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Abstract

Randomized controlled trials (RCTs) are the ac-
cepted standard for treatment effect estimation
but they can be infeasible due to ethical reasons
and prohibitive costs. Single-arm trials, where
all patients belong to the treatment group, can
be a viable alternative but require access to an
external control group. We propose an identifi-
able deep latent-variable model for this scenario
that can also account for missing covariate obser-
vations by modeling their structured missingness
patterns. Our method uses amortized variational
inference to learn both group-specific and iden-
tifiable shared latent representations, which can
subsequently be used for (i) patient matching if
treatment outcomes are not available for the treat-
ment group, or for (ii) direct treatment effect esti-
mation assuming outcomes are available for both
groups. We evaluate the model on a public bench-
mark as well as on a data set consisting of a pub-
lished RCT study and real-world electronic health
records. Compared to previous methods, our re-
sults show improved performance both for direct
treatment effect estimation as well as for effect es-
timation via patient matching.

1 INTRODUCTION
Randomized controlled trials (RCTs) are the ‘gold stan-
dard’ in medical research and social sciences for the estima-
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tion of treatment effects. When conducted properly, RCTs
provide control over the treatment assignment and therefore
the removal of confounding factors. However, this advan-
tage comes with the price of several shortcomings. Recruit-
ing a sufficient number of patients and collecting their data
is usually a costly endeavor both in terms of time as well as
financial investments, limiting us to smaller sample sizes in
general. The study size constraint may further be exacer-
bated in the case of rare diseases, and RCTs also have ethi-
cal challenges in case of serious diseases when no one can
be left untreated. Single-arm trials offer a way out of these
predicaments at the price of requiring external control data,
thus no longer being randomized.

These control observations are usually taken from the con-
trol arms of historical RCTs, or from so-called real-world
data (RWD) in the form of electronic health records (EHR)
are a promising source for these control observations. In
the medical domain, EHR refers to records collected dur-
ing regular healthcare and hospital visits and not as part
of a specific RCT study. The degree to which RWD and
RCT can replace and complement each other is an open
research question, both theoretical (Collins et al., 2020;
Eichler et al., 2021) as well as practical (Franklin and
Schneeweiss, 2017). Large-scale projects evaluating trial
replicability with RWD data are currently ongoing to better
understand their respective strengths and limitations (Da-
habreh et al., 2020; Franklin et al., 2021).

In this work, we consider the task of augmenting single-arm
trials with external controls (Gray et al., 2020; Schmidli
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Figure 1: Overview. For the task of treatment effect estimation from single-arm trial data, patient information for a control
group has to be extracted from electronic health records which have been collected, e.g., during hospital visits. Due to their
different sources the two covariate distributions only partially overlap. Our model maps them into group-specific latent
spaces and a shared, identifiable predictive space. This low-dimensional representation can then be subsequently used for
treatment effect estimation. If outcome information is available for both groups, we can obtain a direct estimate of the
effect from the potential outcomes (Y (0), Y (1)). We introduce an additional task where treatment outcome information is
available only for the control group. In this scenario our method estimates the treatment effect via patient matching.

et al., 2020; Chen et al., 2021). To estimate treatment ef-
fects we have to assume that these two groups have some
intrinsic similarity. Yet, given their different sources, their
covariate specifics will vary, e.g., concerning the availabil-
ity of medical history records, breadth of lab measurements,
measurement precision, variance in the demographics, etc.
We focus specifically on three problems that arise in this
setting. First, due to the differences in the covariate distri-
butions between data collected in RCT and RWD, there is
limited overlap between the two sets of observations which
has to be overcome to provide a reliable treatment effect
estimate (D’Amour et al., 2021). Second, most prior work
in the machine learning literature (Johansson et al., 2016;
Shalit et al., 2017; Shi et al., 2019; Curth and van der
Schaar, 2021b; Bica and van der Schaar, 2022; Jiang et al.,
2023) has focused on the assumption of having access to
treatment outcome information from both the single-arm
trial patients as well as the external controls. We extend
this assumption by considering the additional task of having
to find a suitable set of external controls pre-treatment (i.e.
before the treatment has been administered to the single-
arm group). Here, we have access to pre-treatment covari-
ates for both groups as well as the outcome values for the
external control group. This setup is highly relevant as it
avoids leaking any information from the trial results to the
model during the model learning and matching of the pa-
tients. Without such new techniques, the inclusion of trial
results while inferring the latent variable model could bias
further statistical estimates that rely on the learned latent
representation. Finally, we have to account for the fact that
real-world data will usually include missing measurements
whose non-random patterns have to be accounted for and
modeled properly.

We introduce a latent variable model to infer group-specific
as well as shared identifiable latent representations for sub-
sequent treatment effect estimation. The former allows us to
explain away specifics that are unique to the treatment and
the control subsets, respectively, while a shared representa-
tion provides a compressed latent space for treatment effect
estimation as well as patient matching, i.e., the selection of a
subset of control patients that are most similar to the treated
group. This differs from the popular approach in the medi-
cal literature that relies on various forms of propensity score
estimators (Stuart, 2010), which do not infer such a space
prior to estimating a matching score. The problem setting
and our approach are conceptualized in Figure 1.

Contributions. In this work, we consider the task of esti-
mating treatment effects from single-arm trials with exter-
nal controls and also introduce an additional scenario where
outcome information is not available for the treatment group
during inference. We contribute

(i) a principled way of handling these tasks via amortized
latent-variable models with identifiability guarantees
that can infer a predictive latent space between two dif-
ferent covariate distributions for subsequent treatment
effect prediction, and simultaneously model structured
missingness patterns;

(ii) an extensive ablation study demonstrating that our
method is competitive if outcome information is avail-
able for both treated and control groups, as well as
if it is available only for the latter. The method im-
proves upon prior work on several variations of a semi-
synthetic benchmark as well as on a curated large-
scale data set that combines data from a published RCT
study (Bakris et al., 2020) with real-world EHRs.
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2 RELATED WORK

Treatment Effect Estimation. Treatment effect estima-
tion from observational studies (OS) has a long history See,
e.g., Imbens (2004) for a review on average treatment effect
(ATE) estimation approaches used within the statistics and
econometrics literature, which rely on a variety of machine
learning approaches, e.g., random forests (Hill, 2011; Athey
et al., 2019). Given the increasing amount of observational
data available, a recent trend in the machine learning liter-
ature has been to focus on models for individual treatment
effect or conditional average treatment effect (CATE) esti-
mations (see, e.g., Bica et al. (2021) for an introduction).
A broad spectrum of approaches exists to construct deter-
ministic CATE estimators (Künzel et al., 2019). See Curth
and van der Schaar (2021a) for a recent overview and uni-
fying framework to classify different neural network-based
approaches. A common approach is to build upon the the-
ory of representation learning (Bengio et al., 2013) to con-
struct deterministic representations that are then used by
task-specific mappings (Johansson et al., 2016; Shalit et al.,
2017; Shi et al., 2019; Jiang et al., 2023). In parallel, there is
an increasing interest in using generative models for the task
of CATE estimation, relying, e.g., on variational autoen-
coders (Kingma and Welling, 2014; Louizos et al., 2017;
Lu et al., 2020; Zhang et al., 2021), generative adversarial
networks (Goodfellow et al., 2014; Yoon et al., 2018), or
energy-based approaches (Lecun et al., 2006; Zhang et al.,
2022). Our method belongs to this second group of genera-
tive approaches, focuses on amortized variational inference,
and extends prior work to the specific task of learning with
external controls in settings that can have strongly divergent
groups of samples.

Combining RCT with OS. Combining small random-
ized control trial data sets with observational data has been
the focus of several studies in recent years. It can be seen
as a form of domain adaptation (Ben-David et al., 2010)
as the aim is to combine different data sources with sim-
ilar yet distinct characteristics. Kallus et al. (2018) con-
sider combining the two to get rid of hidden confounders
requiring the very restrictive assumption of linear biases.
Cheng and Cai (2021) propose to learn separate estimators,
combining them in a second step via a weighting scheme.
However, finding these weights requires a separate valida-
tion set. Hatt et al. (2022) propose a two-step approach in
which they first rely on learning a preliminary representa-
tion solely from observational study data, which they aim
to fine-tune by learning data-specific structures via the ran-
domized trial data. While these approaches focus on the
combination of two complete studies, our setting focuses on
single-arm information from each of our groups. Closest to
our formulation are Bica and van der Schaar (2022), who
consider combining multiple heterogeneous data sources
into a joint model for CATE estimation, requiring full treat-
ment outcome information for all data sources.

External Controls and Patient Matching. Matching
consists of pairing each patient in the treatment group with
a suitable patient from the set of external controls, based
on a similarity score, and has long been a topic of ongo-
ing research with a wide spectrum of approaches (Stuart,
2010). E.g., Li and Fu (2017) rely on kernel methods and
maximum mean discrepancy regularization to construct la-
tent spaces for subsequent matching. Luo and Zhu (2020),
in turn, rely on central subspaces. Athey et al. (2018) can
approximately ensure balancing between the covariates in
high-dimensional spaces under the assumption of only lin-
ear biases between them.

Unconfoundedness and Identifiability. A common as-
sumption for causal inference is the absence of hidden con-
founders. To avoid this assumption prior works rely, e.g.,
on having multiple causes (Wang and Blei, 2019), access to
multiple treatments over time (Bica et al., 2020), or by re-
lying on invariant risk minimzation (Arjovsky et al., 2019;
Shi et al., 2019). Obtaining guarantees for identifiability
of learned latent spaces is similarly an area of ongoing re-
search (Xi and Bloem-Reddy, 2023; Moran et al., 2022).
Our approach relies on using auxiliary variables following
the work by Khemakhem et al. (2020).

Estimation under Missingness. Modeling with miss-
ing treatment outcome information has been pursued pri-
marily with the goal of average treatment effect estima-
tion (Williamson et al., 2012; Zhang et al., 2016; Kennedy,
2020). Kuzmanovic et al. (2022) generalize such prior ap-
proaches by focusing on building CATE estimators with
missing treatment information. We differ from these as we
do not assume randomly missing outcome data but are re-
stricted to systematically missing treatment outcome infor-
mation from the treatment group. This is necessary when
we want to match a set of external control patients with a
group of patients recruited specifically for the study at hand.
Additionally, in real-world applications, we are often faced
with missing covariate information (Perez-Lebel et al.,
2022). Modeling missing not at random (MNAR) covari-
ates (Rubin, 1976) has received a lot of focus in the genera-
tive modeling literature recently (Collier et al., 2020; Ipsen
et al., 2021; Ghalebikesabi et al., 2021). Throughout this
work we build on the work by Collier et al. (2020).

3 BACKGROUND
Problem Specification. We have access to a sample of
N patients with covariates x ∈ X , outcomes y ∈ Y
and treatment assignments t ∈ {0, 1}, such that
D = {(x1, y1, t1), . . . , (xN , yN , tN )}. Following Rubin
(2005)’s potential outcomes formulation we assume poten-
tial outcomes Yn(0), Yn(1) ∈ Y of which due to the funda-
mental problem of causality (Pearl, 2009) only one can be
observed, such that yn = tnYn(1)+(1− tn)Yn(0).

Throughout, we have to assume three standard assumptions
necessary for estimating causal effects from observational
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data: (i) consistency, i.e., if patient n has received treat-
ment tn we observe potential outcome yn = Yn(tn); (ii) un-
confoundedness, Y (0), Y (1) ⊥⊥ T |X , i.e., there are no
unobserved confounders; (iii) overlap, 0 < π(x) < 1 ∀x,
i.e., the treatment assignment is not deterministic, where
π(x) ≜ P(T = 1|X = x), is known as the propensity
score. Assumptions (ii) and (iii) provide us with tension
as they can be difficult to simultaneously fulfill (D’Amour
et al., 2021). To ensure unconfoundedness, including an
increasing number of covariates is usually considered to
be helpful. However, to ensure overlap, a low-dimensional
space is desired. We see below how this tension is handled
within our model. Given the diverse nature of the treatment
and control groups in our setup, this third constraint is the
most critical and requires careful consideration.

Observing outcomes of both arms, we estimate the condi-
tional average treatment effect (CATE),

τC(x) ≜ E [Y (1)− Y (0)|X = x] = µ1(x)− µ0(x), (1)

where µt(x) ≜ E [Y (t)|X = x]. The average treatment
effect (ATE) is then defined as E [τC(X)].

The main focus of our work is the case where out-
comes are only available for the control group, in which
case we consider the average treatment effect for the
treated (ATT),

τA ≜ E [Y (1)− Y (0)|T = 1] , (2)

and estimate it with a suitable control group by matching
external control patients with the treated.

4 OUR MODEL
We introduce a latent-variable model for the task of treat-
ment effect estimation from single-arm trials with external
controls focusing also on the task where outcome informa-
tion is only available for the control group.

A Generative Model. Previous models (Louizos et al.,
2017; Lu et al., 2020) have so far solely focused on learn-
ing latent embeddings within the setting of having observed
outcome information for both the treatment and the control
groups. From their joint

p(t,x,y, z) = p(t|z)p(x|z)p(y|t, z)p(z), (3)

we notice the dual role played by the latent representation z.
In (3) z is assumed to be predictive of y and, at the same
time, to offer a reliable encoding of x. These tasks counter-
act each other. Accurately modeling p(y|t, z) requires ex-
tracting predictive information from the covariatesx (as z is
latent), which we assume to sufficiently overlap between the
treatment and the control groups. Modeling p(x|z), how-
ever, forces the model to encode a complete representation,
i.e., to take covariate information into consideration that is
irrelevant to the predictive task, and to further model group-
specific variations existing in the data. This was observed

zn

xn

ynun

tn
cn

N

Figure 2: Plate Diagram of Our Model. Black solid arrows
denote the generative model, red dashed arrows the infer-
ential dependency. Empty, partially filled, and filled circles
refer to latent, partially, and fully observed variables.

to be detrimental, e.g., by Lu et al. (2020), who dropped it
from their final objective.

We take these different tasks into account and reduce the
tension by extending the original latent space representa-
tion by adding an additional latent variable u ∈ U to the
joint distribution. This variable aims to explain away group-
specific characteristics, allowing z to be predictive of the
treatment, yet still be guided by the reconstructive task it
performs jointly with u through the resulting likelihood
p(x|u, z). However, as deep unconstrained latent-variable
models are not identifiable (Khemakhem et al., 2020) Z is
also not identifiable due to p(z) being unconditional. We
instead have to rely on a conditional prior p(z|c), where c
is an additional observed variable, separate from the covari-
ates x. In practice, c contains covariates that are best con-
sidered as non-random variables, such as gender, age, coun-
try of origin, etc. With a normal prior for u, our model (see
Figure 2) is given as

u ∼ p(u) = N (u|0, σ2
u1),

z ∼ p(z|c) = N (z|λ(c), σ2
z1),

x ∼ p(x|u, z),
t ∼ p(t|z) = Ber

(
t|σ(f(z))

)
,

y ∼ p(y|t, z) = N
(
y|µy

t (z), α
−1
)
,

where λ(·), f(·) and µy
t (·) are neural nets, α is a preci-

sion parameter, σ(x) ≜ 1/(1 + exp(−x)) the logistic sig-
moid, and 1 an identity matrix. We assume the like-
lihood p(x|u, z) to factorize over the covariates, i.e.,
p(x|u, z) =

∏dx

i=1 p(xi|u, z), where dx ≜ dim(x). In the
experiments, we model the individual covariates xi via
Bernoulli, Categorical, or Normal distributions, depend-
ing on their domain. For continuous covariates, we assume
a homoscedastic noise model, i.e., N (xi|g(z)i, β−1

i ) with
precision parameters βi. The precisions α, and {βi}i are
optimized together with the remaining model parameters.
Assuming U is high-dimensional enough, we can rely on it
to model the group-specific latent spaces of both the treat-
ment and control groups. Alternatively, they can be explic-
itly separated into group-specific latent spaces, such that
U = [U0,U1]. This allows for an easy extension of the cur-
rent two-group setup to multiple groups which may only
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become available at a later stage. We explore this variant in
our experiments but do not find the additional separation to
be necessary in most cases.

Inference. We rely on amortized variational inference
(Kingma and Welling, 2014; Rezende et al., 2014) to in-
fer an approximation to the intractable posterior p(U,Z|D),
where U = (u1, . . . ,uN ), C, X, Z analogously. We as-
sume a mean-field variational posterior

q(U,Z|C,X) =

N∏
n=1

q(un|xn)q(zn|cn,xn), where

q(un|xn) = N
(
un|µu(xn), σ

u(xn)
)

and
q(zn|cn,xn) = N

(
zn|µz(cn,xn), σ

z(cn,xn)
)
,

with neural networks µu(·), µz(·), σu(·), and σz(·). We
minimize the Kullback-Leibler divergence between the two,
i.e., KL (q(U,Z|C,X) ∥ p(U,Z|D)), by maximizing the
corresponding evidence lower bound (ELBO) with respect
to all parameters. If outcome values are available for both
groups, the ELBO is given as

log p(D) ≥
N∑

n=1

Eq(un,zn|cn,xn) [log p(xn|un, zn)]

+ Eq(zn|cn,xn)

[
log p(yn|tn, zn)︸ ︷︷ ︸

(⋆)

+ log p(tn|zn)
]

− KL
(
q(un|xn) ∥ p(un)

)
− KL

(
q(zn|cn,xn) ∥ p(zn|cn)

)
≜ Lfull

elbo. (4)

If outcome values yn are available only for the control
group, we optimize a modified ELBO. The missing out-
come for the single-arm treatment group is masked out, i.e.,
we replace (⋆) in the equation above with

Eq(zn|cn,xn) [(1− tn) log p(yn|tn, zn)] .

See Appendix B for further details.

We follow prior work (Johansson et al., 2016; Shalit et al.,
2017; Lu et al., 2020) and rely on tools from domain adapta-
tion (Ben-David et al., 2010) to further constrain z. Specif-
ically, we rely on the gradient-reversal layer approach by
Ganin and Lempitsky (2015) providing us with a generative
adversarial network-based regularizer (Goodfellow et al.,
2014). Our model tries to fool a discriminator whose task
is to distinguish between the encoded samples from the two
groups, i.e., whose aim is to maximize log p(tn|zn). See
Appendix C for details on the modified objective.

Identifiability. As mentioned above, fully unconstrained
latent-variable models, pθ(x, z) = pθ(x|z)pθ(z), are non-
identifiable in the sense that the implication

∀(θ, θ′) : pθ(x) = pθ′(x)⇒ θ = θ′,

does not necessarily hold (Khemakhem et al., 2020), i.e.,
different model parameterizations can lead to the same

marginal. Khemakhem et al. (2020) propose to constrain
the model via an additional set of variables c and assume a
joint distribution that factorizes as

pθ(x, z|c) = pθ(x|z)pθ(z|c),

where x = fθ(z) + ε, with ε ∼ p(ε) being an independent
noise variable. The prior p(z|c) is assumed to be parame-
terizable as a factorizing exponential family,

p(z|c) =
dz∏
i=1

m(zi)/Z(c) exp
(
T (zi)

⊤λ(c)
)
. (5)

Assuming a sufficiently diverse set of variables c ∈ C, there
need to be dzk + 1 distinct values, where k is the num-
ber of sufficient statistics, then θ ≜ (f, T, λ) is identifiable
up to permutations and translations. Xi and Bloem-Reddy
(2023) later showed that the assumption on a factorizing
exponential family is not necessary and that, due to the re-
quirement on the independent noise variable ε in p(x|z) the-
oretical guarantees only hold for continuous covariates x.
Empirical results by Khemakhem et al. (2020) indicate that
identifiability still tends to be achievable for discrete covari-
ates. Throughout our experiments, whenever we encounter
a mixture of discrete and continuous covariates, we still rely
on a prior as specified in (6) and observe improved results,
while theoretical guarantees could be maintained by ignor-
ing discrete covariates within the likelihood.

Within our setup, we are interested in identifying the predic-
tive latent space of z. We keep the prior p(u) unconstrained
and model z’s conditional prior p(z|c) as a factorized nor-
mal distribution, whose λ(·) are parameterized by a neural
net. The argument by Khemakhem et al. (2020) then guar-
antees identifiability of z up to the constraints mentioned
above. See Appendix B.1 for a detailed discussion on the
required conditions and derivations.

Patient Matching. Matching consists of extracting a sub-
set of observations from the control group that is similar to
the observations in the single-arm treatment group with re-
spect to a feature s. Such a feature is often created via the
propensity score.1 Given s, a distance measure estimates
the similarity between two observations. That is, the match-
ing control xi

match for an observation xi with si is

xi
match = xj , with j = argmin

j∈Jc

d(si, sj),

where d(·, ·) is a distance metric and Jc = {j|tj = 0} is
the index set over the control observations.

As Z is designed to extract a predictive encoding, we
perform patient matching within this compressed, low-
dimensional latent space, and match in X only for ablation

1A classical result by Rosenbaum and Rubin (1983) proves that
if the average treatment effect is identifiable from observational
data after adjusting for X , then adjusting for the propensity score
π(X) is sufficient.
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purposes. If we consider the inferred posterior means in
Z as point estimates that encode the covariates, we either
(i) estimate a propensity score given the encodings µz(xi),
i.e., si = π̂(T = 1|µz(xi)), (ii) use the posterior mean di-
rectly, i.e., si = µz(xi), or (iii) the full variational posterior,
i.e., si = (µz(xi), σ

z(xi)). Given similarity distances, we
rely on nearest-neighbor matching with replacement. This
straightforward approach could be extended to further im-
prove the overall overlap by taking additional measures into
account, such as, e.g., calipers (Austin, 2011). Throughout
the experiments, we use the Euclidean distance for d(·, ·).
See Appendix C.6 for matching without replacement and an
ablation using distributional distance measures.

Missingness. So far, our model assumes fully observed
covariates x — an assumption that is often violated in prac-
tice. We generally cannot assume that EHRs have measure-
ments of all the features we require in a specific study for
every patient. Additionally, we cannot assume that miss-
ing measurements are completely random but rather have
to assume dependency structures within the missingness,
i.e., missing not at random (MNAR) (Rubin, 1976).2 To
account for this we build upon the proposal by Collier
et al. (2020). Given masking variablesm ∈M = {0, 1}dx ,
where mni = 1 indicates that the i-th covariate has
been observed in the n-th sample, we observe masked co-
variates x̃ = m ◦ x+ (1−m) ◦ η, for some imputation η
and ◦ the element-wise product. To account for the MNAR
structure, we model m to depend on an additional latent
variable zm ∼ p(zm) as well as (u, z) such that

m|zm,u, z ∼
dx∏
i=1

Ber
(
mi|σ(g(zm,u, z)i)

)
,

x|m,u, zx ∼ p(x|m,u, zx).

See Appendix B.2 for the complete model.

5 EVALUATION
Data Sets. Given the fundamental problem of causality,
we have to rely on semi-synthetic data sets to evaluate the
efficacy of the proposed method. We first consider adap-
tations of the commonly used semi-synthetic IHDP bench-
mark (Hill, 2011) consisting of 25 real covariates (one cat-
egorical, 19 binary, five continuous) and synthetic contin-
uous treatment outcomes y. Additionally, we create a sur-
vival analysis setup where y represents time-to-event infor-
mation, with the aim of estimating hazard ratios. As a sec-
ond real-world data set, we combine 140, partially missing,
covariates (100 binary, 40 continuous) of 833 participants
of a published RCT study (Bakris et al., 2020) with real-
world electronic health record (EHR) data from 2646 pa-
tients. Details on these data sets as well as further experi-
mental details not mentioned in the subsequent subsections

2While MNAR is our focus in this work, the generative model
could easily be adapted to missing (completely) at random as-
sumptions as well.

are discussed in Appendix C. As far as possible, all variants
share the same architectures and hyperparameters. See Ap-
pendix D for further evaluations. An implementation of our
proposed approach is available at https://github.com/
manuelhaussmann/lvm_singlearm.

Experimental Assumptions. We consider two cases. Ei-
ther (a) outcome information is available for both groups,
i.e., the single-arm trial group and the external control
group, which is the common assumption used in the deep
learning literature. In this case, estimators can be inferred
directly. Or (b) outcome information is only available for
the control group. Here, inference of a representation space
is required, which can be used in a second step to select a
suitable subset of control patients via matching. We evalu-
ate scenarios where either all covariates are potentially pre-
dictive, or only a subset of them, and where the covariate
overlap between the two groups is either high, where we
keep the original covariates, which are already only par-
tially overlapping, or low, where we additionally shift them
to decrease their overlap even further.

Baselines & Ablations. We compare our method to sev-
eral baselines. SingleNet serves as our simplest determin-
istic baseline and learns a single estimator µ(x, t). TNet
generalizes this to two separate neural net-based estimators
µt(x). TarNet and CFRNet in turn learn a shared represen-
tation space from which they predict treatment outcomes
(Shalit et al., 2017). SNet further generalizes this by learn-
ing a mixture of unique and shared representations (Curth
and van der Schaar, 2021a). VAE serves as our vanilla
generative baseline following the standard architecture pro-
posed by Shalit et al. (2017). CEVAE extends it with an ad-
ditional treatment outcome estimator (Louizos et al., 2017).
Finally, TEDVAE generalizes CEVAE by splitting the la-
tent space into separate predictive parts similar to the deter-
ministic SNet generalization (Zhang et al., 2021). We fur-
ther compare with CFor, a random forest-based approach
for causal estimation (Wager and Athey, 2018), and three
propensity score estimators: PScov uses the observed co-
variates, PSpca maps them into a dz-dimensional feature
vector, and PSlat learns an estimator on the latent encoding
space Z our approach infers. All three use an ElasticNet
(Zou and Hastie, 2005) to infer the estimator.

We report the following ablations of our model. (Our)
optimizes (4) with an unconditional, i.e., non-identifiable
prior p(z), (+I) specifies the conditional p(z|c). (+sep) in-
fers separate representations U for each group. For simplic-
ity, all variants follow the TarNet architecture as closely as
possible. Finally, (+snet) and (+tedvae) demonstrate that
our proposal can easily be implemented with modern deep
models by simply replacing the TarNet architecture back-
bone with SNet or TEDVAE (see Appendix C.3 for a more
detailed discussion of such replacements).

https://github.com/manuelhaussmann/lvm_singlearm
https://github.com/manuelhaussmann/lvm_singlearm
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Table 1: Full & Partial Outcome Observation. Variations of modified IHDP covariates and simulated treatment outcomes.
Our proposal improves on both deterministic and probabilistic baselines. (‘–’ refers to a method not being applicable)

(a) full outcome observation (RMSE of CATE) (b) partial outcome observation (AE of ATT)

all+high subset+low all+high subset+low

Method within sample out-of-sample within sample out-of-sample within sample out-of-sample within sample out-of-sample

CFor 0.556±0.000 0.5967±0.001 3.449±0.052 2.597±0.031 – – – –
PScov – – – – 0.115±0.005 0.336±0.017 0.691±0.059 0.702±0.063

PSpca – – – – 0.096±0.005 0.300±0.014 0.496±0.036 0.613±0.051

PSlat – – – – 0.084±0.004 0.187±0.013 0.276±0.025 0.272±0.023

SingleNet 0.241±0.005 0.328±0.009 0.924±0.016 0.878±0.027 – – – –
TNet 0.175±0.003 0.275±0.008 0.278±0.009 0.328±0.017 – – – –
TARNet 0.177±0.004 0.280±0.008 0.272±0.009 0.333±0.019 0.043±0.003 0.130±0.008 0.140±0.011 0.239±0.016

CFRNet 0.171±0.003 0.279±0.008 0.279±0.008 0.338±0.017 0.042±0.002 0.131±0.007 0.345±0.016 0.370±0.017

SNet 0.168±0.003 0.264±0.008 0.211±0.008 0.243±0.016 0.043±0.003 0.137±0.007 0.221±0.015 0.366±0.026

VAE – – – – 0.085±0.004 0.266±0.012 0.264±0.014 0.427±0.022

CEVAE 0.182±0.002 0.287±0.007 0.288±0.009 0.350±0.017 0.052±0.002 0.174±0.009 0.150±0.009 0.259±0.015

TEDVAE 0.176±0.002 0.283±0.007 0.293±0.009 0.336±0.018 0.052±0.003 0.179±0.009 0.144±0.009 0.272±0.016

Ours 0.152±0.002 0.267±0.008 0.201±0.007 0.272±0.016 0.037±0.002 0.113±0.007 0.114±0.008 0.190±0.016

+I 0.141±0.002 0.251±0.008 0.194±0.007 0.262±0.016 0.038±0.002 0.122±0.007 0.110±0.007 0.176±0.014

+sep 0.151±0.002 0.267±0.008 0.209±0.007 0.278±0.016 0.037±0.002 0.111±0.007 0.117±0.009 0.193±0.016

+sep+I 0.143±0.002 0.255±0.007 0.197±0.007 0.266±0.017 0.035±0.002 0.117±0.008 0.104±0.007 0.185±0.015

+snet 0.141±0.002 0.256±0.008 0.185±0.007 0.253±0.017 0.038±0.002 0.117±0.007 0.194±0.014 0.322±0.020

+snet+I 0.130±0.002 0.242±0.008 0.181±0.006 0.250±0.017 0.038±0.002 0.120±0.008 0.190±0.012 0.322±0.023

+snet+sep 0.143±0.002 0.254±0.008 0.191±0.007 0.258±0.017 0.040±0.003 0.109±0.007 0.179±0.013 0.316±0.020

+snet+sep+I 0.131±0.002 0.247±0.008 0.180±0.007 0.251±0.017 0.039±0.003 0.115±0.007 0.196±0.015 0.292±0.020

+tedvae 0.143±0.002 0.257±0.008 0.187±0.007 0.258±0.019 0.039±0.003 0.119±0.007 0.103±0.008 0.189±0.015

+tedvae+I 0.142±0.002 0.255±0.008 0.191±0.006 0.253±0.016 0.036±0.002 0.124±0.007 0.102±0.007 0.191±0.017

mean ± standard error over 300 random replications; statistically significant best models marked bold; lowest mean underlined

Performance Metrics. If outcome information is avail-
able for both groups (case (a)) we evaluate the root mean
squared error (RMSE) between true and estimated CATE
values, also known as the precision in estimation of hetero-
geneous effects (PEHE) (Hill, 2011). Otherwise (case (b))
we compute the ATT between the treated and the matched
subset of the control and report the absolute error (AE)
of the estimate. We consider within-sample and out-of-
sample performance. Within-sample considers covariatesx
and outcomes y = Y (t) already observed during training
and requires inferring the counterfactual Y (1 − t). Out-
of-sample performance considers previously unseen covari-
ates x and potential outcomes for the prediction.

5.1 Full Outcome Observation

We summarize the performance of CATE estimation on
IHDP covariates assuming outcomes are available for both
groups (treatment and control) in Table 1 (a). Compar-
ing the performance of deterministic and latent-variable ap-
proaches, we observe that switching from a sufficiently ad-
vanced deterministic model (TNet, TARNet, CFRNet, SNet)
to a simple generative model (CEVAE) tends to reduce per-
formance throughout the different scenarios. As was argued
already in prior work by Lu et al. (2020), forcing the la-
tent encoding Z to fully encode the covariates instead of
focusing on being predictive constraints too much. How-
ever, splitting the latent space into U and Z clearly im-
proves upon the deterministic baselines (Ours). If U is suf-
ficiently high-dimensional, further splitting it into group-
specific latent spaces provides little to no benefit in this

setup (+sep). Switching from an unconditional prior (p(z))
to a conditional one (p(z|c)) improves the predictive per-
formance even further (+I). Finally, switching to a more
modern architecture (+snet) gives an additional reduction
in RMSE. The tree-based baseline (CFor) performs signif-
icantly worse than all neural net-based methods on this set-
ting, as was already observed by Curth and van der Schaar
(2021a), and fails completely if there is only limited over-
lap between the two sets of covariates. Further results are
provided in Appendix D.2.

5.2 Partial Outcome Observation

We summarize the performance of ATT estimation on
IHDP covariates assuming outcomes are available only for
the control group in Table 1 (b). In this setting, as before,
switching from a deterministic baseline to a generative vari-
ant requires the added structure provided by a separate latent
space U for significant improvements (Ours). While rely-
ing on an identifiable version of our approach (+I) tends to
improve performance, it is not significant, while relying on
an SNet structure may even decrease performance depend-
ing on the setup. Comparing all baselines with a VAE that
simply learns a joint representation for both groups without
any outcome information (VAE) shows that some guidance,
even if it is only accessible from a single group, is neces-
sary to infer a representation suitable for subsequent match-
ing (Ours). While matching based on a propensity score
estimator is not competitive with the deep models, it im-
proves significantly when it is trained on an encoded set of
covariates (PSlat) compared to the observed ones (PScov).
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Figure 3: Missingness. Moving from a scenario where all
covariates are observed (♦) to one with structured missing-
ness that is not modeled (♦) reduces performance, as ex-
pected. Modeling the MNAR pattern as part of our genera-
tive model (♦) reliably improves performance in all of our
variants. Visualized is the RMSE of within-sample CATE
estimation in the all+high scenario. Shown are 100 random
replications along with their respective means (♦).

Further results are provided in Appendix D.3.

5.3 Missingness
We summarize the performance of CATE estimation on
IHDP covariate in a missing not at random (MNAR) sce-
nario in Figure 3. To simulate this scenario we randomly
drop covariates, with the probability depending on the ob-
served values for xn Throughout, we assume that missing-
ness only occurs in x, not in c or y. Increasing the amount
of missingness in the covariates decreases performance in
all models (see Appendix D.4). Proper modeling of the
MNAR structure consistently gives significant performance
improvements for all variations of our proposal. We dis-
cuss the precise mechanism of how we create this data set
in Appendix C.5.1. See Appendix D.4 for an ATT estima-
tion scenario and further results.

5.4 Survival
So far our evaluation has assumed a scalar outcome y,
i.e.,Y = R. However, our method is not limited to this case.
We now demonstrate its usefulness in the area of survival
analysis (Clark et al., 2003), where y specifies a (poten-
tially censored) survival time. Given access to the survival
times of a control group via, e.g., their electronic health
records, the goal is to select a suitable subgroup whose sur-
vival curve mimics the true, but unknown, counterfactual
survival curve of the single-arm treatment group. We cre-
ate synthetic survival data based on IHDP covariates and as-
sume a Weibull distribution for p(y|t, z), both for our model
as well as the baselines. To evaluate the matching perfor-
mance, we evaluate the squared error between the estimated
hazard ratios relying either on the true counterfactual or the
matched subset. Our proposal method improves upon the
deterministic as well as generative baselines. See Figure 4
for an exemplary visualization on a subset of the methods
and Table 2 for a summary of the results.

Table 2: Survival. Median squared error between the es-
timated and true hazard ratios for survial curve estimation.
Our approach improves both upon its deterministic as well
as its generative baselines in most variants.

Method Median Error

Naive 0.394 [0.093,0.898]

TARNet 0.162 [0.018,0.501]

CFRNet 0.513 [0.166,1.059]

SNet 0.486 [0.173,1.120]

VAE 0.288 [0.064,0.663]

CEVAE 0.173 [0.022,0.572]

Ours 0.135 [0.053,0.526]

+I 0.180 [0.020,0.448]

+sep 0.155 [0.036,0.509]

+sep+I 0.156 [0.033,0.473]

+snet 0.331 [0.060,1.425]

+snet+I 0.201 [0.316,1.120]

median over 100 random replications with [lower, upper quartile];
lowest median marked bold

5.5 Real-World Experimental Data

We summarize the performance of ATT estimation in Ta-
ble 3. In our clinical data setup, as was the case for IHDP,
we cannot evaluate performance against a true treatment
outcome, given that the counterfactual reality is necessar-
ily unknowable. We therefore have to again rely on syn-
thetic outcomes on top of real covariates. See Appendix C.5
for details on their creation. Evaluating the absolute error
of ATT estimation, we observe that switching to our pro-
posal improves performance over the baselines. Overall, a
conditional prior p(z|c) tends to improve upon their non-
identifiable partner methods while splitting U into two sep-
arate sub-spaces tends to hurt overall performance.

6 CONCLUSION

We contributed with this work a principled latent-variable
model with the ability to estimate treatment effects from
single-arm trials with external controls. The model learns a
predictive low-dimensional latent space as well as separate
(group-specific) representations to account for the differ-
ent characteristics between treated and untreated patients.
We performed an extensive ablation study on both synthetic
benchmark data as well as a real-world combination of RCT
and EHR data. Our model improved upon an extensive
set of baselines across the benchmarks. In this work, we
made technical choices regarding architectures and hyper-
parameters such that we can conclude on the importance of
the different modeling choices proposed in our approach,
without introducing experimental biases. The next step is
to fine-tune technical choices, e.g., by incorporating fur-
ther advanced architectures such as the FlexTENet (Curth
and van der Schaar, 2021b), or estimators, such as the R-
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Figure 4: Survival. Kaplan-Meier estimates of survival curves for three of the models for a single random seed. During
training survival information for the treatment group is unavailable and we observe survival times only for the control
group. After patient matching, the matched subset is compared against the unknown, counterfactual survival curve of the
single-arm group. The shaded areas are the 95% confidence intervals on the respective Kaplan-Meier estimators. While
the match found by CFRNet overlaps completely with the unmatched control group, TARNet can get close to the desired
survival curve. Ours largely overlaps with it.

Table 3: Real-World Medical Data. Combining single-arm
trial data with electronic health records. We observe the
same pattern as before, i.e., switching to our generative pro-
posal improves upon the respective baselines.

AE of ATT within-sample out-of-sample

PScov 2.984±1.444 2.477±0.740

TARNet 2.514±1.007 2.236±0.892

CFRNet 2.271±0.884 2.230±0.865

SNet 3.032±1.141 2.319±0.678

VAE 2.445±0.828 2.123±0.886

CEVAE 2.587±1.051 2.221±0.954

Ours 2.143±0.918 2.032±0.874

+I 2.277±0.935 1.997±0.899

+sep 2.893±1.332 3.163±1.381

+sep+I 2.775±1.266 2.520±1.109

+snet 2.451±0.901 2.277±0.892

+snet+I 2.121±0.824 2.247±0.892

mean ± standard error over 5 random replications;
lowest mean underlined

Learner (Lu et al., 2020; Nie and Wager, 2020) in the same
way as we already demonstrated.
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Supplementary Materials

A FURTHER RELATED WORK
Multi-task, Multi-modal, and Transfer Learning. How to combine information from multiple data sources is an on-
going research question. Multi-task learning considers the problem of solving multiple related tasks from a single data
set (Caruana, 1997; Maurer et al., 2016; Makino et al., 2022). Multi-modal learning is closely related but focuses instead
on using heterogeneous data sources for a single target task (Joy et al., 2022). Transfer learning considers the task of trans-
ferring a learned model from one data set to another (Pan and Yang, 2010; Tripuraneni et al., 2020). Our task is related to
this field via domain adaptation (Ben-David et al., 2010). We assume two different data sources with similar yet distinct
characteristics and extract a predictive representation by combining the two.

B THEORY
B.1 Identifiability
B.1.1 Prior Work
Throughout this work we follow the approach of Khemakhem et al. (2020), who rely on auxiliary covariates for identifiability
guarantees. See also the recent work by Xi and Bloem-Reddy (2023), who extend this work by providing additional results
and guarantees.

Khemakhem et al. (2020) observe that a general unconstrained latent-variable model of the form

p(x, z) = p(x|z)p(z),

where x is assumed to be observed and z to be latent is, in general, not identifiable in the sense of the implication

∀(θ, θ′) : pθ(x) = pθ′(x)⇒ θ = θ′.

To solve this problem, they follow prior work by Hyvarinen et al. (2019) and introduce an additional observed vari-
able c

pθ(x, z|c) = pf (x|z)pT,λ(z|c),
with θ = (f,T, λ) and f an injective function, e.g., a neural net. The likelihood pf (x|z) is assumed to be of the form

pf (x|z) = f(z) + ε,

with ε ∼ p(ε), i.e., composed of an additive independent noise source. The covariates x are assumed to be continuous.3 The
conditional prior in turn is assumed to be conditionally factorial into a product of exponential family distributions,

pT,λ(z|c) =
dz∏
i=1

m(zi)

Z(c)
exp

(
Ti(zi)

⊤λ(c)
)
,

where Ti are the sufficient statistics with dim(Ti) = k, and λ(·) some function of c, e.g., a neural net. Although this
factorization assumption is sufficient within our current setup, it has since been shown that it is not necessary (Lu et al.,
2022; Xi and Bloem-Reddy, 2023).

We quote the following two definitions and theorems by Khemakhem et al. (2020) following their numbering scheme and
adapting them to our notation.

3Khemakhem et al. (2020) speculated that this constraint on a continuous covariate could also be extended to discrete covariates, but
Xi and Bloem-Reddy (2023) show, that this is not provable in its current form. Nevertheless, both Khemakhem et al. (2020) and we do
observe good empirical performance nevertheless also for discrete covariates x.
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Definition 1. Let ∼ be an equivalence relation on Θ. We say that p(x|z)p(z) is identifiable up to ∼ if

pθ(x) = pθ′(x)⇒ θ ∼ θ′.

The elements of the quotient space Θ/∼ are called the identifiability classes.

Definition 2. Let ∼ be the equivalence relation on Θ defined as follows:

(f,T, λ) ∼ (f̃ , T̃, λ̃)⇔ ∃A,b T(f−1(x)) = AT̃(f̃−1(x)) + b ∀x ∈ X

where A is an dzk × dzk matrix and b is a vector. If A is invertible, we denote this relation by ∼A. If A is a block
permutation matrix, we denote it by ∼P .

Theorem 1. Assume that we observe data sampled from a generative model defined according to the model specified
above with parameters (f,T, λ). Assume the following holds:

(i) The set {x ∈ X |φε(x) = 0} has measure zero, where φε is the characteristic function of p(ε);

(ii) the mixing function f is injective;

(iii) the sufficient statistics T are differentiable almost everywhere and (Ti,j)1≤j≤k are linearly independent on any subset
of X of measure greater than zero;

(iv) there exist dzk + 1 distinct points c0, . . . , cdzk such that the matrix

L =
(
λ(c1)− λ(c0), . . . , λ(cdzk)− λ(c0)

)
,

of size dzk × dzk is invertible,

then the parameters (f,T, λ) are ∼A-identifiable.

Theorem 4 Assume the following:

(i) The family of distributions qϕ(z|x, c) contains pθ(z|x, c),

(ii) we maximize
ED

[
Eqϕ(z|x,u) [log pθ(x, z|c)− log qϕ(z|x, c)]

]
,

with respect to both θ and ϕ,

then in the limit of infinite data D, the VAE learns the true parameters θ∗ = (f∗,T∗, λ∗) up to an equivalence
class ∼A.

B.1.2 Our setup
The joint probability distribution we use throughout most part of the paper is

p(x, y, t,u, z|c) = p(x|u, z)p(t|z)p(y|z)p(u)p(z|c),

where for this discussion we assume x ∈ Rdx , i.e., all covariates are continuous and normally distributed. As discussed
above, the guarantees do not hold for discrete covariates. Throughout our experiments, we still include them, and empirically
still observe good results, but to guarantee identifiability they could also be dropped from the likelihood, and, e.g., just be
used as additional inputs to the variational posterior. Similarly, we focus only on the latent-variable model with respect to x,
instead of (x, y) as (i) y may be partially unobserved and is not part of the variational posterior violating the assumptions
of Theorem 4, and (ii) p(y|t, z) is, e.g., in the survival experiment a Weibull distribution, i.e., does not fulfill the constraint
of an independent noise source. Note also that Theorem 4 requires us to optimize the original ELBO, i.e., without any
regularization terms. We only include these in the two-arm setup but drop them from the one-arm setup to fulfill this
constraint.

We keep the prior p(u) unconstrained and only constrain p(z|c) as a factorizing normal distribution

p(z|c) =
dz∏
i=1

m(zi)/Z(c) exp
(
T (zi)

⊤λ(c)
)
, (6)
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with λ(·) parameterized by a neural network. Throughout the experiments, we fix the prior variance of p(z|c) and only
parameterize the mean, that is k = 1. As we require dzk + 1 distinct values, this allows us to use a lower variety in c, at
the price of only being able to guarantee ∼A identifiability, instead of ∼P (Khemakhem et al., 2020, Theorem 3).

This gives us, after marginalizing over y, t

p(x, z|c) =
∫

p(x|u, z)p(u)p(z|c) du

= Ep(u) [p(x|u, z)] p(z|c)
= Ep(u) [pε(x− f(u, z))] p(z|c)

= pε

(
x− Ep(u) [f(u, z)]︸ ︷︷ ︸

≜h(z)

)
p(z|c),

where pε(x − h(z)) ≜ pε(ε) = N (ε|0,1). Assuming the remaining conditions of Theorem 1 hold, this gives us the
desired ∼A identifiability for (h,T, λ).

B.2 Missingness
Not only can missing covariate information be assumed to be present in most real-world data sets, e.g., electronic health
records, but one should also expect it to be missing not at random (MNAR) (Rubin, 2005), i.e., the missingness pattern
depends on the missing covariates themselves. To properly account for that we extend our model with binary masking vari-
ables m ∈M = {0, 1}dx , where mni = 0 indicates that the i-th covariate of observation n is missing. We observe

x̃ = m ◦ x+ (1−m) ◦ η,

where ◦ is elementwise multiplication, and η some imputation scheme, e.g., η = 0 for zero imputation.

We model MNAR by assuming a prior over m that depends on u and z, to account for the not-at-random structure, and
assume an additional latent zm to model any remaining pattern. Our joint model is given as

u ∼ p(u) = N (u|0, σ2
u1),

z|c ∼ p(z|c) = N
(
z|λ(c), σ2

z1
)
,

zm ∼ p(zm) = N (z|0, σ2
zm1),

m|u, z, zm ∼
dx∏
i=1

Ber
(
mi|σ(g(zm,u, z)i)

)
,

x|m,u, z ∼ p(x|m,u, z),

t ∼ p(t|z) = Ber
(
t|σ(f(z))

)
,

y ∼ p(y|t, z) = N
(
y|µy

t (z), α
−1
)
,

where f(·), g(·), µy
t (·) are neural nets, and σ(x) ≜ 1/(1 + exp(−x)) is the logistic sigmoid. As in the main text, we

only focus on identifiability with respect to z. We assume p(x|m,u, z) to factorize over the covariates, with each covariate
likelihood being modeled via normal, Bernoulli, or categorical distributions depending on their respective domains. See
Figure 5 for a summarizing plate diagram.

We define U = (u1, . . . ,uN ) and Zm, Z, X are defined analogously. We again rely on a mean-field variational posterior,
given as

q(U,Zm,Z|C,X) =

N∏
n=1

q(un|mn, x̃n)q(zn|cn,mn, x̃n)q(z
m
n |mn, x̃n)

=

N∏
n=1

N
(
un|µu(mn, x̃n), σ

u(mn, x̃n)
)
N
(
zn|µz(cn,mn, x̃n), σ

z(cn,mn, x̃n)
)

· N
(
zmn |µzm

(mn, x̃n), σ
zm

(mn, x̃n)
)
,
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zncn

xn

x̃n

yn
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mn
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N

Figure 5: Missing not at random model. Empty, partially filled, and filled circles represent latent, partially observed and
observed variables. x̃ is deterministic as described in the text.

The full ELBO is given as

log p(D) ≥
N∑

n=1

Eq(un,zn,zm
n |cn,xn)

[
log p(xn|mn,un, zn) + log p(m|u, zm, z)

]
+ Eq(zn|cn,xn)

[
log p(yn|tn, zn) + log p(tn|zn)

]
− KL

(
q(un|x̃n) ∥ p(un)

)
− KL

(
q(zn|cn, x̃n) ∥ p(zn|cn)

)
− KL

(
q(zmn |mn, x̃n) ∥ p(zmn )

)
See Appendix D.4 for related experiments.

B.3 A split U
The main paper discusses a separate latent space U and formulates the joint model as

u ∼ p(u) = N (u|0, σ2
u1),

z ∼ p(z|c) = N (z|λ(c), σ2
z1),

x ∼ p(x|u, z),
t ∼ p(t|z) = Ber

(
t|σ(f(z))

)
,

y ∼ p(y|t, z) = N
(
y|µy

t (z), α
−1
)
.

Assuming data from ndata sources, another approach is to use a separate U for each of them, i.e., we
have U = U1 × · · · × Undata . The joint then becomes

ug ∼ p(ug) = N (ug|0, σ2
u1), for g = 1, . . . , ndata,

z ∼ p(z|c) = N (z|λ(c), σ2
z1),

x ∼ p(x|u, z),
t ∼ p(t|z) = Ber

(
t|σ(f(z))

)
,

y ∼ p(y|t, z) = N
(
y|µy

t (z), α
−1
)
.

In our specific setup of one treatment and one control group, we have ndata = 2. However, this can directly be generalized
to multiple control sources and separate treatment trials.

B.4 Outcome only for the control group
A common assumption in the machine learning literature is to predict treatment effects given pre- and post-treatment in-
formation, i.e., covariates as well as outcomes for all treatment and control groups. The additional alternative setting that
we consider is that the model is blinded to post-treatment information from the treatment group, i.e., the model has to infer
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a suitable latent embedding solely from pre-treatment covariates of the single-arm trial as well as covariate and outcome
information from the control electronic health records.

This blinding ensures, that before having selected a fixed set of controls to compare against no post-treatment information
is leaked that could potentially bias future tests.

Assuming that we have N0 control observations and N1 treated observations, our data set becomes
D = {(x1, y1, t1, ), . . . , (xN0

, yN0
, tN0

), (xN0+1, tN0+1), . . . , (xN0+N1
, tN0+N1

)} and the ELBO becomes

log p(D) ≥
N0∑
n=1

Eq(un,zn|cn,xn) [log p(xn|un, zn)] + Eq(zn|cn,xn) [log p(yn|tn, zn) + log p(tn|zn)]

+

N0+N1∑
n=N0+1

Eq(un,zn|cn,xn) [log p(xn|un, zn)] + Eq(zn|cn,xn) [log p(tn|zn)]

− KL
(
q(un|xn) ∥ p(un)

)
− KL

(
q(zn|cn,xn) ∥ p(zn|cn)

)
=

N∑
n=1

Eq(un,zn|cn,xn) [log p(xn|un, zn)] + Eq(zn|cn,xn) [(1− tn) log p(yn|tn, zn) + log p(tn|zn)]

− KL
(
q(un|xn) ∥ p(un)

)
− KL

(
q(zn|cn,xn) ∥ p(zn|cn)

)
,

where we useN = N0+N1 and recover the original ELBO in (4) up to the correction factor for notational simplicity.

C EXPERIMENTAL DETAILS

This section goes through various details on the experimental setups. A reference implementation is provided at anony-
mous.

C.1 Significance Testing

Throughout our experiments, we rely on paired Student t-tests to evaluate which models have a comparable performance.
The t-tests are computed relatively to the model with the best empirical mean and are one-sided, i.e., whether the alternative
has a lower mean. We mark all methods that do not lead to a rejection of the null hypothesis at a significance level of p < 0.05
in bold. This applies to all experiments throughout this paper. The lowest empirical mean is additionally underlined. The
number of repetitions for each experiment is specified below the respective table of results.

C.2 Models Under Consideration

Within this paper, we compare against a range of deterministic and probabilistic baselines as well as several baselines.
We discuss their relation to our method within this section. Unless noted otherwise, we reimplemented all baselines in
PyTorch (Paszke et al., 2019).

Non neural net-based baselines.

• CFor is a popular causal forest-based approach for causal estimation introduced by Wager and Athey (2018) and serves
as our main non-neural network-based baseline. Given its lack of a representation space to perform matching on, it can
only be used in the scenario where outcome information is available for both groups. We rely on the implementation
provided by the EconML package (Battocchi et al., 2019).

• PScov, PSpca, and PSlat serve as propensity score (PS)-based matching methods that are constructed on various sets
of inputs. PScov uses the features provided by the original covariates in X . PSpca first maps them into a dim(z)
space via a principal component analysis (PCA). PSlat finally relies on Z space encodings that were provided by
one of our neural network-based approaches. Throughout the experiments, we always use the encoding of the best-
performing neural net as input to PSlat. Independent of their input domain, all three construct their estimator of
π(x) = P(T = 1|X = x) via an ElasticNet (Zou and Hastie, 2005). As these propenstiy score methods do not infer
estimators µt(·)we only compare against them in the matching experiments. We rely on the ElasticNet implementation
provided by scikit-learn (Virtanen et al., 2020).

Deterministic neural nets.
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• SingleNet is a simple neural net, that learns a simple estimator µ(x, t) by concatenating t to the features x, such that
µt(x) = µ(x, t). Its objective is then given as a simple MSE loss,

min

N∑
n=1

(µ(xn, tn)− yn)
2.

The estimator µ(·, ·) is parameterized by a neural net. As it does not infer a shared latent space we only use it in
scenario (a) where outcome information is available for both arms.

• TNet slightly generalizes upon SingleNet by learning two separate neural net estimators µ0(x) and µ1(x). Its objective
is again an MSE loss

min

N∑
n=1

(µtn(xn)− yn)
2.

We parameterize µ0(·) and µ1(·) by neural nets. Similar to the SingleNet it does not learn a shared latent space to
perform matching on and is therefore not applicable to the matching scenario.

• TARNet (Shalit et al., 2017) is a generalization of the TNet that consists of three neural nets. h(·) maps the observed
covariates into a shared representation space. µ0(·) and µ1(·) are then estimated based on this representation. The
MSE loss is given as

min

N∑
n=1

(µtn(h(xn))− yn)
2
.

• CFRNet (Shalit et al., 2017) extends TARNet with an additional MMD (see Appendix C.7 for details) term in the loss
for further regularization.

• SNet (Curth and van der Schaar, 2021a) further generalizes upon these by replacing the single h(·) into five sub-
nets hi(·), i ∈ {1, . . . , 5} that separate the representation space into various sub-spaces, which serve as input to µt(·)
as well as a separate classifier g(·) that predicts t given these representations which is optimized via a cross-entropy
loss. These subspaces in turn serve as (i) input only to µ0, (ii) input to both µ0, µ1, (iii) input only to µ1, (iv) input to all
estimators µ0, µ1, g, or (v) input only to g. In addition, SNet replaces the MMD regularizer with an orthogonalization
regularizer on the representation space mappings hi(·). See Curth and van der Schaar (2021a) for details.

Comparing the loss terms of these deterministic models to our ELBO objective (4) they can be interpreted as optimizing
(up to variations in the model structure and additional loss terms),

N∑
n=1

Eq(zn|xn) [log p(yn|zn, tn)] ,

for a deterministic delta distribution q(z|x) = δ(z− h(x)), and p(y|z, t) = N (y|µt(z), 0.5).4 SNet comes even closer by
adding an additional log p(t|z) to the objective.

Generative baselines. While our deterministic baselines only consider the covariates as input features, the generative
approaches also rely on learning representations that can (approximately) reconstruct them. All generative models rely on
mean-field variational posteriors and use the same prior and likelihood assumptions as far as possible.

• VAE is a simple variational auto-encoder (Kingma and Welling, 2014), whose ELBO is given as
N∑

n=1

Eq(zn|xn) [log p(xn|zn)]− KL (q(zn|xn) ∥ p(zn)) .

As it lacks a model for the outcome likelihood y, we only compare against it in the matching scenarios.

• CEVAE (Louizos et al., 2017) provides an output likelihood for the outcome y together with an additional likelihood
for t, i.e., optimizes an ELBO given as

N∑
n=1

Eq(zn|xn) [log p(xn|zn) + log p(yn|zn, tn) + log p(tn|zn)]− KL (q(zn|xn) ∥ p(zn)) .

4The 0.5 is due to recover the MSE loss without the scaling factor 1/2 the normal distribution introduces in its exponential.
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Note that Louizos et al. (2017) include additional reconstructive terms in their objective which we leave out to keep a
valid ELBO.

• TEDVAE (Zhang et al., 2021) generalizes CEVAE similar to how SNet generalized the CFRNet. It splits the latent Z
into three parts such that the joint is given as

p(x, z1, z2, z3, y, t) = p(x|z1, z2, z3)p(t|z1, z2)p(y|z2, z3)p(z1)p(z2)p(z3).

The corresponding ELBO objective is then given as

N∑
n=1

Eq(zn|xn)

[
log p(xn|zn) + log p(yn|z2n, z3n, tn) + log p(tn|z1n, z2n)

]
− KL (q(zn|xn) ∥ p(zn)) .

where we use zn = (z1n, z
2
n, z

3
n) in the notation.

Variations of our proposal. Throughout the experiments, we evaluate a wide range of variations on our model. We
describe each of the building blocks in turn.

• Ours is the basic model we rely on with a joint given as p(t,u,x, y, z) = p(t|z)p(u)p(x|u, z)p(y|z, t)p(z). The
ELBO is given as

N∑
n=1

Eq(un,zn|xn) [log p(xn|un, zn)] + Eq(zn|xn)

[
log p(yn|tn, zn) + log p(tn|zn)

]
− KL

(
q(un|xn) ∥ p(un)

)
− KL

(
q(zn|xn) ∥ p(zn)

)

• “+I” indicates a variation that is identifiable in z. Its ELBO differs from Ours in the conditional prior and the additional
covariates c, highlighted in red,

N∑
n=1

Eq(un,zn|cn,xn) [log p(xn|un, zn)] + Eq(zn|cn,xn)

[
log p(yn|tn, zn) + log p(tn|zn)

]
− KL

(
q(un|xn) ∥ p(un)

)
− KL

(
q(zn|cn,xn) ∥ p(zn|cn))

)

• “+sep” indicates a variation that splits U into two parts, each responsible for one of the two groups. The differences
in its ELBO compared to Ours are highlighted in red

N∑
n=1

Eq(utn
n ,zn|xn)

[
log p(xn|utn

n , zn)
]
+ Eq(zn|xn)

[
log p(yn|tn, zn) + log p(tn|zn)

]
− KL

(
q(utn

n |xn) ∥ p(un)
)
− KL

(
q(zn|xn) ∥ p(zn)

)
.

• “+snet” uses the deterministic SNet structure and regularization, adding a generator p(x|u, z) on top of the represen-
tation z, where z is the combination of all five subspaces.

• “+tedvae” uses the geneative TEDVAE structure, adds a separate p(u), and adapts the covariate log-likelihood to
p(x|u, z1, z2, z3).
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We parameterize the probability densities for the model variations as

p(u), p(ut), p(z), p(zm) = N (0, σ21), σ = 1 for all experiments,
p(z|c) = N (λ(c), σ2

z1), σz = 1 for all experiments,

p(x|z) =


N
(
fz→x(z), σx

)
, if x is continuous

Ber
(
σ(fz→x(z))

)
, if x is binary

Cat
(
ζ(fz→x(z))

)
, if x is categorical

,

p(x|u, z) is defined analogously but with fuz→x(fu→uz(u), fz→uz(z)),

p(t|z) = Ber
(
σ(fz→t(z))

)
,

p(y|z) =

{
N (fz→y(z), σy) if continuous
see Appendix C.8 if time to event

,

q(u|x) = N (µu(x), σu(x)),

q(ut|x) = N (µu
t (x), σ

u
t (x)),

q(z|x) = N (µz(x), σz(x)),

q(zm|m) = N (µzm(x), σzm(x)),

q(z|c,x) is defined analogously with an additional input c,
the split z cases, i.e., +snet, +tedvae split the output of µz, σz accordingly,

where σ(·) is the logistic sigmoid, ζ(·) the softmax, and all remaining functions are parameterized via neural networks.
Standard deviations σx and σy are treated as free parameters that are optimized via gradient descent as part of the training
routine.

C.3 Modern

TEDVAE (Zhang et al., 2021) and SNet (Curth and van der Schaar, 2021a) serve as two examples of more modern generative
and deterministic models and how they can easily be adapted to our setup. SNet stands in as an example of a deterministic
neural net with a more advanced architectural structure and regularization method. Simply interpreting its mapping from
X to the representation space Z as the parameterization of an amortized variational posterior and adding a generator that
mirrors it by learning a mapping from Z to X , as well as adding a separate representation U are all that is needed. TEDVAE
provides the same illustration for generative models, whose adaptation is even simpler. Here an encoder-decoder structure
is already provided lacking simply a separate U representation. Other novel approaches can be adapted to our setup in the
same manner. For comparison, we replicate the corresponding rows from Table 1 below. Our adaptations improve upon
these baselines in all but one setting (highlighted in the table via underlining).

(a) full outcome observation (RMSE of CATE) (b) partial outcome observation (AE of ATT)

all+high subset+low all+high subset+low

Method within sample out-of-sample within sample out-of-sample within sample out-of-sample within sample out-of-sample

SNet 0.168±0.003 0.264±0.008 0.211±0.008 0.243±0.016 0.043±0.003 0.137±0.007 0.221±0.015 0.366±0.026

Ours+snet 0.141±0.002 0.256±0.008 0.185±0.007 0.253±0.017 0.038±0.002 0.117±0.007 0.194±0.014 0.322±0.020

TEDVAE 0.176±0.002 0.283±0.007 0.293±0.009 0.336±0.018 0.052±0.003 0.179±0.009 0.144±0.009 0.272±0.016

Ours+tedvae 0.143±0.002 0.257±0.008 0.187±0.007 0.258±0.019 0.039±0.003 0.119±0.007 0.103±0.008 0.189±0.015

C.4 Architectures and Hyperparameters

We rely on the same set of architectures and hyperparameters throughout the various experiments and methods, adapting
them only to the specific dimensionalities. Please refer to Appendix C.2 for a description of where the respective nets
appear.

Neural architectures. We use the notation A,B,C, to indicate fully connected layers of A,B,C neurons respectively.
All models use exponentiated linear units (Clevert et al., 2016) as activation functions between layers. They follow the layer
width and depth of Shalit et al. (2017) as closely as possible.
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Function Mapping Comments

µ(·, ·) dim(x) + 1, 200, 200,dim(z), 100, 100, 1
µi(·), i ∈ {0, 1} dim(x), 200, 200,dim(z), 100, 100, 1 TNet
µi(·), i ∈ {0, 1} dim(z), 100, 100, 1 otherwise
h(·) dim(x), 200, 200,dim(z)
hi(·), i ∈ {1, . . . , 5} dim(x), 200, 200, si si defined in the hyperparameters
g(·), fz→t dim(z), 1
λ(·) dim(c), 10, 10,dim(z)
fz→uz(·) dim(z), 50
fu→uz(·) dim(z), 150
fuz→x(·) 200, 200,dim(x)
fz→x(·) dim(z), 200, 200,dim(x)
fz→y(·) dim(z), 100, 100, 1
µu
t (·), σu

t (·) dim(x), 200, 200,dim(u)
µz
t (·), σz

t (·) dim(x), 200, 200,dim(z)
µzm
t (·), σzm

t (·) dim(m), 200, 200,dim(zm)

Hyperparameters and further settings. In the fully observed setup, the representation space Z is five-dimensional,
with s = (1, 1, 2, 1) to specify the split in the SNet representation space. The dimensionality of U is fixed at 50 throughout
all experiments.

Discrete covariates are treated as Bernoulli or categorical variables turned into one-hot encodings for all models in the
case of categorical covariates. Continuous covariates are treated as normal variables with a homoscedastic noise model,
with a variance parameter per covariate inferred via gradient descent. These are modeled as normal variables with a global
precision parameter inferred via gradient descent.

We perform gradient descent via the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.001 and weight
decay of 0.0001. A random subset of 10% of the training data in each of the replications is used as a validation set for early
stopping. The upper limit for the maximal number of epochs was set to 500, which was never reached.

For baselines that do not model missing values, we impute the empirical mean for missing continuous covariates and the
median for missing binary ones. (Categorical covariates were assumed to always be observed for simplicity.)

C.5 Semisynthetic Experimental Data
Due to the fundamental problem of causality (Pearl, 2009), the true treatment effect is not known for real data as the
counterfactual outcome can never be observed. Any experimental evaluation is therefore constrained to rely on either
completely synthetic or semi-synthetic data sets. In the main paper, we focus on the latter case and rely on real covariates
with simulated treatment outcomes. This allows us to stay realistic with respect to covariate distributions, while still being
able to generate factual and counterfactual outcomes to simulate various treatment effect scenarios.

We rely on two sets of covariates for this task, which we describe below in greater detail. The first is based on covariates
from the popular IHDP benchmark (Hill, 2011). The second is a newly curated real-world data set combining RCT study
data with electronic health records. We describe each of them in turn.

C.5.1 IHDP
Data. The Infant Health and Development Program (IHDP) data set as used by Hill (2011) consists of 25 covariates. 19
of them are binary, five of them continuous and one categorical.5 This observational data set contains 139 treated children
and 608 untreated ones after preprocessing, where Hill (2011) removes all children with nonwhite mothers from the treated
group to create an artificial reduction in overlap between the two groups.

Synthetic outcome creation. As is common, we follow Hill (2011). Given the covariates x, an offset vector w, whose
entries all equal 0.5, and a regression vector β, whose coefficients are randomly sampled from (0, 0.1, 0.2, 0.3, 0.4) with
probabilities (0.6, 0.1, 0.1, 0.1, 0.1), the potential outcomes are generated as

Y (0) ∼ N (exp((x+w)⊤β, 1) and Y (1) ∼ N (x⊤β − ω, 1),

where ω is an offset, chosen so that the true treatment effect on the treated is given as 4. For the different scenarios
described below, x is further modified before creating the synthetic outcomes Y (0) and Y (1). We rely on the precomputed

5The categorical covariate is modelled as continuous in most prior work.
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train/val/test splits provided by Shalit et al. (2017). The number of random data sets used in each experiment is marked in
the respective result tables or figure captions.

We generate c by picking three random covariates from the 19 binary covariates for each seed. Note that given the random-
ness in which covariates are predictive, this does not guarantee that the chosen c provides good guidance to z. Similar to
how the researcher cannot know a priori which covariates are useful.

All vs Subset. The all scenario relies on all 25 covariates x to create the synthetic outcomes. As the β vector is randomly
sampled and can contain zeros, this still leaves us with potentially fewer than 25 predictive covariates.

Compared to this, subset explicitly constraints to fewer than 25 covariates by choosing a random subset of npred covariates
for each seed before following the procedure described above. As before, npred only provides us with an upper bound of
predictive covariates. Throughout our experiments, we use npred = 15.

High vs Low. The high setup refers to using the original x as defined by Hill (2011). We keep the overlap as is, which
has already been perturbed to a certain degree as discussed above.

For low we try to mimic real-world scenarios where the overlap tends to be even lower. To increase the divergence between
the two data sources we modify the control group as follows. We shift the five continuous covariates as

Xc ← Xc + s+ ε, where s ∼ Ber(0.5) · 6− 3, ε ∼ N (0, 9),

for the c-th continuous covariate. That is, s ∈ {−3, 3} with equal probability, and ε adds a large amount of variation to still
keep some overlap. Of the 19 binary covariates, we pick a random subset of five increasing the probability of three of them
to be one by 80% and the probability of the other two to be 0 by 80%.

Missingness. We compare three settings of increasing missing not at random structure. In each of the three settings, the
covariates for each observation are missing based on the following:

• Strong. For discrete covariates: If xi = 1 it has a probability of p = 0.2 of being observed, if x1 = 0 it has a probability
of p = 0.3 of being observed. A continuous covariate with xi > 0 has a probability of p = 0.1 of being observed.

• Medium. For discrete covariates: If xi = 1 it has a probability of p = 0.5 of being observed, if x1 = 0 it has a
probability of p = 0.7 of being observed. A continuous covariate with xi > 0 has a probability of p = 0.6 of being
observed.

• Weak. For discrete covariates: If xi = 1 it has a probability of p = 0.9 of being observed, if x1 = 0 it has a probability
of p = 0.9 of being observed. A continuous covariate with xi > 0 has a probability of p = 0.9 of being observed.

Missing discrete covariates are imputed by the median of the observed data set, missing continuous by zeros.

Survival analysis. Data generation details for the survival analysis experiments are given in Appendix C.8.

C.5.2 Real-world data
Data. This data set consists of two parts. The single-arm trial data is taken from Bakris et al. (2020), a published RCT
study, evaluating the treatment of patients suffering from chronic kidney disease and type 2 diabetes. For our purpose, only
a subset of the treated group of patients is selected for the model to train on (N=833). The control group is constructed
from electronic health records provided by Helsinki University Hospital, whose ethics committee gave ethical approval
and a study permit. A set of 2646 patients was selected who roughly fulfilled the inclusion criteria of the RCT study.
Although both data sets are originally longitudinal, the measurements closest to the index date are collected into a single
set of covariates, leaving proper longitudinal modeling for future work. Note that while the index date is properly defined
in the RCT it remains a noisy choice for the EHR data. For each patient, we pick the time a subset of the original inclusion
criteria is fulfilled. A subset of 100 binary covariates of the most prevalent diagnosis and medical history is selected (from
approximately 4000), as well as 40 continuous covariates (lab measurements age, weight, height, . . . ) giving us a total of
140 covariates. Due to their wide range of potential values, we standardize them by subtracting the median and scaling
them by the interquartile range.6 As the EHR data contains a lot of missing covariates, we impute missing binary covariates
via their median, while missing continuous ones are imputed with zeros (justified due to the prior standardization of the
data). To create synthetic treatment outcomes, we require fully observed covariates, i.e., cannot model the true missingness
pattern inherent in the model. We provide a longer discussion on the differences and similarities in the respective covariate
distributions in Kurki et al. (2024).

6See sklearn.preprocessing.RobustScaler for an implementation.
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Synthetic outcome creation. We generate synthetic outcomes as follows. First, a random subset of 30 covariates is
selected from the original 140 and mapped with a single hidden layer neural network (30,10,dim(z))7 into a five-dimensional
representation space. The outcomes are then given as

Y (0) ∼ N
(
a⊤v, 0.32

)
and Y (1) ∼ N

(
(a+ 0.5)⊤w − ω, 0.32

)
,

where v,w ∼ N (0,1), a the five dimensional representation, and ω such that the ATT is four.

C.6 Alternative Matching Approaches
Matching without replacement. Throughout all of our experiments, we conduct matching with replacement, i.e., we
match control patients to treated patients independently of whether they have been matched before. While this ensures that
every treated patient gets a control that is closest to them, it effectively reduces the number of used patients and might induce
statistical problems due to multiple samples being identical. While this is the most common approach, some alternatives can
be considered. The first one would be to pick patients greedily for a random permutation of the treated patients. While this
is simple, it will depend on the order and thus won’t be optimal. Another approach is to consider the matching as a task that
aims to find the optimal minimal weight solution for a bipartite graph. Considering each group as one set of vertices with
the edges between the groups given by the respective distances, the optimal matching is given by solving a straightforward
linear program.8

It should be noted that these two approaches solve the task of reusing patients, but suffer from the problem that the chosen
subset is now heavily interdependent, i.e., the choice of one patient is no longer independent of the other choices. We
evaluate this latter approach on a subset of methods in Table 4.

Table 4: Alternative matching. We compare matching with replacement (with) to matching without replacement (w/out).
Matching without replacement performs similar, or even improves upon the default matching with replacement approach.

AE of ATT all+high subset+low

Method within sample out-of-sample within sample out-of-sample

with w/out with w/out with w/out with w/out

VAE 0.085±0.004 0.083±0.004 0.266±0.012 0.255±0.011 0.264±0.014 0.282±0.014 0.427±0.022 0.368±0.018

CEVAE 0.052±0.002 0.052±0.002 0.174±0.009 0.173±0.008 0.150±0.009 0.192±0.011 0.259±0.015 0.263±0.014

TEDVAE 0.052±0.003 0.050±0.002 0.179±0.009 0.180±0.009 0.144±0.009 0.198±0.010 0.272±0.016 0.271±0.014

Ours 0.037±0.002 0.037±0.002 0.113±0.007 0.106±0.006 0.114±0.008 0.107±0.008 0.190±0.016 0.180±0.013

+I 0.038±0.002 0.036±0.002 0.122±0.007 0.116±0.007 0.110±0.007 0.108±0.008 0.176±0.014 0.167±0.011

+sep 0.037±0.002 0.035±0.002 0.111±0.007 0.109±0.007 0.144±0.009 0.110±0.008 0.272±0.016 0.174±0.012

mean ± standard error over 300 random replications; the lower of the two means between each variation is underlined

Varying metrics. Within the main paper, we always rely on the Euclidian distance

d(a,b) =

√√√√ d∑
i=1

(ai − bi)2,

for a,b ∈ Rd. However, given that our variational posteriors consist of distributions instead of point estimates, we can also
rely on distributional distance metrics that take posterior variances into account.

The Wasserstein distance between two univariate Normal distributions is analytically tractable and given as

W (N (µ0, σ0),N (µ1, σ1))
2 = (µ0 − µ1)

2 + (σ0 − σ1)
2.

The squared Hellinger distance between two univariate Normal distributions is given as

H(N (µ0, σ0),N (µ1, σ1))
2 = 1−

√
2σ0σ1

σ2
0 + σ2

1

exp

(
− (µ0 − µ1)

2

4(σ2
0 + σ2

1)

)
.

7See Appendix C.4 for details on this notation.
8Our implementation relies on a SciPy (Virtanen et al., 2020) routine.
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Both Wasserstein and Hellinger factorize for mean-field normal distributions which is why we only state their univariate
formulae.

For q(zi) = N (zi, µi, σ
2
i ), and we q(zj) = N (zj |µj , σ

2
j ), we compare the ATT performance for matching in the reduced

setting via (i) the Euclidean distance d(µi, µj), (ii) the Wasserstein distance W (q(zi), q(zj)), (iii) the Hellinger distance
H(q(zi), q(zj)), and (iv) via the Euclidean distance on a propensity estimator π̂, i.e., d(π̂(zi), π̂(zj)).

As in the remainder of the paper, we stick to mean-field normal posteriors. However, the low-dimensional structure of
z allows us to infer more complex posteriors without too many constraints due to computational or memory costs. E.g.,
by switching to a multivariate Normal, for which the two distances remain analytically tractable, while at the same time
allowing for more structured variance estimation. We leave such extensions to future work.

The results are summarized in Appendix D.5.

C.7 Predictive Latent Space Z Regularization
As discussed in our main paper, one crucial assumption for causal inference from observational data is overlap, i.e., that
0 < π(x) < 1, ∀x where π(x) = P(T = 1|X = x) is the propensity score. It is therefore common practice (Shalit et al.,
2017; Johansson et al., 2016; Lu et al., 2020) to further regularize the latent space, in our case Z , on top of the existing
regularization through the loss. In our case it is already implicitly regularized by the KL terms within our ELBO (4), i.e.,
in the identifiable setup KL (q(z) ∥ p(z|c)) and KL (q(z) ∥ p(z)) in the unidentifiable one. To further encourage overlap
through additional regularization we can rely on several approaches. One could rely on distributional approximation meth-
ods, such as the maximum mean discrepancy method (MMD) (Gretton et al., 2012), as was proposed, e.g., by Johansson
et al. (2016); Shalit et al. (2017). MMD aims to minimize the distance between two aggregate variational posteriors

qt(z) ≜
1

Nt

∑
n:tn=t

q(zn|xn), t ∈ {0, 1},

by minimizing MMD2(q0, q1) defined as

MMD2(q0, q1) = Eq0(z)q0(z′) [k(z, z
′)]− 2Eq0(z)q1(z′) [k(z, z

′)] + Eq1(z)q1(z′) [k(z, z
′)] ,

where we use the exponentiated quadratic kernel as k(·, ·) and approximate the expectations via sampling. The loss to be
optimized is then given as

Lelbo + κMMD2(q0, q1),

where κ serves as a balancing factor. Throughout our experiments, we use a fixed κ = 1

Another approach is to use critic-based approaches (e.g., Lu et al., 2020), i.e., learning to fool a critic whose task is to
differentiate between treated and control observations, as is commonly done in generative adversarial networks (GANs)
(Goodfellow et al., 2014). Within this work, we rely primarily on the gradient reversal layer formulation introduced by Ganin
and Lempitsky (2015) for GAN-based regularization. An additional discriminator tries to classify instances zn correctly as
treated/control, i.e., to maximize the log-likelihood log p(tn|zn). The main model tries to maximize its increasing overlap
in the process. These two diverging objectives can be incorporated in our existing objective (4) by relying on a pseudo-
function

Rκ(z) ≜ z with
dRκ

dz
≜ −κ1,

and using f̃(z) ≜ (f ◦Rκ)(z) for the likelihood p(t|z) = Ber(t|σ(f̃(z)), and f a neural network. The inherent objective
of the discriminator f is then to maximize log p(t|z), while the objective of our generative model becomes a modification
of the ELBO, i.e., its objective is to

maximize Lelbo − 2 log p(t|z),

where Lelbo is given by (4). We use κ = 1 in the experiments.

These regularization approaches apply to the case where we want full overlap in the latent space Z . This is the case for
having access to outcome data from both groups, i.e., the single-arm patients as well as the control. For our estimators µt to
be predictive of the counterfactual of the other group, we want the overlap between these groups to be maximal. However,
if we only have access to outcome data y for the control group, we only require the encodings of the treated group to overlap
with the encodings of the control group, but not vice versa. I.e., as long as we can select a suitable subset of control patients,
it is irrelevant how the remainder of the controls are encoded. It is therefore sometimes already sufficient to rely on the
indirect regularization provided by the KL terms and the generative constraints to ensure a sufficient overlap.
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We do this in the one-arm experiments for IHDP. Note, that this is also necessary to fulfill the assumptions of Khemakhem
et al. (2020)’s Theorem 4 (see above).

C.8 Survival
Our survival analysis experiment uses the IHDP covariates as its starting point after transforming them following the sub-
set+low strategy. We only experiment with right-censored observations.

Synthetic outcomes are then generated via the following steps, where we roughly follow Pölsterl (2019); Manduchi et al.
(2022).

1. Sample β as in the default IHDP setting from (0, 0.1, 0.2, 0.3, 0.4) with probabilities (0.6, 0.1, 0.1, 0.1, 0.1)

2. For every patient n compute a risk score assuming they are treated rtn or control rcn as

rcn = clip
(
soft
(
x⊤
n β + ((x− 0.5)⊤β)2

))
rtn = clip

(
soft
(
x⊤
n β + |x⊤β|

))
where soft(x) = log(1 + exp(x)) is the softplus function, and we clip them to be within [0.5, 15].

3. For each rc = (rc1, . . . , r
c
N ) and rt = (rt1, . . . , r

t
N ), we, relying on a generic r for notational simplicity in the following

list, create survival times y and censoring indicators δ as follows

(a) Define mean survival time T0 (= 365 in our experiments) and pcens the probability of being censored (= 0.3 in
our experiments).

(b) Let λn = exp(rn)/T0, for n = 1, . . . , N .

(c) Let un = − log an

λn
, for an ∼ U(0, 1) for n = 1, . . . , N .

(d) Let qcens = q1−pcenss(u), where u = (u1, . . . , uN ) and qα(·) is the α-th quantile.

(e) Sample tcens ∼ U(minn un, qcens).

(f) Let δn =

{
1, if un ≤ tcens

0, else
, for n ∈ {1, . . . , N}.

(g) Let yn =

{
un, if δ = 1

tcens, else
, for n ∈ {1, . . . , N}.

4. Normalize survival times y to the interval [0.001, 1.001].

During inference, each model has access to pre-treatment covariates for the treated group, i.e, x, with post-treatment out-
come data being hidden, and to pre-treatment covariates x, as well as, (censored) survival times y and event indicators δ
for the control group.

We model the likelihood p(y|t, z) for each model as a Weibull distribution,W(λ, k), whose density is given as

f(y;λ, k) =
k

λ

( y
λ

)k−1

exp

(
−
( y
λ

)k)
I(y ≥ 0),

with an indicator function I . For a survival function S(y|t, z) =
∫∞
y

f(τ ;λ, k) dτ , the likelihood is given as

p(y|t, z) = f(y;λ(z), k)δS(y|t, z)1−δ

=

(
k

λt(z)

(
y

λt(z)

)k−1

exp

(
−
(

y

λt(z)

)k
))δ (

exp

(
−
(

y

λt(z)

)k
))1−δ

,

where the shape parameter k is a fixed hyperparameter (k = 1 throughout our experiments), and
λt(z) = log(1 + exp(z⊤βt)). β0 and β1 are optimized via gradient descent together with the remaining parame-
ters.
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C.9 Computation of Performance Metrics
RMSE of CATE. As specified in the main paper, the conditional average treatment effect is defined as

E [Y (1)− Y (0)|X = x] = µ1(x)− µ0(x).

Given outcome information for treated (t = 1) and untreated (t = 0) observations, all our methods and baselines can infer
estimators µ̂0(x) and µ̂1(x) to get CATE estimates at test time. Given that the outcomes are synthetically generated, we
know the true CATE for each observation and can directly compute and report the RMSE.

We report two RMSEs. First the within sample RMSE. During training time, for observation (xn, tn, yn), we only observe
the factual outcome yn = Y (tn). To estimate the CATE at test time, a model needs to correctly predict the unseen counter-
factual Y (1 − tn) as well. The out-of-sample RMSE refers to new covariates xm, i.e., the model has no never seen them,
nor their factual outcome.

AE of ATT. The average treatment effect for the treated is defined as

E [Y (1)− Y (0)|T = 1] = E [Y (1)|T = 1]− E [Y (0)|T = 1] .

In our specific setting, we assume that outcomes y are only observed for the control group, i.e., for t = 0.

Once we are unblinded, we can estimate E [Y (1)|T = 1] by the sample average 1
N1

∑N
n=1:tn=1 yn.

Building an estimator for E [Y (0)|T = 1] requires the selection of a suitable subset of control observations that match
the characteristics of the treated observations. To avoid any statistical bias, we require this matching to be based only
on pre-treatment information, i.e., only on observed covariates for the single-arm trial data. After matching, we estimate
E [Y (0)|T = 1] via the empirical average 1

NJ

∑
j∈J yj , where J are the indices of the matched patients, andNJ the number

of matched samples. After matching the treatment outcome is unblinded and the ATT can be estimated and compared with
the synthetic true ATT.

Squared error for Time-to-event data. For our semi-synthetic survival experiment, the goal is to compare estimated
hazard ratios. The evaluation proceeds in four steps: (i) The true hazard ratio is estimated by fitting a Cox proportional
hazards regression model on the factual and counterfactual survival curves of the single-arm group; (ii) each model is fit
using pre-treatment covariates for both groups and post-treatment survival outcomes for the control group; (iii) a subset
of control patients is selected and a second cox proportional hazards regression model is fit on the survival curve for the
selected subset as well as the, now unblinded, observed factual outcomes of the treated group; (iv) the squared difference
between the two hazard ratio estimates is computed and reported.

Cox models are fitted in R using the survival package by Therneau (2023).

D FURTHER EVALUATION
In this section we provide extended results on the experiments provided in the main paper.

D.1 Runtime
IHDP. Given the small size of the models and the small size of the IHDP data set, models can be trained efficiently and
fast on a modern CPU. Training a deterministic model takes about 30 seconds and about twice as much for a generative
one. Differences between the individual deterministic/generative approaches are too minuscule to be relevant. These num-
bers apply to all three experimental setups, CATE estimation, ATT estimation, and survival analysis. Depending on the
experimental setup we ran 100–300 replications.

Real-world data. Training on the real-world set takes about five minutes for a deterministic model and about twice as
much for a generative one.

D.2 Full Results For Both Arms
We report results for all four settings on the IHDP data set in Table 5.

D.3 Full Results For Single-arms
We report results for all four settings on the IHDP data set in Table 6.

D.4 Missingness
We report results for various degrees of missingness in Table 7.



Haußmann, Le, Halla-aho, Kurki, Leinonen, Koskinen, Kaski, Lähdesmäki

Table 5: Outcome for both groups. Extended results related to Table 1 in the main paper.

RMSE of CATE all+high all+reduced subset+high subset+reduced

Method within sample out-of-sample within sample out-of-sample within sample out-of-sample within sample out-of-sample

CFor 0.556±0.000 0.5967±0.001 4.571±0.043 4.074±0.047 0.508±0.001 0.507±0.001 3.449±0.052 2.597±0.031

PScov – – – – – – – –
PSpca – – – – – – – –
PSlat – – – – – – – –
SingleNet 0.241±0.005 0.328±0.009 0.863±0.013 0.839±0.030 0.250±0.005 0.274±0.006 0.924±0.016 0.878±0.027

TNet 0.175±0.003 0.275±0.008 0.210±0.008 0.346±0.020 0.217±0.004 0.246±0.005 0.278±0.009 0.328±0.017

TARNet 0.177±0.004 0.280±0.008 0.220±0.009 0.343±0.019 0.221±0.004 0.251±0.005 0.272±0.009 0.333±0.019

CFRNet 0.171±0.003 0.279±0.008 0.297±0.009 0.397±0.020 0.179±0.003 0.210±0.005 0.279±0.008 0.338±0.017

SNet 0.168±0.003 0.264±0.008 0.228±0.009 0.299±0.018 0.159±0.003 0.194±0.005 0.211±0.008 0.243±0.016

VAE – – – – – – – –
CEVAE 0.182±0.002 0.287±0.007 0.224±0.008 0.348±0.019 0.223±0.003 0.256±0.004 0.288±0.009 0.350±0.017

TEDVAE 0.176±0.002 0.283±0.007 0.246±0.008 0.344±0.019 0.202±0.002 0.238±0.004 0.293±0.009 0.336±0.018

Ours 0.152±0.002 0.267±0.008 0.174±0.006 0.304±0.019 0.161±0.003 0.202±0.005 0.201±0.007 0.272±0.016

+I 0.141±0.002 0.251±0.008 0.159±0.005 0.293±0.017 0.157±0.003 0.195±0.005 0.194±0.007 0.262±0.016

+sep 0.151±0.002 0.267±0.008 0.184±0.007 0.310±0.019 0.162±0.002 0.204±0.005 0.209±0.007 0.278±0.016

+sep+I 0.143±0.002 0.255±0.007 0.167±0.006 0.294±0.017 0.162±0.003 0.202±0.005 0.197±0.007 0.266±0.017

+snet 0.141±0.002 0.256±0.008 0.183±0.007 0.308±0.018 0.145±0.002 0.184±0.005 0.185±0.007 0.253±0.017

+snet+I 0.130±0.002 0.242±0.008 0.161±0.005 0.288±0.017 0.139±0.002 0.182±0.005 0.181±0.006 0.250±0.017

+snet+sep 0.143±0.002 0.254±0.008 0.168±0.006 0.297±0.018 0.143±0.002 0.186±0.005 0.191±0.007 0.258±0.017

+snet+sep+I 0.131±0.002 0.247±0.008 0.160±0.005 0.290±0.017 0.142±0.002 0.182±0.005 0.180±0.007 0.251±0.017

+tedvae 0.143±0.002 0.257±0.008 0.186±0.007 0.310±0.018 0.146±0.002 0.184±0.005 0.187±0.007 0.258±0.019

+tedvae+I 0.142±0.002 0.255±0.008 0.174±0.007 0.305±0.019 0.142±0.002 0.182±0.005 0.191±0.006 0.253±0.016

+tedvae+sep 0.143±0.002 0.257±0.008 0.192±0.007 0.317±0.019 0.146±0.002 0.188±0.005 0.200±0.007 0.263±0.017

+tedvae+sep+I 0.138±0.002 0.250±0.008 0.181±0.006 0.308±0.018 0.142±0.002 0.185±0.005 0.190±0.007 0.261±0.016

mean ± standard error over 300 random replications; statistically significant best models marked bold; lowest mean underlined

D.5 Matching Metrics
We evaluate two different scenarios on a subset of the methods discussed. ATT estimation in (i) the all+high scenario,
and (ii) in the subset+low scenario. Adding distributional information within the mean-field assumption of q(Z) provides
little benefit and tends to even hurt performance. Matching via a propensity score estimator in the latent space is never
competitive in our setting. The results following the current mean-field assumption are summarized in Table 8.
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Table 6: Outcome only for the control group. Extended results related to Table 1 in the main paper.

AE of ATT all+high all+reduced subset+high subset+reduced

Method within sample out-of-sample within sample out-of-sample within sample out-of-sample within sample out-of-sample

CFor – – – – – – – –
PScov 0.115±0.005 0.336±0.017 0.648±0.082 0.804±0.265 0.111±0.005 0.373±0.019 0.691±0.059 0.702±0.063

PSpca 0.096±0.005 0.300±0.014 0.556±0.056 0.811±0.265 0.115±0.005 0.310±0.014 0.496±0.036 0.613±0.051

PSlat 0.084±0.004 0.187±0.013 0.501±0.039 0.290±0.024 0.096±0.006 0.260±0.016 0.276±0.025 0.272±0.023

SingleNet – – – – – – – –
TNet – – – – – – – –
TARNet 0.043±0.003 0.130±0.008 0.087±0.008 0.108±0.007 0.075±0.004 0.223±0.012 0.140±0.011 0.239±0.016

CFRNet 0.042±0.002 0.131±0.007 0.321±0.015 0.327±0.016 0.080±0.004 0.224±0.012 0.345±0.016 0.370±0.017

SNet 0.043±0.003 0.137±0.007 0.111±0.010 0.178±0.013 0.075±0.004 0.224±0.012 0.221±0.015 0.366±0.026

VAE 0.085±0.004 0.266±0.012 0.280±0.015 0.360±0.028 0.094±0.004 0.271±0.014 0.264±0.014 0.427±0.022

CEVAE 0.052±0.002 0.174±0.009 0.096±0.006 0.178±0.011 0.086±0.004 0.234±0.012 0.150±0.009 0.259±0.015

TEDVAE 0.052±0.003 0.179±0.009 0.108±0.007 0.188±0.012 0.082±0.004 0.233±0.012 0.144±0.009 0.272±0.016

Ours 0.037±0.002 0.113±0.007 0.074±0.006 0.091±0.008 0.074±0.004 0.212±0.011 0.114±0.008 0.190±0.016

+I 0.038±0.002 0.122±0.007 0.055±0.005 0.080±0.006 0.079±0.004 0.229±0.011 0.110±0.007 0.176±0.014

+sep 0.037±0.002 0.111±0.007 0.063±0.005 0.083±0.006 0.074±0.004 0.222±0.012 0.117±0.009 0.193±0.016

+sep+I 0.035±0.002 0.117±0.008 0.055±0.005 0.078±0.006 0.074±0.004 0.226±0.012 0.104±0.007 0.185±0.015

+snet 0.038±0.002 0.117±0.007 0.091±0.008 0.169±0.012 0.076±0.004 0.217±0.013 0.194±0.014 0.322±0.020

+snet+I 0.038±0.002 0.120±0.008 0.094±0.007 0.159±0.012 0.077±0.004 0.212±0.011 0.190±0.012 0.322±0.023

+snet+sep 0.040±0.003 0.109±0.007 0.095±0.007 0.173±0.012 0.071±0.004 0.211±0.011 0.179±0.013 0.316±0.020

+snet+sep+I 0.039±0.003 0.115±0.007 0.085±0.006 0.156±0.011 0.076±0.004 0.211±0.011 0.196±0.015 0.292±0.020

+tedvae 0.039±0.003 0.119±0.007 0.076±0.006 0.094±0.007 0.074±0.004 0.196±0.011 0.103±0.008 0.189±0.015

+tedvae+I 0.036±0.002 0.124±0.007 0.054±0.004 0.085±0.006 0.072±0.004 0.234±0.013 0.102±0.007 0.191±0.017

+tedvae+sep 0.039±0.002 0.125±0.007 0.067±0.005 0.089±0.007 0.075±0.004 0.209±0.011 0.112±0.009 0.197±0.014

+tedvae+sep+I 0.039±0.002 0.124±0.007 0.061±0.004 0.091±0.007 0.074±0.004 0.218±0.012 0.104±0.008 0.173±0.012

mean ± standard error over 300 random replications; statistically significant best models marked bold; lowest mean underlined
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Table 7: Missingness. Increasing the amount of missing covariates decreases performance as expected. Modeling this in
our proposed approach recovers this to a certain degree.

(a) outcome for both groups (all + high)
RMSE of CATE none weak medium strong

Method within sample out-of-sample within sample out-of-sample within sample out-of-sample within sample out-of-sample

TARNet 0.176±0.006 0.263±0.012 0.304±0.006 0.314±0.010 0.462±0.011 0.463±0.019 0.531±0.014 0.607±0.025

CFRNet 0.170±0.005 0.258±0.012 0.302±0.007 0.307±0.011 0.457±0.011 0.452±0.019 0.527±0.014 0.600±0.025

SNet 0.172±0.005 0.254±0.013 0.301±0.007 0.293±0.012 0.465±0.012 0.444±0.018 0.536±0.015 0.644±0.027

CEVAE 0.185±0.005 0.277±0.012 0.295±0.005 0.322±0.010 0.438±0.009 0.482±0.017 0.511±0.012 0.635±0.022

TEDVAE 0.176±0.004 0.270±0.012 0.297±0.005 0.318±0.010 0.448±0.011 0.464±0.018 0.514±0.013 0.629±0.023

Our 0.152±0.004 0.249±0.012 0.297±0.005 0.318±0.010 0.412±0.010 0.464±0.019 0.492±0.013 0.632±0.026

+I 0.144±0.004 0.236±0.013 0.268±0.006 0.301±0.010 0.412±0.011 0.453±0.017 0.489±0.013 0.621±0.026

+sep 0.149±0.004 0.245±0.013 0.267±0.005 0.298±0.011 0.412±0.011 0.459±0.019 0.490±0.013 0.622±0.025

+I+sep 0.144±0.004 0.243±0.013 0.268±0.006 0.300±0.011 0.411±0.011 0.452±0.018 0.488±0.013 0.629±0.026

Our+mask – – 0.224±0.004 0.275±0.012 0.331±0.006 0.348±0.013 0.430±0.010 0.518±0.019

+I – – 0.221±0.004 0.264±0.011 0.327±0.007 0.356±0.014 0.415±0.010 0.506±0.021

+sep – – 0.223±0.005 0.267±0.011 0.329±0.006 0.348±0.014 0.428±0.010 0.495±0.017

+I+sep – – 0.217±0.004 0.257±0.011 0.326±0.007 0.345±0.013 0.426±0.010 0.492±0.018

mean ± standard error over 100 random replications

(b) outcome only for the control group (subset + low)
AE of ATT none weak medium strong

Method within sample out-of-sample within sample out-of-sample within sample out-of-sample within sample out-of-sample

TARNet 0.138±0.016 0.172±0.018 0.216±0.016 0.238±0.024 0.289±0.019 0.196±0.020 0.448±0.030 0.266±0.027

CFRNet 0.415±0.031 0.414±0.036 0.405±0.029 0.428±0.031 0.318±0.023 0.335±0.029 0.413±0.027 0.313±0.030

SNet 0.177±0.020 0.240±0.024 0.248±0.021 0.294±0.027 0.305±0.021 0.291±0.026 0.434±0.026 0.390±0.035

CEVAE 0.241±0.021 0.274±0.024 0.268±0.021 0.353±0.028 0.289±0.021 0.302±0.025 0.397±0.028 0.312±0.033

TEDVAE 0.238±0.020 0.286±0.025 0.267±0.020 0.331±0.027 0.289±0.022 0.274±0.023 0.409±0.027 0.303±0.034

Our 0.106±0.015 0.160±0.018 0.192±0.014 0.215±0.024 0.271±0.021 0.246±0.020 0.442±0.028 0.291±0.027

+I 0.109±0.016 0.185±0.020 0.174±0.013 0.214±0.020 0.280±0.021 0.236±0.021 0.418±0.027 0.365±0.059

+sep 0.104±0.016 0.181±0.019 0.193±0.015 0.229±0.023 0.288±0.021 0.245±0.021 0.445±0.029 0.268±0.026

+I+sep 0.115±0.017 0.162±0.019 0.191±0.015 0.331±0.027 0.260±0.020 0.215±0.021 0.433±0.030 0.332±0.056

Our+mask – – 0.150±0.013 0.200±0.021 0.197±0.014 0.171±0.019 0.378±0.023 0.218±0.022

+I – – 0.137±0.014 0.171±0.020 0.176±0.014 0.178±0.018 0.337±0.023 0.239±0.025

+sep – – 0.143±0.012 0.176±0.019 0.203±0.015 0.165±0.018 0.375±0.024 0.230±0.022

+I+sep – – 0.138±0.013 0.175±0.019 0.179±0.014 0.186±0.019 0.337±0.021 0.228±0.027

mean ± standard error over 100 random replications



Estimating treatment effects from single-arm trials via latent-variable modeling

Table 8: Varying metrics for matching. We compare relying on the Euclidean metric using the posterior mean, to using
distributional metrics or propensity score (PS) matching in the latent space.

(i) ATT estimation for all + high
AE of ATT within sample out-of-sample

Method Euclidian Wasserstein Hellinger PS Euclidian Wasserstein Hellinger PS

VAE 0.085±0.004 0.085±0.004 0.112±0.006 0.116±0.005 0.266±0.012 0.266±0.012 0.388±0.021 0.315±0.015

CEVAE 0.052±0.002 0.052±0.002 0.109±0.006 0.086±0.004 0.174±0.009 0.174±0.009 0.443±0.025 0.255±0.011

TEDVAE 0.052±0.003 0.053±0.003 0.168±0.012 0.087±0.004 0.179±0.009 0.179±0.009 0.495±0.028 0.258±0.015

Ours 0.037±0.002 0.040±0.003 0.037±0.003 0.085±0.004 0.113±0.007 0.112±0.007 0.128±0.008 0.177±0.015

+I 0.038±0.002 0.039±0.002 0.040±0.002 0.079±0.004 0.122±0.007 0.124±0.007 0.119±0.007 0.182±0.013

+sep 0.037±0.002 0.036±0.002 0.039±0.002 0.079±0.004 0.111±0.007 0.115±0.007 0.116±0.007 0.167±0.012

mean ± standard error over 300 random replications; lowest mean underlined

(ii) ATT estimation for subset + low
AE of ATT within sample out-of-sample

Method Euclidian Wasserstein Hellinger PS Euclidian Wasserstein Hellinger PS

VAE 0.264±0.014 0.264±0.014 0.288±0.015 0.579±0.071 0.427±0.022 0.427±0.022 0.534±0.034 0.697±0.055

CEVAE 0.150±0.009 0.150±0.009 0.277±0.020 0.554±0.072 0.259±0.015 0.258±0.015 0.539±0.040 0.582±0.045

TEDVAE 0.144±0.009 0.144±0.009 0.277±0.022 0.548±0.055 0.272±0.016 0.271±0.016 0.574±0.048 0.624±0.052

Ours 0.114±0.008 0.113±0.008 0.120±0.008 0.271±0.023 0.190±0.016 0.200±0.017 0.205±0.016 0.252±0.019

+I 0.110±0.007 0.106±0.007 0.108±0.007 0.260±0.025 0.176±0.014 0.177±0.014 0.179±0.015 0.279±0.029

+sep 0.144±0.009 0.144±0.009 0.277±0.022 0.310±0.039 0.272±0.016 0.271±0.016 0.574±0.048 0.275±0.028

mean ± standard error over 300 random replications; lowest mean underlined


	INTRODUCTION
	RELATED WORK
	BACKGROUND
	OUR MODEL
	EVALUATION
	Full Outcome Observation
	Partial Outcome Observation
	Missingness
	Survival
	Real-World Experimental Data

	CONCLUSION
	FURTHER RELATED WORK
	THEORY
	Identifiability
	Prior Work
	Our setup

	Missingness
	A split U
	Outcome only for the control group

	EXPERIMENTAL DETAILS
	Significance Testing
	Models Under Consideration
	Modern
	Architectures and Hyperparameters
	Semisynthetic Experimental Data
	IHDP
	Real-world data

	Alternative Matching Approaches
	Predictive Latent Space Z Regularization
	Survival
	Computation of Performance Metrics

	FURTHER EVALUATION
	Runtime
	Full Results For Both Arms
	Full Results For Single-arms
	Missingness
	Matching Metrics


