gradient descent to solve the optimization
problem defined in Eq. (7). To simplify the theoreti-
cal analysis, we assume a one-pass setting, where each
data sample xµ is used only once. At t steps, the
model parameters W t, V t and Dt are updated using
a new sample xt according to the following:

W t+1 = W t − τW∇W tr(W t, V t, Dt;β, λ,xt), (9)

V t+1 = V t − τV∇V tr(W t, V t, Dt;β, λ,xt), (10)

Dt+1 = Dt − τD∇Dtr(W t, V t, Dt;β, λ,xt)/N, (11)

where r represents the loss for a given sample defined
as follows:

r(W t, V t, Dt;β, λ,xt) =∆ l(W t, V t, Dt;xt, β)

+
λ

2N
∥W t∥2F +

λ

2N
∥V t∥2F .

Parameters τW , τV and τD in the expressions above
are the learning rates. The SGD algorithm charac-
terizes a Markov process Xt =∆ [W t, V t, Dt] with an
updated rule. Hereafter, Xt is referred to as the mi-
croscopic state. Note that the analysis presented in
this study can be naturally extended to the mini-batch
SGD where the mini-batch size remains a finite num-
ber, that is, O(N0).

Generalization Metric. The VAE can generate a
sample x ∼ pW (x) through the following procedure.
First, a latent variable z ∼ p(z) is generated, followed
by a sample x ∼ pW (x|z). Thus, we evaluate the
generalization performance for the data distribution
p(x) defined as Eq. 3 using the following metric:

EcDKL[p(x|c)∥pW (x|c)] ∝ 1

N
Ec

[
∥√ρW ∗c−Wc∥2

]
,

where Ec[·] is the average over p(c) = N (0M , IM );
thus, we define the generalization error εg as

εg(W,W ∗) =
1

N
Ec

[
∥√ρW ∗c−Wc∥2

]
. (12)

The generalization error, εg, measures the extent of
the signal recovery from the training data.

4 MACROSCOPIC DYNAMICS OF
VAE

From a statistical physics perspective, εg(W,W ∗) can
be expressed as a function of the following set of
macroscopic variables, called order parameters. Based
on this idea, we attempt to express the dynamics of
εg(W

t,W ∗) by explicitly using the time evolution of
the order parameters.

Definition 4.1. For Xt = [W t, V t, Dt], the macro-
scopic variables are defined as follows:

mt =
1

N
(W t)⊤W ∗, dt =

1

N
(V t)⊤W ∗,

Qt =
1

N
(W t)⊤W t, Et =

1

N
(V t)⊤V t,

Rt =
1

N
(W t)⊤V t.

Subsequently, to compactly represent the macroscopic
variables, the macroscopic state Mt of the Markov
chain in Xt is defined as follows:

Mt =∆ (mt, dt, Qt, Et, Rt, V t, Dt) ∈ RM×(2M∗+5M).

Intuitively, the overlaps mt
ij and dtij measure the sim-

ilarity to the j-th representation of the true model,
i.e., the j-th column of W ∗; the overlaps Qt

ij , Et
ij ,

and Rt
ij measure the similarities between the decoder
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weights, specifically the i-th and j-th columns of W t,
the encoder weights, i.e., the i-th and j-th columns
of V t, and between the decoder and encoder weights,
i.e., the i-th column of W t and the j-th column of V t,
respectively. The off-diagonal elements of Et repre-
sent the independence of the encoded representations.
Thus, if the off-diagonal elements of Et are zero, a
disentangled representation is obtained; otherwise, an
entangled representation is obtained.

We investigate the dynamics of the training algorithm
expressed by Eq. (9)-(11) for the macroscopic vari-
ables. Our first contribution is to provide rigorous
theoretical results under the following assumptions:

(A.1) The sequences ct and nt for t = 1, . . . , are i.i.d.
random variables, and ct is drawn from the stan-
dard normal distribution N (0M , IM ).

(A.2) The sequence nt is drawn from the standard nor-
mal distribution N (0N , IN ), and {nt} is indepen-
dent of {ct}.

(A.3) The initial macroscopic state M0 satisfies
E∥M0 − M̄0∥F ≤ C/

√
N , where M̄0 is a deter-

ministic matrix and C is a constant independent
of N .

(A.4) For i = 1, 2, . . . , N , the initial microscopic state

X0 = [W 0, V 0, D0] satisfies E[
∑M

m=1{(W 0
im)4 +

(V 0
im)4 + (D0

m)4} +
∑M∗

m=1(W
∗
im)4] ≤ C, where C

is a constant independent of N and D0 ̸= 0M×M .

Assumptions (A.1) and (A.2) for ct and nt can be
relaxed to non-Gaussian cases if all moments are
bounded; however, we use the Gaussian assumption
to simplify the proof. Assumption (A.3) ensures that
the initial macroscopic states converge to determinis-
tic values as the input dimension N approaches infin-
ity. Assumption (A.4) requires that the elements in
the feature matrix W ∗ and initial microscopic state
X0 are O(1). The following theorem proves that the
stochastic process of the macroscopic states converges
to a deterministic process in the N →∞ limit charac-
terized by ODEs.

Theorem 4.2. For all T > 0, it holds under assump-
tions (A.1)-(A.4) that

max
0≤µ≤NT

E∥Mt −M(t/N)∥F ≤
C(T )√

N
, (13)

where C(T ) is a constant that depends on T but not
on N , andM(t) is a unique solution of the ODE

dM(t)

dt
= F (M(t)), (14)

with the initial condition M(0) = M̄0 and F :
RM×(2M∗+5M) → RM×(2M∗+5M) is uniformly Lips-
chitz continuous inM(t). A specific expression is not
demonstrated owing to its length; however, the entire
function is provided in Supplementary Materials B.

The convergence theory of stochastic processes and a
coupling trick (Wang et al., 2018) can prove the theo-
rem. To prove this, decomposeMt into the following:

Mt+1 −Mt = EtMt+1 −Mt +
(
Mt+1 − EtMt+1

)
where Et denotes the conditional expectation given the
state of the Markov chain Xt. Thus, it is sufficient
to show that the following two conditions hold for all
t ≤ NT :

E∥EtMt+1 −Mt − F (Mt)/N∥F ≤ C(T )N−2/3

E∥Mt+1 − EtMt+1∥2F ≤ C(T )N−2

The first condition ensures that the leading order of
the average increment is captured by the ODEs in the
Theorem 4.2. The second condition guarantees that
the stochastic part can be ignored in the large N limit.
Further details regarding the derivation of these two
conditions and the proof of the Theorem 4.2 can be
found in Supplementary Materials C.

This theorem indicates that the macroscopic stochas-
tic processMt converges to the deterministic process
M(t) at a convergence rate of O(1/

√
N). Further-

more, the generalization error εg can be expressed as
a function of the macroscopic state, which allows us to
investigate the dynamics from the ODEs in Eq. (14).
In the following section, we present the results ob-
tained by using Eq. (14).

5 RESULTS

We investigate the learning dynamics of VAE with a
high-dimensional data limit using Eq. (14). Specifi-
cally, we focus on the following representative cases:
(i) the model-matched setting (M = M∗ = 1) where
the number of generative factors in the generative
model, i.e., the number of columns in W ∗, is equal
to the latent space dimension; and (ii) the model-
mismatched setting (M = 2 and M∗ = 1), where the
latent space dimension is larger than the number of
the generative factors. In addition, numerical exper-
iments are conducted to verify the consistency of our
theory and to compare the results obtained by train-
ing the VAE. The source code is available at https://
github.com/Yuma-Ichikawa/LearningDynamicsVAE.

5.1 Dynamics of Generalization Error

The β dependence of learning dynamics is discussed
by observing the time evolution of the generalization.

https://github.com/Yuma-Ichikawa/LearningDynamicsVAE
https://github.com/Yuma-Ichikawa/LearningDynamicsVAE
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Figure 2: (Left) Generalization error, (middle) order parameters m and Q, and (right) order parameter E12 as
a function of time t for varying β values with fixed parameters λ = 0, τW = τV = τD = 0.01, and ρ = η = 1
for both model-matched and model-mismatched cases. Each point on the plots represents the averages of five
different numerical simulations with N = 500, and the error bars represent the standard deviations of the results.

The results are summarized as follows:

Peak and Long Plateau in εg. Fig. 2 demon-
strates the time dependence of the generalization er-
ror εg for various β values along with the numerical
experimental results with finite data dimension. For a
smaller β, the generalization error εg peaks in the early
stages of learning, which tends to smoothly disappear
as β increases. Furthermore, for a larger β, a long
plateau appears in the range of t, and the length of
this plateau increases as β increases. When the value
of β exceeds 2, the decrease in the generalization er-
ror εg appears to completely disappear. We will dis-
cuss whether this decrease exists in the infinite time in
the following section, based on the fixed points of the
ODEs.

Overfitting with a Small β. As shown in Fig. 2,
the generalization error εg decreases followed by an
increase near t ≈ 1200 for a small β, where the differ-
ence between order parameters m11(t) and Q11(t) is
minimal. After passing this point, m(t) saturates to a
certain value, and Q(t) continues to increase. This be-
havior indicates that while the recovery of the feature
vector becomes saturated, the VAE starts to overfit
the background noise. This suggests that the early
stopping method, which stops the SGD update when
the generalization error begins to increase, is effective
for small β.

Formation Process of Disentanglement. As dis-
cussed in Sec. 4, the off-diagonal terms of the order
parameter E can be used to measure the disentan-
glement of the obtained representation. When these
off-diagonal terms Eij are zero, the corresponding rep-
resentations zi, zj ∼ qV,D(z|x) are disentangled. Con-
versely, when Eij ̸= 0, the corresponding representa-
tions are entangled. The right panel of Fig. 2 shows
the time dependence of the off-diagonal term, meaning

Figure 3: Asymptotic generalization error as a func-
tion of time t for the varying learning rate β with fixed
parameters λ = 0, ρ = η = 1 for both model-matched
(solid line) and model-mismatched cases (dashed line).

the formation process of a disentangled representation.
The representation is entangled, i.e., E12 ̸= 0, in the
early stages of learning, and a peak then appears at
some time t. Subsequently, the representations grad-
ually become disentangled as time progresses; that is,
E12 = 0. The stability of the fixed points determines
whether the disentanglement representations are ob-
tained for any β in the limit t→∞.

5.2 Steady State of Generalization Error

Considering the analysis of the dynamics in the previ-
ous section, it remains unclear whether it is possible
to escape from the plateau and reduce the generaliza-
tion error εg for any given β, or to obtain disentangled
features in the long-time limit. In this section, we dis-
cuss these issues using a local stability analysis of the
ODEs in Eq. (14). To further reduce the degrees of
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freedom of the ODEs, we assume that the regulariza-
tion parameter λ = 0 and a common learning rate
τ = τW = ηV = τD. In the subsequent analysis, if the
Jacobian matrix of the ODEs has only negative eigen-
values, the fixed point is called locally stable, and if the
Jacobian matrix has both zero eigenvalues and nega-
tive eigenvalues, the fixed point is called marginally
stable.

Stability of Model-Matched Case. We investi-
gate the local stability of the fixed points of the ODEs
in the model-matched case to clarify the conditions
under which the VAE encounters a posterior collapse.

Theorem 5.1. For a small learning rate τ limit and
λ = 0, the fixed points of ODEs in the model-matched
case with M = M∗ = 1 have the following properties.

• For β < ρ + η, the following fixed point is locally
stable:

m∗ =
√

ρ+ η − β, (15)

ε∗g = ρ−
√
η + ρ− β(2

√
ρ−

√
η + ρ− β), (16)

• For β = ρ+ η, the fixed point, m∗ = 0, ε∗g = ρ, is
marginally stable.

• For β > ρ+ η, the fixed point,m∗ = 0, ε∗g = ρ, is
locally stable.

Theorem 5.1 elucidates that once β exceeds the thresh-
old β∗ = ρ+η, the generalization error can not escape
from the plateau, despite t increasing, which indicates
that the posterior collapse cannot be avoided.

Furthermore, the limiting value of the generalization
error ε∗g coincides with that obtained from the anal-
ysis of the global optimum of Eq. (8) (Ichikawa and
Hukushima, 2022); namely, following Remark holds.

Remark 5.2. The limiting value of the generalization
error in Eq. (16) exactly equals the generalization error
derived in the infinite data size limit by the analysis of
the global optimum using the replica method (Ichikawa
and Hukushima, 2023).

This result implies that it is possible to reach a global
optimum solution using SGD with a small learning
rate limit. To our best knowledge, the exact corre-
spondence between the global optima obtained using
the replica method and the steady state of the one-pass
SGD and the reachability to the global optima has not
yet been explored in the statistical physics community.

Stability of Model Mismatched-Case. We also
clarify the condition under which the VAE encounters
a posterior collapse in the model-mismatched case and
obtains disentangled representations.

Theorem 5.3. For a small learning rate τ limit and
λ = 0, the fixed points of ODEs in the model mis-
matched case with M = 2 and M∗ = 1 have the fol-
lowing properties.

• For β < η, the following fixed point is locally sta-
ble:

m∗ = (
√

ρ+ η − β, 0), (0,
√

ρ+ η − β), E∗
12 = 0

Q∗ =

(
ρ+ η − β 0

0 η − β

)
,

(
η − β 0
0 ρ+ η − β

)
ε∗g = ρ−

√
η + ρ− β(2

√
ρ−

√
η + ρ− β) + η − β,

• For β = η, the fixed point is marginally stable:

m∗ = (
√
ρ, 0), (0,

√
ρ), E∗

12 = 0

Q∗ =

(
η 0
0 0

)
,

(
0 0
0 η

)
, ε∗g = 0.

• For η < β < ρ+η, the fixed point is locally stable:

m∗ = (
√

ρ+ η − β, 0), (0,
√
ρ+ η − β), E∗

12 = 0

Q∗ =

(
ρ+ η − β 0

0 0

)
,

(
0 0
0 ρ+ η − β

)
ε∗g = ρ−

√
η + ρ− β(2

√
ρ−

√
η + ρ− β).

• For β = ρ + η, the fixed point, m∗ = Q∗ =
02×2, E∗

12 = 0, ε∗g = ρ, is marginally stable.

• For β > ρ + η, the fixed point, m∗ = Q∗ =
02×2, E

∗
12 = 0, ε∗g = ρ, is locally stable.

This theorem indicates that disentangled representa-
tions can be obtained in the small learning rate limit
for any β, that is, ∀β,E∗

12 = 0. The threshold for the
posterior collapse is the same as that of the model-
matched case. Thus, Theorem 5.1 and 5.3 suggest that
β can be a risky parameter since the posterior collapse
is inevitable regardless of the training period. Further-
more, the extremum calculations of the generalization
error in Theorems 5.1 and 5.3 demonstrate that the
generalization error is minimized when β = η, which
means that the best generalization is achieved when
β is equal to the strength of the background noise
η. Note that the generalization error in the model-
mismatched case at β = η is marginally stable. How-
ever, the other fixed points are unstable, indicating
that the dynamics converges to the optimal fixed point,
but the convergence is significantly slow.

Another noteworthy observation is that Theorem 5.3
shows a new stable fixed point; when β < η, de-
spitem∗ = (

√
ρ+ η − β, 0), (0,

√
ρ+ η − β) having the

same stable fixed point as in the range η < β < ρ+ β,
a non-corresponding element of Q∗ becomes finite,i.e.,
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when m∗
11 ̸= 0, q∗22 ̸= 0, and when m∗

12 ̸= 0, q∗11 ̸= 0.
This suggests that when β < η, the superfluous la-
tent variable for the data-generative factor overfits the
background noise and affects the generalization.

5.3 Learning Dynamics with KL Annealing

We now discuss the effectiveness of monotonic KL an-
nealing for the learning dynamics. A stability analysis
of the fixed point is conducted for the continuous tanh
KL annealing, given by β(t) = tanh(γt), where γ de-
notes the annealing rate. This annealing satisfies

dβ(t)

dt
= γ(1− β2(t)), β(0) = 0. (17)

Compared to monotonic KL annealing expressed in
Eq. 2, the trajectories of both tanh KL annealing and
monotonic KL annealing are qualitatively similar. The
learning curve with monotonic KL annealing is similar
to that with tanh KL annealing; see Supplementary
Materials E.1 for the detailed results. In particular, we
focus on the representative model-matched case M =
M∗ = 1 with tanh KL annealing. The results are
summarized as follows.

Dynamical Properties of KL Annealing The
top panel of Fig. 4 demonstrates a comparison of the
learning dynamics εg with constant β = 1 and tanh
KL annealing. The bottom panel of Fig. 4 shows the
convergence time to the quasi-steady state ε∗g + 0.001
as a function of the annealing rate γ. This figure indi-
cates the existence of an optimal annealing rate that
maximizes the convergence speed to the quasi-steady
state, and that an extremely slow KL annealing rate
delays the convergence time. The annealing rate γ of
the learning dynamics using tanh KL annealing, shown
in Fig. 4 (Top), is selected as the optimal rate based on
the bottom figure. Fig. 4 demonstrates that the con-
vergence of the generalization error εg becomes faster
with tanh KL annealing than without it. Subsequent
discussions will focus on the threshold value of the an-
nealing rate γ, which adversely affects the learning dy-
namics.

Steady State with KL Annealing. Based on the
stability analysis of the fixed points, including the
time-dependent β(t), the learning dynamics using tanh
KL annealing exhibit the same stable fixed points.
Furthermore, unless excessively slow tanh KL anneal-
ing is used, the convergence speed to the steady state
coincides with that without the tanh KL annealing.
Formally, the following theorem holds:

Theorem 5.4. Even when tanh KL annealing is used,
its steady state coincides with the steady state of the
model-matched case at β = 1 and λ = 0 without tanh

Figure 4: (Top) Time dependence of the generalization
error and β with both tanh KL annealing for β and the
constant β = 1 under fixed parameters λ = 0, ρ = η =
1, and τ = 1. (Bottom) Annealing-rate γ dependence
of convergence time to the quasi-steady state deviating
by 0.001, i.e., ε∗g + 0.001. The annealing rate γ of the
learning dynamics with the tanh KL annealing in the
top figure is used as the optimal value obtained from
the bottom figure.

KL annealing. Moreover, when ρ = 2 − ν and η = ν,
tanh KL annealing leads to a slow convergence under
the condition, γ ≤ −Jmax/2 where

Jmax =

{
τ
2 (
√
5− 3), τ(1−2

√
2+

√
5)

4 ≤ ν ≤ τ(1+2
√
2+

√
5)

4

−τ(2ν + 1) + τ
√
4ν(2ν − 1) + 1, otherwise,

and the convergence using tanh KL annealing be-
comes the same as that without annealing when γ >
−Jmax/2.

The proof of this theorem can be found in Supplemen-
tary Materials D.3.

5.4 Related Work

Deterministic Dynamical Descriptions of SGD.
Deterministic dynamical descriptions of SGD at a
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high-dimensional input limit have been studied in
the statistical physics community. This started with
single- and two-layer neural networks with a few hid-
den units (Kinzel and Rujan, 1990; Kinouchi and
Caticha, 1992; Copelli and Caticha, 1995; Biehl and
Schwarze, 1995; Riegler and Biehl, 1995; Vicente et al.,
1998), based on a heuristic derivation of ODEs describ-
ing typical learning dynamics. These results have re-
cently been rigorously proven using the concentration
phenomena in stochastic processes (Wang et al., 2018),
based on which the analysis of the SGD for the two-
layer neural networks was proven (Goldt et al., 2019;
Veiga et al., 2022). For generative models, the SGD of
generative adversarial networks has been investigated
(Wang et al., 2019). However, to our best knowledge,
this analysis has not been applied to the analysis of
VAEs thus far.

Linear VAEs. The linear VAE is a simple model in
which both the encoder and decoder are restricted to
affine transformations (Lucas et al., 2019). Although
deriving analytical results for deep latent models is of-
ten intractable, a linear VAE can provide analytical
results, facilitating a deeper understanding of VAEs.
Furthermore, despite this simplicity, the theoretical
results can sufficiently explain the behavior of deeper
and intricately structured VAEs (Lucas et al., 2019;
Bae et al., 2022). In fact, results proven to be effective
for linear models have been applied to deeper mod-
els, leading to the new algorithms (Bae et al., 2022).
In addition, several theoretical results have been ob-
tained; Dai et al. (2018) demonstrated the connections
between linear VAE, probabilistic PCA (Tipping and
Bishop, 1999), and robust PCA (Candès et al., 2011;
Chandrasekaran et al., 2011). Simultaneously, stud-
ies by Lucas et al. (2019) and Wang and Ziyin (2022)
used linear VAEs to explore the origins of posterior
collapse. However, these analyses did not address the
learning dynamics indicated in our study.

6 CONCLUSION

This study rigorously proves that the SGD dynamics
of a linear VAE converges to a deterministic process
at a high-dimensional input limit. Our analysis reveals
that the VAE initially learns entangled representations
and then learns disentangled representations. Based
on the stability analysis, we demonstrate that a pos-
terior collapse occurs at a certain threshold of β, and
superfluous latent spaces can overfit the background
noise of training data. We also demonstrate that ap-
propriately adjusting KL annealing can accelerate the
convergence of training. Although the linear VAE is
a simple model, our results present a new perspective
and some insights for the study of more realistic set-

tings. This study has the following limitations. First,
our analysis is based on a one-pass SGD, indicating
that each data can be used only once; however, this is
not the case in practical scenarios. Second, the data
generation processes in the real world and VAEs are
more complex than those in our data generative model
and linear VAE. Thus, a more robust and minimal
setup that can overcome these limitations will be de-
veloped in the future, along with a novel theoretical
method.
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A OVERVIEW

This supplementary material provides additional results and detailed proofs in the main text.

B COMPLETE FORM OF THE ORDINARY DIFFERENTIAL EQUATIONS
IN THEOREM 4.2

In this section, we present the specific function set of F in Theorem 4.2 as follows:

dmml

dt
=∆ Fmml

(M) = −τW

(
M∑

n′=1

mn′lh(dm, dn′ , Emn′) +mml(Dm + λ)− h(m∗
l , dm, dml)

)
, (18)

ddml

dt
=∆ Fdml

(M) = −τV

(
M∑

n′=1

Qmn′h(m∗
l , dn′ , dn′l) + βh(m∗

l , dm, dml)− h(m∗
l ,mm,mml) + λdml

)
, (19)

dQmn

dt
=∆ FQmn

(M) = −τW

(
Qmn(Dm +Dn + 2λ)− h(dm,mn, Rnm)− h(dn,mm, Rmn)

+

M∑
n′=1

Qmn′h(dn, dn′ , Enn′) +

M∑
n′=1

Qnn′h(dm, dn′ , Emn′)

)
+ ητ2Wh(dm, dn, Emn), (20)

dEmn

dt
=∆ FEmn(M) = −τV

(
2βh(dm, dn, Emn)− h(mm, dn, Rmn)− h(mn, dm, Rnm) + 2λEmn

+

M∑
n′=1

Qnn′h(dm, dn′ , Emn′) +

M∑
n′=1

Qmn′h(dn, dn′ , Enn′)

)

+ ητ2V

{ ∑
n′,m′

Qmm′Qnn′h(dm′ , dn′ , Em′n′) + β

(
M∑

n′=1

Qmn′h(dn′ , dn, Enn′) +

M∑
n′=1

Qnn′h(dn′ , dm, Emn′)

+ βh(dm, dn, Emn)− h(dm,mn, Rnm)− h(dn,mm, Rmn)

)

+

(
h(mm,mn, Qmn)−

M∑
n′=1

Qmn′h(dn′ ,mn, Rnn′)−
M∑

n′=1

Qnn′h(dn′ ,mm, Rmn′)

)}
, (21)

dRmn

dt
=∆ FRmn

(M) = −τW

(
M∑

n′=1

Rn′nh(dn′ , dm, Emn′)− h(dm, dn, Emn) + (Dm + λ)Rmn

)

− τV

(
M∑

n′=1

Qnn′h(mm, dn′ , Rmn′) + βh(mm, dn, Rmn)− h(mm,mn, Qmn) + λRmn

)

+ τV τW

(
M∑

n′=1

Qnn′h(dm, dn′ , Emn′) + βh(dm, dn, Emn)− h(dm,mn, Rnm)

)
, (22)

dDm

dt
=∆ FDm

(M) = τD

(
β

Dm
− (Qmm + β)

)
, (23)

where m∗ = (W ∗)⊤W ∗/N , and we use the shorthand expression given by

h(A,B,C) = ρ

M∗∑
s=1

AsBs + ηC. (24)

C PROOF OF THEOREM 4.2

In this section, we provide a proof of Theorem 4.2 in main text from the following two Lemmas: (i) Convergence
of the first moment of the increment of the macroscopic stochastic processMt, and (ii) Vanishing of the second
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moment of the increment. Intuitively, these ensure that the leading order of the average increment is captured
by the ODEs described in Theorem 4.2 and that the stochastic part of the increment of the macroscopic state
Mt vanishes as the input dimension increases.

The whole proof is divided into 4 parts. The first step is to prove the two conditions in the subsequent section.
Then, it is demonstrated that these two conditions are sufficient to prove Theorem 4.2. Finally, technical
Lemmas that are repeatedly used in the above proofs are summarized. The proof follows the standard scheme
of the convergence of stochastic processes (Kushner, 2009; Billingsley, 2013; Wang et al., 2018).

C.1 Convergence of First Moments of Increment to ODEs

We first review the training algorithm of SGD which characterizes a Markov process Xt = (W t, V t, Dt). The
specific update rule is given by

wt+1
m = wt

m −
τW
N

(
M∑
n=1

wn

(
√
ρ

M∗∑
s=1

ctsd
t
ms +

√
ηζtm

)(
√
ρ

M∗∑
s=1

ctsd
t
ns +

√
ηζtn

)
+ (Dt

m + λ)wt
m

−

(
M∗∑
s=1

√
ρctsw

∗
s +

√
ηNnt

)(
M∗∑
s=1

√
ρctsd

t
ms +

√
ηζtm

))
, (25)

vt+1
m = vt

m −
τV
N

((
M∗∑
s=1

√
ρctsw

∗
s +

√
ηNnt

){∑
n

Qmn

(
M∗∑
s=1

√
ρctsd

t
ns +

√
ηζtn

)
+ β

(
M∗∑
s=1

√
ρctsd

t
ms +

√
ηζtm

)

−

(
M∗∑
s=1

√
ρctsmms +

√
ηut

m

)}
+ λvt

m

)
, (26)

Dt+1
m = Dt

m −
τD
2N

(
(Qt

mm + β)− β

Dt
m

)
, (27)

where wt
m, w∗

m and vt
m represent m-th columns W t, W ∗ and V t, respectively.

The following lemma holds for the macroscopic stateMt characterized by the above updates.

Lemma C.1. Under the same assumptions as in Theorem 4.2, for all t < NT the following inequality holds:

E
∥∥∥∥EtMt+1 −Mt − 1

N
F (Mt)

∥∥∥∥
F

≤ C

N3/2
. (28)

Proof. Recall thatMt = (mt, dt, Qt, Et, Rt, V t, Dt) ∈ RM×(2M∗+5M) is composed of seven matrices. Note that

defining |A|F =
∑N

i=1,
∑M

j=1 |aij | for matrix A ∈ RN×M , the inequality ∥Mt∥F ≤ |Mt|F holds. Thus, the
following inequality is sufficient to prove Eq. (28):

E
∣∣∣∣EtMt+1

ij −M
t
ij −

1

N
Fl(Mij)

∣∣∣∣ ≤ C

N3/2
, (29)

whereMt
ij is ij element ofMt. Subsequently, we show that the above inequality holds for each element ofMt.

For mt, the following stronger result is obtained:

Etm
t+1
ml −mt

ml −
1

N
Fmml

(Mt) = 0, (30)

where Fmml
(M) is defined in Eq. 18. This is directly proved by multiplying (w∗

l )
⊤/N from the left on both sides

of Eq. 25, which yields

mt+1
ml = mt

ml −
τW
N

(
M∑
n=1

mt
nl

(
√
ρ

M∗∑
s=1

ctsd
t
ms +

√
ηζtm

)(
√
ρ

M∗∑
s=1

ctsd
t
ns +

√
ηζtn

)
+ (Dt

m + λ)mt
ml

−

(
M∗∑
s=1

√
ρctsm

∗
nl +

√
ηu∗

l

)(
M∗∑
s=1

√
ρctsd

t
ms +

√
ηζtm

))
, (31)
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where u∗
l = (w∗

l )
⊤nt/

√
N . Note that u∗

l , u
t
m and ζtm are Gaussian random variables. Then, taking the conditional

expectation Et on both sides of Eq. (31), we reach Eq. 30.

Next, we can also get a stronger result for dt given by

Etd
t+1
ml − dtml −

1

N
Fdml

(Mt) = 0, (32)

where Fdml
is defined in Eq. (19). This is also proved by multiplying (w∗

l )
⊤/N from the left on both side of

Eq. (26), which yields

dt+1
ml = dtml −

τV
N

((
M∗∑
s=1

√
ρctsm

∗
sl +
√
ηu∗

l

){∑
n

Qmn

(
M∗∑
s=1

√
ρctsd

t
ns +

√
ηζtn

)
+ β

(∑
s

√
ρctsd

t
ms +

√
ηζtm

)

−

(
M∗∑
s=1

√
ρctsmms +

√
ηut

m

)}
+ λdtml

)
. (33)

One can also take the conditional expectation Et on both sides of Eq. (33) since ut
l , u

t
m, and ζtm are Gaussian

random variables, leading to Eq. (32).

Next, for Qt, the following inequality holds:

EtQmn −Qt
mn −

1

N
fQmn

(Mt) ≤ C(T )

N
3
2

, (34)

where FQmn
is defined in Eq. (20). This is proved by evaluating Qt+1

mn = (wt+1
m )⊤wt+1

n /N as follows:

Qt+1
mn = Qt

mn −
τV
N

(
(∇wt

m
r(Xt))⊤wt

n + (wt
m)⊤∇wt

m
r(Xt)

)
+

τ2V
N

(∇wt
m
r(Xt)⊤(∇wt

n
r(Xt))

= Qt
mn −

τW
N

{
M∑

n′=1

Qt
mn′

(
√
ρ

M∗∑
s=1

ctsd
t
ms +

√
ηζtm

)(
√
ρ

M∗∑
s=1

ctsd
t
n′s +

√
ηζtn′

)

+

M∑
n′=1

Qt
nn′

(
√
ρ

M∗∑
s=1

ctsd
t
ns +

√
ηζtn

)(
√
ρ

M∗∑
s=1

ctsd
t
n′s +

√
ηζtn′

)

−

(
M∗∑
s=1

√
ρctsm

t
ns +

√
ηut

n

)(
M∗∑
s=1

√
ρctsd

t
ms +

√
ηζtm

)
−

(
M∗∑
s=1

√
ρctsm

t
ms +

√
ηut

m

)(
M∗∑
s=1

√
ρctsd

t
ns +

√
ηζtn

)

+ (Dt
n +Dt

m + 2λ)Qt
mn

}
+

τ2V
N

∥nt∥2

N

(
M∗∑
s=1

√
ρctsd

t
ms +

√
ηζtm

)(
M∗∑
s=1

√
ρctsd

t
ns +

√
ηζtn

)
+

τ2V
N2

∆(Mt).

Also, taking the conditional expectation and using Et|∆(Mt)| ≤
√
NC(T ), which is proven based on Lemma

C.4, we can derive Eq. 34. Then, the following inequality holds for Et:

EtE
t+1
mn − Et

mn −
1

N
FEmn

(Mt) ≤ C(T )

N
3
2

, (35)
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where FEt
mn

is defined in Eq. (20). This is proved by evaluating Et+1
mn = (vt+1

m )⊤vt+1
n /N as follows:

Et+1
mn = Et

mn −
τV
N

(
(∇vt

m
r(Xt))⊤vt

n + (vt
m)⊤∇vt

n
r(Xt)

)
+

τ2V
N

(∇vt
m
r(Xt))⊤(∇vt

n
r(Xt)),

= Et
mn −

τV
N

{(
M∗∑
s=1

√
ρctsd

t
ns +

√
ηζtn

){∑
n′

Qmn′

(
M∗∑
s=1

√
ρctsd

t
n′s +

√
ηζtn′

)
+ β

(∑
s

√
ρctsd

t
ms +

√
ηζtm

)

−

(
M∗∑
s=1

√
ρctsm

t
ms +

√
ηut

m

)}
+

(
M∗∑
s=1

√
ρctsd

t
ms +

√
ηζtm

){∑
n′

Qnn′

(
M∗∑
s=1

√
ρctsd

t
n′s +

√
ηζtn′

)

+ β

(∑
s

√
ρctsd

t
ns +

√
ηζtn

)
−

(
M∗∑
s=1

√
ρctsm

t
ns +

√
ηut

n

)}
+ 2λEt

mn

}

+
ητ2V ∥nt∥2

N2

(∑
n′

Qmn′

(
M∗∑
s=1

√
ρctsd

t
n′s +

√
ηζtn′

)
+ β

(∑
s

√
ρctsd

t
ms +

√
ηζtm

)

−

(
M∗∑
s=1

√
ρctsm

t
ms +

√
ηut

m

))(∑
n′

Qnn′

(
M∗∑
s=1

√
ρctsd

t
n′s +

√
ηζtn′

)
+ β

(∑
s

√
ρctsd

t
ns +

√
ηζtn

)

−

(
M∗∑
s=1

√
ρctsm

t
ns +

√
ηut

n

))
+

τ2V
N2

∆̃(Mt).

Here, one can also take the conditional expectation and use Et|∆̃(Mt)| ≤
√
NC(T ) that is proven based on

Lemma C.4 and then reach Eq. 35.

Next, for Rmn, the following holds:

EtR
t
mn −Rt

mn −
1

N
FRmn

(Mt) ≤ C(T )

N
3
2

, (36)

where FRmn
is defined in Eq. (22). This is proved by evaluating Rt+1

mn = (wt+1
m )⊤vt+1

n /N as follows:

Rt+1
mn = Rt

mn −
τW
N

(∇wt
m
r(Xt))⊤vt

n +
τV
N

(wt
m)⊤∇vt

n
r(Xt) +

τW τV
N

(∇wt
m
r(Xt))⊤(∇vt

n
r(Xt)),

= Rt
mn −

τW
N

(
M∑

n′=1

Rn′n

(
√
ρ

M∗∑
s=1

ctsd
t
ms +

√
ηζtm

)(
√
ρ

M∗∑
s=1

ctsd
t
n′s +

√
ηζtn′

)
+ (Dt

m + λ)Rt
mn

−

(
M∗∑
s=1

√
ρctsd

t
ns +

√
ηζtn

)(
M∗∑
s=1

√
ρctsd

t
ms +

√
ηζtm

))

− τV
N

((
M∗∑
s=1

√
ρctsm

t
ms +

√
ηum

){∑
n′

Qnn′

(
M∗∑
s=1

√
ρctsd

t
n′s +

√
ηζtn′

)
+ β

(∑
s

√
ρctsd

t
ns +

√
ηζtn

)

−

(
M∗∑
s=1

√
ρctsm

t
ns +

√
ηut

n

)}
+ λRt

mn

)

+
τW τV η∥nt∥2

N2

(
M∗∑
s=1

√
ρctsd

t
ms +

√
ηζtm

){∑
n′

Qt
nn′

(
M∗∑
s=1

√
ρctsd

t
n′s +

√
ηζtn′

)
+ β

(∑
s

√
ρctsd

t
ns +

√
ηζtn

)

−

(
M∗∑
s=1

√
ρctsm

t
ns +

√
ηut

n

)}
+

τW τV
N2

Ω(Mt),

Then, one can take the conditional expectation and use Et|Ω(Mt)| ≤
√
NC(T ) that is proven based on Lemma

C.4 and then reach Eq. 36.

Lastly, the following stronger result holds for Dt
m :

EtD
t+1
m −Dt

m −
1

N
FDm

(Mt) = 0, (37)
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where FDmn is defined in Eq. (23). one can directly obtain as following

Dt+1
m = Dt

m − τD

(
(Qt

mm + β)− β

Dt
m

)
. (38)

Then, one takes the conditional expectation and then reaches Eq. 37. Combining Eq. (30)-(37), Eq. (28) is
proven, which concludes the whole proof.

C.2 Convergence of Second Moments of Increment

We now proceed to bound the second-order moments of the increments.

Lemma C.2. Under the same assumption as in Theorem 4.2, for all t < NT the following inequality holds:

E∥Mt+1 − EtMt+1∥2F ≤
C(T )

N2
. (39)

Proof. Note that

E∥Mt+1 − EtMt+1∥2F = E∥Mt+1 −Mt − Et(Mt+1 −Mt)∥2F ,
≤ E∥Mt+1 −Mt∥2F + E∥EtMt+1 −Mt∥2F ,

≤ E∥Mt+1 −Mt∥2F + E
∥∥∥∥ 1

N
F (Mt) +

C(T )

N
3
2

∥∥∥∥2 ,
≤ E∥Mt+1 −Mt∥2F +

C(T )

N2
.

Here the third line is due to Lemma C.1. Thus, it is sufficient to prove that

E∥Mt+1 −Mt∥2F ≤
C(T )

N2
.

In the following, the second moment of each element inMt+1 −Mt will be bounded.

For mt, the following inequality holds:

E(mt+1
ml −mt

ml)
2 =

τW
N2

E

[(
M∑
n=1

mt
nl

(
√
ρ

M∗∑
s=1

ctsd
t
ms +

√
ηζtm

)(
√
ρ

M∗∑
s=1

ctsd
t
ns +

√
ηζtn

)
+ (Dt

m + λ)mt
ml,

−

(
M∗∑
s=1

√
ρctsm

∗
nl +

√
ηu∗

l

)(
M∗∑
s=1

√
ρctsd

t
ms +

√
ηζtm

))2]

≤ C

N2
E

[∑
n,h

mt
nlm

t
hlh(d

t
m, dtn, E

t
mn)h(d

t
m, dth, E

t
mh) + (Dt

m + λ)2(mt
ml)

2 + h2(m∗
l , dm, dml)

+ 2(Dt
m + λ)mt

ml

(∑
n

mt
nlh(dm, dn, Emn)− h(m∗

l , d
t
m, dtml)

)

− 2h(dtm, dtn, Emn)h(m
∗
l , d

t
m, dtml)

]
≤ C(T )

N2
(40)

Here, the last line is due to Lemma C.4.
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Next, for dt, one can get the following inequality in a similar way:

E(dt+1
ml − dtml)

2 =
τ2V
N2

E

[((
M∗∑
s=1

√
ρctsm

∗
sl +
√
ηu∗

l

)
{∑

n

Qmn

(
M∗∑
s=1

√
ρctsd

t
ns +

√
ηζtn

)
+ β

(∑
s

√
ρctsd

t
ms +

√
ηζtm

)
−

(
M∗∑
s=1

√
ρctsmms +

√
ηut

m

)}
+ λdtml

)2]

≤ C

N2
E

[
h(m∗

l ,m
∗
l , 1)

{∑
n,h

QmnQmhh(d
t
n, d

t
h, E

t
nh) + β2h(dtm, dtm, Et

mm) + h(mt
m,mt

m, Qt
mm)

+ 2β

(∑
n

Qmnh(dn, dm, Qnm − βh(dm,mm, Rmm)

)
−
∑
n

Qt
mnh(dn,mm, Rmn)

}

+ 2λdtml

(∑
n

Qt
mnh(m

∗
l , d

t
n, d

t
ml) + βh(m∗

l , d
t
m, dtml)− h(m∗

l ,m
t
m,mt

ml)

)
+ λ2(dtml)

2

]
≤ C(T )

N2
. (41)

Here, the last line is also due to Lemma C.4. Similarly, one can also prove that

E(Qt+1
mn −Qt

mn)
2 ≤ C(T )

N2
, (42)

E(Et+1
mn − Et

mn)
2 ≤ C(T )

N2
, (43)

E(Rt+1
mn −Rt

mn)
2 ≤ C(T )

N2
, (44)

E(Dt+1
m −Dt

m)2 ≤ C(T )

N2
. (45)

Combining Eq. (40)-(45), Eq. (39) is proven, which concludes the whole proof.

C.3 Proof of Theorem 4.2

In this section, we finish the remaining proof of Theorem 4.2 from Lemma C.1 and C.2 by using the coupling
trick.

Proof. We first define a stochastic process Bt that is coupled with the processMt as

Bt+1 = Bt + 1

N
F (Bt) +Mt+1 − EtMt+1 (46)

with the deterministic initial condition B0 = M̄0. For this stochastic process Bt, the following inequality holds
for all t ≤ NT :

E∥Bt −Mt∥F ≤
C(T )

N1/2
. (47)

This inequality is proved as follows.

E∥Bt+1 −Mt+1∥F ≤ E∥Bt −Mt∥F +
1

N
E∥F (Bt)− F (Mt)∥F + E∥EtMt+1 −Mt − 1

N
F (Mt)∥F .

From Lemma C.1 and Lemma C.6 in subsequent Sec. C.4, one can get

E∥Bt+1 −Mt+1∥F ≤ E∥Bt −Mt∥F + L∥Bt −Mt∥F + C(T )N− 3
2

≤ (1 + LN−1)∥Bt −Mt∥+ CN− 3
2 .

Applying this bound iteratively, for all t ≤ NT , one can expand as follows:

E∥Bt −Mt∥F ≤ eLT

(
E∥B0 −M0∥F +

C

L
N− 1

2

)
≤ C(T )

N
1
2

. (48)
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For the last inequality, we use the assumption (A.3) in the main text.

Next, we define a deterministic process St as follows:

St+1 = St + 1

N
F (St) (49)

with the deterministic initial condition S0 = M̄0. Similarly, the following inequality holds for all t ≤ NT :

E∥Bt − St∥2 ≤ C(T )

N
(50)

To prove this inequality, one can express as

E∥Bt+1−St+1∥F = E∥Bt−St∥2+ 1

N2
E∥F (Bt)−F (St)∥2+ 2

N
E(F (Bt)−F (St))⊤(Bt−St)+E∥Mt+1−EtMt∥2F .

Here, one uses the identity given by

Et(Mt+1 − EtMt)⊤(Bt − St) = Et(Mt+1 − EtMt)⊤(F (Bt)− F (St)) = 0.

Then, from Lemma C.2 and Lemma C.6 in Sec. C.4 below, one can get following inequality:

E∥Bt+1 − St+1∥2F ≤
(
1 +

CL

N

)
E∥Bt − St∥2F +

C(T )

N2
.

Applying this bound iteratively, for all t ≤ NT , Eq. (50) is proven as follows:

E∥Bt − St∥2F ≤
C(T )

N
. (51)

Note that St is a standard first-order finite difference approximation of the ODEs with the step size 1/N . The
standard Euler argument implies that

∥St −M(t)∥ ≤ C

N
. (52)

Finally, combining Eq. (47), (50) and (52), Theorem 4.2 is proven as follows:

E∥Mt −M(t)∥ = E∥Mt − Bt + Bt − St + St −M(t)∥
≤ E∥Mt − Bt∥+ E∥Bt − St∥+ E∥St −M(t)∥

≤ E∥Mt − Bt∥+ (E∥Bt − St∥2) 1
2 + E∥St −M(t)∥

≤ C(T )

N
1
2

.

C.4 Extra Proofs

In this section, we complete the extra technical lemmas related to the proofs in the previous section.

C.4.1 Bound for Micoroscopic State

Lemma C.3. Under the same assumption as in Theorem 4.2, for all t ≤ NT and i = 1, . . . N , the following
inequality holds:

E

(
M∑
n=1

(W t
in)

4 +

M∑
n=1

(V t
in)

4 +

M∑
n=1

(Dt
n)

4

)
≤ C(T ). (53)

Proof. We first prove E(W t
il)

4 ≤ C(T ). Note that one can expand as follows:

E(W t+1
il )4 − E(W t

il)
4 = 4E[(W t

in)
3Et(W

t+1
in −W t

in)] + 6E[(W t
in)

2Et(W
t+1
in −W t

in)
2]

+ 4E[W t
inEt(W

t+1
in −W t

in)
3] + E[Et(W

t+1
in −W t

in)
4] (54)
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From Eq. 25 and the triangle inequality, the following inequality holds for γ = 1, 2, 3 and 4:

Et(W
t+1
in −W

t
in)

γ ≤ C

Nγ

[ ∣∣∣∣∣
M∑

n′=1

W t
in′

(
ρ
∑
s

dtmsd
t
ns + ηEt

mn

)∣∣∣∣∣
γ

+|(Dt
m+λ)Win|γ+

∣∣∣∣∣∑
s

W ∗
isd

t
ns

∣∣∣∣∣
γ

+|V t
in|γ

]
. (55)

Substituting Eq. (55) into Eq. (54), we have

E(W t+1
in )4 − E(W t

in)
4 ≤ C

N
E

[ ∣∣∣∣∣(W t
in)

3
M∑

n′=1

W t
in′

(
ρ
∑
s

dtmsd
t
ns + ηEt

mn

)∣∣∣∣∣+ |(Dt
m + λ)(W t

in)
4|

+

∣∣∣∣∣(W t
in)

3
∑
s

W ∗
isd

t
ns

∣∣∣∣∣+ |(W t
in)

3V t
in|

]
+O(N−2). (56)

For V t
il, one can obtain the following:

E(V t+1
il )4 − E(V t

il)
4 = 4E[(V t

in)
3Et(V

t+1
in − V t

in)] + 6E[(V t
in)

2Et(V
t+1
in − V t

in)
2]

+ 4E[V t
inEt(V

t+1
in − V t

in)
3] + E[Et(V

t+1
in − V t

in)
4]. (57)

From Eq. 26 and the triangle inequality, the following inequality holds for γ = 1, 2, 3 and 4:

Et(V
t+1
in − V t

in)
γ ≤ C

Nγ

[ ∣∣∣∣∣∑
s

W ∗
is

(∑
n′

Qt
nn′

∑
s

dtn′s + β
∑
s

dtns −
∑
s

mt
ns

)∣∣∣∣∣
γ

+

∣∣∣∣∣∑
n′

Qt
nn′V t

in′

∣∣∣∣∣
γ

+ |W t
in|γ + |V t

in|γ
]
. (58)

Substituting Eq. (58) into Eq. (57), one can obtain the following:

E(V t+1
il )4 − E(V t

il)
4 ≤ C

N

[ ∣∣∣∣∣(V t
in)

3
∑
s

W ∗
is

(∑
n′

Qt
nn′

∑
s

dtn′s + β
∑
s

dtns −
∑
s

mt
ns

)∣∣∣∣∣
+

∣∣∣∣∣(V t
in)

3
∑
n′

Qnn′V t
in′

∣∣∣∣∣+ |(V t
in)

3W t
in|+ |(V t

in)
4|γ
]
+O(N−2). (59)

Similarly, one can also get the following inequality:

E(Dt+1
n )4 − E(Dt

n)
4 ≤ C

N
E
[∣∣(Dt

n)
3Qt

nn

∣∣+ |(Dt
n)

2|
]
. (60)

Combining Eq. (56), Eq. (59) and Eq. (60), the following inequality holds:

E
[
(W t+1

in )4 + (V t+1
in )4 + (Dt+1

n )4
]
− E

[
(W t

in)
4 + (V t

in)
4 + (Dt

n)
4
]

≤ C

N

[ ∣∣∣∣∣(W t
in)

3
M∑

n′=1

W t
in′

(∑
s

dtmsd
t
ns + Et

mn

)∣∣∣∣∣+ |Dt
m(W t

in)
4|

+

∣∣∣∣∣(W t
in)

3
∑
s

W ∗
isd

t
ns

∣∣∣∣∣+ |(W t
in)

3V t
in|+

∣∣∣∣∣(V t
in)

3
∑
s

W ∗
is

(∑
n′

Qt
nn′

∑
s

dtn′s + β
∑
s

dtns −
∑
s

mt
ns

)∣∣∣∣∣
+

∣∣∣∣∣(V t
in)

3
∑
n′

Qt
nn′V t

in′

∣∣∣∣∣+ |(V t
in)

3W t
in|γ + |(V t

in)
4|+ |(Dt

n)
3Qt

nn|+ |(Dt
n)

2|

]
. (61)
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Using the above inequality iteratively, one can get

E
[
(W t

in)
4 + (V t

in)
4 + (Dt

n)
4
]
≤ C(T )

[ ∣∣∣∣∣(W 0
in)

3
M∑

n′=1

W 0
in′

(∑
s

d0msd
0
ns + E0

mn

)∣∣∣∣∣+ |D0
m(W 0

in)
4|

+

∣∣∣∣∣(W 0
in)

3
∑
s

W ∗
isd

0
ns

∣∣∣∣∣+ |(W 0
in)

3V 0
in|+

∣∣∣∣∣(V 0
in)

3
∑
s

W ∗
is

(∑
n′

Q0
nn′

∑
s

d0n′s + β
∑
s

d0ns −
∑
s

m0
ns

)∣∣∣∣∣
+

∣∣∣∣∣(V 0
in)

3
∑
n′

Q0
nn′V 0

in′

∣∣∣∣∣+ |(V 0
in)

3W 0
in|γ + |(V 0

in)
4|+ |(D0

n)
3Q0

nn|+ |(D0
n)

2|

]
.

We now reach Eq. (53) since initial microscopic states are bounded, i.e., E[
∑M

n=1{(W 0
in)

4 + (V 0
in)

4 + (D0
n)

4} +∑M∗

n=1 W
∗
in] ≤ C, because of the assumption (A.4).

C.4.2 Bound for Macroscopic State

Lemma C.4. Under the same assumption as in Theorem 4.2, for all t ≤ NT , the following inequality holds:

E∥Qt∥2F ≤ C(T ), E∥Et∥2F ≤ C(T ), E∥Rt∥2F ≤ C(T ), E∥mt∥2F ≤ C(T ), E∥dt∥2F ≤ C(T ). (62)

Proof. It is a direct consequence of Lemma C.3. For Qt
nn, using Hölder’s inequality, one can get

E(Qt
nn)

2 =
1

N2
E

(
n∑

i=1

W t
inW

t
in

)2

≤ 1

N
E

N∑
i=1

(W t
in)

4 ≤ C(T ).

The last line is based on Lemma C.3.

For Qt
mn, m ̸= n, using Cauchy-Schwartz inequality and Hölder’s inequality, one can get

EQt
mn =

1

N2
E

(
N∑
i=1

W t
imW t

in

)2

≤ 1

N2
E

(
N∑
i=1

(W t
im)2

)(
N∑
i=1

(W t
in)

2

)

≤ 1

N2

√√√√E

(
N∑
i=1

(W t
im)2

)2( N∑
i=1

(W t
in)

2

)2

≤ 1

N

√√√√E
N∑
i=1

(W t
im)4

N∑
i=1

(W t
in)

4 ≤ C(T ),

where in reaching the last line, we use Lemma C.3. Then, we get E∥Qt∥F ≤ C(T ). The rest bound of E∥Et∥2F ,
E∥Rt∥2F , E∥mt∥2F and E∥dt∥2F can also be directly verified using the Cauchy-Schwartz inequality and Hölder’s
inequality and Lemma C.3.

C.4.3 Lipschitzness of ODEs

Lemma C.5. Under the same assumption as in Theorem 4.2, for all t ≤ NT , Dt ̸= 0M×M holds.

Proof. Consider the ODE in Eq. 23:

dDm(t)

dt
= τD

(
β

Dm(t)
− (Qmm(t) + β)

)
,
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where τD, β ≥ 0 and ∀t ≤ NT,Qmm(t) ≥ 0 by definition. We show the behavior of the solution Dm(t) based on
its initial condition. For Dm(0) > 0, the term τD(β/Dm(t)− (Qmm(t)+β)) is positive as Dm(t) approaches zero
and negative as Dm(t) grows to positive infinity. Consequently, if Dm(t) attempts to approach zero, dDm(t)/dt
becomes positive, indicating that Dm(t) increase, and thus does not cross zero. Similarly, if Dm(t) becomes
very large, dDm(t)/dt becomes negative, causing Dm(t) to decrease but remain positive. Therefore, given the
initial condition Dm(0) > 0, Dm(t) remains positive for all t > 0. Similarly, we can show that, given the initial
condition Dm(0) < 0, Dm(t) remains negative for all t > 0.

Lemma C.6. Under the same assumption as Theorem 4.2, F (M) is a Lipschitz function.

Proof. It suffices to verify each component of gradient ∇F (M) is bounded. Eq. (18)-(22) are linear functions
with respect toM and then following inequality holds for ∀M:

∥∇MFmml
(M)∥ ≤ Lmml

(M), ∥∇MFdml
(M)∥ ≤ Ldml

(M), ∥∇MFQmn
(M)∥ ≤ LQmn

(M),

∥∇MFEmn
(M)∥ ≤ LEmn

(M), ∥∇MFRmn
(M)∥ ≤ LRmn

(M),

where Lmml
(M), Ldml

(M), LQmn
(M), LEmn

(M) and LRmn
(M) are constants depending onM. We can show

the constants are bounded based on Lemma C.3. Thus, the functions satisfy the Lipschitz condition. For
FDm(M), gradient norm is given by

∥∇MFDm(M)∥ = τ

√
1 +

β2

D4
m

. (63)

The left-hand side is also bounded since Lemma C.5 indicates that for all m = 1, . . . ,M , Dm(t) ̸= 0 for any
t > 0. Thus, FDm(M) also satisfy the Lipschitz condition.

D LOCAL STABILITY ANALYSIS OF FIXED POINTS OF ODES

In this section, we provide additional details on the local stability analysis of the ODEs. In what follows, we will
omit straightforward calculations related to the eigenvalue computations.

D.1 Stability Analysis of Model-Matched Case

For the model-matched case, the macroscopic state is described by 6 variables. For the sake of simplicity, we
only consider the case λ = 0 and small learning limit τ = τW = τV = τD. The fixed points are given by the
condition dM/dt = 0. From Eq. (18)-(23), the fixed point equations given by

Fm11
(M) = τ

(
d11(ρ+ η)−m11(ρd

2
11 + ηE11 +D11)

)
= 0

Fd11
(M) = τ(ρ+ η)(m11 − (Q11 + β)d11) = 0

FQ11
(M) = 2τ

(
(ρm11d11 + ηR11)−Q11(ρd

2
11 + ηE11 +D1)

)
= 0

FE11(M) = 2τ
(
(ρm11d11 + ηR11)− (Q11 + β)(ρd211 + ηE11)

)
= 0

FR11(M) = τ
(
(1−R11)(ρd

2
11 + ηE11)−D1R11 + (ρm2

11 + ηQ11)− (Q11 + β)(ρm11d11 + ηR11)
)
= 0

FD1(M) = τ
(

β
D1
− (Q11 + β)

)
= 0,

(64)

whereM = (m11, d11, Q11, E11, R11, D1) are the stationary macroscopic state. The local stability of a fixed point
is identified by whether the Jacobian matrix

J(M) =∆



∂Fm11

∂m11

∂Fm11

∂d11

∂Fm11

∂Q11

∂Fm11

∂E11

∂Fm11

∂R11

∂Fm11

∂D1
∂Fd11

∂m11

∂Fd11

∂d11

∂Fd11

∂Q11

∂Fd11

∂E11

∂Fd11

∂R11

∂Fd11

∂D1
∂FQ11

∂m11

∂FQ11

∂d11

∂FQ11

∂Q11

∂FQ11

∂E11

∂FQ11

∂R11

∂FQ11

∂D1
∂FE11

∂m11

∂FE11

∂d11

∂FE11

∂Q11

∂FE11

∂E11

∂FE11

∂R11

∂FE11

∂D1
∂FR11

∂m11

∂FR11

∂d11

∂FR11

∂Q11

∂FR11

∂E11

∂FR11

∂R11

∂FR11

∂D1
∂FD1

∂m11

∂FD1

∂d11

∂FD1

∂Q11

∂FD1

∂E11

∂FD1

∂R11

∂FD1

∂D1


(65)
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has eigenvalue with non-negative real part or not. Solving Eq. 64 and computing the eigenvalues of the Jacobian,
one easily finds that fixed points other than two cases have positive eigenvalues for any β, ρ and η, indicating
that they are unstable fixed points. Subsequently, we focus on the two cases. In the following, the shorthand
expression P = η + ρ is employed.

Type (1): Posterior Collapsed Fixed Point. It is easy to verify that

m∗
11 = d∗11 = Q∗

11 = E∗
11 = R∗

11 = 0, D∗
1 = 1 (66)

is a solution of Eq. (64). This fixed point indicates that the VAE encounters a posterior collapse. From a
straightforward eigenvalue computation, the six eigenvalues can be expressed as follows:

λ1/τ = −β

2
, λ2/τ = −(1 + βη)

λ3/τ = −
(
1 + βη +

√
(1 + βη)2 + 4η(η − β)

)
, λ4/τ = −

(
1 + βη −

√
(1 + βη)2 + 4η(η − β)

)
λ5/τ = −1

2

(
1 + βP +

√
(1 + βP )2 + 4P (P − β)

)
, λ6/τ = −1

2

(
1 + βP −

√
(1 + βP )2 + 4P (P − β)

)
Here, λ4 is positive when β < η, λ6 is when β < P is positive and the others are negative for any β, ρ and ρ.
Thus, type (1) fixed point is stable if P < β. Moreover, all other fixed points are unstable when P < β, which
indicates that a threshold of the posterior collapse is β = P .

Type (2): Learnable Fixed Point. The fixed points equation Eq. (64) have following solution:

m∗
11 = ±

√
P − β, d∗11 = ±

√
P − β

P
, Q∗

11 = P − β, E∗
11 =

P − β

P 2
, R∗

11 =
P − β

P
, D∗

1 =
β

P
(67)

The Jacobian of this fixed point possesses six eigenvalues. The three eigenvalues of them can be expressed as
follows:

λ1/τ = −(1 + ηP )

λ2/τ = −
(
1 + ηP +

√
(1 + ηP )2 − 4ηρ

)
λ3/τ = −

(
1 + ηP −

√
(1 + ηP )2 − 4ηρ

)
These three eigenvalues are negative for any β, η, and ρ. The other three eigenvalues can be expressed as the
solutions to the following equation:(
λ

τ

)3

+P 2
(
P 2 + 2(1 + P 2)β

)(λ

τ

)2

+2P 4β
(
P 2(1 + P 2)− 8β3 + 2(1 + 4P )β2 − 2Pβ

) λ
τ
+8P 8(P − β)β3 = 0.

One of the solutions to this equation is positive when P > β. Furthermore, by substituting β = P , the equation
can be expressed as

λ

τ

(
λ

τ
+ P 4

)(
λ

τ
+ 2P 3(1 + P 2)

)
= 0,

indicating that λ = 0 when β = P . Thus, type (2) fixed point is stable when β ≤ ρ+ η.

D.2 Stability Analysis of Model-Mismatched Case

For the model-mismatched case, the macroscopic state is described by 16 variables. For the sake of simplicity,
we also consider the case λ = 0 and small learning limit τ = τW = τV = τD. The specific fixed-point equations
and their Jacobians can be derived from Eq. (18)-(23), just as in the model-matched case. However, they are
not displayed here due to their length. Similarly, all fixed points other than three cases are unstable fixed points
as in the model-matched case, as the eigenvalues of their Jacobians take positive values for any β, ρ, and η.
Subsequently, we focus on the three types in detail.
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Type (1): Posterior Collapsed Fixed Point. It is easy to verify that the following state is a solution of
the ODEs:

m∗ = d∗ = 02, Q∗ = E∗ = R∗ = 02×2, D∗ = 12

The eigenvalues of the Jacobian can be expressed as follows:

λ1

τ
=

λ2

τ
= −β

2
,

λ3

τ
=

λ4

τ
=

λ5

τ
=

λ6

τ
= −(1 + βη)

λ7

τ
=

λ8

τ
=

λ9

τ
= −

(
1 + βη +

√
(1 + βη)2 + 4η(η − β)

)
λ10

τ
=

λ11

τ
=

λ12

τ
= −

(
1 + βη −

√
(1 + βη)2 + 4η(η − β)

)
λ13

τ
=

λ14

τ
= −1

2

(
1 + βP +

√
(1 + βP )2 + 4P (P − β)

)
λ15

τ
=

λ16

τ
= −1

2

(
1 + βP −

√
(1 + βP )2 + 4P (P − β)

)
These eigenvalue are positive when ρ + η < β, zero when ρ + η = β and negative when ρ + η > β as in the
model-matched case. Thus this fixed solution is stable when ρ+ η ≤ β.

Type (2): Overfitting Fixed Point. The fixed point equations have the following solution:

m∗ =
(
±
√
P − β, 0

)
, d∗ =

(
±
√
P − β

P
, 0

)
Q∗ =

(
P − β 0

0 η − β

)
, E∗ =

(
P−β
P 2 0

0 η−β
η2

)
, R∗ =

(
P−β
P 0

0 η−β
η

)
, D∗ =

(
β

P
,
β

η

)
and

m∗ =
(
0,±

√
P − β

)
, d∗ =

(
0,±
√
P − β

ρ+ η

)
Q∗ =

(
η − β 0
0 P − β

)
, E∗ =

(
η−β
η2 0

0 P−β
P 2

)
, R∗ =

(
η−β
η 0

0 P−β
P

)
, D∗ =

(
β

η
,
β

P

)
The eigenvalues of the Jacobian can be expressed as follows:

λ1

τ
= −2(1 + η2),

λ2

τ
= −(1 + ηP )

λ3

τ
= −1

2

(
1 + ηP + 2(1 + η) +

√
(1 + ηP )2 − 4ηρ

)
,

λ4

τ
= −1

2

(
1 + ηP + 2(1 + η)−

√
(1 + ηP )2 − 4ηρ

)
λ5

τ
= −

(
1 + ηP +

√
(1 + ηP )2 − 4ηρ

)
,

λ6

τ
= −

(
1 + ηP −

√
(1 + ηP )2 − 4ηρ

)
λ7

τ
=

λ8

τ
= −1

2

(
1 + ηP +

√
(1 + ηP )2 + 8β

(√
(β − η)(β − P ) + β − P +

ρ

2

))
λ9

τ
=

λ10

τ
= −1

2

(
1 + ηP −

√
(1 + ηP )2 + 8β

(√
(β − η)(β − P ) + β − P +

ρ

2

))

Here, the real parts Re(λ9) and Re(λ10) are positive when β > ρ/2 + η and the others are negative for any β, η
and ρ. Additionally, the other eigenvalues are represented as solutions to the following equations:(

λ

τ

)3

+ (η3 + 2βη(1 + η2))

(
λ

τ

)2

− 2βη2
(
8β3 + 2β(η − β(1 + 4η))− η2(1 + η2)

)
P 4λ

τ
− 8β3(β − η)η5P 6 = 0

(68)(
λ

τ

)3

+
(
ηP 4 + 2ηβP 2(1 + P 2)

)(λ

τ

)2

+ 2βη2P 4
(
(P 2 + P 4) + 2β2(1 + 4P )− 2β(4β2 + P )

) λ
τ

− 8β3η3(β − P )P 8 = 0 (69)
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One solution of Eq. (68) is positive when β > η, and Eq. (68) can be expressed as follows when β = η:

λ

τ

((
λ

τ

)2

+
λ

τ
η2(2 + η + 2η2)P 2 + 2η5(1 + η2)P 4

)
= 0,

indicating that λ = 0 when β = η. One solution of Eq. (69) is positive when β > η + ρ and Eq. (69) can be
expressed as follows when β = η:

λ

τ

((
λ

τ

)2

+
λ

τ
ηP 3(2 + P + 2P 2) + 2η2P 7(1 + P 2)

)
= 0, (70)

indicating that λ = 0 when β = η + ρ. Thus, type (2) is stable when η ≤ β ≤ η + β.

Type (3): Learnable Fixed Point. The fixed point equation has the following solution:

m∗ =
(
±
√

P − β, 0
)
, d∗ =

(
±
√
P − β

P
, 0

)
Q∗ =

(
P − β 0

0 0

)
, E∗ =

(
P−β
P 2 0
0 0

)
, R∗ =

(
P−β
P 0
0 0

)
, D∗ =

(
β

P
, 1

)
and

m∗ =
(
0,±

√
P − β

)
, d∗ =

(
0,±
√
P − β

P

)
Q∗ =

(
0 0
0 P − β

)
, E∗ =

(
0 0

0 P−β
P 2

)
, R∗ =

(
0 0

0 P−β
η+ρ

)
, D∗ =

(
1,

β

P

)
The eigenvalue of the Jacobian can be expressed as follows:

λ1

τ
= −β

2
,

λ2

τ
= −(1 + ηP )

λ3

τ
= −(1 + βη),

λ4

τ
= −

(
1 + βη +

√
(1 + βη)2 + 4η(η − β)

)
,

λ5

τ
= −

(
1 + βη −

√
(1 + βη)2 + 4η(η − β)

)
,

λ6

τ
= −1

2

(
1 + βP +

√
(1 + βP )2 + 4β(β − P )

)
,

λ7

τ
= −1

2

(
1 + βP −

√
(1 + βP )2 + 4β(β − P )

)
,

λ8

τ
= −

(
1 + ηP +

√
(1 + ηP )2 − 4ηρ

)
,

λ9

τ
= −

(
1 + ηP −

√
(1 + ηP )2 − 4ηρ

)
,

λ10

τ
= −1

2

(
2 + η(β + P ) +

(
(1 + ηβ)2 + (1 + ηP )2 + 4η(η − ρ) + 2

√
((1− βη)2 + 4η2) ((1 + ηP )2 − 2ηP )

)1/2)
,

λ11

τ
= −1

2

(
2 + η(β + P )−

(
(1 + ηβ)2 + (1 + ηP )2 + 4η(η − ρ) + 2

√
((1− βη)2 + 4η2) ((1 + ηP )2 − 2ηP )

)1/2)
,

λ12

τ
= −1

2

(
2 + η(β + P ) +

(
(1 + ηβ)2 + (1 + ηP )2 + 4η(η − ρ)− 2

√
((1− βη)2 + 4η2) ((1 + ηP )2 − 2ηP )

)1/2)
,

λ13

τ
= −1

2

(
2 + η(β + P )−

(
(1 + ηβ)2 + (1 + ηP )2 + 4η(η − ρ)− 2

√
((1− βη)2 + 4η2) ((1 + ηP )2 − 2ηP )

)1/2)
.

Here, λ7 is positive when β > ρ + η, λ5 is positive when β < η, λ11 is positive when β < η̄ where η < η̄ and
the others are negative for any β, η and ρ. The other eigenvalues are expressed as solutions to the following
equation:(
λ

τ

)3

+P 2
(
P 2 + 2β(1 + P 2)

)(λ

τ

)2

+2βP 4
(
−2β(4β2 + P ) + P 2(1 + P 2) + 2β2(1 + 2P )

) λ
τ
−8β3(β−P )P 8 = 0
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Figure 5: Max eigenvalues of Jacobian for each stable fixed points when ρ, η = 0.5, 1.5 (left), ρ, η = 1.0, 1.0
(middle) and ρ, η = 1.95, 0.05 (right) as a function of β for both model-matched and model-mismatched cases.

eigenvalue is positive when β > ρ+ η, β = ρ+ η and the equation expressed as when β = P

λ

τ

((
λ

τ

)2

+
λ

τ
P 3(2 + P (1 + 2P )) + 2P 7(1 + P 2)

)
= 0

which indicates λ = 0. Thus, type (3) fixed point is stable when η ≤ β ≤ ρ+ η. Fig. 5 presents all types of fixed
points and their corresponding maximum eigenvalues as a function of β.

D.3 Stability Analysis of Tanh KL Annealing

For the case of Tanh KL annealing β(t) = tanh(γt), the fixed-point equation can be expressed as follows:

Fm11
(M, β) = τ

(
d11(ρ+ η)−m11(ρd

2
11 + ηE11 +D11)

)
= 0

Fd11
(M, β) = τ(ρ+ η)(m11 − (Q11 + β)d11) = 0

FQ11
(M, β) = 2τ

(
(ρm11d11 + ηR11)−Q11(ρd

2
11 + ηE11 +D1)

)
= 0

FE11
(M, β) = 2τ

(
(ρm11d11 + ηR11)− (Q11 + β)(ρd211 + ηE11)

)
= 0

FR11
(M, β) = τ

(
(1−R11)(ρd

2
11 + ηE11)−D1R11 + (ρm2

11 + ηQ11)− (Q11 + β)(ρm11d11 + ηR11)
)
= 0

FD1
(M, β) = τ

(
β
D1
− (Q11 + β)

)
= 0,

Fβ(M, β) = γ(1− β2) = 0

This fixed-point equation has the same stable fixed points as the model-matched case; that is, type (1) posterior
collapsed fixed point is stable when β > η + ρ and type (2) Learnable fixed point is stable when β < η + ρ.
Additionally, the Jacobian possesses the same eigenvalues as the model-matched case, along with a new eigenvalue
of λ7 = −2γ originated from tanh KL annealing. Specifically, for the learnable fixed point, and excluding −2γ,
the maximal eigenvalue can be expressed as follows when ρ = 2− ν and η = ν:

λmax(ν) =

{
τ
2 (
√
5− 3) τ(1− 2

√
2 +
√
5)/4 ≤ ν ≤ τ(1 + 2

√
2 +
√
5)/4

−τ(1 + 2ν) + τ
√

1− 4ν(1− 4ν) otherwise
(71)

Thus, the conditions under which tanh KL annealing slows down the convergence are expressed as

γ ≤

{
τ
4 (3−

√
5), τ(1− 2

√
2 +
√
5)/4 ≤ ν ≤ τ(1 + 2

√
2 +
√
5)/4

τ
(
ν + 1

2

)
− τ
√

ν(2ν − 1) + 1
4 , otherwise.

E ADDITIONAL RESULTS

E.1 Linear Annealing

In this section, we demonstrate the properties of the linear annealing β(t) = γt which is used in various appli-
cations. Fig. 6 demonstrates the generalization error as a function of t for both Linear and tanh KL annealing
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Figure 6: (Top) Time dependence of the generalization error and β with linear annealing, tanh KL annealing and
constant β = 1 under fixed parameters λ = 0, ρ = η = 1, and τ = 0.001. (Bottom) Annealing-rate γ dependence
of convergence time to the quasi-steady state deviating by 0.001, i.e., ε∗g + 0.001. The annealing rate γ of the
learning dynamics with linear annealing, tanh annealing in the top figure is used as the optimal value obtained
from the bottom figure.

using the optimal annealing rate and for the constant β = 1. It also demonstrates the γ dependency of the
quasi-steady-state convergence times for linear and tanh KL annealing and constant β = 1. As a result, this
experiment demonstrates that both linear KL annealing and tanh KL annealing exhibit qualitatively similar
behavior.
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