
Quantifying Uncertainty in Natural Language Explanations of

Large Language Models

Sree Harsha Tanneru Chirag Agarwal Himabindu Lakkaraju
Harvard University Harvard University Harvard University

Abstract

Large Language Models (LLMs) are in-
creasingly used as powerful tools for several
high-stakes natural language processing
(NLP) applications. Recent works on
prompting language models claim to elicit
intermediate reasoning steps and key tokens
that serve as proxy explanations for LLM
predictions. However, there is no certainty
whether these explanations are reliable and
reflect the LLM’s behavior. In this work, we
make one of the first attempts at quantifying
the uncertainty in explanations of LLMs.
To this end, we propose two novel metrics
— Verbalized Uncertainty and Probing

Uncertainty — to quantify the uncertainty
of generated explanations. While verbalized
uncertainty involves prompting the LLM to
express its confidence in its explanations,
probing uncertainty leverages perturbations
as means to quantify the uncertainty. Our
empirical analysis of benchmark datasets
reveals that verbalized uncertainty is not a
reliable estimate of explanation confidence.
Further, we show that the probing uncer-
tainty estimates are correlated with the
faithfulness of an explanation, with lower
uncertainty corresponding to explanations
with higher faithfulness. Our study provides
insights into the challenges and opportunities
of quantifying uncertainty in LLM explana-
tions, contributing to the broader discussion
of the trustworthiness of foundation models.
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1 INTRODUCTION

Large Language Models (LLMs), such as GPT4 (Ope-
nAI, 2023), Bard (Manyika, 2023), Llama-2 (Touvron,
2023), and Claude-2 (Anthropic, 2023), have garnered
significant attention and are employed across a wide
range of applications, including chat-bots, compu-
tational biology, creative work, and law (Kaddour
et al., 2023) due to their impressive natural language
understanding and generation capabilities. However,
state-of-the-art LLMs are complex models with
billions of parameters, where their inner working
mechanisms are not fully understood yet, making
them less trustworthy amongst relevant stakeholders.
This lack of transparency causes hindrance to deploy-
ing LLMs in high-stakes decision-making applications,
where the consequences of incorrect decisions are
severe and could result in the generation of harmful
content, misdiagnosis (Zhang et al., 2023), and
hallucinations (Ji et al., 2023; Weidinger et al., 2021).
The lack of user trust demands the development of
robust explanation techniques to gain insights into
how these powerful LLMs work.

Previous works for explaining language models
can be broadly categorized into perturbation-based
methods (Li et al., 2016a,b), gradient-based meth-
ods (Kindermans et al., 2017; Sundararajan et al.,
2017)), attention-based methods (DeRose et al., 2020;
Vig, 2019), example-based methods (Jin et al., 2020;
Treviso et al., 2023; Wang et al., 2022; Wu et al., 2021),
and Natural Language Explanations (NLEs) (Wei
et al., 2023). While most of the above methods require
white-box access to models (e.g., model gradients and
prediction logits), NLEs can be generated by LLMs
in a self-explanatory manner, thereby enabling us to
understand the behavior of these models even when
the models are closed-source. For instance, Chain-
of-Thought (CoT) (Wei et al., 2023) explanations, a
popular class of NLEs generated by LLMs show the
step-by-step reasoning process leading to the outputs
generated by these models. While CoTs and other
natural language explanations generated by LLMs
often seem quite plausible and believable Turpin
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et al. (2023), recent works have demonstrated that
these natural language explanations may not always
faithfully capture the underlying behavior of these
models Turpin et al. (2023). However, there is little
to no work that focuses on deciphering if and to what
extent the generated NLEs are trustworthy. One way
to address this problem is to quantify the uncertainty
in the NLEs generated by LLMs. However, this
critical direction remains unexplored.

Prior works on uncertainty estimation in the context
of LLMs have only focused on providing uncertainty
estimates (i.e., confidence) corresponding to the
responses (answers) generated by LLMs (Xiong et al.,
2023). While uncertainty in LLM predictions has
been studied using external calibrators (Jiang et al.,
2021), model fine-tuning (Lin et al., 2022), and
non-logit-based approaches (Xiong et al., 2023), there
is little to no work on estimating the uncertainty of
LLM explanations. Understanding the uncertainty in
natural language explanations generated by LLMs is
paramount to ensuring that these explanations are
trustworthy and are not just plausible hallucinations.

Present work. In this work, we make an attempt at
quantifying the uncertainty in natural language expla-
nations generated by LLMs. In particular, we pro-
pose two novel approaches – Verbalized uncertainty

and Probing uncertainty metrics – to quantify the con-
fidence of NLEs generated by large language models
and compare their reliability. While verbalized uncer-
tainty metrics focus on prompting a language model to
express its uncertainty in the generated explanations,
probing uncertainty metrics leverage di↵erent kinds of
input perturbations (e.g., replacing words with syn-
onyms, paraphrasing inputs) and measure the consis-
tency of the resulting explanations. Using our pro-
posed metrics, we provide the first definition of un-
certainty estimation of language model explanations.
In addition, our work also demonstrates key connec-
tions between uncertainty and faithfulness of natural
language explanations generated by LLMs.

We evaluate the e↵ectiveness of our proposed metrics
on three math word problems and two commonsense
reasoning benchmark datasets and conduct experi-
ments using di↵erent Gpt variants. Our empirical
results across these datasets and LLMs reveal the
following key findings. 1) Verbalized uncertainty is
not a reliable estimate of explanation confidence and
LLMs often exhibit very high verbalized confidence
in the explanations they generate. 2) Probing uncer-
tainty is correlated with the predictive performance
of the LLM, where correct answers from a model
tend to generate more confident/less uncertain ex-
planations. 3) A clear connection exists between
the uncertainty and faithfulness of an explanation,

where less uncertain explanations tend to be more
faithful to the model predictions. While our study
primarily focuses on self-explanations generated by
LLMs, the approaches and metrics outlined can be
easily extended to Natural Language Explanations
(NLEs) generated by surrogate models too.

2 RELATED WORKS

Our work lies at the intersection of large language
models, explainability, and uncertainty estimation,
which we discuss below.

Large Language Models. In the field of natural
language processing (NLP), Large Language Models
(LLMs) have proven their e�cacy in various tasks,
including sentiment analysis, text summarization, and
machine translation. Moreover, they have become
the backbone of modern conversational agents and
virtual assistants, powering chatbots like GPT-3
Brown et al. (2020), GPT-4 Bubeck et al. (2023),
Llama-2 Touvron et al. (2023), and Claude Anthropic
(2023) that o↵er human-like interactions. Kaddour
et al. (2023) provide a survey of the applications of
LLMs in Chatbots, Computational Biology, Creative
Work, Knowledge Work, Law, Medicine, Reasoning,
Robotics, Social Sciences, and Synthetic Data Gen-
eration. While the adaptability of LLMs to a wide
array of applications underscores their potential to
reshape industries through enhanced natural language
understanding, there exists a gap in trusting these
models and deploying them to real-world users.

Explainability. Explainability in machine learning
has gained significant attention as the deployment
of complex models has become more pervasive in
critical applications. The need for understanding
model decisions and gaining insights into their inner
workings has led to the development of various
explainability techniques. While there have been
a plethora of perturbation-based, gradient-based,
example-based, and surrogate-based methods, none
of these explanation methods are feasible for LLMs
as they require some level of model access, e.g.,

gradients or logits. Chain-of-Thought (CoT) expla-
nations (Wei et al., 2023), a form of natural language
explanation generated by prompting LLMs, are
the state-of-the-art alternative for models without
open-source access and has shown to provide plausible
and human-interpretable reasoning behind LLM
predictions. However, several questions have been
raised about the reliability of these explanations.

Uncertainty Estimation. Traditional ways to mea-
sure the confidence of predictions primarily rely on
model logits, have become less suitable for LLMs and
even infeasible with the development of closed-source
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LLMs. While Xiong et al. (2023) proposes approaches
for confidence elicitation of black-box LLMs, to the
best of our knowledge, our work is the first to tackle
the problem of estimating the uncertainty in NLEs.

3 PRELIMINARIES

Notations. Large language models typically have a
single vocabulary V that represents a set of unique
“tokens” (words or sub-words). Let M : & ! � de-
note a language model mapping a sequence of = ques-
tion tokens & = (@1, @2, . . . , @=) to sequence of < an-
swer tokens � = (01, 02, . . . , 0<), where @8 and 08 are
text tokens in V. In addition to the original question
&, we design specific prompts &4 to generate natu-
ral language explanation (NLE) �4 from the language
model M.

Uncertainty. Black-box LLMs do not provide access
to parameter gradients or model logits, rendering tra-
ditional explainability techniques ine↵ective. To this
end, most language models leverage NLEs, which are
explanations generated from the language model to
serve as proxy explanations and are a viable alterna-
tive. While NLEs are essentially a sequence of tokens
sampled from the model that serve as explanations,
there is an associated uncertainty for the generated
explanations. Quantifying the uncertainty of these ex-
planations is essential to estimate the reliability of gen-
erated NLEs. For the rest of the paper, we will use the
term “confidence score” to refer to the uncertainty of
an explanation, as determined by the language model.

Explanation Methods. We confine our study to
two explanation methods — Token Importance and
Chain of Thought (CoT) explanations. While token
importance explanations Li et al. (2016a); Wu et al.
(2020) aims to identify input tokens (refer to tokens C
in an input text ) for LLMs) that most contribute to
a model’s predictions, CoT explanations (Wei et al.,
2023) focus on revealing the sequence of operations or
reasoning steps (8 2 ( the language model M takes
when processing the question & and arriving at its
predictions, where =B = |( | denotes the total number
of steps in a CoT explanation. For token importance
explanation, we concatenate a prompt &4 to the given
question & using the template: “Read the question and

output the words important for your final answer. . . ”.
Whereas, the prompt &4 to generate CoT explanations
uses the following template: “Read the question, give

your answer by analyzing step by step, . . . ”. Please
refer to Figs. 15-16 in appendix for more details.

We generate an answer from the LLM M as follows:
M(&) = �. We also generate an explanation �4 along
with answer � using the aforementioned template
question &4 as: M(&4 +&) = � + �4.

4 QUANTIFYING UNCERTAINTY

IN EXPLANATIONS

Next, we describe our metrics which aim to esti-
mate the uncertainty in token importance and CoT
explanations generated by LLMs.

Problem formulation (Uncertainty in Expla-
nations). Given a question-answer pair (&, �) and

prompt &4 to generate natural language explanation

�4 from the model M : (&,&4) ! (�, �4), we aim to

develop an uncertainty function Unc : �4 ! [0, 1],
which maps a generated explanation �4 to a scalar

score that determines the uncertainty in the generated

explanation, i.e.,

Uncertainty = Unc(�4),

where M(&4 +&) = � + �4.

As mentioned before, we confine our study to two natu-
ral language explanation methods – Token Importance
and CoT. We use TI@ : {F | F 2 &} to denote a to-
ken importance explanation which is a subset of words
in the question & that are important for predicting
the answer � and CoT@ : {((1, 21) ! ((2, 22) · · · !
((=B , 2=B )} to denote a CoT explanation for a predic-
tion � from question &. Here (8 = (B1, B2, . . . B=B ) is a
text sequence denoting the natural language reasoning
and 28 2 [0, 1] is the verbalized confidence of CoT step
(8 from the model M.

4.1 Verbalized Uncertainty

A straightforward approach to elicit uncertainty of an
NLE is to directly request the LLM M to output
a confidence score for the explanation ranging from
0% to 100%. By directly soliciting the model’s self-
assessment of uncertainty, this approach seeks to ex-
tract explicit uncertainty information inherent in the
model. We provide the template of the prompts for
confidence elicitation for token importance and CoT
explanations in Figs. 1-2. For token importance, we
ask the underlying LLM to verbally assign an impor-
tance score to each word in the question & and then
provide the final answer of the question with an overall
confidence in importance scores (see Fig. 1). In con-
trast, for CoT explanations (see Fig. 2), we ask the
LLM M to assign verbalized confidence to each step
in the CoT reasoning and the final answer.

4.2 Probing Uncertainty

Verbalized uncertainty elicits confidence in an explana-
tion by directly requesting the underlying LLM to out-
put a confidence score in a given range. In contrast, for
estimating uncertainty using probing, we leverage the
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Read the question, and assign each word an importance score between 0 and 100 of how important it is for
your answer. The output format is as follows:

Word: [Word 1 here], Importance: [Your importance score here]
. . .
Word: [Word N here], Importance: [Your importance score here]

Final answer and overall confidence (0-100): [Your answer as a number here], [Your confidence here]

Note: The importance scores of all words should add up to 100. The overall confidence score indicates the
degree of certainty you have about your importance scores. For instance, if your confidence level is 80%, it
means you are 80% certain that importance scores assigned are correct. Provide the answer in aforementioned
format, and nothing else.

Q: Jake has 11 fewer peaches than Steven. If Jake has 17 peaches. How many peaches does Steven have?

Answer:
Word: Jake, Importance: 20%
Word: Steven, Importance: 20%
Word: peaches, Importance: 60%
Final answer and overall confidence (0-100): 28, 100%

Figure 1: Template for generating token importance and its confidence. The prompt &4 appended to the
original question & to elicit a token importance explanation ) �. We ask the underlying LLM to verbally assign an
importance score to each word in the question & and then provide the final answer � with overall confidence.

consistency of explanations as a measure to estimate
the uncertainty in explanations generated by a lan-
guage model M. More specifically, let �4 denote the
natural language explanation generated by the model
M for a given question & and [�41 , �42 , . . . , �4# ] be
# explanations generated for # perturbation of the
same question using its local neighborhood. Next, we
describe two di↵erent perturbation strategies to gen-
erate # explanations for a given question and answer.

Sample Probing. Motivated by the local neigh-
borhood approximation works in XAI (Ribeiro et al.,
2016; Smilkov et al., 2017), we propose uncertainty
metrics that leverage the consistency of a model in
generating the explanation in a local neighborhood.
Here, we presume that the local behavior of the un-
derlying LLM is consistent for perturbed samples of
the original question and gradually introduce pertur-
bations in the questions by paraphrasing the origi-
nal question &. Given a question &, we paraphrase
the question into # di↵erent forms {&1,&2, . . . ,&# },
such that each paraphrased question &8 is semanti-
cally equivalent to Q, and the true reasoning process
remains the same, i.e., given a question: “Jake has

11 fewer peaches than Steven. If Jake has 17 peaches.

How many peaches does Steven have?”, some of its lo-
cal paraphrased counterparts used to calculate uncer-
tainty in explanations are i)...What is the number of

peaches Steven has? ii)...How many peaches is Steven

in possession of? iii)...How many peaches does Steven

possess? Next, we generate the explanations using

the LLM by probing the model using the paraphrased
questions &8. Mathematically,

M(&4 +&8) = �8 + �48 ; 8 = 1, 2, . . . , # (1)

where &8 is a paraphrased form of question &, &4 is
the prompt to generate explanations, and �48 is the
corresponding generated explanation.

Model Probing. In contrast to sample uncertainty,
where we quantify the uncertainty in explanations us-
ing the variance in the input questions, model uncer-
tainty addresses the uncertainty of LLM explanations
due to the inherent stochasticity of the underlying lan-
guage model M.

More specifically, we use the “temperature” parame-
ter g present in most LLMs that control the random-
ness in the generated answers by using the probability
distribution of each generated token. A high value
of temperature indicates an even distribution among
all tokens, and a lower value of temperature indicates
a sharper distribution (see Fig. 3). As the tempera-
ture parameter increases, the language model becomes
more creative and stochastic in the generated expla-
nations. Note that close-sourced models like OpenAI
(2023) and Anthropic (2023) expose temperature scal-
ing as an input parameter and recommend a default
value of g=1. Intuitively, the temperature parameter
a↵ects the sampling process when generating answers
from the model. For a given question & (say “my fa-

vorite food is . . . ”), we sample # answers and their
corresponding explanations, {�8 , �48 }88 2 1, 2, . . . , #
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Read the question, give your answer by analyzing step by step, and assign a confidence level to each step and
the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2: [Your reasoning here], Confidence: [Your confidence here]%
...
Step N: [Your reasoning here], Confidence: [Your confidence here]%

Final answer and overall confidence (0-100): [Your answer as a number here], [Your confidence here]%

Note: The confidence indicates the degree of certainty you have about your reasoning. For instance, if your
confidence level is 80%, it means you are 80% certain that your reasoning is correct. Provide the answer in
aforementioned format, and nothing else.

Q: Jake has 11 fewer peaches than Steven. If Jake has 17 peaches. How many peaches does Steven have?

Answer:
Step 1: Jake has 11 fewer peaches than Steven. Confidence: 100%
Step 2: Jake has 17 peaches. Confidence: 100%
Step 3: If Jake has 17 peaches, then Steven has 17 + 11 = 28 peaches. Confidence: 100%
Final answer and overall confidence (0-100): 28, 100%

Figure 2: Template for generating CoT explanation and its step-wise confidence. The prompt &4 appended to
the original question & to elicit a CoT explanation. We ask the underlying LLM to verbally assign an importance score
to each step of the CoT explanation and then provide the final answer � with overall confidence.

from the language model M. Mathematically, we can
denote this using:

M(&4 +&) = �8 + �48 ; 8 2 {1, 2, . . . , #} (2)

where �8 is the 8th answer generated by the LLM for
a given temperature g and �48 is its respective expla-
nation.

Temperature (!)
Question: my favorite food is ….

important words are pizza
important words are pizza
important words are pizza
…
important words are pizza

important words are pizza
important words are noodles
important words are pizza
…
important words are pizza

important words are pasta
important words are noodles
important words are dumpling
…
important words are pizza

# = 0 # = 1
Probabilities Probabilities Probabilities

Explanations:

Figure 3: The impact of the temperature g on model
stochasticity. We find that as g increases, the stochasticity
in model responses increases. g=0 gives near-deterministic
answers to a question, whereas g=1 gives a distribution of
answers.

4.2.1 Token Importance Uncertainty

Using the above sample and model perturbation
strategies, # perturbed natural language explanations
�48 are generated for a given question &, answer �,

original explanation �4. Next, we describe the met-
rics for estimating explanation confidence from these
perturbed explanations.

We define the uncertainty in token importance ex-
planations as the mean agreement between perturbed
explanations and the original explanation. Two token
importance explanations are said to agree with each
other if they employ the same set of important words
to arrive at a prediction. To quantify this agreement,
we use token rank agreement (TR) as defined in Agar-
wal et al. (2023). Token rank agreement measures
the fraction of important tokens that have the same
position in their respective rank orders. The token
rank agreement (TR) metric is defined below:

TR(TI8 ,TI 9 , :)=
1

:

⇣ÿ
B2(

{B |B 2 Tokens(TI8 , :) ^ B 2

Tokens(TI 9 , :) ^ R(TI8 , B)=R(TI 9 , B)}
⌘
,

(3)
where TI8 and TI 9 are any two given token importance
explanations, Tokens(TI8 , :) is the first : tokens in
explanation TI8, : denotes the top-K tokens a user
wants as explanations, and R(·) function gives the
rank of the word B in a token importance explanation
TI. The uncertainty in token importance explanation
is defined as the mean token rank agreement between
the perturbed explanations TI48 and the original
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explanation TIoriginal.

UncTI =
1

#

#’
8=1

TR(TI48 ,TIoriginal, :), (4)

4.2.2 Chain of Thought Uncertainty

While the agreement between token importance expla-
nations is intuitive, the agreement between the chain
of thought explanations is non-trivial as each CoT ex-
planation has a sequence of steps (8 in natural lan-
guage. To check if the two steps in CoT explanations
are equivalent, we propose using pre-trained sentence
encoder models (Reimers and Gurevych, 2019). Let us
consider two CoT explanations that generate #0 and
#1 steps in their respective explanations, i.e., (CoT0 =
(B01 , B02 , . . . , B0#0

) and CoT1 = (B11 , B12 , . . . , B1#1
).

We define CoT agreement metric (CoTA) that mea-
sures the agreement between any two given CoT ex-
planations as:

CoTA(CoT0,CoT1) =
1

#0 + #1

⇣ #0’
8=1

max
921,...,#1

E(B08 , B1 9 )

+
#1’
9=1

max
821,...,#0

E(B08 , B1 9 )
⌘
,

(5)

The intuition behind the above metric is that for every
step in the first CoT explanation, we check if there
exists a step in second CoT explanation which agrees
with it. E(·, ·) denotes the entailment function which
measures the agreement between two steps. Formally,
the entailment score between two explanation steps is
defined as:

E(B8 , B 9 ) =
(
1 if statements entail each other

0 if statements do not entail each other

Whether two statements entail each other or not is
measured using pre-trained models on the Natural
Language Inference (NLI) task. In NLI, given a
premise (P) and a hypothesis (H), the goal is to clas-
sify a given text pair into one of the three categories:
“entailment”, “contradiction”, or “neutral”. We use
a pre-trained DeBERTa He et al. (2021) model fine-
tuned for the NLI task to calculate the entailment
score in our experiments. We chose a binary entail-
ment score to avoid dependence on the entailment
model’s confidence calibration, ensuring a consistent
estimate of explanation confidence across di↵erent en-
tailment models.

Finally, the uncertainty in the CoT explanation is cal-
culated as the mean agreement of the perturbed chain

of thought explanations with the original explanation.

UncCoT =
1

#

#’
8=1

CoTA(CoT8 ,CoToriginal) (6)

To summarize, we introduce a metric for calculating
the agreement between two CoT explanations (Eq. 5).
In addition, we generate # perturbed explanations for
a question, and calculate the mean agreement of per-
turbed explanations with the original explanation to
estimate explanation uncertainty (Eq. 6).

5 EXPERIMENTS

Next, we validate the e↵ectiveness of our proposed un-
certainty metric which amounts to asking: What is the

uncertainty in explanations generated by state-of-the-

art LLMs with respect to di↵erent explanation meth-

ods? More specifically, we focus on the following re-
search questions: RQ1) Does verbalized uncertainty
estimation depict overconfidence in LLMs? RQ2) Is
there a relation between uncertainty and faithfulness
of an explanation? RQ3) How does explanation con-
fidence vary for correct and incorrect answers? RQ4)
How do changes in the metric parameters influence ex-
planation uncertainty?

5.1 Datasets and Experimental Setup

We first describe the datasets and large language mod-
els used to study the uncertainty in explanations and
then outline the experimental setup.

Datasets. We conduct experiments using three math
word problem and two commonsense reasoning bench-
mark datasets. i) the GSM8K dataset that comprises
several math word problems (Cobbe et al., 2021), ii)
the SVAMP dataset contains math word problems
with varying structures (Patel et al., 2021), iii) the
ASDiv dataset consisting of diverse math word prob-
lems (Miao et al., 2021), iv) the StrategyQA (Geva
et al., 2021) requires a language model to deduce a
multi-step reasoning strategy to answer questions and
v) the Sports Understanding dataset, which is a
specialized evaluation set from the BIG-bench (Srivas-
tava et al., 2022) that involves determining whether a
sentence relating to sports is plausible or implausible.

Large language models. We generate and evalu-
ate the uncertainty in explanations by generating ex-
planations using three large language models — In-
structGpt, Gpt-3.5, and Gpt-4.

Performance metrics.

While accuracy serves as a primary performance met-
ric for evaluating a model’s predictions, the evaluation
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of explanations involves metrics like faithfulness, sim-
plicity and human comprehension. In this work, we
look at the correlation between uncertainty and faith-
fulness of explanations. An explanation is considered
faithful if it accurately represents the reasoning of the
underlying model Jacovi and Goldberg (2020). Some
recent works (Atanasova et al., 2023; Lanham et al.,
2023; Lyu et al., 2023) have explored defining faithful-
ness for natural language explanations.

(i) Faithfulness of token importance explanations: We
use the counterfactual test (Atanasova et al., 2023)
for NLEs by intervening on input tokens and checking
whether the explanation reflects these tokens. Specif-
ically, we replace identified importance tokens in the
explanation with synonyms and check whether the new
explanation reflects these changes. Faithfulness is then
quantified by the rank agreement (Eq. 3) between the
new explanations and the expected explanation with
intervened tokens.

(ii) Faithfulness of chain of thought explanations: Re-
cent works that explored the topic of faithfulness in
CoT explanations don’t explicitly quantify the faith-
fulness of an individual explanation. Hence, we fol-
low suit and follow Lanham et al. (2023) to measure
faithfulness at a dataset level. In our experiments,
we use a strategy called “Early Answering” proposed
by Lanham et al. (2023) to measure the faithfulness
of CoT explanations. “Early Answering” strategy in-
volves truncating the previously collected reasoning
samples and prompting the model to answer the ques-
tion with the partial CoT rather than the complete
one, i.e., for a question & and CoT [B1, B2, . . . B=], the
model is prompted to answer with & + B1, & + B1 + B2,
until, & + B1 + B2 · · · + B=. After collecting answers with
each truncation of the CoT, we measure how often the
model comes to the same conclusion as it did with
the complete CoT. If the amount of matching over-
all is low, this indicates that less of the reasoning is
post-hoc and subsequently more faithful. The intu-
ition behind being that if the reasoning is not post-
hoc, there are fewer ways for an explanation to be
unfaithful than there are for reasoning which is post-
hoc (Lanham et al., 2023).

Implementation details. To run the paraphrase
probing uncertainty, we formulate 10 semantically
equivalent paraphrases of every question to measure
uncertainty using sample probing. In the model prob-
ing uncertainty experiment, we sample five natural
language explanations at a temperature of 1.0. To
compute the rank agreement of token importance ex-
planations, we use the top-3 words i.e., : = 3. We run
on a randomly sampled subset of 100 samples for each
dataset. See the Appendix A.5 for more implementa-
tion details.

Figure 4: Verbalized explanation confidence of Token Im-
portance and CoT explanations on three math word prob-
lems and two commonsense reasoning datasets. We observe
that the verbalized explanation confidence is mostly high
for explanations across all five datasets.

5.2 Results

Next, we discuss experimental results to answer ques-
tions (RQ1-RQ4) about uncertainty in explanations.

RQ1) Analyzing verbalized uncertainty. Verbal-
ized confidence scores of both natural language expla-
nation methods are almost always 100%. It raises
questions about whether these uncertainty estimates
are reliable. If the confidence in every explanation is
the same, it is impossible to know when to trust the
generated explanation and when not to. Our results in
Fig. 4 show that, on average, across both explanation
methods and five datasets, the verbalized confidence is
94.46%. Our analysis of these methods uncovers that
LLMs often exhibit a high degree of overconfidence
when verbalizing their uncertainty in explanations.
The verbalized uncertainty for commonsense reasoning
datasets is lower than math word problem datasets but
still very close to 100% with little standard deviation.

RQ2) Less uncertain explanations are more
faithful. A model’s explanation is said to be faithful
if it reflects the true reasoning behind the prediction.
For token importance explanations, we swap impor-
tant words in explanations with synonyms and check
if the corresponding replacements are reflected in
the new explanation. In Fig. 7, we demonstrate that
explanation confidence is correlated with faithfulness,
and highly confident (certain) explanations are more
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Misclassified samples Correctly classified samples gpt-3.5-turbo text-davinci-003Misclassified samples Correctly classified samples gpt-3.5-turbo text-davinci-003wrong answers correct answers

Figure 5: Chain of thought explanation confidence distributions on three math word problems and two commonsense
reasoning datasets using Gpt-3.5. On average, across two probing strategies and five datasets, correct answers (in green)
obtain higher explanation confidence than wrong answers (in red). See Table 1 in appendix for t-test statistics comparing
explanation confidence scores of correct and incorrect answers to di↵erent datasets.

faithful. In addition, we find a similar trend between
the CoT explanation confidence and its faithfulness
(see Fig. 6) and find that increased mean explanation
confidence lead to an increase in the faithfulness of an
explanation for most datasets. Our observations sug-
gest that uncertainty estimation can be used as a test
for the faithfulness of NLE, i.e., whether the explana-
tion reflects the true reasoning process of the model.

Figure 6: Mean explanation confidence for CoT expla-
nations generated using InstructGpt for five datasets. We
find that the explanation confidence is positively correlated
with faithfulness for four datasets, i.e., highly confident ex-
planations tend to be more faithful. The circle size denotes
the deviation in confidence.

RQ3) Correct answers have more certain
explanations. Across five datasets and two probing
uncertainty metrics, Fig. 5 shows that explanations
of correct answers have higher explanation confidence
compared to explanations of wrong answers. Our
observation aligns with the general expectation that
models tend to provide more reliable and confident
explanations when they make correct predictions as

Figure 7: Mean explanation confidence for token impor-
tance explanations generated using InstructGpt for five
datasets. We find that the explanation confidence is pos-
itively correlated with faithfulness, i.e., highly confident
explanations tend to be more faithful.

opposed to incorrect ones.

RQ4) Ablation study. We conduct ablation on five
key components of our proposed probing metrics i) the
number of paraphrases we generate in sample probing,
ii) the number of responses we generate at temperature
g = 1 in model probing, and iii) di↵erent LLMs (iv)
the temperature scaling parameter g, inherent in most
LLM APIs, (v) di↵erent entailment models for mea-
suring CoT explanation agreement as defined in Eq. 5.
Results in Fig. 8 show that the explanation confidence
saturates as we increase the number of paraphrases of
the original question & and our chosen value of 10 is
well justified. In addition, we observe that the expla-
nation confidence using our proposed model probing
technique shows similar behavior irrespective of the
number of responses we generate using the LLM at
g = 1 (Fig. 9). From Figs. 10-11 and Fig. 12, we also
observe that the trend of correct answers having less
uncertain explanations holds true across di↵erent mod-
els and temperature scaling values. Moreover, from
Fig. 14 and Fig. 13, we also observe that uncertainty
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metric for CoT explanations is near-agnostic of the en-
tailment model used. These findings justify our choices
of hyperparameters in quantifying the uncertainty in
di↵erent types of NLEs.

6 CONCLUSION

While improving the explainability of LLMs is crucial
to establish user trust, and better understand the
limitations and unintended biases present in LLMs,
it is also crucial to quantify the reliability of the
generated explanations using uncertainty estimates.
In this work, we present a novel way to estimate the
uncertainty of natural language explanations (NLEs)
using verbalized and probing techniques. Specifi-
cally, we propose uncertainty metrics to quantify
the confidence of generated NLEs from LLMs and
compare their reliability. We test the e↵ectiveness of
our metrics on math word problem and commonsense
reasoning datasets and find that i) LLMs exhibit a
high degree of overconfidence when verbalizing their
uncertainty in explanations, ii) explanation confidence
is positively correlated with explanation faithfulness,
and iii) correct predictions tend to have more certain
CoT explanations compared to incorrect predictions.
Our work paves the way for several exciting future
works in understanding the uncertainty of the natural
language explanations generated by LLMs.
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A APPENDIX

A.1 Ablation Studies

A.1.1 Number of Paraphrases in Sample
Probing Uncertainty

Figure 8: The e↵ect of the number of paraphrased
samples of the original & on the mean explanation con-
fidence of CoT and TI explanations generated from
InstructGpt for Sports Understanding and ASDiv
datasets. We observe that the confidence saturates as
we increase the number of paraphrased samples.

A.1.2 Number of Responses in Model
Probing Uncertainty

Figure 9: The e↵ect of the number of responses drawn at
g = 1 on the mean explanation confidence of CoT and TI
explanations generated from InstructGpt for Sports Under-
standing and ASDiv datasets. We observe that the confi-
dence remains consistent irrespective of the number of re-
sponses generated using InstructGpt.

A.1.3 LLMs

Figure 10: Comparison of chain of thought explanation
uncertainty using sample probing across InstructGpt,
Gpt-3.5, and Gpt-4 models on GSM8K dataset. We
observe that the trend of correct answers having less
uncertain explanations holds true across models.

Figure 11: Comparison of chain of thought explanation
uncertainty using model probing across InstructGpt,
Gpt-3.5, and Gpt-4 models on GSM8K dataset. We
observe that the trend of correct answers having less
uncertain explanations holds true across models.

A.2 Temperature Scaling

The temperature scaling parameter, inherent in the
APIs of most closed source LLMs, typically defaults
to a value of 1. A low value of temperature gives near
deterministic responses lacking a discernible signal to
measure uncertainty. Temperature value ranges from
0 to 2, and hence we chose 1 (also the default value)
as a middle ground. We experimented with 3 di↵er-
ent temperature values 0.5, 1.0, 1.5 on ASDiv dataset,
and see that the claim of correct answers having less
uncertain explanations still holds true.
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Figure 12: The e↵ect of temperature scaling of the LLM
on the mean explanation confidence of CoT explanations
generated from InstructGpt on ASDiv datasets. We ob-
serve that the trend of correct answers having more certain
explanations holds true across temperature values.

A.3 Entailment Models

Figure 13: This histogram of entailment model scores on
3 math word problem datasets with 2 entailment models -
DeBERTa Base He et al. (2021) and RoBERTa Liu et al.
(2019). We can see that the distributions are concentrated
at 0 and 1, which implies that these entailment models are
confident.

Figure 14: The box plot of explanation confidence scores
on 3 math word problem datasets with 5 entailment mod-
els - RoBERTa Liu et al. (2019), BART large Lewis et al.
(2019), and DeBERTa small, base and large He et al. (2021)
As we can see the distributions are near identical for all
entailment models indicating that CoT explanation uncer-
tainty metric is near agnostic of the entailment model used.

A.4 Prompts

The questions used to generate token importance
and chain of thought explanations are described in
Fig. 15 and Fig. 16 respectively. For sample prob-
ing and model probing uncertainty, we further tailor
the prompt according to the dataset. Tailoring the
question prompt helps in parsing answers and expla-
nations from generated responses. The prompts used
for each dataset are as follows GSM8K Figs. 17 18 ,
ASDiv Figs. 19 20 , SVAMP Figs. 21 22, StrategyQA
Figs. 23 24, and Sports Understanding Figs. 25 26.

A.5 Paraphrased Questions in Sample
Probing

To quantify uncertainty using sample probing, seman-
tically equivalent paraphrased questions are generated
for a question using InstructGpt using the follow-
ing prompt - ”Paraphrase the question into 10 di↵er-

ent forms with the same meaning, and share them as

a Python list of double quotes enclosed strings”. An
example is shown in Fig. 2.
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Read the question, and output the words important for your final answer, sorted in descending order of
importance. The output format is as follows:

1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence here]%.
Provide the answer in aforementioned format, and nothing else.

Figure 15: The prompt &4 prepended to the question & to elicit a token importance explanation ) � along with
an answer �.

Read the question, give your answer by analyzing step by step, and assign a confidence level to each step and
the final answer. The output format is as follows:
Step 1: [Your reasoning here]
Step 2: [Your reasoning here]
Step 3:
...
...
Step N: [Your reasoning here]
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence here]%
Note: The confidence indicates the degree of certainty you have about your reasoning. For instance, if your
confidence level is 80%, it means you are 80% certain that your reasoning is correct. Provide the answer in
aforementioned format, and nothing else.

Figure 16: The prompt &4 prepended to the question & to elicit a chain of thought explanation ⇠>) along with
an answer �.

Read the question, and output the words important for your final answer, sorted in descending order of
importance. The output format is as follows:

1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence here]%.
Provide the answer in aforementioned format, and nothing else.

Figure 17: GSM8K dataset. The prompt &4 prepended to the paraphrased question & to generate a token
importance explanation ) � along with an answer � in sample probing and model probing uncertainty experiments.
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Table 1: T-Test Result Comparing Explanation Confidence Scores of Correct and Incorrect Answers using Gpt-
3.5 and InstructGpt models for Chain of Thought Explanations of GSM8K dataset.

Dataset Uncertainty Metric T-Statistic P-Value

GSM8K
Sample Probing -0.0977 0.9224
Model Probing 0.7400 0.4611

SVAMP
Sample Probing 1.7913 0.0763
Model Probing 1.2307 0.2214

ASDiv
Sample Probing 1.3031 0.1959
Model Probing 1.7922 0.0765

StrategyQA
Sample Probing -0.2752 0.7838
Model Probing -0.9779 0.3305

Sports Understanding
Sample Probing 1.3941 0.1665
Model Probing 1.0851 0.2806

(i) Gpt-3.5

Dataset Uncertainty Metric T-Statistic P-Value

GSM8K
Sample Probing 1.5694 0.1198
Model Probing 3.2404 0.0016

SVAMP
Sample Probing 2.6388 0.0097
Model Probing 0.7660 0.4455

ASDiv
Sample Probing 3.7558 0.0003
Model Probing 5.1783 0.0000

StrategyQA
Sample Probing -0.1642 0.8699
Model Probing -0.1015 0.9194

Sports Understanding
Sample Probing -0.8499 0.3975
Model Probing 0.6971 0.4874

(ii) InstructGpt

Read the question, give your answer by analyzing step by step, and assign a confidence level to each step and
the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2: [Your reasoning here], Confidence: [Your confidence here]%
Step 3:
...
...
Step N: [Your reasoning here], Confidence: [Your confidence here]%
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence here]%
Note: The confidence indicates the degree of certainty you have about your answer. For instance, if your
confidence level is 80%, it means you are 80% certain that your answer is correct. Provide the answer in
aforementioned format, and nothing else.

Figure 18: GSM8K dataset. The prompt&4 prepended to the paraphrased question& to elicit a chain of thought
explanation ⇠>) along with an answer � in sample probing and model probing uncertainty experiments.
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Read the question, and output the words important for your final answer, sorted in descending order of
importance. The output format is as follows:

1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence here]%.
Provide the answer in aforementioned format, and nothing else.

Figure 19: ASDiv dataset. The prompt &4 prepended to the paraphrased question & to generate a token
importance explanation ) � along with an answer � in sample probing and model probing uncertainty experiments.

Read the question, give your answer by analyzing step by step, and assign a confidence level to each step and
the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2:
...
Step 3:
...
...
Step N:
...
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence here]%
Note: The confidence indicates the degree of certainty you have about your answer. For instance, if your
confidence level is 80%, it means you are 80% certain that your answer is correct. Provide the answer in
aforementioned format, and nothing else.

Figure 20: ASDiv dataset. The prompt &4 prepended to the paraphrased question & to elicit a chain of thought
explanation ⇠>) along with an answer � in sample probing and model probing uncertainty experiments.

Read the question, and output the words important for your final answer, sorted in descending order of
importance. The output format is as follows:

1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence here]%.
Provide the answer in aforementioned format, and nothing else.

Figure 21: SVAMP dataset. The prompt &4 prepended to the paraphrased question & to generate a token
importance explanation ) � along with an answer � in sample probing and model probing uncertainty experiments.
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Read the question, give your answer by analyzing step by step, and assign a confidence level to each step and
the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2:
...
Step 3:
...
...
Step N:
...
Final Answer and Overall Confidence (0-100): [Your answer as a number here], [Your confidence here]%
Note: The confidence indicates the degree of certainty you have about your answer. For instance, if your
confidence level is 80%, it means you are 80% certain that your answer is correct. Provide the answer in
aforementioned format, and nothing else.

Figure 22: SVAMP dataset. The prompt &4 prepended to the paraphrased question & to elicit a chain of
thought explanation ⇠>) along with an answer � in sample probing and model probing uncertainty experiments.

Read the question, and output the words important for your final answer, sorted in descending order of
importance. The output format is as follows:

1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer Yes/No here], [Your confidence here]%.
Provide the answer in aforementioned format, and nothing else.

Figure 23: StrategyQA dataset. The prompt &4 prepended to the paraphrased question & to generate a
token importance explanation ) � along with an answer � in sample probing and model probing uncertainty
experiments.

Read the question, give your answer by analyzing step by step, and assign a confidence level to each step and
the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2:
...
Step 3:
...
...
Step N:
...
Final Answer and Overall Confidence (0-100): [Your answer Yes/No here], [Your confidence here]% Note:
The confidence indicates the degree of certainty you have about your answer. For instance, if your confidence
level is 80%, it means you are 80% certain that your answer is correct. Provide the answer in aforementioned
format, and nothing else.

Figure 24: StrategyQA dataset. The prompt &4 prepended to the paraphrased question & to elicit a chain of
thought explanation ⇠>) along with an answer � in sample probing and model probing uncertainty experiments.
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Read the question, and output the words important for your final answer, sorted in descending order of
importance. The output format is as follows:

1. [Word 1 here]
2. [Word 2 here]
. . .
. . .
N. [Word N here]
Final Answer and Overall Confidence (0-100): [Your answer plausible / implausible here], [Your confi-
dence here]%. Provide the answer in aforementioned format, and nothing else.

Figure 25: Sports Understanding dataset. The prompt &4 prepended to the paraphrased question & to
generate a token importance explanation ) � along with an answer � in sample probing and model probing
uncertainty experiments.

Read the question, give your answer by analyzing step by step, and assign a confidence level to each step and
the final answer. The output format is as follows:
Step 1: [Your reasoning here], Confidence: [Your confidence here]%
Step 2: ...
Step 3: ...
...
Step N: ...
Final Answer and Overall Confidence (0-100): [Your answer plausible / implausible here], [Your confi-
dence here]% Note: The confidence indicates the degree of certainty you have about your answer. For instance,
if your confidence level is 80%, it means you are 80% certain that your answer is correct. Provide the answer
in aforementioned format, and nothing else.

Figure 26: Sports Understanding dataset. The prompt &4 prepended to the paraphrased question & to elicit
a chain of thought explanation ⇠>) along with an answer � in sample probing and model probing uncertainty
experiments.

Table 2: Paraphrased Samples for a question in GSM8K math word problem dataset. The original question is
”How many signatures do the sisters need to collect to reach their goal?”

What is the number of signatures the sisters need to collect to reach their goal?
How many signatures must the sisters acquire to reach their goal?
What is the amount of signatures the sisters need to collect to reach their goal?
How many signatures do the sisters have to collect to reach their goal?
What is the total number of signatures the sisters need to collect to reach their goal?
How many signatures do the sisters require to reach their goal?
What is the quantity of signatures the sisters need to collect to reach their goal?
How many signatures do the sisters need to gather to reach their goal?
What is the sum of signatures the sisters need to collect to reach their goal?
How many signatures do the sisters need to acquire to reach their goal?
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