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Abstract

Under losses which are potentially heavy-
tailed, we consider the task of minimizing
sums of the loss mean and standard deviation,
without trying to accurately estimate the vari-
ance. By modifying a technique for variance-
free robust mean estimation to fit our problem
setting, we derive a simple learning procedure
which can be easily combined with standard
gradient-based solvers to be used in tradi-
tional machine learning workflows. Empiri-
cally, we verify that our proposed approach,
despite its simplicity, performs as well or bet-
ter than even the best-performing candidates
derived from alternative criteria such as CVaR
or DRO risks on a variety of datasets.

1 INTRODUCTION

Traditionally, the “textbook definition” of a statistical
machine learning problem is formulated in terms of
making decisions which minimize the expected value of
a random loss (Devroye et al., 1996; Mohri et al., 2012;
Vapnik, 1999). More precisely, the traditional setup
has us minimize Eμ L(h) with respect to a decision
h, where we denote random losses as L(h) ..= �(h;Z),
with a random data point Z ∼ μ, and �(·) is a loss
function assigning real values to (decision, data) pairs.
This problem class is very general in that it covers a
wide range of learning problems both supervised and
unsupervised, but it is limited in the sense that it only
aspired to be optimal on average, with no guarantees
for other aspects of performance such as loss devia-
tions, resilience to worst-case examples and distribu-
tion shift, sub-population disparity, and class-balanced
error. While it is sometimes possible to account for
these issues by modifying the base loss function � (e.g.,
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logit-adjusted softmax cross-entropy for balanced er-
ror (Menon et al., 2021)), there is a growing literature
looking at principled, systematic modifications to the
“risk,” i.e., a non-random numerical property of the dis-
tribution of L(h) to be optimized in h, leaving the base
loss �(·) fixed. Some prominent examples are weighted
sums of loss quantiles (Medina and Yang, 2021), distri-
butionally robust optimization (DRO) risk (Hashimoto
et al., 2018), conditional value-at-risk (CVaR) (Curi
et al., 2020), tilted risk (Li et al., 2021), and more gen-
eral optimized certainty equivalent (OCE) risks (Lee
et al., 2020), among others. It is well-known that many
risks can be expressed in terms of location-deviation
sums, with the canonical example being a weighted
sum of the loss mean and standard deviation (or vari-
ance) (Rockafellar and Uryasev, 2013, §2). We refer the
reader to some recent surveys (Holland and Tanabe,
2023; Hu et al., 2022; Royset, 2022) for more general
background on developments in learning criteria.

In this work, the criterion of interest is the mean loss
regularized by standard deviation (SD), when losses are
allowed to be heavy-tailed. More formally, we allow for
heavy tails in the sense that all we assume is that the
second moment Eμ|L(h)|2 is finite, and the ultimate
objective of interest is the mean-SD criterion

MSμ(h;λ) ..= Eμ L(h) +
√
λVμ L(h) (1)

with loss variance denoted by Vμ L ..= Eμ(L−Eμ L)
2,

and weighting parameter λ ≥ 0. This mean-SD objec-
tive (1) and its mean-variance counterpart have a long
history in the literature on decision making under un-
certainty, including the influential work of Markowitz
(1952) on optimal portfolio selection. In the context of
machine learning, it is well-known that one can obtain
“fast rate” bounds on the expected loss when variance
is small (see (Duchi and Namkoong, 2019, §1)), though
the problem of actually ensuring that loss deviations
are sufficiently small is an entirely separate matter. In
this direction, Maurer and Pontil (2009) bound the
(population) expected loss using a weighted sum of the
sample mean and standard deviation. Their “sample
variance penalized” objective is convenient to compute
and can be used to guarantee fast rates in theory, but a
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lack of convexity makes it hard to minimize in practice.
A convex approximation is developed by Duchi and
Namkoong (2019), who show that a sub-class of (empir-
ical) DRO risks can be used to approximate the sample
mean-SD objective, again yielding fast rates when the
(population) variance is small enough. The critical
limitation to this approach is poor guarantees under
heavy-tailed losses; while we gain in terms of convex-
ity, the empirical DRO risk of (Duchi and Namkoong,
2019) is at least as sensitive to outliers as the naive
empirical objective (i.e., directly minimizing the sam-
ple mean and SD), which is already known to result
in highly sub-optimal performance guarantees under
heavy tails (Brownlees et al., 2015; Devroye et al.,
2016; Hsu and Sabato, 2016). Recent work by Zhai
et al. (2021) studies a natural strategy for robustifying
the DRO objective (called DORO), which discards a
specified fraction of the largest losses. While the im-
pact of outliers can be reduced under the right setting
of DORO, their approach is limited to non-negative
losses, and the impact that such one-sided trimming
has on the resulting mean-SD sum, our ultimate object
of interest, is unknown.

With this context in mind, in this paper we propose a
new approach to robustly minimize the objective (1)
under heavy-tailed losses, without a priori knowledge
of anything but the fact that variance is finite. Our key
technique is based on extending a convex program of
Sun (2021) from one-dimensional mean estimation to
our mean-variance objective MSμ(h;λ) under general
losses. After some motivating background points in
§2.1–§2.2, we describe our basic approach and summa-
rize our contributions in §2.3–§2.4. Theoretical analy-
sis comes in §3, and based upon formal properties of
the proposed objective function, we derive a general-
purpose procedure summarized in Algorithm 1, and
tested empirically in §4. Our main finding is that the
simple algorithm we derive works remarkably well on
both simulated and real-world datasets without any
fine-tuning, despite sacrificing the convexity enjoyed
by procedures based on criteria such as CVaR and
DRO. All detailed proofs are relegated to the appendix.
Software and notebooks to reproduce all results in this
paper are provided in an online repository.1

2 BACKGROUND

Before we describe our proposed approach to the mean-
SD task described in §1, we start with a much simpler
problem, namely the task of robust mean estimation.
This will allow us to highlight key technical points
from the literature which provide both conceptual and
technical context for our proposal. Key points from

1https://github.com/feedbackward/bdd-mv

the existing literature are introduced in §2.1–§2.2, and
building upon this we introduce our method in §2.3–
§2.4.

2.1 Robust mean estimation

Let X be a random variable. For the moment, our goal
will be to construct an accurate empirical estimate
of the mean Eμ X, assuming only that the variance
Vμ X = Eμ X2− (Eμ X)2 is both defined and finite. We
assume access to an independent and identically dis-
tributed (IID) sample X1, . . . ,Xn. Since higher-order
moments may be infinite, the tails of X may be “heavy”
and decidedly non-Gaussian, causing problems for the
usual empirical mean. This problem setting is now
very well-understood; see Lugosi and Mendelson (2019)
for an authoritative reference. One very well-known
approach is to use M-estimators (Huber and Ronchetti,
2009), namely to design an estimator An ≈ Eμ X satis-
fying

An ∈ argmin
a∈R

b

n

n∑
i=1

ρ

(
Xi − a

b

)
(2)

where ρ : R → R+ is a function that is approximately
quadratic near zero, but grows more slowly in the limit,
i.e., large deviations are penalized in a sub-quadratic
manner, where “large” is relative to the scaling param-
eter b > 0, used to control bias. When ρ(·) is convex,
differentiable, and the solution set is non-empty, the
condition (2) is equivalent to

1

n

n∑
i=1

ρ′
(
Xi − An

b

)
= 0 (3)

and when the derivative ρ′(·) is bounded on R such
that

− log(1− x+ γx2) ≤ ρ′(x) ≤ log(1 + x+ γx2) (4)

for some constant 0 < γ < ∞, then the ap-
proach of Catoni (2012) tells us that when b2 scales
with Vμ X/n, the deviations |An −Eμ X| enjoy sub-
Gaussian tails, namely upper bounds of the order
O(

√
log(1/δ)Vμ X/n) with probability at least 1− δ.

Under these weak assumptions, such guarantees are
essentially optimal (Devroye et al., 2016). While an
important result, in practice the need for knowledge
of Vμ X is a significant limitation, since without finite
higher-order moments, it is not plausible to obtain
variance estimates with such sub-Gaussian guarantees.
There do exist other robust estimators such as median-
of-means (Lugosi and Mendelson, 2019, §2.1) which do
not require variance information, and this illustrates
the fact that knowledge of the variance is sufficient,
although not necessary, for sub-Gaussian mean estima-
tion under heavy tails.
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Figure 1: From left to right, we plot the graphs of ρ(·), ρ′(·), and ρ′′(·) with ρ as in (6). In the middle plot, the
dotted curves represent the upper (blue) and lower (dark pink) bounds in (4) with γ = 1.

2.2 Good-enough ancillary scaling

Since sub-Gaussian estimates of the variance Vμ X are
not possible under our weak assumptions, it is natural
to ask whether there exists a middle-ground, namely
whether or not it is possible to construct a (data-driven)
procedure for setting the scale b > 0 in (2) which is
“good enough” in the sense that the resulting An is
sub-Gaussian, even though the scale itself cannot be.
An initial (affirmative) answer to this question was
given in recent work by Sun (2021), whose basic idea
we briefly review here, with some slight re-formulation
for readability and additional generality.

Essentially, the underlying idea in (Sun, 2021) is to
utilize the convexity of ρ in (2), and to solve for both
a ∈ R and b > 0 simultaneously, while penalizing b
in such a way as to encourage scaling which is “good
enough” as mentioned. More precisely, the empirical
objective

Ŝn(a, b) ..= βb+
b

n

n∑
i=1

ρ

(
Xi − a

b

)
(5)

plays a central role, where 0 < β < 1 is a parameter
we can control, and ρ is fixed as

ρ(x) =
√

x2 + 1− 1, x ∈ R (6)

which is differentiable, and satisfies the Catoni condi-
tion (4) with γ = 1 (see Figure 1). If we fix b > 0, then
the solution sets (in a) of both Ŝn(a, b) and b× Ŝn(a, b)
are identical, and it should be noted that the re-scaled
map x 	→ b2ρ(x/b) = b

√
x2 + b2 − b2 closely approx-

imates x 	→ x2/2 as b grows large (Figure 2), and is
well-known as the “pseudo Huber” or “smooth Huber”
function, where b acts as a smoothing parameter.2

2Barron (2019, §1) gives a summary of this and related
functions from the perspective of loss function design. This
is not the only smoothed variant of the classic Huber func-
tion (Huber, 1964), see for example Rey (1983, §6.4.4).

Figure 2: Graphs of the smooth Huber function, with
ρ as in (6), over a range of smoothing parameters. For
visual comparison, the graph of x 	→ x2/2 is plotted
with a thick dashed green curve.

When considering the joint objective Ŝn(a, b), from the
computational side, one important fact is that this
function is convex on R× (0,∞) (see §A.2). From the
statistical side of things, the solutions

(An,Bn) ∈ argmin
a∈R,b>0

Ŝn(a, b) (7)

are such that under certain regularity conditions, the de-
viations |An −Eμ X| are nearly optimal (sub-Gaussian,
up to poly-logarithmic factors) (Sun, 2021, §3.3).3 The
corresponding Bn of course cannot give us sub-Gaussian
estimates of the variance under such weak assumptions,
but it does scale in a desirable way (Sun, 2021, §3.2),
and when bias is mitigated by setting β sufficiently
small given the sample size n, the resulting Bn is good
enough to provide such guarantees for An, which is the
ultimate goal anyways. By taking on a slightly more
difficult optimization problem, it is possible to get away
with not having prior knowledge or sub-Gaussian esti-
mates of the variance. We use this basic insight as a
stepping stone to our approach for learning algorithms
charged with selecting a decision h such that the loss
L(h) has a small mean-variance.

3Strictly speaking, the objective used in (Sun, 2021) is
̂Sn(a, b)/β, but all key results easily translate to our setup.
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2.3 A bridge between two problems

To develop our proposal, we now return to the more
general learning setup, where the test data is a random
vector Z ∼ μ, test loss is L(h) ..= �(h;Z), and we
have n IID training points Z1, . . . ,Zn yielding losses
Li(·) ..= �(·;Zi), i ∈ [n]. If our goal was to simply
minimize the traditional risk Eμ L(h) over h ∈ H under
heavy-tailed losses, then in principle we could extend
the approach of §2.2 to robustly estimate the test risk
using

(An(h),Bn(h)) ∈ argmin
a∈R,b>0

[
βb+

b

n

n∑
i=1

ρ

(
Li(h)− a

b

)]
(8)

and design a learning algorithm using (8) as follows:

Hn ∈ argmin
h∈H

An(h). (9)

Under some regularity conditions, the machinery of
Brownlees et al. (2015) could then be combined with
pointwise concentration inequalities in (Sun, 2021) to
control the tails of Eμ L(Hn) under just finite loss vari-
ance. Our goal however is not to minimize the expected
loss, but rather the mean-SD sum (1). Furthermore,
the bi-level program inherent in (9) is not computa-
tionally congenial from the perspective of large-scale
machine learning tasks. To ease the computational
burden while at the same time building a bridge be-
tween these two problems, we consider a new objective
function taking the form

Ĉn(h; a, b) ..= αa+ βb+
λb

n

n∑
i=1

ρ

(
Li(h)− a

b

)
(10)

with parameters α ≥ 0 and β ≥ 0. We call (10) the
modified Sun-Huber objective, since ρ is fixed as (6), and
this form plays a special role in our analysis. Compared
with that of (9), this objective is a simple function of
h, and gradient-based minimizers can be easily applied
assuming the underlying loss �(·) is sufficiently smooth.
On the other hand, it is “biased” in the sense that it
penalizes not just the loss location (whenever α > 0),
but the loss scale as well (whenever β > 0). Intu-
itively, some kind of deviation-driven “bias” is precisely
what we need from the standpoint of minimizing the
mean-SD objective MSμ(h;λ), but it is not immediately
clear how this objective relates to Ĉn(h; a, b), and it is
equally unclear if we can just plug this new objective
into standard machine learning workflows (e.g., using
stochastic gradient-based optimizers) and achieve the
desired effect without a prohibitive amount of tuning.

2.4 Overview of contributions and limitations

With our basic idea described and some key questions
raised, we summarize the central points that charac-

terize the rest of this paper, and also highlight the
limitations of this work. Broadly speaking, the new
proposal here is a class of empirical “risk” minimizers,
namely any learning algorithm which minimizes the
new empirical objective (10). More explicitly, this refers
to all procedures which returns a triplet satisfying

(Hn,An,Bn) ∈ argmin
h∈H,a∈R,b>0

Ĉn(h; a, b) (11)

where H denotes a set of feasible decisions, and we
note that each element of this class is characterized
by the settings of α, β, and λ used to define Ĉn. In
analogy with the strategy employed in §2.2, we do not
expect An and Bn to provide sub-Gaussian estimates;
we simply hope that these estimates are good enough to
ensure the mean-SD is smaller and/or better-behaved
when compared to standard benchmarks such as mean-
based empirical risk minimization (ERM) and DRO-
based algorithms. Theoretically, we are interested in
identifying links between the proposed objective Ĉn

and loss properties such as Eμ L(h) and Vμ L(h), with
particular emphasis on how the settings of α, β, and λ
influence such links.

Our main theory-driven contribution is the derivation
of a principled approach to determine Ĉn (i.e., set α and
β), before seeing any training data, in such a way that
we can balance between “biased but robust” ρ-based
deviations and “unbiased but outlier-sensitive” squared
deviations that arise in the loss variance. Details are
in §3.1–§3.3, and a concise procedure is summarized
in Algorithm 1. We do not, however, consider the
behavior of MSμ(Hn;λ) for a particular implementation
of (11) (e.g., SGD) from a theoretical viewpoint; the
implementation is left abstract. This is where the
empirical analysis of §4 comes in. We provide evidence
using simulated and real data that our procedure can be
quite useful, even using a rudimentary implementation
where we wrap base loss objects and naively pass them
to standard stochastic gradient-based learning routines,
with no manual tweaking of parameters.

3 THEORY

3.1 Links to the mean-SD objective

We would like to make the connection between the
proposed objective (10) and the ultimate objective (1)
a bit more transparent. To do this, we will make use
of the population version of Ĉn, denoted henceforth by
Cμ and defined as

Cμ(h; a, b) ..= αa+ βb+ λbEμ ρ

(
L(h)− a

b

)
. (12)

Let us fix the decision h and threshold a, paying close
attention to the optimal value of the scale b, denoted
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here by bμ(h, a). More explicitly, consider any positive
real number satisfying

bμ(h, a) ∈ argmin
b>0

Cμ(h; a, b). (13)

While it is not explicit in our notation, the optimal scale
in (13) depends critically on the value of β. Intuitively,
a smaller value of β leads to a weaker penalty for taking
b large, thus encouraging a larger value of bμ(h, a). In
fact, one can show that viewing bμ(h, a) as a function
of the parameter β, in the limit we have

lim
β→0+

bμ(h, a) = ∞. (14)

See §C for a proof of (14). Combining this with the
fact (also proved in §C) that

lim
b→∞

bEμ ρ

(
L(h)− a

b

)
= 0 (15)

also holds, by re-scaling to avoid trivial limits we can
obtain a result which sharply bounds the proposed
learning criterion at the optimal scale using the square
root of quadratic deviations, thereby establishing a
clear link to the desired mean-SD objective (1).

Proposition 1. Let H be such that Eμ|L(h)|2 < ∞
for each h ∈ H. If we set α = α(β) such that
α(β)/

√
β → α̃ ∈ [0,∞) as β → 0+, then in this limit,

with appropriate re-scaling the scale-optimized learning
criteria can be bounded above and below as

α̃a+ (1/2)
√
λEμ(L(h)− a)2

≤ lim
β→0+

min
b>0

Cμ(h; a, b)√
β

≤ α̃a+ 4
√
λEμ(L(h)− a)2

for any choice of threshold a ∈ R and weight α ≥ 0.

In the special case where a = Eμ L(h) and α̃ > 0, we
naturally recover mean-SD sums akin to those studied
in an ERM framework by Maurer and Pontil (2009)
and those bounded from above using convex surrogates
by Duchi and Namkoong (2019).

Of course in practice, we will only ever be working with
fixed values of β, and the entire point of introducing
new criteria (namely Ĉn and Cμ) was to give us some
control over how sensitive our objective is to loss tails.
The following result makes the nature of this control
(through β) more transparent.

Proposition 2. Let H and L(h) be as stated in Propo-
sition 1. Letting bμ(h, a) be as specified in (13), we
define a Bernoulli random variable

I(h; a) ..= I {|L(h)− a| ≤ bμ(h, a)}

for any choice of h ∈ H and a ∈ R. The optimal scale
can then be bounded by

λ

4β
Eμ I(h; a)(L(h)− a)2 ≤ b2μ(h, a) ≤

λ

2β
Eμ(L(h)− a)2

for any choice of 0 < β < λ and a ∈ R.

While it is difficult to pin down exactly how bμ(h, a)
changes as a function of β, Proposition 2 clearly shows
us the appealing property that optimal scale induced
by the proposed objective function essentially falls be-
tween the (tail-sensitive) quadratic deviations and a
(tail-insensitive) truncated variant, with the truncation
threshold loosening as β shrinks.

3.2 Guiding the optimal threshold

Since the preceding Propositions 1–2 both hold for any
choice of threshold a ∈ R, they clearly hold when both
a and b are optimal, i.e., when a and b are set as

(aμ(h), bμ(h)) ∈ argmin
a∈R,b>0

Cμ(h; a, b). (16)

In particular, using first-order conditions, the inclusion
(16) is equivalent to the next two equalities holding:

Eμ

⎛⎝ L(h)− aμ(h)√
(L(h)− aμ(h))2 + b2μ(h)

⎞⎠ = α/λ,

Eμ

⎛⎝ bμ(h)√
(L(h)− aμ(h))2 + b2μ(h)

⎞⎠ = 1− (β/λ). (17)

Given the context of our analysis in §3.1, let us consider
the effect of taking β towards zero. For any non-trivial
random loss, the second equality asks that bμ(h) grow
without bound as β → 0+, while |aμ(h)| must be either
bounded or grow slower than bμ(h). On the other hand,
if α is too large (i.e., α > λ) then the first equality
will be impossible to satisfy. In addition to taking
0 < α < λ, note that if we multiply both sides of the
first equality in (17) by bμ(h) and apply Proposition 2,
then under this optimality condition we must have

Eμ

⎛⎝ L(h)− aμ(h)√
(
L(h)−aμ(h)

bμ(h)
)2 + 1

⎞⎠ ≤ α

√
λ

2β
Eμ(L(h)− aμ(h))2.

(18)

With this inequality in place, we adopt the following
strategy: encourage the optimal location to converge
as aμ(h) → Eμ L(h) when β → 0+. Since λ > 0 is
assumed to be fixed in advance, the only way to ensure
this using (18) is to set α = α(β) such that

lim
β→0+

α(β)√
β

= 0. (19)
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While (19) gives us a rather clear condition for deter-
mining α given β, we still do not have a principled
setting for β. This point will be treated next.

3.3 Deriving an algorithm for finite samples

To complement the preceding analysis and discussion
centered around the population objective (12), we now
return to the empirical objective function Ĉn(h; a, b) in-
troduced in (10). We maintain the running assumption
that the training data Z1, . . . ,Zn are an IID sample
from μ, and thus the losses Li(h), i = 1, . . . , n are in-
dependent given any fixed h. With h and b > 0 fixed
for the moment, we will now take a closer look at the
optimal (empirical) threshold that arises from this ob-
jective function, namely any random variable An(h, b)
satisfying

An(h, b) ∈ argmin
a∈R

Ĉn(h; a, b). (20)

Using the property (4) of the smooth Huber-like func-
tion ρ, we can demonstrate how data-driven thresholds
satisfying (20) are concentrated at a point near the
expected loss, where α and b play a key role in how
close this point is to the mean.
Proposition 3 (Concentration at a shifted location).
Taking 0 ≤ α < 1, b > 0, and 0 < δ < 1, with large
enough n it is always possible to satisfy the condition

4α

λ
≤ 4

(
Vμ L(h)

b2
+

log(2/δ)

n

)
≤ 1− 4α

λ
,

and when this condition is satisfied, the data-driven
threshold An(h, b) in (20) satisfies∣∣∣∣An(h, b)−

[
Eμ L(h)− 2α

λ
b

]∣∣∣∣
≤ 2

(
Vμ L(h)

b
+

b log(2/δ)

n

)
with probability no less than 1− δ.

This result can be seen as an extension of (Sun, 2021,
Prop. 3.1) for the function (5) used in mean estimation
to our generalized learning problem, although we use a
different proof strategy which does not require strong
convexity of Ĉn (with respect to a).

With Proposition 3 established, conventional wisdom
might incline one to pursue a O(1/

√
n) rate in the

upper bound; in this case, setting β ∝ 1/n is a nat-
ural strategy since Proposition 2 tells us that for the
population objective, the optimal setting of b scales
with

√
λ/β. While this is natural from the perspective

of tight concentration bounds for An(h, b), we argue
that a different strategy is more appropriate when we
actually consider how (Hn,An,Bn) will behave in the

full joint optimization (11). The most obvious reason
for this is that the joint objective lacks convexity and
smoothness, as the following result summarizes.
Proposition 4 (Joint objective is non-convex and
non-smooth). Even when H is a compact convex set
and the base loss function �(·;Z) is convex, the mapping
(h, a, b) 	→ Ĉn is not convex in general, and is non-
smooth in the sense that its gradient is not Lipschitz
continuous on H× R× (0,∞).

In consideration of Proposition 4, standard complexity
results for typical optimizers such as stochastic gradi-
ent descent to achieve a ε-stationary point are on the
order of O(ε−4); see Davis and Drusvyatskiy (2019)
for example.4 With this in mind, setting β ∝ 1/n to
achieve O(ε−2) sample complexity for error bounds of
An(h, b) seems superfluous if in the end the dominant
complexity for solving the ultimate problem (11) will
be of the order O(ε−4). As such, in order to match
this rate, the more natural strategy is to set β ∝ 1/

√
n,

or more precisely to set

β =
β0√
n

(21)

where β0 > 0 is a constant used to ensure 0 < β <
λ. This, coupled with α(β) = β to satisfy (19) from
the previous sub-section, is our proposed setting to
determine (α, β) (and thus Ĉn) using just knowledge of
n, and without having observed any data points. This
procedure is summarized in Algorithm 1, and will be
studied empirically in §4.

Algorithm 1 Modified Sun-Huber
Inputs: data Z1, . . . ,Zn and parameter λ > 0.
Set: β = β0/

√
n, with β0 such that 0 < β < λ.

Set: α = β.
Minimize: Ĉn(h; a, b), with α and β as above.

4 EMPIRICAL ANALYSIS

Our investigation in the previous section led us to
Algorithm 1, giving us a principled and precise strategy
to construct the objective function Ĉn, but leaving
the actual minimization procedure abstract. Here we
make this concrete by implementing a simple gradient-
based minimizer of this objective, and comparing this
procedure with natural benchmarks from the literature.

4.1 Methods to be compared

In the experiments to follow in §4.2–§4.3, we compare
our proposed procedure (denoted in figures as “Modified

4Even if the objective were smooth, the same rates are
typical; see for example Ghadimi and Lan (2013).
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Figure 3: Trajectory of the (empirical) mean-SD objective (1) over iterations. Colors correspond to different
choices from each class: β0 for Modified Sun-Huber, quantile level for CVaR, and robustness level for DRO.

Figure 4: 2D classification example from §4.2. The red
line represents the initial value used by each method.

Sun-Huber”) with three alternatives: traditional mean-
based empirical risk minimization (denoted “Vanilla
ERM”), conditional value-at-risk (CVaR) (Curi et al.,
2020), and the well-studied χ2-DRO risk (Duchi and
Namkoong, 2019; Hashimoto et al., 2018). For refer-
ence, here we provide the population versions of the
CVaR and χ2-DRO criteria used in the empirical tests
to follow. First, it is well known (see Rockafellar and
Uryasev (2000)) that CVaR at quantile level ξ can be
represented as

CVaRμ(h; ξ) = inf
a∈R

[
a+

1

1− ξ
Eμ (L(h)− a)+

]
(22)

where (x)+ ..= max{0, x}. Similarly, DRO risk based
on the Cressie-Read family of divergence functions, here
denoted by DROμ(h; η), is formulated for any c > 1
and η > 0 using

inf
a∈R

[
a+ (1 + c(c− 1)η)

1/c (
Eμ (L(h)− a)

c∗
+

)1/c∗]
(23)

where c∗ ..= c/(c− 1), and χ2-DRO is the special case
where c = 2 (Duchi and Namkoong, 2019; Hashimoto
et al., 2018; Zhai et al., 2021). The different “robustness

Figure 5: From each method class, we show the clas-
sification error rate and Euclidean norm trajectories
corresponding to the setting that achieved the best
error rate after the final iteration.

levels” to be mentioned in §4.2 correspond to differ-
ent values of the re-parameterized quantity η̃ ∈ (0, 1),
related to η by the equality η = (1/(1 − η̃) − 1)/2.
Just as our Ĉn(h; a, b) is solved jointly in (h, a, b), our
empirical tests minimize the empirical versions of (22)
and (23) jointly in (h, a).

4.2 Simulated noisy classification on the plane

As a simplified and controlled setting to start with,
we generate random data points on the plane which
are mostly linearly separable, save for a single dis-
tant outlier (Figure 4). Before we consider off-sample
generalization, here we focus simply on the training
loss distribution properties as a function of algorithm
iterations.

Experiment setup We generate n = 100 training
data points using two Gaussian distributions on the
plane to represent two classes, with each class having
the same number of points. We choose a single point
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uniformly at random, and perturb it by multiplying
the scalar -10. As mentioned in §4.1, we compare our
proposed procedure (Modified Sun-Huber) with Vanilla
ERM, CVaR, and χ2-DRO. In light of Algorithm 1, we
set λ = log(n)/

√
n > β = β0/

√
n, and try a variety of

β0 values just for reference. For all the aforementioned
methods, we set the base loss �(·) to the usual binary
logistic loss (linear model), and run (batch) gradient
descent on the empirical risk objectives implied by each
of these methods, with a fixed step size of 0.01 over
15,000 iterations. Alternative settings of step size and
iteration number were not tested. All methods are
initialized at the same point, shown in Figure 4.

Results and discussion In Figure 3, we show the
empirical mean-SD trajectories for the base loss, over
algorithm iterations (log10 scale), for each method of
interest. Using our notation, this is the sample ver-
sion of MSμ(h; 1) in (1); note that this differs from
the n-dependent λ setting that is explicit in our pro-
posed method, and implicit in CVaR and χ2-DRO. All
methods besides vanilla ERM have multiple settings
that were tested, and the results for each are distin-
guished using curves of different color. Our method
tests different values of β0, CVaR tests different quan-
tile levels, and DRO tests different robustness levels.
Since Vanilla ERM is designed to optimize the average
loss, it is perhaps not surprising that it fails in terms
of the mean-SD objective. On the other hand, the
proposed method (for any choice of β0) is as good or
better than all the competing methods. As a basic
sanity check, in Figure 5 we also consider the error rate
(average zero-one loss) and model norm trajectories
over iterations for each method. For each method, we
plot just one trajectory, namely the one achieving the
best final error rate. While our method is not designed
to minimize the average loss and typical surrogate the-
ory does not apply, the error rate is surprisingly good,
albeit with slower convergence than the other meth-
ods. The error rate for CVaR matches that of Vanilla
ERM; this is in fact the CVaR setting with the worst
final mean-SD value. On the other hand, the proposed
method performs well from both perspectives at once.

4.3 Classification on real datasets

We proceed to experiments using real-world datasets,
some of which are orders of magnitude larger than the
simple setup given in §4.2, and which include multi-
class classification tasks.

Experiment setup We make use of four well-known
datasets, all available from online repositories: adult,
australian, cifar10, and fashion_mnist. For multi-
class datasets, we extend the binary logistic loss to
the usual multi-class logistic regression loss under a

linear model, with one linear model for each class.
Features for all datasets are normalized to [0, 1], with
one-hot representations of categorical features. The
learning algorithms being compared here are the same
as described in §4.2, except that now we implement each
method using mini-batch stochastic gradient descent
(batch size 32), and do 30 epochs (i.e., 30 passes over
the training data). In addition, our proposed “Modified
Sun-Huber” method performs almost identically for
the range of β0 values tested in §4.2, and thus we have
simply fixed β0 = 0.9, so there is only one trajectory
curve this time. On the other hand, we now try a range
of step sizes for each method, choosing the best step
size in terms of average (base) loss value on validation
data for each method. We run five independent trials,
and for each trial we randomly re-shuffle the dataset,
taking 80% for training, 10% for validation (used to
select step sizes), and 10% for final testing.

Results and discussion Our main results are shown
in Figure 6 (next page), where once again we plot the
trajectory of the mean-SD objective, but this time
computed on test data, and given as a function of
epoch number, rather than individual iterations. Curves
drawn represent averages taken over trials, and the
lightly shaded region above/below each curve shows
standard deviation over trials. Perhaps surprisingly, the
very simple implementation of our proposed Algorithm
1 (fixed step size, no regularization) works remarkably
well on a number of datasets. From the perspective of
mean-SD minimization, for three our of four datasets,
the proposed method is far better than Vanilla ERM,
and as good or better than even the best settings of
CVaR and DRO viewed after the fact. Regarding the
sub-standard performance observed on fashion_mnist,
detailed analysis shows that more fine-tuned settings
of α and β can readily bring the method up to par;
the non-convex and non-smooth nature of Ĉn naturally
means that some tasks will require more careful settings
than are captured by our Algorithm 1, and indeed will
take explicit account of the optimizer to be used. We
leave both the theoretical grounding and empirical
testing of such optimizer-aligned mean-SD minimizers
for future work.
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Supplementary Materials

A TECHNICAL APPENDIX

A.1 Basic facts

Assuming ρ is defined as in (6), let us consider the function

f(x, a, b) ..= αa+ βb+ bρ

(
x− a

b

)
(24)

= αa+ βb+
√

(x− a)2 + b2 − b (25)

= αa+
√

(x− a)2 + b2 − (1− β)b. (26)

The partial derivatives are as follows.

∂xf(x, a, b) =
x− a√

(x− a)2 + b2
(27)

∂af(x, a, b) = α− x− a√
(x− a)2 + b2

(28)

∂bf(x, a, b) =
b√

(x− a)2 + b2
− (1− β) (29)

The corresponding second derivatives are as follows.

∂2
xf(x, a, b) =

1√
(x− a)2 + b2

− (x− a)2

((x− a)2 + b2)3/2
=

b2

((x− a)2 + b2)3/2
(30)

∂2
af(x, a, b) =

1√
(x− a)2 + b2

− (x− a)2

((x− a)2 + b2)3/2
=

b2

((x− a)2 + b2)3/2
(31)

∂2
b f(x, a, b) =

1√
(x− a)2 + b2

− b2

((x− a)2 + b2)3/2
=

(x− a)2

((x− a)2 + b2)3/2
(32)

The remaining elements of the Hessian of f(x, a, b) follow easily, given as follows.

∂a∂xf(x, a, b) =
−1√

(x− a)2 + b2
+

(x− a)2

((x− a)2 + b2)3/2
=

−b2

((x− a)2 + b2)3/2
(33)

∂b∂xf(x, a, b) =
−b(x− a)

((x− a)2 + b2)3/2
(34)

∂b∂af(x, a, b) =
b(x− a)

((x− a)2 + b2)3/2
(35)

Lemma 5 (Useful inequalities).

1

1 + x
≤ 1− x

2
, 0 ≤ x ≤ 1. (36)

(1 + x)c ≥ 1 + cx, x ≥ −1, c ∈ R \ (0, 1). (37)
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A.2 Convexity and smoothness

Lemma 6. The map x 	→ 1/
√
1 + x is convex on [0,∞).

Lemma 7 (Properties of partial objective). With ρ as in (6) and β ≥ 0, the function

(x, b) 	→ βb+ bρ
(x
b

)
is convex and (1 + max{1− β, β})-Lipschitz (in ‖·‖1) on R× (0,∞), but its gradient is not (globally) Lipschitz,
and thus the function is not smooth.5

Proof of Lemma 7. For notational convenience, setting 0 < β < 1, let us denote

g(x, b) ..= βb+ bρ(x/b), x ∈ R, b > 0

with ρ as in (6). From the partial derivatives (27) and (29), it is clear that we have

−1 ≤ ∂xg(x, b) ≤ 1, −(1− β) ≤ ∂bg(x, b) ≤ β

when evaluated at any choice of x ∈ R and b > 0. It follows that the gradient norm can be bounded as

‖∇g(x, b)‖1 ≤ 1 + max{(1− β), β}

and thus g(·) is Lipschitz continuous in ‖·‖1 (and also ‖·‖2).6
Next, let us denote the Hessian of g(·) evaluated at (x, b) by H. Basic calculus gives us the simple form

H ..=
1

(x2 + b2)3/2

[
b2 −xb
−xb x2

]
and for any pair of real values u = (u1, u2), we have

〈Hu,u〉 = 1

(x2 + b2)3/2
(u1b− u2x)

2 ≥ 0. (38)

Since this holds for any choice of x ∈ R and b > 0, the Hessian is thus positive semi-definite, implying that g(·) is
(jointly) convex (Nesterov, 2004, Thm. 2.1.4).

On the other hand, the function g(·) is not smooth. To see this, first note that having chosen any u such that
‖u‖ ≤ 1, we have that the (operator) norm is bounded below as

‖H‖ = sup
‖u′‖≤1

[
sup

‖u′′‖≤1

〈Hu′,u′′〉
]
≥ 〈Hu,u〉.

Then, as a concrete example, consider setting x = b, with u = (u1, u2) such that u1 �= u2. Recalling the lower
bound (38), we have

‖H‖ ≥ b2

(2b2)3/2
(u1 − u2)

2 =
(u1 − u2)

2

(
√
2)3b

→ ∞

in the limit as b → 0+. As such, the gradient of g(·) cannot be Lipschitz continuous on R× (0,∞), and thus g(·)
is not smooth (Nesterov, 2004, Thm. 2.1.6).

5We prove that the Hessian’s norm is unbounded, which implies (via Nesterov (2004, Thm. 2.1.6)) that the convex
function of interest cannot be smooth.

6That bounded gradients imply Lipschitz continuity is a general fact on linear spaces (Luenberger, 1969, §7.3, Prop. 2).
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Figure 7: Graph of the Legendre transform ρ∗ as given in (40) over (−1, 1).

B APPENDIX TO THE MAIN BODY

B.1 Comparison with dual form of DRO risk

Some readers may notice that the proposed (population) objective (12) looks quite similar to the dual form of
DRO risks:

DROμ(h;β) ..= inf
a∈R,b>0

[
a+ βb+ bEμ φ

∗
(
L(h)− a

b

)]
(39)

where φ∗ is the Legendre-Fenchel convex conjugate φ∗(x) ..= supu∈R
[xu− φ(u)] induced by a function φ : R → R,

assumed to be convex and lower semi-continuous, with φ(1) = 0 and φ(x) = ∞ whenever x < 0; see Shapiro
(2017, §3.2) for reference. Given this similarity, one might ask whether or not some form of DRO risk can be
reverse engineered from our proposed objective. Taking up this point briefly, we first note that the conjugate of ρ
given by (6) is

ρ∗(x) ..= sup
u∈R

[xu− ρ(u)] = sup
u∈R

[
xu−

√
u2 + 1 + 1

]
.

From the non-negative nature of ρ, clearly ρ∗(0) = −ρ(0) = 0. For x �= 0, note that taking the derivative of
concave function u 	→ xu− ρ(u) and setting it to zero, we obtain the first-order optimality conditions

u√
u2 + 1

= x ⇐⇒ sign(x)√
1 + 1/u2

= x ⇐⇒ 1

x2
= 1 + 1/u2 ⇐⇒ u =

sign(x)√
1/x2 − 1

.

Plugging this solution in whenever |x| < 1 and doing a bit of algebra readily yields the simple closed-form
expression

ρ∗(x) =

{
x2√
1−x2

+ 1− 1√
1−x2

, if 0 ≤ |x| < 1

∞, else.
(40)

As can be readily observed from both (40) and Figure 7, this function does not satisfy any of the requirements
placed on φ except convexity, and thus despite the similar form, the non-monotonic nature of ρ is in sharp contrast
with monotonicity of typical cases of φ∗ that arise in the DRO literature, e.g. Ben-Tal et al. (2013, §3), and does
not readily imply a “primal” DRO objective that can be recovered using ρ∗.

B.2 Stationary points of mean-variance

Having established links between the proposed objective and the mean-SD objective, we next consider the
mean-variance objective

MVμ(h) ..= Eμ L(h) +Vμ L(h). (41)

This quantity can be expressed as the minimum value of a convex function, namely we have

MVμ(h) = min
a∈R

[
a+

Eμ(L(h)− a)2 + 1

2

]
= aMV(h) +

Eμ(L(h)− aMV(h))
2 + 1

2
(42)
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where on the right-most side we have set aMV(h) ..= Eμ L(h)− 1. Assuming the underlying loss is differentiable,
the gradient with respect to h can be written as

MV′
μ(h) = Eμ L

′(h) +Eμ L(h) L
′(h)−Eμ L(h)Eμ L

′(h)

= Eμ L
′(h) +Eμ (L(h)−Eμ L(h)) L

′(h)
= Eμ (L(h)− (Eμ L(h)− 1)) L′(h)

which implies a stationarity condition of

MV′
μ(h) = 0 ⇐⇒ Eμ (L(h)− (Eμ L(h)− 1)) L′(h) = 0. (43)

Similarly, the partial derivative of the learning criterion (12) taken with respect to h is

∂

∂h
Cμ(h; a, b) = Eμ

(
L(h)− a√

(L(h)− a)2 + b2

)
L′(h)

and thus multiplying both sides by b > 0, we obtain a simple stationarity condition of

∂

∂h
Cμ(h; a, b) = 0 ⇐⇒ Eμ

⎛⎝ L(h)− a√
(L(h)−a

b )2 + 1

⎞⎠ L′(h) = 0. (44)

With the right threshold setting, obviously the two conditions become very similar as b grows large. The following
result makes this precise.

Proposition 8. Let loss function � and data distribution μ be such that the random vector L(h) L′(h) is integrable
and has a norm with finite mean, i.e., Eμ‖L(h) L′(h)‖ < ∞ for some choice of h ∈ H. Then, for any a ∈ R,
defining

f(h; a) ..= lim
b→∞

b
∂

∂h
Cμ(h; a, b) (45)

the stationary points of the mean-variance objective are related to those of the proposed objective (12) through the
following equivalence:

f(h; aMV(h)) = 0 ⇐⇒ ∂

∂h
MVμ(h) = 0

where MVμ(h) is as defined in (41).

C ADDITIONAL PROOFS

Proof of Proposition 1. To begin, note that the function

b 	→ bEμ ρ

(
L(h)− a

b

)
= Eμ

[√
(L(h)− a)2 + b2 − b

]
(46)

is monotonic (non-increasing) on (0,∞) (follows clearly from (29)). We will use this property moving forward.
Recalling the upper and lower bounds of Proposition 2, we re-write them as

clo(β)

β
≤ b2μ(h, a) ≤

chi

β
(47)

using the shorthand notation

clo(β) ..=
λ

4
Eμ I(h; a)(L(h)− a)2

chi
..=

λ

2
Eμ(L(h)− a)2
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and noting that while chi is free of β, clo(β) depends on β through the definition of I(h; a). Fixing 0 < β < λ for
now and recalling the form of Cμ in (12), the preceding bounds (47) and monotonicity of (46) can be used to
obtain a lower bound of the form

min
b>0

Cμ(h; a, b) ≥ αa+
√

βclo(β) + λ
√
chi Eμ

[√
(L(h)− a)2

chi
+

1

β
−

√
1

β

]
. (48)

Using the fact (14) and applying dominated convergence (Ash and Doléans-Dade, 2000, Thm. 1.6.9), in the limit
we have

lim
β→0+

clo(β) =
λ

4
Eμ(L(h)− a)2.

Dividing both sides of (48) by
√
β, setting α = α(β) as in the proposition statement, and taking the limit as

β → 0+, we obtain

lim
β→0+

min
b>0

Cμ(h; a, b)√
β

≥ α̃a+

√
λ

4
Eμ(L(h)− a)2 +

λEμ(L(h)− a)2

2
√
chi

= α̃a+

√
λ

4
Eμ(L(h)− a)2 +

√
λ

2
Eμ(L(h)− a)2

= α̃a+

(
1

2
+

1√
2

)√
λEμ(L(h)− a)2.

The first inequality uses the fact that for any c > 0, we have
√
cx+ x2 − x → c/2 as x → ∞, and also uses

dominated convergence. The remaining equalities just follow from plugging in the definition of chi and cleaning
up terms. This proves the desired lower bound.

As for the upper bound of interest, a perfectly analogous argument can be applied. Using Proposition 2 again
and taking β small enough that

clo(β) ≥ chi/4 (49)

holds (always possible), we can obtain upper bounds of the form

min
b>0

Cμ(h; a, b) ≤ αa+
√

βchi + λ
√

clo(β)Eμ

[√
(L(h)− a)2

clo(β)
+

1

β
−

√
1

β

]

≤ αa+
√
βchi + λ

√
chi Eμ

[√
4(L(h)− a)2

chi
+

1

β
−

√
1

β

]
(50)

noting that the latter inequality (50) follows from using (49) as well as clo(β) ≤ chi. As with the lower bound
argument in the preceding paragraph, we set α = α(β), divide both sides by

√
β, and take the limit as β → 0+.

This results in

lim
β→0+

min
b>0

Cμ(h; a, b)√
β

≤ α̃a+

√
λ

2
Eμ(L(h)− a)2 +

2λEμ(L(h)− a)2√
chi

= α̃a+

√
λ

2
Eμ(L(h)− a)2 + 2

√
2λEμ(L(h)− a)2

= α̃a+

(
2
√
2 +

1√
2

)√
λEμ(L(h)− a)2

which gives us the desired upper bound. The bounds given in the proposition statement are slightly looser, but
more readable.
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Proof of Proposition 2. We adapt key elements of the scale control used by Sun (2021, §2) to our setting. We
start by looking at first-order conditions for optimality of b > 0. First, note that

∂

∂b
Cμ(h; a, b) = β + λ

∂

∂b

(
Eμ

√
(L(h)− a)2 + b2 − b

)
= β + λEμ

(
b√

(L(h)− a)2 + b2

)
− λ.

As such, it follows that

Eμ

(
b√

(L(h)− a)2 + b2

)
= 1− β/λ (51)

is equivalent to ∂b Cμ(h; a, b) = 0. Obviously, the left-hand side of (51) is non-negative for all b ≥ 0 and bounded
above by 1 for all b ≥ 0, a ∈ R, and h ∈ H. Thus (51) can only hold for 0 ≤ β ≤ λ. Using convexity (Lemma 6)
and Jensen’s inequality (Ash and Doléans-Dade, 2000, Thm. 6.3.5), we have

Eμ

(
b√

(L(h)− a)2 + b2

)
= Eμ

⎛⎝ 1√
(L(h)−a

b )2 + 1

⎞⎠ ≥
⎛⎝ 1√

Eμ(
L(h)−a

b )2 + 1

⎞⎠
and thus whenever (51) holds, we know that

(1− β/λ)2 ≥ 1

Eμ(
L(h)−a

b )2 + 1

must also hold. Re-arranging terms, we see that this implies

b2 ≤ (1− β/λ)2 Eμ(L(h)− a)2

1− (1− β/λ)2
.

For readability, set η ..= β/λ, and note that since

(1− η)2

1− (1− η)2
=

(1− η)2

2η − η2
=

(1− η)2

2η(1− η/2)
≤ (1− η)2

2η(1− η)
≤ 1

2η

we can obtain the cleaner (but looser) upper bound

b2 ≤ Eμ(L(h)− a)2

2η
=

λ

2β
Eμ(L(h)− a)2

for any choice of 0 < β ≤ λ and a ∈ R. Since the first-order condition (51) is necessary for optimality (Nesterov,
2004, Thm. 1.2.1), it follows that

b2μ(h, a) ≤
λ

2β
Eμ(L(h)− a)2 (52)

which is the desired upper bound.

Considering a lower bound next, note first that using the concavity of x 	→ √
x on R+, another application of

Jensen’s inequality gives us

Eμ

(
b√

(L(h)− a)2 + b2

)
= Eμ

√
b2

(L(h)− a)2 + b2
≤

√√√√Eμ

(
1

(L(h)−a
b )2 + 1

)
. (53)
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Using the inequality 1/(x+ 1) ≤ 1− x/2 for all 0 ≤ x ≤ 1 ((36) in Lemma 5), this suggests a natural event to use
as a condition. More precisely, writing E ..= I {|L(h)− a| ≤ b} for readability, note that we have

1

(L(h)−a
b )2 + 1

=
1− E

(L(h)−a
b )2 + 1

+
E

(L(h)−a
b )2 + 1

≤ 1− E

(L(h)−a
b )2 + 1

+ E

(
1− 1

2

(
L(h)− a

b

)2
)

=

(
1− E

(L(h)−a
b )2 + 1

+ E

)
︸ ︷︷ ︸

≤1

−E

2

(
L(h)− a

b

)2

.

Taking expectation and utilizing (53), whenever (51) holds, we have

1− β/λ = Eμ

(
b√

(L(h)− a)2 + b2

)
≤

√
1−Eμ

E

2

(
L(h)− a

b

)2

. (54)

With this established, note that via helper inequality (37), for any β ≤ λ we have

(1− β/λ)2 ≥ 1− 2β/λ

and thus in light of (54), we may conclude that

1− 2β/λ ≤ 1−Eμ
E

2

(
L(h)− a

b

)2

which implies

λ

4β
Eμ E(h; a, b)(L(h)− a)2 ≤ b2

noting that we have written E(h; a, b) to emphasize the dependence on h, a, and b. Once again since the first-order
condition (51) is necessary for optimality, we may conclude that

λ

4β
Eμ E(h; a, bμ(h, a))(L(h)− a)2 ≤ b2μ(h, a) (55)

which is the remaining desired inequality.

Proof of the limit (14). Recall from the proof of Proposition 2 the first-order optimality condition (51), which is
satisfied by any solution bμ(h, a) given by (13), i.e., we have

Eμ

(
bμ(h, a)√

(L(h)− a)2 + (bμ(h, a))2

)
= 1− β/λ (56)

for any 0 < β ≤ λ. Defining g(β) ..= 1 − β/λ and taking any 0 < β2 < β1 ≤ λ, clearly we have g(β1) < g(β2)
and thus using the equality (56), we must have that bμ(h, a;β2) ≥ bμ(h, a;β1), otherwise it would result in a
contradiction of (56). Using this monotonicity, clearly

E(h; a, bμ(h, a;β1)) ≤ E(h; a, bμ(h, a;β2))

and thus

Eμ E(h; a, bμ(h, a;β1))(L(h)− a)2 ≤ E(h; a, bμ(h, a;β2))(L(h)− a)2.

Applying this to the lower bound in Proposition 2, we have

lim inf
β→0+

b2μ(h, a) ≥ lim
β→0+

λ

4β
Eμ I(h; a)(L(h)− a)2 = ∞

as desired.
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Proof of the limit (15). Note that we can easily bound the random variable of interest as

0 ≤ bρ

(
L(h)− a

b

)
=

√
(L(h)− a)2 + b2 − b ≤ |L(h)− a| (57)

for any choice of 0 < b < ∞. Some straightforward calculus shows that

lim
b→∞

bρ

(
L(h)− a

b

)
= 0

in a pointwise sense. Since the upper bound in (57) is μ-integrable by assumption, a simple application of
dominated convergence (Ash and Doléans-Dade, 2000, Thm. 1.6.9) yields

lim
b→∞

bEμ ρ

(
L(h)− a

b

)
= Eμ

[
lim
b→∞

bρ

(
L(h)− a

b

)]
= 0

as desired.

Proof of Proposition 3. From condition (20), since any solution must also be a stationary point (Nesterov, 2004,
Thm. 1.2.1), we know that An

..= An(h, b) must satisfy the first-order condition

λ

n

n∑
i=1

ρ′
(
Li(h)− An

b

)
= α

which is equivalent to

b

n

n∑
i=1

ρ′
(
Li(h)− An

b

)
=

α

λ
b. (58)

Next we make use of the argument developed by Catoni (2012, §2). First note that fixing any a ∈ R and b > 0,
we have

E exp

(
n∑

i=1

ρ′
(
Li(h)− a

b

))
= E

[
n∏

i=1

exp

(
ρ′

(
Li(h)− a

b

))]

=

n∏
i=1

Ei exp

(
ρ′

(
Li(h)− a

b

))

≤
n∏

i=1

Ei

(
1 +

Li(h)− a

b
+

γ

b2
(Li(h)− a)2

)
=

(
1 +

Eμ L(h)− a

b
+

γ

b2
Eμ(L(h)− a)2

)n

≤ exp
(n
b
(Eμ L(h)− a) +

nγ

b2
Eμ(L(h)− a)2

)
. (59)

The second equality above follows from the independence of the training data, and the first inequality uses the
upper bound in (4), which is satisfied by ρ given in (6) with γ = 1, though we leave γ as is to illustrate how more
general results are obtained. The third equality just uses the fact that the training data is an IID sample from μ,
and the final inequality culminating in (59) just uses the bound 1 + x ≤ exp(x). Using Markov’s inequality and
taking 0 < δ < 1, it is straightforward to show that (59) implies a 1− δ event (over the draw of Z1, . . . ,Zn) in
which we have

n∑
i=1

ρ′
(
Li(h)− a

b

)
≤ n

b
(Eμ L(h)− a) +

nγ

b2
Eμ(L(h)− a)2 + log(1/δ).

Multiplying both sides by b/n, on the same “good” event, we have

b

n

n∑
i=1

ρ′
(
Li(h)− a

b

)
≤ Eμ L(h)− a+

γ

b
Eμ(L(h)− a)2 +

b log(1/δ)

n

= Eμ L(h)− a+
γ

b

(
Vμ L(h) + (Eμ L(h)− a)2

)
+

b log(1/δ)

n
(60)
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where (60) follows from expanding the quadratic term and doing some algebra. With the equality (58) in mind,
subtracting a constant from both sides of (60), note that we equivalently have

b

n

n∑
i=1

ρ′
(
Li(h)− a

b

)
− α

λ
b ≤ p(a) (61)

where we have defined

p(a) ..= Eμ L(h)− a+
γ

b

(
Vμ L(h) + (Eμ L(h)− a)2

)
+

b log(1/δ)

n
− α

λ
b (62)

for readability. Note that p(·) in (62) is a polynomial of degree 2, and can be written as

p(a) = ua2 + va+ w (63)

with coefficients defined as

u ..=
γ

b

v ..= (−1)

(
1 +

2γEμ L(h)

b

)
w ..= Eμ L(h) +

γ

b
Eμ|L(h)|2 + b log(1/δ)

n
− α

λ
b.

This polynomial has real roots whenever v2 − 4uw ≥ 0, and some algebra shows that this is equivalent to

0 ≤ D ≤ 1, where D ..= 4

((γ
b

)2

Vμ L(h) +
γ log(1/δ)

n
− γα

λ

)
. (64)

Assuming this holds, denoting by a+ the smallest root of p(·), i.e., the smallest of satisfying p(a+) = 0, the critical
fact of interest to us is that An ≤ a+ on the good event of (61). This is valid due to two facts: first, the left-hand
side of (61) is a decreasing function of a; second, due to (58), we know that An is a root of the left-hand side of
(61). With this key fact in hand, using the quadratic formula we have

An ≤ a+

= Eμ L(h) +
b

2γ

(
1−√

1−D
)

= Eμ L(h) +
b

2γ

(
1−√

1−D
) (

1 +
√
1−D

)(
1 +

√
1−D

)
= Eμ L(h) +

b

2γ

D(
1 +

√
1−D

)
≤ Eμ L(h) +

b

2γ
D.

Taking the two ends of this inequality chain together and expanding D, we have

An ≤ Eμ L(h)− 2(α/λ)b+ 2

(
γ

b
Vμ L(h) +

b log(1/δ)

n

)
(65)

with probability no less than 1− δ, assuming that n, b, and α are such that 0 ≤ D ≤ 1 holds. This gives us the
desired upper bound.

To obtain a lower bound, a perfectly analogous argument can be applied. First, using the lower bound in (4) and
the fact that ρ′(−x) = −ρ′(x), we know that

ρ′
(
a− Li(h)

b

)
≤ log

(
1 +

a− Li(h)

b
+

γ

b2
(a− Li(h))

2

)
(66)
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for any a ∈ R, b > 0, and i ∈ [n]. Plugging this inequality (66) into an argument analogous to the chain of
inequalities that led to (60) earlier, it is clear that again on an event of probability no less than 1− δ, we have

b

n

n∑
i=1

ρ′
(
a− Li(h)

b

)
≤ a−Eμ L(h) +

γ

b

(
Vμ L(h) + (Eμ L(h)− a)2

)
+

b log(1/δ)

n
. (67)

Once again the upper bound we can bound this using a polynomial of degree 2, namely

b

n

n∑
i=1

ρ′
(
a− Li(h)

b

)
+

α

λ
b ≤ q(a) (68)

where we have defined

q(a) ..= a−Eμ L(h) +
γ

b

(
Vμ L(h) + (Eμ L(h)− a)2

)
+

b log(1/δ)

n
+

α

λ
b. (69)

Now, since An is a root of the left-hand side of (68) viewed as a function of a, and this function is monotonically
increasing, it is evident that denoting the largest root of q(·) (when it exists) by a−, we have An ≥ a−, a lower
bound in contrast to the An ≤ a+ upper bound used earlier. For completeness, we write this polynomial as

q(a) = u′a2 + v′a+ w′ (70)

with coefficients

u′ ..=
γ

b

v′ ..=

(
1− 2γEμ L(h)

b

)
w′ ..= (−1)Eμ L(h) +

γ

b
Eμ|L(h)|2 + b log(1/δ)

n
+

α

λ
b.

We have two real roots whenever

1 ≥ D′ ..= 4

((γ
b

)2

Vμ L(h) +
γ log(1/δ)

n
+

γα

λ

)
(71)

holds, and thus we obtain a high probability lower bound on An as follows:

An ≥ a−

= Eμ L(h)− b

2γ

(
1−√

1−D′
)

≥ Eμ L(h)− b

2γ
D′.

Expanding D′ gives us the lower bound

An ≥ Eμ L(h)− 2(α/λ)b− 2

(
γ

b
Vμ L(h) +

b log(1/δ)

n

)
(72)

with probability no less than 1− δ, as desired.

Let us conclude this proof by organizing the technical assumptions. First of all, for the two quadratics used in
the preceding bounds, we require both (64) and (71) to hold. It is straightforward to verify that having these
conditions both hold is equivalent to the following:

4γα

λ
≤ 4

((γ
b

)2

Vμ L(h) +
γ log(1/δ)

n

)
≤ 1− 4γα

λ
. (73)

As such, whenever α, δ, and b are such that (73) holds, using a union bound, it follows that with probability no
less than 1− 2δ, we have a bound on

|An − (Eμ L(h)− 2(α/λ)b)| ≤ 2

(
γ

b
Vμ L(h) +

b log(1/δ)

n

)
as desired. The proposition statement takes a cleaner form since we have γ = 1.
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Proof of Proposition 4. The lack of convexity follows from the fact that the composition of two convex functions
need not be convex when the outermost function is non-monotonic (see for example Boyd and Vandenberghe
(2004, Ch. 3)), and the lack of smoothness follows a fortiori from Lemma 7.


