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Abstract

We derive generic information-theoretic and
PAC-Bayesian generalization bounds involv-
ing an arbitrary convex comparator function,
which measures the discrepancy between the
training loss and the population loss. The
bounds hold under the assumption that the
cumulant-generating function (CGF) of the
comparator is upper-bounded by the corre-
sponding CGF within a family of bounding
distributions. We show that the tightest pos-
sible bound is obtained with the compara-
tor being the convex conjugate of the CGF
of the bounding distribution, also known as
the Cramér function. This conclusion applies
more broadly to generalization bounds with
a similar structure. This confirms the near-
optimality of known bounds for bounded
and sub-Gaussian losses and leads to novel
bounds under other bounding distributions.

1 INTRODUCTION

A key question in statistical learning theory is that of
generalization: how can we certify that a hypothesis
with good performance on training data has similarly
good performance on new, unseen data? More explic-
itly, when does a low training loss imply a low pop-
ulation loss? A standard approach is to express the
population loss as the sum of the training loss and the
generalization gap, i.e., the difference between popu-
lation and training loss, and derive a bound on the
generalization gap. With this decomposition, the dis-
crepancy between training and population loss is mea-
sured through their difference. While simple and in-
tuitive, this is often far from being the most effective
approach—one may instead measure the discrepancy
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between the training and population loss through an
alternative comparator function, of which the differ-
ence is a single specific case. In this paper, we examine
the choice of this comparator in detail, and propose a
systematic approach to selecting the optimal one.

To concretize this discussion, we consider the Proba-
bly Approximately Correct (PAC)-Bayes framework,
originating in the seminal works of Shawe-Taylor and
Williamson (1997); McAllester (1998). This frame-
work yields bounds on the population loss, averaged
over a stochastic learning algorithm, that hold with
high probability over the draw of the training data. A
particularly appealing feature of PAC-Bayesian gener-
alization bounds is that they depend on the specific
learning algorithm, distribution, and data set under
consideration. This is closely related to information-
theoretic generalization bounds, where the main fo-
cus has been on bounds in expectation, in which the
loss is averaged both with respect to the learning al-
gorithm and training data (Zhang, 2006; Russo and
Zou, 2016; Xu and Raginsky, 2017). We refer to
Guedj (2019); Alquier (2024) for recent surveys on
PAC-Bayes, and to the monograph by Hellström et al.
(2023) for a broader discussion on generalization and
links with information theory. Although some of our
results apply more broadly, we focus on PAC-Bayesian
and information-theoretic bounds for clarity.

While there exists a wide array of PAC-Bayesian
bounds, the majority can be derived through a generic
result that takes a convex function as parameter. To
make this precise, we first need to introduce some nota-
tion. Consider a distribution D on the instance space
Z, and let the training set z = (z1, . . . , zn) be drawn
from the product distribution Dn. Let M(H) denote
the set of probability measures on the hypothesis space
H. The stochastic learning algorithm is represented
through a distribution Qn ∈ M(H), called a poste-
rior. Note that Qn is allowed to depend on z.1 PAC-
Bayesian bounds depend on a dissimilarity measure
between Qn and a reference distribution Q0 ∈ M(H),
called a prior. Typically, Q0 is independent from z, al-

1Formally, Qn is a Markov kernel with source Zn and
target H (with associated σ-algebras).
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though this is not always the case. While the terminol-
ogy is inspired by the connection to Bayesian statistics,
Q0 and Qn do not need to be related via Bayesian in-
ference (see, e.g., Guedj, 2019, for a discussion). How-
ever, we will require throughout that Qn is absolutely
continuous with respect to Q0, denoted by Qn ≪ Q0.
The performance of a hypothesis is measured through
a loss function ℓ : H× Z → L ⊆ R+. Without loss of
generality, we will assume that L = [0, 1] for bounded
loss functions (arbitrary bounded loss functions can
be recovered through affine transformations). For a
given hypothesis h ∈ H, the training loss R z(h) and
population loss RD(h) are given by

R z(h) =
1

n

n∑
i=1

ℓ(h, zi), (1)

RD(h) = Ez∼D[ℓ(h, z)]. (2)

The PAC-Bayesian training loss R̄z(Qn) and popula-
tion loss R̄D(Qn) are obtained as

R̄z(Qn) = Eh∼Qn
[R z(h)], (3)

R̄D(Qn) = Eh∼Qn
[RD(h)]. (4)

We refer to convex functions ∆ : L2 → R+ as com-
parator functions. Intuitively, a comparator function
computes a discrepancy between the training and pop-
ulation loss. With this notation in place, we are ready
to state the generic PAC-Bayesian bound for bounded
losses (Germain et al., 2009; Bégin et al., 2016).

Theorem 1. (Bégin et al., 2016, Thm. 1). Consider
a fixed prior Q0 ∈ M(H), a convex comparator func-
tion ∆ : L2 → R+, and an uncertainty δ ∈ (0, 1).
Assume that L = [0, 1]. Then, with probability 1 − δ
simultaneously for all Qn such that Qn ≪ Q0,

∆
(
R̄z(Qn), R̄D(Qn)

)
≤

KL(Qn∥Q0) + ln Υ∆(n)
δ

n
(5)

where KL(Qn∥Q0) is the KL divergence and

Υ∆(n) = sup
r∈[0,1]

n∑
k=0

(
n

k

)
rk(1− r)n−ken∆(k/n,r). (6)

If R̄z(Qn) = α, KL(Qn∥Q0) ≤ β, and Υ∆(n) ≤ ι(n),
this leads to the bound R̄D(Qn) ≤ B∆

n (α, β, ι), where

B∆
n (α, β, ι) = sup

ρ∈L

{
ρ : ∆(α, ρ) ≤

β + ln ι(n)
δ

n

}
. (7)

Here, the function B∆
n is essentially a numerical in-

version of the bound in (5): it outputs the largest
possible value of the population loss that is consistent
with the bound. By suitably selecting the comparator
function ∆ and controlling the resulting Υ∆, several

explicit bounds can be obtained. The perhaps most
intuitive choice is to simply consider the scaled differ-
ence, i.e., ∆t(q, p) = t(p−q) (McAllester, 2003). How-
ever, other choices are likely to lead to tighter bounds.
For instance, with ∆(q, p) = Cγ(q, p) for γ ∈ R, where

Cγ(q, p) = γq − ln(1− p+ peγ), (8)

we find that, with probability 1− δ for a fixed γ,

Cγ(R̄z(Qn), R̄D(Qn)) ≤
KL(Qn∥Q0) + ln 1

δ

n
. (9)

This is the family of Catoni bounds (Catoni, 2007).
Now, let Bern(p) denote a Bernoulli distribution with
parameter p, and define the binary KL divergence as

kl(q, p) = KL(Bern(q)∥Bern(p)) (10)

= q ln
q

p
+ (1− q) ln

1− q

1− p
. (11)

With ∆(q, p) = kl(q, p), we obtain the MLS bound,
named for Maurer (2004); Langford and Seeger (2001):

kl(R̄z(Qn), R̄D(Qn))≤
KL(Qn∥Q0)+ln 2

√
n

δ

n
. (12)

This flexibility raises the question: which ∆ leads to
the tightest bound on R̄D(Qn)? Recently, Foong et al.
(2021) established the following: first, no choice of ∆
in Theorem 1 can give a tighter bound than

R̄D(Qn) ≤ inf
γ

BCγ
n (R̄z(Qn),KL(Qn∥Q0), 1). (13)

Second, the right-hand side of (13) is

inf
γ

BCγ
n (R̄z(Qn),KL(Qn∥Q0), 1)

= Bkl
n (R̄z(Qn),KL(Qn∥Q0), 1). (14)

This can be expressed as follows: no bound on R̄D(Qn)
based on Theorem 1 is tighter than the one obtained
from (12) without the ln(2

√
n)/n term, and this bound

is equivalent to (9) for the optimal γ. Now, it is im-
portant to emphasize that the optimal bound in (13),
sometimes called the optimistic MLS bound, has not
been proven to be valid: the optimal value of γ in (9)
depends on the random variable R̄z(Qn), and hence,
taking the infimum in (13) is invalid without a union
bound. However, this demonstrates that, in this sense,
(12) is optimal up to the logarithmic term. Note that
the assumption of the loss function being bounded is
central to these results, and it is unclear what can be
said in more general settings with unbounded losses.

Overview and contributions. Based on the preced-
ing discussion, the following questions naturally arise:
(i) Why does optimistic MLS yield the tightest bound?
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(ii) What is the optimal ∆ beyond bounded losses?
In this paper, we answer these questions as follows. In
Section 2, we consider the average setting, enabling us
to state our conclusions in a simpler form. First, we
derive a generic generalization bound in terms of any
convex comparator for which the cumulant-generating
function (CGF) is bounded by the corresponding CGF
from a family of bounding distributions. We prove that
the optimal comparator is the Cramér function—i.e.,
the conxvex conjugate of the CGF—of the bounding
distribution. If the bounding distributions form a nat-
ural exponential family (NEF), the Cramér function is
a KL divergence. In Section 3, we turn to the PAC-
Bayesian setting. We derive an analogous generic gen-
eralization bound, and establish that the same Cramér
function is near-optimal (up to a logarithmic term).
As special cases, we recover the conclusions of Foong
et al. (2021) for bounded losses and establish the op-
timality of the bound from Xu and Raginsky (2017)
for sub-Gaussian losses. In Section 4, we specialize
our approach to obtain generalization bounds for sub-
Poissonian, sub-gamma, and sub-Laplacian losses, and
in Section 5, we numerically evaluate these bounds. A
summary of our notation, along with useful facts about
information theory, convex analysis, and NEFs, is pro-
vided in Appendix A. The proofs of all of our results
are deferred to Appendix B. We close with additional
theoretical and experimental results in Appendix C.

Related work. PAC-Bayesian bounds for bounded
losses with the difference-comparator were initially
studied by Shawe-Taylor and Williamson (1997);
McAllester (1998, 2003). Subsequently, Langford and
Seeger (2001); Maurer (2004); Catoni (2007) consid-
ered alternative comparators for bounded losses, lead-
ing to (9) and (12). Zhang (2006) derived bounds
for potentially unbounded losses using a comparator
based on the CGF of the loss evaluated at 1, and estab-
lished a relation between average and PAC-Bayesian
bounds via exponential inequalities (explored in-depth
in Grünwald et al., 2023). Bounds with generic com-
parators for bounded losses were obtained by Germain
et al. (2009); Bégin et al. (2016), and extended to
unbounded losses by Rivasplata et al. (2020). Gen-
eral tail behaviors beyond bounded losses were also
considered by, e.g., Germain et al. (2016); Alquier
and Guedj (2018); Bu et al. (2020); Mhammedi et al.
(2020); Banerjee and Montufar (2021); Haddouche
et al. (2021); Haddouche and Guedj (2023); Wu et al.
(2023); Rodŕıguez-Gálvez et al. (2023); Lugosi and Neu
(2023). However, the optimal comparator choice was
not studied in any of these works. Most closely related
to this paper is Foong et al. (2021), where comparator
optimality was studied for bounded losses.

2 AVERAGE BOUNDS AND THE
OPTIMAL COMPARATOR

As aforementioned, we will first consider average gen-
eralization bounds. In this section, we thus consider
the average training and population loss, given by

R̂z(Qn) = Eh,z∼QnDn [R z(h)], (15)

R̂D(Qn) = Eh,z∼QnDn [RD(h)]. (16)

Here, QnD
n is the product distribution on H × Zn

induced by Qn and Dn.

2.1 A Generic Average Generalization Bound

Theorem 2. Let P be a set of distributions such that,
for all r ∈ L, there exists a Pr ∈ P with first mo-
ment r. Let C denote the set of functions from R2

to R that are proper, convex, and lower semicontinu-
ous.2 For any x = (x1, . . . , xn), let x̄ =

∑n
i=1 xi/n.

Furthermore, let F ⊆ C denote the subset of C such
that, for all h ∈ H and f ∈ F ,

E z∼Dn [ef(R z(h),RD(h))]≤Ex∼Pn
RD(h)

[ef(x̄,RD(h))]. (17)

Then, for all ∆ ∈ F and all Qn such that Qn ≪ Q0,

∆
(
R̂z(Qn), R̂D(Qn))

≤ KL(QnD
n∥Q0D

n)+lnΥP
∆(n)

n
. (18)

Here, ΥP
∆(n) = supr∈L Ex∼Pn

r
exp(n∆(x̄, r)).

If L = [0, 1], the condition in (17) holds with P as

PBern = {Bern(r) : r ∈ [0, 1]} (19)

and F = C (Maurer, 2004, Lemma 3). Thus, The-
orem 2 includes an average version of Theorem 1 as
a special case. Note that, if Q0 is set to be the true
marginal distribution Qmarg induced on h by QnD

n,
i.e., for any measurable E ⊂ H,

Qmarg(E) =
∫
Zn

Qn(E)dDn(z), (20)

we have that KL(QnD
n∥QmargD

n) = I(h; z) is the
mutual information. Hence, KL(QnD

n∥Q0D
n) can

be seen as a mutual information with a mismatched
marginal. By the golden formula for mutual infor-
mation, we have I(h; z) ≤ KL(QnD

n∥Q0D
n) for any

prior Q0 ≪ Qmarg (see Lemma 18 in Appendix A).

2Functions defined on a subset of R2 are extended by
setting them to be +∞ outside of the original domain.



Comparing Comparators in Generalization Bounds

2.2 Beyond Bounded: Sub-P Losses

To see the relevance of Theorem 2 beyond the case of
bounded losses, we need to be more concrete regard-
ing the set F of admissible functions and the set P
of bounding distributions. Recall that σ-sub-Gaussian
random variables are characterized by having a CGF
that is dominated by the CGF of some Gaussian dis-
tribution with variance σ2, with similar notions for,
e.g., sub-gamma and sub-exponential random vari-
ables (Wainwright, 2019, Chapter 2). In Definition 3,
we extend this to general bounding distributions.

Definition 3 (Sub-P Losses). Let P be a set of
distributions such that, for all r ∈ L, there exists a
Pr ∈ P with first moment r. Furthermore, for all
r ∈ L, let Tr ⊆ R and T = {Tr : r ∈ L}. Then, we
say that the loss is sub-(P, T ) if, for all h ∈ H and
t ∈ TRD(h), we have

E z∼D[exp
(
tℓ(h, z)

)
] ≤ E x∼PRD(h)

[exp(tx)]. (21)

If Tr = R for all r ∈ L, we say that the loss is sub-P.

Note that the condition in (21) corresponds to assum-
ing that the CGF of the loss is dominated by the CGF
of the bounding distribution for all t ∈ TRD(h). In
the language of Theorem 2, this corresponds to saying
that the function f lin

t,g (q, p) = tq + g(p) is in F for all
t ∈ TRD(h) and all functions g : L → R. As indicated,
sub-Gaussian random variables can be expressed as
sub-PNorm,σ2 , where PNorm,σ2 is the set of Gaussian
distributions with a fixed variance σ2 ∈ R+:

PNorm,σ2 = {Normal(µ, σ2) : µ ∈ R}. (22)

For a given loss, there are often multiple valid choices
of P. Bounded losses, for instance, are both sub-
Bernoulli and, by Hoeffding’s lemma, sub-Gaussian.
Furthermore, for any σ′ > σ, sub-PNorm,σ2 losses are
also sub-PNorm,σ′2 . However, selecting P to be the
family that most tightly bounds the true CGF will
naturally yield the tightest bound.

Unlike for the case of a bounded loss, assuming a
bound on the CGF does not in general guarantee that
F contains all of C. However, it does imply that F
contains a wide array of functions, including all to-
tally monotone functions and all infinitely differen-
tiable functions whose derivatives of all orders are non-
negative. To the best of our knowledge, this includes
all comparator functions that have been considered in
the literature. We provide a more detailed characteri-
zation in Proposition 19 in Appendix C.1. In any case,
assuming that f lin

t,g ∈ F is sufficient to find the optimal
comparator function in Theorem 2, as we show next.

2.3 The Optimal Comparator Function

Recall that the convex conjugate of a function f is

f∗(y) = sup
x

{
⟨x,y⟩ − f(x)

}
, (23)

where ⟨·, ·⟩ is the inner product. For f ∈ C, (f∗)∗ = f .

Theorem 4. Assume that the loss is sub-(P, T ). Let
Ψp(t) = lnEx∼Pp [e

tx] denote the CGF of the distribu-
tion Pp, and let ∆Ψ

P(q, p) be the Cramér function, i.e.,
the convex conjugate of Ψp:

∆Ψ
P(q, p) = Ψ∗

p(q) = sup
t∈Tp

{
tq −Ψp(t)

}
. (24)

Furthermore, define

B̂∆
n (α, β, ι) = sup

ρ∈L

{
ρ : ∆(α, ρ) ≤ β + ln ι(n)

n

}
. (25)

Then, for any ∆ ∈ F , we have

R̂D(Qn)≤B̂
∆Ψ

P
n

(
R̂z(Qn),KL(QnD

n∥Q0D
n), 1

)
(26)

≤B̂∆
n

(
R̂z(Qn),KL(QnD

n∥Q0D
n),ΥP

∆

)
. (27)

Note that B̂∆
n in (25) is simply the average counter-

part to B∆
n in (7), and hence, without the δ term.

The result in Theorem 4 allows us to conclude that,
using the generic bound in Theorem 2, the optimal
average generalization bound is obtained by setting
the comparator function to be the Cramér function.
Specifically, this is obtained by numerically inverting

∆Ψ
P(R̂z(Qn), R̂D(Qn)) ≤

KL(QnD
n∥Q0D

n)

n
(28)

as described in (25). For independent and identically
distributed random variables, the Cramér function
characterizes the probability of rare events (Cramér,
1944, Boucheron et al., 2013, Sec. 2.2). Thus, the con-
nection to generalization bounds is somewhat natural.

While we focus on information-theoretic and PAC-
Bayesian bounds for concreteness, the conclusions
of Theorem 4 hold more broadly for generalization
bounds with a similar structure. Specifically, if (18)
holds with the KL divergence replaced by some other
complexity measure, the same reasoning still applies.

For the case of Bernoulli distributions in (19), we have

∆Ψ
PBern

(q, p) = kl(q, p), (29)

as can be shown via a straight-forward calculation. As
it turns out, a similar statement holds more generally
as long as P is a natural exponential family (NEF). A
NEF is a set of probability distributions whose proba-
bility density (or mass) functions can be written

p(x|θ) = h(x)eθx−g(θ), (30)
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where h(x) and g(θ) are known functions and θ is the
natural parameter. A NEF can equivalently be de-
scribed by its expectation parameter µ = g′(θ), which
equals its first moment (Nielsen and Garcia, 2009,
Wasserman, 2010, Sec. 9.13.3). Unless otherwise spec-
ified, we characterize NEFs using expectation param-
eters. In the case where P is a NEF, Kullback’s in-
equality becomes an equality (Kullback, 1954).

Proposition 5. Assume that P is a NEF. Then,

∆Ψ
P(q, p) = Ψ∗

p(q) = KL(Pq∥Pp). (31)

Thus, the optimal comparator function for bounded
losses is the binary KL divergence (as in Hellström and
Durisi, 2022, Thm. 9). As another example, consider
the set of Gaussian distributions with known variance
in (22). Then, the optimal comparator function is

KL
(
Normal(q, σ2)∥Normal(p, σ2)

)
=

(q − p)2

2σ2
, (32)

as PNorm,σ2 is a NEF. This demonstrates the optimal-
ity of the bound in Xu and Raginsky (2017, Thm. 1).
As discussed by Foong et al. (2021), these optimal
comparators are not necessarily unique. We discuss
further applications of the generic bound in Section 4.

2.4 A Samplewise Generalization Bound

By an altered derivation, one can obtain a bound in
terms of a samplewise KL divergence, akin to Negrea
et al. (2019); Bu et al. (2020); Haghifam et al. (2020).
While it is possible to obtain bounds in terms of arbi-
trary random subsets of z, we focus on the samplewise
case as it yields the tightest bound (Rodŕıguez-Gálvez
et al., 2020; Harutyunyan et al., 2021).

Theorem 6. Consider the setting of Theorem 2.
Let z−i denote z with the ith element removed. Let Qi

denote the distribution induced on h when marginaliz-
ing over z−i, i.e., for any measurable E ⊂ H,

Qi(E) =
∫
Zn−1

Qn(E)dDn−1(z−i), (33)

Then, for all ∆ ∈ F and Qn such that Qi ≪ Q0,

R̂D(Qn)≤
1

n

n∑
i=1

B̂∆
1

(
R̂zi(Qi),KL(QiD∥Q0D),ΥP

∆

)
.(34)

Now, setting the prior to be the true marginal gives the
samplewise mutual information KL(QiD∥QmargD) =
I(h; zi). With this prior and ΥP

∆ = 1, the bound in
Theorem 6 is always at least as tight as the one in
Theorem 2, as we show in Appendix C.1.

3 GENERIC PAC-BAYESIAN
BOUND FOR SUB-P LOSSES

Having introduced the main ideas in the average set-
ting, we now turn to PAC-Bayesian bounds. We follow
a strategy similar to the one presented in Section 2, but
the additional difficulty of handling the randomness of
the training data calls for a more elaborate treatment.

3.1 A Generic PAC-Bayesian Bound

We begin by deriving a version of Theorem 1 that holds
under the assumption that the CGF of the comparator
under the true data distribution is bounded by the
CGF under a certain bounding distribution—i.e., a
PAC-Bayesian variant of Theorem 2.

Theorem 7. Let P, F and ΥP
∆ be as in Theorem 2.

Consider a fixed function ∆ ∈ F . Then, with probabil-
ity 1−δ simultaneously for all Qn such that Qn ≪ Q0,

∆(R̄z(Qn), R̄D(Qn)) ≤
KL(Qn∥Q0) + ln

ΥP
∆(n)
δ

n
. (35)

The bound in (35) is similar to the generic PAC-
Bayesian bound from Rivasplata et al. (2020), but
with a more explicit bound on the CGF term therein.
For L = [0, 1] and P being the Bernoulli distributions,
Theorem 1 is recovered as a special case.

3.2 The Near-Optimal Comparator

We are now ready to present a characterization of the
near-optimal bound obtainable via Theorem 7. Specif-
ically, in (36), we state a lower limit on the bound
that can be obtained from Theorem 7 in terms of the
Cramér function. Then, in (38), we derive a paramet-
ric bound, which is used to obtain explicit bounds in
terms of the Cramér function in (39) to (41).

Theorem 8. Assume that the loss is sub-(P, T ).
Then, for any ∆ ∈ F in Theorem 7,

B
∆Ψ

P
n (R̄z(Qn),KL(Qn∥Q0), 1)

≤ B∆
n (R̄z(Qn),KL(Qn∥Q0),Υ

P
∆). (36)

Furthermore, with Ῡ(P) := ΥP
∆Ψ

P
, we have

R̄D(Qn) ≤ B
∆Ψ

P
n

(
R̄z(Qn),KL(Qn∥Q0), Ῡ(P)

)
. (37)

Finally, for all t ∈ Tp, let ∆t
P(q, p) = tq−Ψp(t). Then,

for any fixed t, we have

R̄D(Qn) ≤ B
∆t

P
n

(
R̄z(Qn),KL(Qn∥Q0), 1

)
. (38)

Here, (36) demonstrates that no choice of ∆ leads to
a tighter bound than what is obtained with ∆Ψ

P , pro-
vided that Ῡ(P) is replaced by 1. This is analogous to



Comparing Comparators in Generalization Bounds

Foong et al. (2021, Thm. 4), with the crucial difference
that (36) holds beyond bounded losses. While (36) is
not shown to be a valid generalization bound, (37) pro-
vides a valid bound in terms of Ῡ(P). Hence, the result
in Theorem 8 demonstrates that, potentially up to the
Ῡ(P)-dependent term, the optimal bound on R̄D(Qn)
obtainable from Theorem 7 is obtained by setting the
comparator to be the Cramér function. For the special
case of bounded losses, (37) reduces to the MLS bound
in (12), while (38) reduces to the Catoni bound in (9).

Next, we use (38) to obtain upper bounds in terms of
∆Ψ

P , but with explicit expressions in place of Ῡ(P).

Corollary 9. Assume that KL(Qn∥Q0) ≤ u(n) or
that nR̄z(Qn) ≤ u(n) for a function u : N → R+.
Then, we have

R̄D(Qn) ≤ B
∆Ψ

P
n

(
R̄z(Qn),KL(Qn∥Q0), 2e⌈u⌉

)
. (39)

For any value of KL(Qn∥Q0) and R̄z(Qn), we have

R̄D(Qn) ≤ B
∆Ψ

P
n

(
R̄z(Qn),KL(Qn∥Q0),Ξ

)
(40)

where

Ξ =
π2(1 + min{nR̄z(Qn),KL(Qn∥Q0)})2

3
. (41)

The bound in (39) is essentially a variation of (37). To
shed light on this comparison, consider the bounded
loss case. Specifically, if L = [0, 1] and ∆(q, p) ≤ 1
for all q, p ∈ L—as is the case for (12)—it is suffi-
cient to consider u(n) = n, since the boundedness of
the loss implies nR̄z(Qn) ≤ n. Thus, we recover (12)
but with ln(2en)/n in place of ln(

√
2n)/n. As argued

by Rodŕıguez-Gálvez et al. (2023), u(n) = n is also a
reasonable choice for more general settings, as we are
mainly interested in cases where KL(Qn∥Q0)/n → 0
as n → ∞; otherwise, our bound will not vanish as the
number of training data increases. Note that the more
benign dependence on n in (12) stems from bound-
ing Ῡ(P) directly in (37) instead of starting from
(38), with a similar situation for the sub-Gaussian case
(cf. Hellström and Durisi, 2020, corrected Cor. 2 and
Rodŕıguez-Gálvez et al., 2023, Thm. 10). The upside
of (39) is that it leads to explicit bounds without ne-
cessitating a bound on Ῡ(P). The bound in (40) can
potentially be tighter than (39) if either R̄z(Qn) or
KL(Qn∥Q0) are small. The appearance of the KL term
is similar to Seldin et al. (2012, Thm. 6), who obtained
a similar dependence in a PAC-Bayes bound based on
Azuma’s inequality, while the bound with the train-
ing loss in (40) is, to the best of our knowledge, new.
For the bounded loss setting, if the minimum in (41)
is 0, we recover (12) but with ln(π2/3)/n instead of
ln(

√
2n)/n, leading to an improved bound for n > 5.

4 APPLICATIONS

So far, we have used the comparator characterization
in Theorem 4 and Theorem 8 to shed light on the
bounded loss case and verify the (near-)optimality of
known bounds for sub-Gaussian losses. We now ap-
ply our general techniques to other bounding distribu-
tions, and present new explicit generalization bounds.
Specifically, we consider sub-Poissonian, sub-gamma,
and sub-Laplacian losses. As Poisson and gamma dis-
tributions are both NEFs, the relevant Cramér func-
tions can be expressed as KL divergences, as per
Proposition 5. Since Laplace distributions with dif-
ferent first moments do not form a NEF, the relevant
Cramér function is not a KL divergence for this case.
The average bounds that we present are optimal in the
sense of Theorem 4, while the PAC-Bayesian bounds
are near-optimal in the sense of Theorem 8. In Ap-
pendix C.1, we also present explicit bounds for sub-
inverse Gaussian and sub-negative binomial losses.

4.1 Sub-Poissonian Losses

We begin by considering losses that are sub-PPoi, with
PPoi being the set of Poisson distributions:

PPoi = {Poisson(µ) : µ ∈ R+}. (42)

With this, we obtain the following.

Corollary 10. Assume that the loss is sub-PPoi, as
defined in (42). Define ∆Ψ

PPoi
as

∆Ψ
PPoi

(q, p) = KL
(
Poisson(q)∥Poisson(p)

)
(43)

= p− q + q ln
q

p
. (44)

Then, we have the average bound

∆Ψ
PPoi

(R̂z(Qn), R̂D(Qn)) ≤
KL(QnD

n∥Q0D
n)

n
. (45)

Furthermore, with probability 1− δ, we have the PAC-
Bayesian bound, with Ξ as defined in (41),

∆Ψ
PPoi

(R̄z(Qn), R̄D(Qn)) ≤
KL(Qn∥Q0) + ln Ξ

δ

n
. (46)

For sub-Poissonian losses, (37) does not yield a fi-
nite bound, since Ῡ(PPoi) is unbounded. This demon-
strates the usefulness of Corollary 9, as it allows for
finite tail bounds in terms of the near-optimal com-
parator, despite this unboundedness.

The bounds in terms of ∆Ψ
PPoi

admit a closed-form so-
lution. Specifically, we have that

B̂
∆Ψ

PPoi
n (α, β, 1) = αW

(
e1−

β
nα

)
, (47)
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where W (·) denotes the Lambert W function.

One can also derive a bound based on the comparator
∆p

t (q, p) = (1 − e−t)q − tp, which is chosen to ensure
that the CGF is independent of the mean. We present
the resulting bound in the following corollary.

Corollary 11. Assume that the loss is sub-PPoi, as
defined in (42). Then, we have the average bound

R̂D(Qn)≤ inf
t>0

{
tR̂z(Qn)

1−e−t
+
KL(QnD

n∥Q0D
n)

(1−e−t)n

}
. (48)

4.2 Sub-Gamma Losses

We now turn to sub-gamma losses with fixed shape pa-
rameter k, which can be viewed as being sub-(PΓ, T Γ)
with T Γ

µ = [0, k/µ) and

PΓ =
{
Γ(k, µ/k) : µ ∈ R

}
. (49)

Since the mean of a gamma distribution is the product
of its parameters, µ above is indeed the mean. Note
that sub-gamma random variables are often defined
in a slightly different way, stated in terms of an up-
per bound on the CGF of the gamma distribution (cf.
Boucheron et al., 2013, Sec. 2.4).

Several average information-theoretic generalization
and PAC-Bayesian bounds for sub-gamma losses have
been considered in the literature, but they are all based
on the scaled difference between the training and pop-
ulation loss, i.e., ∆t(q, p) = t(p − q) (Germain et al.,
2016; Banerjee and Montufar, 2021; Wu et al., 2023).
A consequence of this is that, in order to evaluate
the bounds, one needs to know both parameters of the
bounding gamma distribution, which implies that one
also has a bound on the mean. Indeed, the supremum
over r ∈ L in the definition of ΥP

∆ precludes the use of
∆t, as Υ

P
∆t

is unbounded. Here, we instead consider

∆Ψ
Γ (q, p) = KL

(
Γ
(
k, q/k

) ∥∥Γ(k, p/k)) (50)

= k

(
q

p
− 1− ln

q

p

)
. (51)

With this, we obtain the following bounds, which only
depend on the shape factor k in (49).

Corollary 12. Assume that the loss is sub-(PΓ, T Γ).
Then, we have the average bound

∆Ψ
Γ (R̂z(Qn), R̂D(Qn)) ≤ KL(QnD

n∥Q0D
n)

n
. (52)

Furthermore, with probability 1− δ, we have the PAC-
Bayesian bound

∆Ψ
Γ (R̄z(Qn), R̄D(Qn)) ≤

KL(Qn∥Q0) + ln Ξ
δ

n
. (53)

To the best of our knowledge, Corollary 12 provides
the first PAC-Bayesian and information-theoretic gen-
eralization bounds for sub-gamma losses that do not
require knowledge of both parameters of the bounding
distribution. Note that, since Ῡ(PΓ) is unbounded,
(37) does not yield a finite bound.

4.3 Sub-Laplacian Losses

As a final example, we consider losses that are sub-
(PLap, T b), where T b

µ = [0, 1/b) for all µ ∈ R and

PLap = {Laplace(µ, b) : µ ∈ R} (54)

are the Laplace distributions with mean µ and fixed
scale parameter b. Note that the Laplace distribu-
tions form an exponential family only if µ is fixed,
and hence, PLap is not a NEF. Therefore, the optimal
comparator is not a KL divergence, but the Cramér
function can still be computed as

∆Ψ
Lap(q, p) =

√
(q − p)2 + b2

b
− 1

+ ln

(
2(b

√
(q − p)2 + b2 − b2)

(q − p)2

)
. (55)

With this, we obtain the following.

Corollary 13. Assume that the loss is sub-(PLap, T b).
Then, we have the average bound

∆Ψ
Lap(R̂z(Qn), R̂D(Qn)) ≤ KL(QnD

n∥Q0D
n)

n
. (56)

While similar PAC-Bayesian results hold, we state only
the average result for brevity.

For sub-Laplacian losses, the comparator ∆t(q, p) =
t(p− q) can also be used, as we show in the following.

Corollary 14. Assume that the loss is sub-(PLap, T b).
Then, we have the average bound

R̂D(Qn)− R̂z(Qn)

≤ inf
t∈
(
0, 1b

){KL(QnD
n∥Q0D

n)

nt
− ln(1− b2t2)

t

}
. (57)

As it turns out, the bound based on (57) is identical
to the one based on (56). The reason for this is the
particular form of the CGF of the Laplace distribution,
as established in the following proposition.

Proposition 15. Assume that the CGF for any dis-
tribution Pr ∈ P and t ∈ T can be written as

lnEx∼Pr [e
tx] = tr + ln g(t2), (58)

where g(t2) does not depend on the mean r. Then,

B̂
∆Ψ

P
n

(
α, β, 1

)
= inf

t
B̂∆t

n

(
α, β,ΥP

∆t

)
. (59)
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Figure 1: The difference between the binary KL bound
on the population loss and the one obtained via sub-
Gaussianity for a bounded loss function.

Since PLap satisfies (58), the claimed equivalence of
the bounds based on (56) and (57) follows.

5 NUMERICAL EVALUATION

As established, the bounds based on the Cramér func-
tion are near-optimal in the sense of Theorems 4 and 8.
Still, it is interesting to evaluate their quantitative
advantage compared to, e.g., bounds based on the
(scaled) difference-comparator. In this section, we
evaluate this discrepancy numerically. For simplicity,
we focus on average bounds, but similar conclusions
apply for the PAC-Bayesian case.

It is well-established in the literature that PAC-
Bayesian and information-theoretic bounds can give
accurate loss estimates and be used to construct learn-
ing algorithms for many settings, including neural
networks (Langford and Caruana, 2001; Ambroladze
et al., 2006; Dziugaite and Roy, 2017; Neyshabur et al.,
2018; Letarte et al., 2019; Zhou et al., 2019; Biggs and
Guedj, 2021, 2022b; Dziugaite et al., 2021; Harutyun-
yan et al., 2021; Pérez-Ortiz et al., 2021; Lotfi et al.,
2022; Biggs and Guedj, 2022a; Wang and Mao, 2023).
Thus, instead of studying any specific setting, we eval-
uate the bounds while varying the relevant inputs:
the training loss R̂z(Qn) and the normalized KL di-
vergence, i.e., KL(QnD

n∥Q0D
n)/n. This provides a

wider perspective, as any specific setting can be iden-
tified with a subset of these input values.

To begin, we consider sub-Bernoulli losses—that is,
bounded losses. As mentioned, the Cramér function
in this case is the binary KL divergence kl(q, p), while
the difference comparator ∆t(q, p) leads to the sub-
Gaussian bound (since bounded losses are 1/2-sub-

Figure 2: The difference between the sub-Poissonian
bound on the population loss obtained via (48) and
the one obtained via (45).

Gaussian). To compare these bounds, we evaluate

min
{
1,
(
α+

√
β/2n

)}
− B̂kl

n (α, β, 1), (60)

where α is the training loss and β/n is the normalized
KL divergence. This is illustrated in Fig. 1. When
both α and β are high, both bounds lead to the trivial
upper bound of 1, and are thus equal. The binary KL
bound is most clearly advantageous for small training
losses and in the region where the sub-Gaussian bound
becomes trivial.

In Fig. 2, we consider sub-Poissonian losses, and nu-
merically evaluate the discrepancy between the bound
based on (45) and the one based on (48), that is,

inf
t

{
B̂∆t

n (α, β,ΥP
∆t

)
}
− B̂

∆Ψ
PPoi

n (α, β, 1). (61)

Since (45) is optimal, (61) is non-negative for all val-
ues. The biggest discrepancy arises when the training
loss and the normalized KL divergence are both high.
If one removes the minimum in (60), the same behavior
emerges for bounded losses (see Appendix C.2).

For sub-gamma losses, it is unclear how to construct an
alternative comparator. Indeed, for any comparator
based on a scaled difference of population and training
loss, the CGF depends on the true mean, and is un-
bounded when taking the supremum. One approach,
taken by Germain et al. (2016), is to assume that both
parameters of the bounding distribution, and hence
its mean, are bounded. However, this necessitates
stronger assumptions on the true loss distribution. In
light of this discussion, we simply present the values of
the bound based on (52) in Appendix C.2, where we
also evaluate bounds for other bounding distributions
and study the n-dependence of the bounds based on
the Cramér function. Code for reproducing all of our
figures is available on [GitHub].

https://github.com/fredrikhellstrom/comparing-comparators/
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6 DISCUSSION AND OUTLOOK

In this paper, we studied the optimal comparator func-
tion for generalization bounds under CGF constraints.
For PAC-Bayesian bounds, we showed that the bounds
in terms of the Cramér function are near-optimal up
to a logarithmic term. In a subsequent paper, Casado
et al. (2024) showed that this term is always at most
logarithmic in n, provided that n in the denomina-
tor in (35) is replaced by n − 1. Whether or not
this dependence can be improved to a constant re-
mains an open question which, as discussed by Foong
et al. (2021), is relevant for the small-data regime.
Furthermore, the use of almost exchangeable priors,
which gives rise to average bounds in terms of the
conditional mutual information, has proven fruitful to
obtain tighter bounds for bounded losses (Audibert,
2004; Catoni, 2007; Steinke and Zakynthinou, 2020;
Haghifam et al., 2022), with some work on improving
comparators (Hellström and Durisi, 2022). Combining
this with our techniques may shed further light on the
comparator choice. Finally, while we considered gen-
eralization bounds under CGF constraints, this pre-
cludes heavy-tailed losses. Extending our analysis to
generalization bounds under moment constraints, for
instance, is a promising avenue for future studies.

Acknowledgements

F.H. acknowledges support by the Wallenberg AI, Au-
tonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foun-
dation. B.G. acknowledges partial support by the
U.S. Army Research Laboratory and the U.S. Army
Research Office, and by the U.K. Ministry of De-
fence and the U.K. Engineering and Physical Sci-
ences Research Council (EPSRC) under grant num-
ber EP/R013616/1. B.G. acknowledges partial sup-
port from the French National Agency for Research,
through grants ANR-18-CE40-0016-01 and ANR-18-
CE23-0015-02, and through the programme “France
2030” and PEPR IA on grant SHARP ANR-23-PEIA-
0008.

References

Alquier, P. (2024). User-friendly introduction to PAC-
Bayes bounds. Foundations and Trends® in Ma-
chine Learning, 17(2):174–303.

Alquier, P. and Guedj, B. (2018). Simpler PAC-
Bayesian bounds for hostile data. Machine Learning,
107(5):887–902.

Ambroladze, A., Parrado-Hernandez, E., and Shawe-
Taylor, J. (2006). Tighter PAC-Bayes bounds. In
Proc. Conf. Neural Inf. Process. Syst. (NeurIPS),
Vancouver, Canada.

Audibert, J.-Y. (2004). A better variance control for
PAC-Bayesian classification. Technical report. url:
api.semanticscholar.org/CorpusID:18053999.

Banerjee, P. K. and Montufar, G. (2021). Informa-
tion complexity and generalization bounds. In Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Melbourne,
Australia.
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Pérez-Ortiz, M., Rivasplata, O., Shawe-Taylor, J., and
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results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes, see Appendix C.2]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]
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(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes, see Appendix C.2]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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Comparing Comparators in Generalization Bounds:
Supplementary Material

A USEFUL FACTS

In this section, we summarize the main notation used in the paper and provide some relevant background.

A.1 Summary of Notation

Notation Definition First use

Qn and Q0 Posterior and prior page 1

L ⊆ R+ Loss range page 2

R z(h)
1
n

∑n
i=1 ℓ(h, zi) (1)

RD(h) Ez∼D[ℓ(h, z)] (2)

R̄z(Qn) Eh∼Qn
[R z(h)] (3)

R̄D(Qn) Eh∼Qn
[RD(h)] (4)

Υ∆(n) supr∈[0,1]

∑n
k=0

(
n
k

)
rk(1− r)n−ken∆(k/n,r) (6)

B∆
n (α, β, ι) supρ∈L

{
ρ : ∆(α, ρ) ≤ β+ln

ι(n)
δ

n

}
(7)

R̂z(Qn) Eh,z∼QnDn [R z(h)] (15)

R̂D(Qn) Eh,z∼QnDn [RD(h)] (16)

ΥP
∆(n) supr∈L Ex∼Pn

r
exp(n∆(x̄, r)) Thm. 2

Ψp(t) lnEX∼Pp
[etX ] Thm. 4

∆Ψ
P(q, p) Ψ∗

p(q) = supt∈Tp

{
tq −Ψp(t)

}
(24)

B̂∆
n (α, β, ι) supρ∈L

{
ρ : ∆(α, ρ) ≤ β+ln ι(n)

n

}
(25)

Ῡ(P) ΥP
∆Ψ

P
Thm. 8

Ξ π2(1 + min{R̄z(Qn),KL(Qn∥Q0)})2/3 (41)

Φq(r) −Ψr(q) (78)

A supcq,cp∈R
{
−∆∗(cq, cp) + Φ∗

cq (cp)
}

(87)

Table 1: Summary of notation.

For reference, in Table 1, we summarize the main notation used throughout the main paper and the appendix.

A.2 Information Theory

We begin by providing some definitions and results from information theory. More details are available, for
instance, in Cover and Thomas (2006). First, we provide the definition of the KL divergence.

Definition 16 (KL divergence). Let P and Q be two distributions such that P ≪ Q. Then, the KL divergence
between P and Q is, with ln dP

dQ denoting the Radon-Nikodym derivative,

KL(P∥Q) =

∫
dP ln

dP

dQ
. (62)
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.Note that the KL divergence is non-negative, i.e., KL(P∥Q) ≥ 0.

If x and y are random variables with joint distribution Pxy and product of marginals PxPy, KL(Pxy∥PxPy) =
I(x; y) is the mutual information between x and y. The chain rule of mutual information states that, with a
third random variable z, I(x; y, z) = I(x; z) + I(x; y|z), where I(x; y|z) is the conditional mutual information. If z
is independent of either x or y, we have I(x; y) ≤ I(x; y|z).

A cornerstone of information-theoretic and PAC-Bayesian analysis is the Donsker-Varadhan variational repre-
sentation of the KL divergence (Donsker and Varadhan, 1975).

Lemma 17 (Donsker-Varadhan variational representation). Let Q be a probability distribution on a measurable
space X, and let Π denote the set of probability measures such that, for all P ∈ Π, we have P ≪ Q. For every
measurable function f : X → R such that Ex∼Q[e

f(x)] < ∞, we have

lnEx∼Q[e
f(x)] = sup

P∈Π

{
Ex∼P [f(x)]−KL(P∥Q)

}
. (63)

The supremum is attained by the Gibbs distribution G, which for any measurable E ⊂ X is given by

dG(E) =
∫
E e

f(x)dQ(x)

Ex∼Q[ef(x)]
. (64)

Finally, we present the golden formula for mutual information (Csiszar and Körner, 2011, Eq. 8.7).

Lemma 18 (Golden formula for mutual information). Consider two random variables x on X and y on Y with
joint distribution Pxy and marginal distributions Px and Py. Let Qx be a distribution on X, such that x ∼ Qx is
independent of y. Then,

I(x; y) = KL(Pxy∥PxPy) ≤ KL(Pxy∥QxPy). (65)

A.3 Convex Analysis

The convex conjugate of a function f : X → Y is defined as

f∗(y) = sup
x∈X

{
⟨x,y⟩ − f(x)

}
, (66)

where ⟨·, ·⟩ is the inner product. The convex conjugate of any function is convex and lower semicontinuous. Recall
that C denotes the set of functions that are convex, proper, and lower semicontinuous. For f ∈ C, (f∗)∗ = f .
The convex conjugate is order-reversing in the following sense: if, for two functions f and g, we have f(x) ≤ g(x)
for all x ∈ X, we have f∗(y) ≥ g∗(y) for all y ∈ Y. For a more comprehensive overview, see Rockafellar (1970).

A.4 Natural Exponential Families

An natural exponential family (NEF) is a set of probability distributions whose probability density (or mass)
functions can be written

p(x|θ) = h(x)eθx−g(θ), (67)

where h(x) and g(θ) are known functions and θ is the natural parameter. The function g(θ) is referred to as the
log-normalizer. The CGF for a distribution P in a NEF is given by

ΨP (t) = lnEx∼P [e
tx] = g(θ + t)− g(θ). (68)

This implies that the mean can be computed as g′(θ). Further details are available in Nielsen and Garcia (2009)
and Wasserman (2010, Sec. 9.13.3).

B PROOFS

In this section, we provide the proofs of all results from the main paper. For convenience, we repeat the
statement of each result prior to proving it, demarcated by a horizontal rule on the left side. Note that the
equation numbering in these repetitions coincides with the numbering used in the main paper, to avoid any
possible confusion.
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B.1 Proofs for Section 2

Theorem 2. Let P be a set of distributions such that, for all r ∈ L, there exists a Pr ∈ P with first moment r.
Let C denote the set of functions from R2 to R that are proper, convex, and lower semicontinuous.a For
any x = (x1, . . . , xn), let x̄ =

∑n
i=1 xi/n. Furthermore, let F ⊆ C denote the subset of C such that, for all

h ∈ H and f ∈ F ,

E z∼Dn [ef(R z(h),RD(h))]≤Ex∼Pn
RD(h)

[ef(x̄,RD(h))]. (17)

Then, for all ∆ ∈ F and all Qn such that Qn ≪ Q0,

∆
(
R̂z(Qn), R̂D(Qn))

≤ KL(QnD
n∥Q0D

n)+lnΥP
∆(n)

n
. (18)

Here, ΥP
∆(n) = supr∈L Ex∼Pn

r
exp(n∆(x̄, r)).

aFunctions defined on a subset of R2 are extended by setting them to be +∞ outside of the original domain.

Proof. As ∆ is convex, Jensen’s inequality implies that

∆(R̂z(Qn), R̂D(Qn)) ≤ Eh,z∼QnDn

[
∆(R z(h), RD(h))

]
. (69)

Next, we use the Donsker-Varadhan variational representation of the KL divergence (Lemma 17) to obtain

Eh,z∼QnDn

[
∆(R z(h), RD(h))

]
≤

KL(QnD
n∥Q0D

n) + lnEh,z∼Q0Dn

[
en∆(R z(h),RD(h))

]
n

. (70)

Next, we replace the expectation over the prior by the supremum:

lnEh,z∼Q0Dn

[
en∆(R z(h),RD(h))

]
≤ sup

h∈H
ln
[
Ez∼Dnen∆(R z(h),RD(h))

]
. (71)

By the assumption that ∆ ∈ F , we have

sup
h∈H

lnEz∼Dn

[
en∆(R z(h),RD(h))

]
≤ sup

h∈H
lnEr′h∼Pn

RD(h)

[
en∆(r̄′h,RD(h))

]
. (72)

Finally, as the highest population loss is no greater than the highest loss, we get

sup
h∈H

lnEr′h∼Pn
RD(h)

[
en∆(r̄′h,RD(h))

]
≤ sup

r∈L
lnEx∼Pn

r

[
en∆(x̄,r)

]
. (73)

The result follows by combining (69) to (73).

Theorem 4. Assume that the loss is sub-(P, T ). Let Ψp(t) = lnEx∼Pp
[etx] denote the CGF of the distri-

bution Pp, and let ∆Ψ
P(q, p) be the Cramér function, i.e., the convex conjugate of Ψp:

∆Ψ
P(q, p) = Ψ∗

p(q) = sup
t∈Tp

{
tq −Ψp(t)

}
. (24)

Furthermore, define

B̂∆
n (α, β, ι) = sup

ρ∈L

{
ρ : ∆(α, ρ) ≤ β + ln ι(n)

n

}
. (25)

Then, for any ∆ ∈ F , we have

R̂D(Qn)≤B̂
∆Ψ

P
n

(
R̂z(Qn),KL(QnD

n∥Q0D
n), 1

)
(26)

≤B̂∆
n

(
R̂z(Qn),KL(QnD

n∥Q0D
n),ΥP

∆

)
. (27)
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Proof. We begin by proving the upper bound in (26). First, we use the fact that the moment-generating function
for a sum of independent random variables factorizes, so that

Ex∼Pn
p
[entx̄] =

(
Ex∼Pp

[etx]
)n

. (74)

By definition, for any fixed t, we have

Ex∼Pp [e
tx−Ψp(t)] = 1. (75)

Hence, by applying Theorem 2 with ∆(q, p) = tq − Ψp(t), we find that with ∆(q, p) = tq − Ψp(t) for any fixed
t ∈ T , we have

tR̂z(Qn)−ΨR̂D(Qn)
(t) ≤ KL(QnD

n∥Q0D
n)

n
. (76)

Since this holds for any t ∈ T , it also holds for the supremum. Hence,

∆Ψ
P(R̂z(Qn), R̂D(Qn)) = sup

t∈T

{
tR̂z(Qn)−ΨR̂D(Qn)

(t)
}
≤ KL(QnD

n∥Q0D
n)

n
. (77)

This establishes (26).

We now turn to proving the lower bound in (27). To do this, we will show that, for any choice of ∆ in Theorem 2,

the resulting bound on R̂D(Qn) is no better than the stated lower bound. The proof consists of three steps:
(i) lower-bounding ΥP

∆, (ii) upper-bounding ∆, and (iii) putting every thing together. This roughly follows along
the same lines as the proof of Foong et al. (2021, Thm. 4), with key modifications and subtleties that arise due
to considering unbounded loss functions. For convenience, we introduce

Φq(r) = −Ψr(q). (78)

(i): Lower-bounding ΥP
∆.

Since ∆ is in C, we have

∆(q, p) = ∆∗∗(q, p) = sup
cq,cp∈R

(cqq + cpp−∆∗(cq, cp)). (79)

Recall that x̄ = 1
n

∑n
i=1 xi. Then, we have

ΥP
∆(n) = sup

r∈L
Ex∼Pn

r
en∆(x̄,r) (80)

= sup
r∈L

Ex∼Pn
r
esupcq,cp∈R(cq

∑
i xi+ncpr−n∆∗(cq,cp)) (81)

≥ sup
r∈L,cq,cp∈R

encpr−n∆∗(cq,cp)Ex∼Pn
r
ecq

∑
i xi (82)

= sup
r∈L,cq,cp∈R

encpr−n∆∗(cq,cp) exp (nΨr(cq)) (83)

= sup
r∈L,cq,cp∈R

encpr−n∆∗(cq,cp) exp
(
−nΦcq (r)

)
. (84)

Hence, we obtain

lnΥP
∆(n)

n
≥ sup

cq,cp∈R

{
−∆∗(cq, cp) + sup

r∈L

[
cpr − Φcq (r)

]}
(85)

= sup
cq,cp∈R

{
−∆∗(cq, cp) + Φ∗

cq (cp)
}

(86)

:= A. (87)

Note that, since ∆ is proper, A is finite.

(ii): Upper-bounding ∆.
Define ∆̃∗ as

∆̃∗(cp, cq) = −A+Φ∗
cq (cp). (88)
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Since A is finite, ∆̃∗ is proper. Furthermore, as it is an affine transformation of a convex conjugate, it is convex
and lower semicontinuous. Hence, ∆̃∗ ∈ C, which implies that (∆̃∗)∗∗ = ∆̃∗. This motivates the notation
∆̃ = (∆̃∗)∗. With this, we obtain

∆̃(q, p) = A+ sup
cp,cq∈R

[cqq + cpp− Φ∗
cq (cp)] (89)

= A+ sup
cq∈R

[cqq +Φcq (p)] (90)

= A+ sup
cq∈R

[cqq −Ψp(cq)] (91)

= A+Ψ∗
p(q). (92)

We now need to show that ∆̃(q, p) ≥ ∆(q, p) for all q, p ∈ L:

−∆̃∗(cq, cp) + Φ∗
cq (cp) = A (93)

= sup
cq,cp∈R

{
−∆∗(cq, cp) + Φ∗

cq (cp)
}

(94)

≥ −∆∗(cq, cp) + Φ∗
cq (cp). (95)

Therefore, we have ∆̃∗ ≤ ∆∗, which implies ∆̃ ≥ ∆ by the order-reversing property of the convex conjugate.

(iii): Putting everything together.
First, since ∆̃ ≥ ∆, we have

B̂∆̃
n (R̄z(Qn),KL(Qn∥Q0),Υ

P
∆) ≤ B̂∆

n (R̄z(Qn),KL(Qn∥Q0),Υ
P
∆). (96)

Furthermore, since ln
(
ΥP

∆(n)
)
/n ≥ A, we have

B̂∆̃
n (R̄z(Qn),KL(Qn∥Q0), e

nA) ≤ B̂∆̃
n (R̄z(Qn),KL(Qn∥Q0),Υ

P
∆). (97)

Finally, since ∆̃(q, p) = A+Ψ∗
p(q) = A+∆Ψ

P(q, p), we obtain

B̂∆̃
n (R̄z(Qn),KL(Qn∥Q0), e

nA) = B̂
∆Ψ

P
n (R̄z(Qn),KL(Qn∥Q0), 1), (98)

leading to the final lower bound.

Proposition 5. Assume that P is a NEF. Then,

∆Ψ
P(q, p) = Ψ∗

p(q) = KL(Pq∥Pp). (31)

Proof. For completeness, we begin by proving Kullback’s inequality (Kullback, 1954). Let P and Q be two
distributions such that P ≪ Q. Let Qα be defined so that, for every measurable set E ,

Qα(E) =
∫
E e

αxQ(dx)∫
R eαxQ(dx)

=
1

MQ(α)

∫
E
eαxQ(dx), (99)

where MQ(α) denotes the moment-generating function of Q. Then, we find that

KL(P∥Q) =

∫
R
dP ln

(
dP

dQ

)
(100)

=

∫
R
dP ln

(
dP

dQ

dQα

dQα

)
(101)

= KL(P∥Qα) +

∫
R
dP ln

(
dQα

dQ

)
. (102)
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The last term can be decomposed as∫
R
dP ln

(
dQα

dQ

)
=

∫
R
dP ln

(
eαx

MQ(α)

)
(103)

= αµP −ΨQ(α), (104)

where µP denotes the first moment of P and ΨQ(α) is the CGF of Q. Now, due to the non-negativity of the KL
divergence, we have

KL(P∥Q) = KL(P∥Qα) + αµP −ΨQ(α) (105)

≥ αµP −ΨQ(α). (106)

Finally, by taking the supremum over α, we obtain Kullback’s inequality:

KL(P∥Q) ≥ sup
α

{
αµP −ΨQ(α)

}
= Ψ∗

Q(µP ). (107)

To establish the desired result, we need to show that the above is an equality provided that the distributions are
in the same NEF. Thus, assume that P and Q are in a NEF, with natural parameters θP and θQ respectively.
Denote the first moment of P as p and the first moment of of Q as q.

First, observe that since Q is in a NEF with parameter θQ, as defined in (30), the transformation in (99) gives
another member of the NEF, but with parameter θQ + α. Since Q is in a NEF, the CGF is

ΨQ(t) = g(θQ + t)− g(θQ). (108)

In particular, the first moment is q = g′(θQ). Hence, the transformation in (99) leads to a distribution with first
moment g′(θQ + α). If we set α = θP − θQ, we thus obtain a distribution with first moment p = g′(θP )—and
since it is in the same NEF, QθP−θQ = P . From this, it follows that KL(P∥QθP−θQ) = 0. Therefore, by following
the same procedure as above,

KL(P∥Q) = KL(P∥QθP−θQ) + (θP − θQ)µP −ΨQ(θP − θQ) (109)

= (θP − θQ)µP −ΨQ(θP − θQ). (110)

Now, since the general upper bound of Kullback’s inequality in (107) holds, and equality is achieved with
α = (θP − θQ), it follows that this must be the supremum over α. Thus, we conclude

KL(P∥Q) = sup
α

{
αµP −ΨQ(α)

}
(111)

= Ψ∗
Q(µP ). (112)

Theorem 6. Consider the setting of Theorem 2. Let z−i denote z with the ith element removed. Let Qi

denote the distribution induced on h when marginalizing over z−i, i.e., for any measurable E ⊂ H,

Qi(E) =
∫
Zn−1

Qn(E)dDn−1(z−i), (33)

Then, for all ∆ ∈ F and Qn such that Qi ≪ Q0,

R̂D(Qn)≤
1

n

n∑
i=1

B̂∆
1

(
R̂zi(Qi),KL(QiD∥Q0D),ΥP

∆

)
. (34)

Proof. As in the proof of Theorem 2, we begin by using the convexity of ∆ and Jensen’s inequality to conclude
that

∆(R̂z(Qn), R̂D(Qn)) ≤ Eh,z∼QnDn

[
∆(R z(h), RD(h))

]
. (113)
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Now, recall that R z(h) =
1
n

∑n
i=1 ℓ(h, zi). Thus, by using Jensen’s inequality again,

Eh,z∼QnDn

[
∆(R z(h), RD(h))

]
≤ Eh,z∼QnDn

[
1

n

n∑
i=1

∆(ℓ(h, zi), RD(h))

]
. (114)

By the linearity of expectation and marginalizing,

Eh,z∼QnDn

[
1

n

n∑
i=1

∆(ℓ(h, zi), RD(h))

]
=

1

n

n∑
i=1

Eh,zi∼QiDn

[
∆(ℓ(h, zi), RD(h))

]
. (115)

The proof now essentially proceeds as in Theorem 2, but for each term in the sum. First, by using the Donsker-
Varadhan variational representation of the KL divergence (Lemma 17), we obtain

Eh,zi∼QnD

[
∆(ℓ(h, zi), RD(h))

]
≤ KL(QiD∥Q0D) + lnEh,zi∼Q0D

[
e∆(ℓ(h,zi),RD(h))

]
. (116)

By replacing the expectation over the prior by the supremum, using the assumption that ∆ ∈ F , and the fact
that the highest population loss is no greater than the highest loss, we get

lnEh,zi∼Q0D

[
e∆(ℓ(h,zi),RD(h))

]
≤ sup

r∈L
lnEx∼Pr

[
e∆(x,r)

]
. (117)

The result follows by combining (113) to (117).

B.2 Proofs for Section 3

Theorem 7. Let P, F and ΥP
∆ be as in Theorem 2. Consider a fixed function ∆ ∈ F . Then, with

probability 1− δ simultaneously for all Qn such that Qn ≪ Q0,

∆(R̄z(Qn), R̄D(Qn)) ≤
KL(Qn∥Q0) + ln

ΥP
∆(n)
δ

n
. (35)

Proof. The proof essentially follows the same lines as Theorem 2, with an additional application of Markov’s
inequality. Recall that x̄ = 1

n

∑n
i=1 xi. Then, by Jensen’s inequality and the Donsker-Varadhan variational

representation (Lemma 17),

∆(R̄z(Qn), R̄D(Qn)) ≤ Eh∼Qn

[
∆(R z(h), RD(h))

]
(118)

≤
KL(Qn∥Q0) + lnEh∼Q0

[
en∆(R z(h),RD(h))

]
n

. (119)

Now, by Markov’s inequality, we have that with probability 1− δ,

lnEh∼Q0

[
en∆(R z(h),RD(h))

]
≤ ln

(
1

δ
Eh∼Q0,z∼Dn

[
en∆(R z(h),RD(h))

])
. (120)

The remaining steps are identical to (71) to (73), after which the result follows.

Theorem 8. Assume that the loss is sub-(P, T ). Then, for any ∆ ∈ F in Theorem 7,

B
∆Ψ

P
n (R̄z(Qn),KL(Qn∥Q0), 1)

≤ B∆
n (R̄z(Qn),KL(Qn∥Q0),Υ

P
∆). (36)

Furthermore, with Ῡ(P) := ΥP
∆Ψ

P
, we have

R̄D(Qn) ≤ B
∆Ψ

P
n

(
R̄z(Qn),KL(Qn∥Q0), Ῡ(P)

)
. (37)

Finally, for all t ∈ Tp, let ∆t
P(q, p) = tq −Ψp(t). Then, for any fixed t, we have

R̄D(Qn) ≤ B
∆t

P
n

(
R̄z(Qn),KL(Qn∥Q0), 1

)
. (38)
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Proof. We begin with (36). The proof of (27), for the average case in Theorem 4, can be applied verbatim in
the PAC-Bayesian case, as it is only concerned with the structure of ∆ and ΥP

∆(n). As these are identical in

Theorem 8, the exact same argument can be used, with B in place of B̂ in (96) to (98).

Next, the result in (37) follows immediately from Theorem 7 by setting ∆ to ∆Ψ
P .

We now turn to (38). By definition, for any fixed t, we have

Ex∼Pp [e
tx̄−Ψp(t)] = 1. (121)

Hence, by applying Theorem 7 with ∆(q, p) = tq−Ψp(t), we find that for any fixed t ∈ T , with probability 1−δ,

tR̄z(Qn)−ΨR̄D(Qn)(t) ≤
KL(Qn∥Q0) + ln 1

δ

n
. (122)

This establishes (38).

Corollary 9. Assume that KL(Qn∥Q0) ≤ u(n) or that nR̄z(Qn) ≤ u(n) for a function u : N → R+. Then,
we have

R̄D(Qn) ≤ B
∆Ψ

P
n

(
R̄z(Qn),KL(Qn∥Q0), 2e⌈u⌉

)
. (39)

For any value of KL(Qn∥Q0) and R̄z(Qn), we have

R̄D(Qn) ≤ B
∆Ψ

P
n

(
R̄z(Qn),KL(Qn∥Q0),Ξ

)
(40)

where

Ξ =
π2(1 + min{nR̄z(Qn),KL(Qn∥Q0)})2

3
. (41)

Proof. The proofs of these upper bounds are similar to the average case in Theorem 4, but as we are dealing
with a probabilistic result, we need to apply carefully constructed union bounds.

We begin with (39). We will consider the situations where the KL divergence and the training loss are bounded
separately, and we begin with the KL case. Now, note that the supremum over t in (122) is achieved for a
t > 0 (Boucheron et al., 2013, Sec. 2.2). Hence, we can recast (122) as

R̄z(Qn) ≤
KL(Qn∥Q0) + ln 1

δ

nt
+

ΨR̄D(Qn)(t)

t
. (123)

We now wish to take the infimum over t in the right-hand side in (123), which corresponds to taking the supremum
over t in the left-hand side of (122).

As per our assumption, we have KL(Qn∥Q0) ≤ u(n). Let k = ⌈KL(Qn∥Q0)⌉. We now follow an approach similar
to Rodŕıguez-Gálvez et al. (2023). Specifically, (123) implies

R̄z(Qn) ≤
k + ln 1

δ

nt
+

ΨR̄D(Qn)(t)

t
. (124)

Now, conditioned on any outcome k = k′, we can take the infimum over t in the right-hand side of (124):

R̄z(Qn) ≤ inf
t

{
k′ + ln 1

δ

nt
+

ΨR̄D(Qn)(t)

t

}
. (125)

Note that, given k = k′, we have k′ ≤ KL(Qn∥Q0) + 1. Since the support of k is 1, . . . , ⌈u(n)⌉, we can apply a
union bound over all possible outcomes and perform the substitution δ → δ/⌈u(n)⌉ to obtain

Ψ∗
R̄D(Qn)

(R̄z(Qn)) = sup
t∈T

{
tR̄z(Qn)−ΨR̄D(Qn)(t)

}
≤

KL(Qn∥Q0) + ln e⌈u(n)⌉
δ

n
, (126)
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We now consider the case where nR̄z(Qn) ≤ u(n). Let s = ⌈nR̄z(Qn)⌉. We then get

ts

n
− 1

n
+ΨR̄D(Qn)(t) ≤

KL(Qn∥Q0) + ln 1
δ

n
. (127)

As for the KL divergence, we can optimize the above conditioned on any specific instance of s, which is supported
on 1, . . . , ⌈u(n)⌉. Hence, we apply a union bound over all possible outcomes and perform the substitution
δ → δ/⌈u(n)⌉ to obtain

Ψ∗
R̄D(Qn)

(R̄z(Qn)) = sup
t∈T

{
tR̄z(Qn)−ΨR̄D(Qn)(t)

}
≤

KL(Qn∥Q0) + ln e⌈u(n)⌉
δ

n
. (128)

By combining (126) and (128) via an additional union bound, performing the substitution δ → δ/2, we obtain
(39).

We now turn to the upper bound in (40). Now, we do not assume any bound on the KL divergence or training
loss, so we cannot take a union bound over a finite set. However, we can take the following approach, inspired
by Seldin et al. (2012). We begin with the case where the minimum in (40) is achieved by the KL divergence,
and again, we let k = ⌈KL(Qn∥Q0)⌉. Then, as before, we have

KL(Qn∥Q0) + ln 1
δ

nt
+

ΨR̄D(Qn)(t)

t
≤

k + ln 1
δ

nt
+

ΨR̄D(Qn)(t)

t
. (129)

Conditioned on any outcome k = k′, we can take the infimum over t in the right-hand side of (129). Since
k ∈ N+, we can now take the following weighted union bound over N: let δ → 6δ/(π2k′2). Note that the sum of
this over k′ is ∑

k′∈N+

6δ

π2k′2
= δ. (130)

We can thus conclude that, with probability 1− δ,

R̄z(Qn) ≤ inf
t∈T

{
KL(Qn∥Q0) + ln eπ2(1+KL(Qn∥Q0))

2

6δ

nt
+

ΨR̄D(Qn)(t)

t

}
, (131)

and hence,

Ψ∗
R̄D(Qn)

(R̄z(Qn)) = sup
t∈T

{
tR̄z(Qn)−ΨR̄D(Qn)(t)

}
≤

KL(Qn∥Q0) + ln eπ2(1+KL(Qn∥Q0))
2

6δ

n
. (132)

Finally, we turn to the upper bound in terms of the training loss in (40). Let s = ⌈nR̄z(Qn)⌉. Again, we then
get

ts

n
− 1

n
−ΨR̄D(Qn)(t) ≤

KL(Qn∥Q0) + ln 1
δ

n
. (133)

For any fixed instance of s = m′ ∈ N+, we can take the supremum over t. So, taking a union bound with
δ → 6δ/(π2m′2), we get

Ψ∗
R̄D(Qn)

(R̄z(Qn)) ≤
KL(Qn∥Q0) + ln π2(1+R̄z(Qn))

2

6δ

n
. (134)

The result in (40) follows by combining the bounds in (132) and (134) via the union bound, performing the
substitution δ → δ/2.

B.3 Proofs for Section 4

Corollary 10. Assume that the loss is sub-PPoi, as defined in (42). Define ∆Ψ
PPoi

as

∆Ψ
PPoi

(q, p) = KL
(
Poisson(q)∥Poisson(p)

)
(43)

= p− q + q ln
q

p
. (44)
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Then, we have the average bound

∆Ψ
PPoi

(R̂z(Qn), R̂D(Qn)) ≤
KL(QnD

n∥Q0D
n)

n
. (45)

Furthermore, with probability 1− δ, we have the PAC-Bayesian bound, with Ξ as defined in (41),

∆Ψ
PPoi

(R̄z(Qn), R̄D(Qn)) ≤
KL(Qn∥Q0) + ln Ξ

δ

n
. (46)

Proof. Since the Poisson distributions form a NEF, Proposition 5 implies that the Cramér function is, indeed,
equal to the KL divergence in (43). Hence, (45) follows immediately from (36), while (46) follows immediately
from (40).

Corollary 11. Assume that the loss is sub-PPoi, as defined in (42). Then, we have the average bound

R̂D(Qn)≤ inf
t>0

{
tR̂z(Qn)

1−e−t
+
KL(QnD

n∥Q0D
n)

(1−e−t)n

}
. (48)

Proof. Let x ∼ Poisson(µ). Then, we have

E[e(1−e−t)µ−tx] = e−µ(1−e−t)e(1−e−t)µ = 1. (135)

Therefore, it follows from (18) that

(1− e−t)R̂D(Qn)− tR̂z(Qn) ≤
KL(QnD

n∥Q0D
n)

n
. (136)

The result follows by solving for R̂D(Qn) and taking the infimum over t.

Corollary 12. Assume that the loss is sub-(PΓ, T Γ). Then, we have the average bound

∆Ψ
Γ (R̂z(Qn), R̂D(Qn)) ≤ KL(QnD

n∥Q0D
n)

n
. (52)

Furthermore, with probability 1− δ, we have the PAC-Bayesian bound

∆Ψ
Γ (R̄z(Qn), R̄D(Qn)) ≤

KL(Qn∥Q0) + ln Ξ
δ

n
. (53)

Proof. Since the gamma distributions with fixed shape parameter form a NEF, the KL divergence in (50) is the
Cramér function (by Proposition 5). Hence, (52) follows immediately from (36), while (53) follows from (40).

Corollary 13. Assume that the loss is sub-(PLap, T b). Then, we have the average bound

∆Ψ
Lap(R̂z(Qn), R̂D(Qn)) ≤ KL(QnD

n∥Q0D
n)

n
. (56)

Proof. Since the Laplace distributions do not form a NEF (unless the mean is fixed), the Cramér function cannot
be computed on the basis of Proposition 5. Instead, we need to show that (55) is the Cramér function via explicit
computation. To this end, note that the CGF for the distribution Laplace(b, p) is, for |t| ≤ 1/b,

Ψp(t) = tp− ln(1− b2t2) (137)
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Hence, the Cramér function is

Ψ∗
p(q) = sup

|t|≤1/b

{
t(q − p)− ln(1− b2t2)

}
(138)

=

√
(q − p)2 + b2

b
− 1 + ln

(
2(b

√
(q − p)2 + b2 − b2)

(q − p)2

)
, (139)

where the final step follows by confirming that the maximum is attained at the critical point

t∗ =

√
b2 + (q − p)2

b(q − p)
− 1

q − p
. (140)

With this, the result follows directly from (18).

Corollary 14. Assume that the loss is sub-(PLap, T b). Then, we have the average bound

R̂D(Qn)− R̂z(Qn)

≤ inf
t∈
(
0, 1b

){KL(QnD
n∥Q0D

n)

nt
− ln(1− b2t2)

t

}
. (57)

Proof. Given the form of the CGF for the distribution Laplace(b, p) for |t| ≤ 1/b, given in (137), it follows that

Υ
PLap

∆t

n
= − ln(1− b2t2). (141)

Hence, it follows from (18) that

t(R̂D(Qn)− R̂z(Qn)) ≤
KL(QnD

n∥Q0D
n)

n
− ln(1− b2t2). (142)

The stated result follows after division by t and taking the infimum.

Proposition 15. Assume that the CGF for any distribution Pr ∈ P and t ∈ T can be written as

lnEx∼Pr [e
tx] = tr + ln g(t2), (58)

where g(t2) does not depend on the mean r. Then,

B̂
∆Ψ

P
n

(
α, β, 1

)
= inf

t
B̂∆t

n

(
α, β,ΥP

∆t

)
. (59)

Proof. Given the form of the CGF, we have, for x ∼ Pp,

E[et(p−q)] = e−tp+g(t2)etp = eg(t
2). (143)

Thus, we conclude that
ΥP

∆t

n
= g(t2). (144)

Therefore, it follows from (18) that, with α = R̂z(Qn) and β = KL(QnD
n∥Q0D

n)/n,

R̂D(Qn) ≤ α+ inf
t

{
β + g(t2)

t

}
. (145)

Note that the bound on R̂D(Qn) (145) is the explicit form of inft∈T B̂∆t
n

(
α, β,ΥP

∆t

)
. Now, by reorganizing (145),

we obtain
sup
t∈T

{
t(α− R̂D(Qn))− g(t2)

}
≤ β. (146)
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Due to the assumed form of the CGF, we see that the left-hand side of (146) is indeed the Cramér function:

sup
t∈T

{
t(α− R̂D(Qn))− g(t2)

}
= sup

t∈T

{
tα−

(
tR̂D(Qn) + g(t2)

)}
= ∆Ψ

P(α, R̂D(Qn)). (147)

Hence, it implies the bound R̂D(Qn) ≤ B̂
∆Ψ

P
n

(
α, β, 1

)
. Thus, the claimed equivalence follows.

C ADDITIONAL RESULTS

In this section, we present some additional results which could not be included in the main text. In Appendix C.1,
we state and prove some theoretical results: we establish a partial characterization of F under the sub-P
assumption (Proposition 19); we show that, under certain conditions, the bound in Theorem 6 always improves
upon Theorem 2 (Proposition 20); and we provide some additional explicit bounds for various instances of P
(Corollary 21). In Appendix C.2, we present additional numerical evaluations of the bounds to support the
findings presented in Section 5.

C.1 Additional Theoretical Results

We begin with a partial characterization of F under the sub-P assumption.

Proposition 19. Assume that f lin
t ∈ F for all t ∈ R. Let g : L2 → R+ denote a function that is infinitely

differentiable in its first argument. Then, g ∈ F if it is totally monotone, i.e.., for all k ∈ N,

(−1)k
∂keg(q,p)

∂qk
≥ 0. (148)

Furthermore, g ∈ F if all of its derivatives are non-negative, i.e., for all k ∈ N,

∂keg(q,p)

∂qk
≥ 0. (149)

Proof. Consider a fixed p, and let f(q) ≡ eg(q,p). Any function that satisfies (148) is said to be totally monotone.
By Bernstein’s theorem (Bernstein, 1929), there exists a non-negative Borel measure with cumulative distribution
function φ such that

f(q) =

∫ ∞

0

e−tqφ(t)dt. (150)

This implies that

Ez∼Dn [f(R z(h))] = Ez∼Dn

∫ ∞

0

e−tR z(h)φ(t)dt =

∫ ∞

0

dtφ(t)Ez∼Dn [e−tR z(h)], (151)

where we used Tonelli’s theorem to swap the expectation and integral. By the assumption that f lin
t ∈ F ,∫ ∞

0

dtφ(t)Ez∼Dn [e−R z(h)] ≤
∫ ∞

0

dtφ(t)Er′h∼Pn
p
[e−tr̄′h ]. (152)

By swapping the integral and expectation again,∫ ∞

0

dtφ(t)Er′h∼Pn
p
[e−tr̄′h ] = Er′h∼Pn

p

∫ ∞

0

dtφ(t)e−tr̄′h = Er′h∼Pn
p
[f(r̄′h)]. (153)

This establishes the result under the first condition. For the second, notice that the function f−(q) ≡ g(−q, p)
is totally monotone. Hence, we can apply the same arguments as for the first condition.

Next, we establish that, under certain conditions, the bound in Theorem 6 always improves upon Theorem 2.

Proposition 20. Consider the setting of Theorem 6. Then,

1

n

n∑
i=1

B̂∆
1

(
R̂zi(Qi), I(h; zi), 1

)
≤ B̂∆

n

(
R̂z(Qn), I(h; z), 1

)
(154)
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Proof. To establish the result, we need to show that any value of R̂D(Qn) that satisfies the bound of the left-hand
side of (154) also satisfies the bound of the right-hand side. To this end, assume that for i ∈ {1, . . . , n}, we have
pi ∈ L such that

∆(R̂zi(Qi), pi) ≤ I(h; zi). (155)

By averaging over i, this implies that

1

n

n∑
i=1

∆(R̂zi(Qi), pi) ≤
n∑

i=1

I(h; zi)

n
. (156)

By the convexity of ∆, the left-hand side can be lower-bounded as, with p̄ =
∑n

i=1 pi/n,

∆(R̂z(Qn), p̄) ≤
1

n

n∑
i=1

∆(R̂zi(Qi), pi). (157)

Let z<i = (z1, . . . , zi−1), where z<1 = ∅. By the chain rule of mutual information and the fact that conditioning
on independent random variables increases mutual information,

n∑
i=1

I(h; zi) ≤
n∑

i=1

I(h; zi|z<i) = I(h; z). (158)

Thus, it follows that

∆(R̂z(Qn), p̄) ≤
I(h; z)

n
, (159)

establishing the claim.

Note that this result is similar to Harutyunyan et al. (2021, Prop. 1).

Finally, we provide some additional explicit bounds for various instances of P. While we only state average
bounds explicitly, analogous results hold for the PAC-Bayesian case.

Corollary 21. Assume that the loss is sub-PIG, where PIG denotes the set of inverse Gaussian distributions
with fixed λ, i.e.,

PIG =
{
IG(µ, λ) : µ ∈ R

}
. (160)

Define

∆Ψ
PIG

(q, p) =
λ(p− q)2

2pq2
. (161)

Then, we have

∆Ψ
PIG

(R̂z(Qn), R̂D(Qn)) ≤
KL(QnD

n∥Q0D
n)

n
. (162)

Next, assume that the loss is sub-PNB, where PNB is the set of negative Binomial distributions with fixed r:

PNB =

{
NB

(
r,

r

r + µ

)
: µ ∈ R+

}
. (163)

Define

∆Ψ
PNB

(q, p) = r ln

(
p+ r

q + r

)
+ q ln

(
q(p+ r)

p(q + r)

)
. (164)

Then, we have

∆Ψ
PNB

(R̂z(Qn), R̂D(Qn)) ≤
KL(QnD

n∥Q0D
n)

n
. (165)

Proof. Both PIG and PNB form NEFs. Hence, the results can be established either by computing a Cramér
function or by computing a KL divergence and applying Proposition 5. For the inverse Gaussian distribution,
the KL divergence is given by (Zhang et al., 2007)

KL(IG(q, λ)∥IG(p, λ) =
λ(p− q)2

2pq2
. (166)
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(a) Sub-Bernoulli discrepancy, (168) (b) Sub-gamma, (52) (c) Sub-Laplacian, (56)

(d) Sub-Poissonian, (45) (e) Sub-inverse Gaussian, (162) (f) Sub-negative binomial, (165)

Figure 3: In Fig. 3a, we plot (168). In Figs. 3b to 3f, we illustrate the numerical values of the Cramér bounds.

Since the inverse Gaussian distributions form a NEF, the result follows by Proposition 5 and (27). Next, for the
random variable x ∼ NB(r, p) with p = r/(r + µ), the Cramér function is

Ψ∗
µ(q) = sup

t

{
qt− r log

(
p

1− (1− p)et

)}
. (167)

The optimum can be found by standard techniques, and equals the right-hand side of (164). Hence, (165) follows
by (27).

C.2 Additional Numerical Results

In this section, we present additional numerical results. The code for reproducing all figures is available as a
Jupyter notebook on [GitHub], and executes in 5 minutes on Google Colab CPU.

In Fig. 3a, we plot the difference between the binary KL bound and the sub-Gaussian bound, but without the
minimum in (60). That is, we evaluate

B̂kl
n (α, β, 1)−

(
α+

√
β/2n

)
. (168)

With this, the biggest discrepancy arises when both the training loss and normalized KL divergence are big, as
for the sub-Poissonian case.

Next, in Figs. 3b to 3f, we evaluate our average Cramér bounds for sub-gamma, sub-Laplacian, sub-Poissonian,
sub-inverse Gaussian, and sub-negative binomial losses. Specifically, we present the bound based on (52) with
k = 5 in Fig. 3b; the bound based on (56) with b = 1 in Fig. 3c; the bound based on (45) in Fig. 3d; the bound
based on (162) with λ = 1 in Fig. 3e; and the bound based on (165) with r = 3 in Fig. 3f.

Finally, in Fig. 4, we numerically study the n-dependence of the average bounds in terms of the Cramér function
for sub-gamma losses, i.e., (52), and for sub-Laplacian losses, i.e., (56). Note that, for the purposes of this
evaluation, we assume that the training loss α and KL divergence β are fixed, and only the number of samples
n varies. This is not a realistic assumption in many settings, as both the training loss and KL divergence will

https://github.com/fredrikhellstrom/comparing-comparators/
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(a) Sub-gamma, α = 1 (45) (b) Sub-Laplacian, α = 1 (162) (c) Sub-Laplacian, α = 3 (165)

Figure 4: The n-dependence of the the Cramér bounds for sub-gamma and sub-Laplacian losses.

typically depend on the sample size—in particular, the KL divergence tends to increase with n. However, this
still sheds some light on the behavior of the bounds, and if one knows the dependence of the KL divergence on
n, this can be incorporated by suitably rescaling.

In Fig. 4a, we evaluate (52) with k = 5, training loss α = 1, and KL divergence β = 103. For the sub-gamma
bound, we find a behavior that is consistent across various values of the training loss: initially, the bound decays
as 1/n2, and when it reaches n ≈ β, it decays as 1/

√
n, after which it further slows. This demonstrates that,

when the number of samples is low (n ≪ β), the bound rapidly improves as more samples are used, while for
larger sample sizes (n ≫ β), the improvement is less pronounced. As a specific example: as n grows from 102

to 103, the bound decreases by 89%, whereas when n grows from 104 to 105, the bound decreases by 13%.

In Fig. 4b, we evaluate (56) with b = 1, training loss α = 1, and KL divergence β = 103, whereas in Fig. 4c,
we set the training loss to α = 3. For the sub-Laplacian bound, the picture is less clear. For α = 1, the bound
initially decays as 1/n, while approximating a 1/

√
n asymptote for n ≈ β (as for the sub-gamma loss). However,

for α = 3, the initial decay is closer to n−3/4, and for n ≈ β, it is approximately n−1/4.
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