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Abstract

The singular value decomposition (SVD) is
a crucial tool in machine learning and sta-
tistical data analysis. However, it is highly
susceptible to outliers in the data matrix. Ex-
isting robust SVD algorithms often sacrifice
speed for robustness or fail in the presence
of only a few outliers. This study introduces
an efficient algorithm, called Spherically Nor-
malized SVD, for robust SVD approximation
that is highly insensitive to outliers, compu-
tationally scalable, and provides accurate ap-
proximations of singular vectors. The pro-
posed algorithm achieves remarkable speed by
utilizing only two applications of a standard
reduced-rank SVD algorithm to appropriately
scaled data, significantly outperforming com-
peting algorithms in computation times. To
assess the robustness of the approximated
singular vectors and their subspaces against
data contamination, we introduce new no-
tions of breakdown points for matrix-valued
input, including row-wise, column-wise, and
block-wise breakdown points. Theoretical and
empirical analyses demonstrate that our algo-
rithm exhibits higher breakdown points com-
pared to standard SVD and its modifications.
We empirically validate the effectiveness of
our approach in applications such as robust
low-rank approximation and robust principal
component analysis of high-dimensional mi-
croarray datasets. Overall, our study presents
a highly efficient and robust solution for SVD
approximation that overcomes the limitations
of existing algorithms in the presence of out-
liers.
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1 INTRODUCTION

Singular Value Decomposition (SVD) is one of the
most useful tools in machine learning, used in process-
ing image, video and natural languages, constructing
recommender systems, and statistical data analysis.
In particular, SVD is used for dimension reduction
for downstream machine learning tasks, which often
improves the overall performance of the task with re-
duced computational complexity. However, real-world
data often contain noise, outliers, and other anomalies,
and with only a contaminated data matrix at hand,
standard SVD may provide undesirable low-rank de-
composition. As a result, there is a need for robust
SVD algorithms that can handle these challenges and
provide accurate and robust results in the presence of
data irregularities.

In this work, we introduce a new approach called Spher-
ically Normalized SVD (SpSVD), which aims to handle
outliers more effectively compared to the classical SVD
and competing robust SVD algorithms including Zhang
et al. (2013); Candès et al. (2011); Brahma et al. (2017);
Rahmani and Atia (2017). Inspired by a robust PCA
proposal of Locantore et al. (1999), the SpSVD algo-
rithm adopts the spherical normalization approach of
Locantore et al. to approximate both left and right
singular vectors. While the normalization gives highly
robust approximations of those vectors, we additionally
solve a simple optimization problem for more accu-
rate low-rank approximation. Our algorithm is easy
to implement and extremely fast to compute. Specif-
ically, it requires a computational complexity similar
to that of classical SVD for low-rank approximations.
We also establish that the algorithm provides a sta-
tistically accurate approximation of singular vectors,
even in the presence of infinitesimal contamination of
a considerable scale.

The robustness of SpSVD is carefully evaluated by ex-
tending the notion of breakdown point, a quantitative
measure of robustness, commonly used in robust esti-
mation literature such as Tyler et al. (2023); Tang and
Phillips (2016); Huber (2011). The classical definition
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of observation-wise breakdown point is generalized to
handle singular vectors (unit vectors) and the subspaces
spanned by those and also for the cases where contami-
nation occurs for rows, columns or individual elements
of input matrix X. Utilizing the generalized notion of
breakdown point, we show that the singular vectors
approximated by SpSVD have higher breakdown points
than the classical SVD and its seemingly robust vari-
ants (Gabriel and Zamir, 1979; Liu et al., 2003; Ke and
Kanade, 2005; Zhang et al., 2013). To the best of our
knowledge, this work is the first study investigating
breakdown points specifically related to the singular
vectors and their subspaces, providing novel insights
into the robustness of SVD.

The accuracy, robustness, and computational times of
SpSVD are empirically compared with existing robust
SVD approaches including Zhang et al. (2013); Candès
et al. (2011); Brahma et al. (2017); Rahmani and Atia
(2017), via simulated experiments. In particular, our
proposal is on par with the best-performing algorithm—
the Robust PCA (RPCA) approach of Candès et al.
(2011)—in terms of the accuracy and robustness, but
is up to 500 times faster (in real computation times)
than RPCA, rendering its effectiveness especially for
large-scale data analysis.

Related Works There have been many proposals
for robust SVD or PCA (Principal Component Anal-
ysis), which can be broadly categorized into four ap-
proaches. (1) Optimization for low-rank approximation:
One approach to low-rank approximation is achieved
by solving optimization problems (Markopoulos et al.,
2014; Barrodale, 1968; Ding et al., 2019). Specifically,
Candès et al. (2011) proposed an optimization problem
where a data matrix is decomposed into a low-rank
approximation and a sparse outlier matrix. This ap-
proach has many variants (Wright et al., 2013; Zhou
et al., 2010; Xu et al., 2010). One of them, She et al.
(2016); Brahma et al. (2017) proposed using the or-
thogonal complement of the low-rank approximation
to capture outliers lying the orthogonal complement
space. (2) Minimization of element-wise loss: Finding
SVD can be recasted to a minimization problem with
element-wise loss. To modify SVD to be more robust,
several approaches including Gabriel and Zamir (1979);
Liu et al. (2003); Ke and Kanade (2005); Zhang et al.
(2013) have been proposed to replace the element-wise
loss with other loss functions such as L1-loss or Hu-
ber’s loss function. (3) Outlier filtering: In a natural
attempt to achieve robustness, many researchers have
proposed outlier filtering methods (Xu et al., 2012; Di-
akonikolas et al., 2023; Rahmani and Atia, 2017; Kong
et al., 2020; Jambulapati et al., 2020) including ro-
bust covariance estimation by subsampling techniques.
However, most robust covariance matrix estimations

including Campbell (1980); Rousseeuw (1984, 1985);
Hubert et al. (2018) require large sample size (n≫ p),
and are not generally not applicable to SVD. (4) Pro-
jection pursuits: In that the first principal component
is the direction maximizing the variability of data, re-
searchers including Croux et al. (2013, 2007) proposed
approaches based on projection pursuit where the goal
is to find the direction that maximizes the dispersity of
data points for some robust dispersity measure, such
as the first quantile of the pairwise differences. Most of
these approaches are not applicable to large-scale data
analysis, due to its high computational costs. We have
numerically compared our proposal with most of the
approaches above, but chose not to present the results
because of either poor performances or excessively long
computation times.

Most of the aformentioned algorithms do not provide
robust SVD, but robust PCA, which primarily concen-
trate on subspace recovery. Such methods may robustly
recover right singular vectors, but do not provide ro-
bust left singular vectors and singular values. Note
that there are data-analytic situations in which both
the right and left singular vectors are simultaneously
needed, for instance in multi-source data analysis (Feng
et al., 2018; Lock et al., 2013; Prothero et al., 2022).

Hampel (1968) and Huber (1992) introduced the no-
tion of breakdown point, a quantitative measure of
robustness in the presence of distributional contamina-
tion. They also introduced a probabilistic measure of
robustness via the influence function. Some researchers
have investigated robustness of unit vectors via influ-
ence functions Ko and Guttorp (1988); Ko and Chang
(1993). Our work is the first to extend the notion of
breakdown points for functions taking values in the
unit sphere and Grassmannian manifolds.

2 PROPOSED ALGORITHM:
Spherically Normalized SVD

Background The SVD of a n× p real-valued matrix
X is denoted by X = UDVT =

∑n∧p
r=1 drurv

T
r , where

the diagonal matrix D contains the non-negative sin-
gular values dr, arranged in descending order, and
ur and vr are the rth left and right singular vec-
tors, respectively, corresponding to the rth largest
singular value dr. To motivate our construction of
robust SVD algorithms, we view the real-valued matrix
X = (x1, . . . ,xn)

T ∈ Rn×p as a data matrix, collecting
the observed values of p variables from n individuals.

The principal component analysis (PCA) applied to
the data matrix X is closely related to the SVD of
X. Assuming that X is column-centered, the rth (em-
pirical) principal component (PC) direction vector is
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the rth right singular vector vr. The rth PC scores
are given by the n-vector Xvr = (xT

1 vr, . . . ,x
T
nvr)

T ,
consisting of the projection of each data point onto
vr. In fact, the PC score vector is also given by the
SVD, that is, Xvr = drur, in which the unit vector ur

collects the standardized PC scores for n individuals,
and the sample standard deviation of the PC scores
is dr/

√
n. Dimensionality reduction in data matrix

X can be equivalently achieved either by a rank-R
SVD approximation X̂svd

R :=
∑R

r=1 drurv
T
r , or by col-

lecting the first R triples of PC direction, score and
standard deviation. Note that X̂svd

R is the best rank-R
approximation to X in terms of the Frobenius norm.

Motivation Both the SVD and standard PCA es-
timates are highly sensitive to data contamination in
the data matrix X. Consider an original data matrix
X and a contaminated version Z. In the contaminated
version, the values of the first row xT

1 of X are replaced
with arbitrary values. Denoting vr(X) and vr(Z) as
the rth right singular vectors of X and Z respectively,
we demonstrate in Section 3 that the singular vectors
are sensitive to their input. Even if there is only one
differing row (data point) between X and Z, the differ-
ence between v1(X) and v1(Z) can be substantial. This
occurs due to the presence of arbitrarily large ∥z1∥2
values, causing the singular vector v1(Z) to align al-
most parallel to z1. To limit such a potentially massive
contribution of a single observation, Locantore et al.
(1999) proposed to normalize each of n data points
in X, transforming xi to xi/∥xi∥2, then to apply the
standard PCA algorithm for the normalized data, for
their proposal of a robust PCA. Since all data points
are on the unit sphere in Rp after normalization, the
contribution of potential outliers is naturally limited.
Building upon the robust PCA approach of Locantore
et al. (1999), we propose a novel technique called Spher-
ically Normalized SVD algorithm (SpSVD for short),
which provides a robust approximation of the first R
left and right singular vectors and singular values of
(uncontaminated) X, obtained purely from potentially
contaminated matrix Z.

Algorithm Let X = [x1, . . . ,xn]
T ∈ Rn×p be a po-

tentially contaminated data matrix. For a predeter-
mined rank R ∈ {1, . . . , n∧ p} our goal is to define the
ordered triple (dSpr ,uSp

r ,vSp
r ), for r = 1, . . . , R, that

provides a highly insensitive and accurate rank-R ap-
proximation X̂Sp

R :=
∑R

r=1 d
Sp
r uSp

r (vSp
r )T of X.

For the approximation of right singular vectors, we
individually scale each row of matrix X to have
unit length. Let X̃row = [x1/∥x1∥2, . . . ,xn/∥xn∥2]T
represent the row-normalized data matrix. Subse-
quently, a standard low-rank SVD algorithm is ap-
plied to X̃row to obtain the R right singular vec-

tors corresponding to the R largest singular values
of X̃row. The set of these right singular vectors is
denoted as V R = {v1(X̃row), . . . ,vR(X̃row)}. Simi-
larly, for the approximation of left singular vectors,
we scale and collect each column of X in the column-
normalized data matrix X̃col. The first R left sin-
gular vectors of X̃col are then collected in the set
UR = {u1(X̃

col), . . . ,uR(X̃
col)}. While the elements

in V R and UR are candidates for (vSp
r and uSp

r ), respec-

tively, we do not set (ur(X̃
col),vr(X̃row)) for (u

Sp
r ,vSp

r ).
This is because using mismatched labels can provide a
better approximation of X.

With V R and UR at hand, the triple (dSpr ,uSp
r ,vSp

r ) is
defined sequentially. For the first triple, we solve the
following:

(dSp1 ,uSp
1 ,vSp

1 ) = argmin
d∈R,u∈UR,v∈V R

∥X− duvT ∥F1 , (1)

where ∥A∥F1
=

∑
i,j |aij | is the element-wise 1-norm of

the matrix A. For a fixed pair of u = (u1, . . . , un)
T ∈

UR and v = (v1, . . . , vp)
T ∈ V R, finding the solution

to (1) with respect to d ∈ R is equivalent to solving a
weighted median problem,1

min
d

∑
ui ̸=0,vj ̸=0

|uivj ||
xij
uivj

− d|. (2)

For r = 2, . . . , R, optimization problems similar to (1)
are used to define the rth triple (dSpr ,uSp

r ,vSp
r ), but

with the first r− 1 triples deflated from each of X, UR

and VR. That is, we solve

(dSpr ,uSp
r ,vSp

r ) = argmin
d∈R,u∈UR

r ,v∈V R
r

∥Xr − duvT ∥F1
, (3)

where Xr = X −
∑r−1

l=1 d
Sp
l uSp

l (vSp
l )T , UR

r = UR \
{uSp

1 , . . . ,uSp
r−1}, and V R

r = V R\{vSp
1 , . . . ,vSp

r−1}. Note
that in (1) and (3) above, the approximated singu-
lar value dSpr may be negative. Since singular values
are, by definition, non-negative, for each r = 1, . . . , R,
we update (dSpr ,uSp

r ,vSp
r ) by (srd

Sp
r , sru

Sp
r ,vSp

r ), if
sr := sign(dSpr ) ̸= 0. This procedure is summarized in
Algorithm 1.

We remark that one may try to choose (uSp
r ,vSp

r ) to be

(uSp
r ,vSp

r ) := (ur(X̃
col),vr(X̃row)), (4)

and solve (1) and (3) only with respect to d. Since
the candidates in V R and UR are from different nor-
malizations, there is no compelling reason to believe

1The weighted median problem can be efficiently solved
by the median of medians algorithm (Blum et al., 1973),
or by other selection algorithms (Cormen et al., 2022).
Therefore, by solving the weighted median for all candidate
pairs, we obtain a solution to (1).
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Algorithm 1: Rank-R Approximation by
SpSVD

Input: data matrix
X = (x1, . . . ,xn)

T = (x1, . . . ,xp) ∈
Rn×p, R ∈ {1, . . . , n ∧ p}.

Output: (dSpr ,uSp
r ,vSp

r ) for r = 1, . . . , R

1 Normalize X̃row = [x1/∥x1∥2, . . . ,xn/∥xn∥2]T

and X̃col = [x1/∥x1∥2, . . . ,xp/∥xp∥2]
2 Apply SVD to X̃row to obtain rank-R

approximation
∑R

r=1 d̃rũr

(
vr(X̃row)

)T

3 Apply SVD to X̃col to obtain rank-R

approximation
∑R

r=1 c̃r

(
ur(X̃

col)
)
ṽT
r

4 Set V R = {v1(X̃row), . . . ,vR(X̃row)} and

UR = {u1(X̃
col), . . . ,uR(X̃

col)}
5 for r = 1, . . . , R do
6 Find the rth solution (dSpr ,uSp

r ,vSp
r ) of (3)

7 Update (dSpr ,uSp
r ,vSp

r ) by

(srd
Sp
r , sru

Sp
r ,vSp

r ), if sr := sign(dSpr ) ̸= 0

that the orders in the left and right singular values
are related as in (4). We have empirically found that
the solutions of (1) and (3) are typically different from
the naive choice (4), more often when R is large. Our
approach of searching over the R2 pairs of candidates
provides generally better rank-R approximations than
the naive choice. On the other hand, potential down-
sides of our approach include the following: The rth
triple (dSpr ,uSp

r ,vSp
r ) may depend on the choice of the

rank R ≥ r, and the computational complexity in-
creases because of the discrete optimization needed in
(3). Nevertheless, for small R the overall computational
complexity of the proposed SpSVD algorithm is similar
to that of a standard low-rank SVD algorithm.

Computational Complexity The computational
complexity of an algorithm is a measure of the amount
of resources required for solving a problem of a given
size. The overall computational complexity of Algo-
rithm 1 applied to rank-R approximation of a real
matrix of size n× p is O(npR3). While the two appli-
cations of SVD as well as the normalization require
O(npR), the algorithm solves the weighted median
problem (2) in the linear time complexity of O(np)
for R(R + 1)(2R + 1)/3 times. As a comparison, the
computational complexity of the standard rank-R SVD
algorithm is O(npR) (Xu et al., 2023; Yi et al., 2016;
Shamir, 2016; Allen-Zhu and Li, 2016). Algorithm 1 is
as efficient as SVD when R is small. As we compare
numerically in Section 5, computing the approxima-
tion of a low-rank SVD by our approach is up to 500
times (on average in real computation times) faster

than state-of-the-art robust SVD algorithms proposed
in Zhang et al. (2013); Brahma et al. (2017); Candès
et al. (2011).

Statistical Accuracy When the data matrix X ∈
Rn×p is viewed as a collection of n observations xi, the
right singular vector vr(X) is equivalent to the eigen-
vector of the sample covariance matrix of X. Treating
vSp
r as an estimator of the rth eigenvector of the popula-

tion covariance matrix, the estimator vSp
r is consistent

under adequate assumptions; see Section 7.1.1 of the
supplementary material. While the standard SVD also
provides a consistent estimator, SpSVD exhibit a sta-
tistical accuracy over contamination. Let FΣ denote a
mean-zero, p-dimensional elliptical distribution (Cam-
banis et al., 1981), with covariance matrix Σ, whose
eigen-decomposition is given by Σ =

∑p
j=1 λjvjv

T
j .

Assume that λj+1 > λj for all j. Let ϵ > 0 be the
fraction of contaminations among n samples: That is,
the samples consist of both i.i.d (uncontaminated) sam-
ples x1, . . . ,x(1−ϵ)n ∼ FΣ and the outliers y1, . . . ,yϵn

of arbitrary size and directions. Let vSp
j be the jth

left singular vector obtained by the proposed SpSVD
applied to [x1, . . . ,x(1−ϵ)n,y1, . . . ,yϵn]

T .

Theorem 1 (Statistical accuracy over infinitesimal
contamination). If (i) n ≥ Cp/ϵ, for a constant C >
0, and (ii) for j = 1, . . . , p, δj := {|dj+1 − dj |, |dj −
dj−1|} > 0 where dj is the jth singular value of the
covariance matrix of x1

∥x1∥2
, then

E[min{∥vSp
j − vj∥2, ∥vSp

j + vj∥2}]

≤ 1

δj
(C ′ϵ+ C ′′

√
(1− ϵ)ϵ) (5)

for some absolute constants C ′, C ′′ > 0.

In the above theorem, as the fractions ϵ and p
n go to

zero, the singular vectors of our method converge to
the target singular vectors in an appropriate statisti-
cal context. The assumption (i) n ≥ Cp/ϵ is more
relaxed than the assumption “n ≥ Cp/ϵ2” provided in
Diakonikolas et al. (2023) (Similar assumptions were im-
posed in Jambulapati et al. (2020); Kong et al. (2020).)
If we assume n ≥ Cp/ϵ2, the second term of (5) be-
comes negligible. Our result states the accuracy of unit
singular vectors vSp

j directly compared to vj (for all
j = 1, . . . , p). This is in contrast to the statements in
Xu et al. (2012); Jambulapati et al. (2020); Diakoniko-
las et al. (2023), in which the accuracy of the only
the first vector v̂1 is compared indirectly by bounding
|v̂TΣv̂ − λ1|.
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3 EXTENSIONS OF BREAKDOWN
POINTS

The breakdown point, originally proposed by Ham-
pel (1968), and studied by Huber and Donoho (1983);
Huber (1984, 2011), is a common tool for evaluating
quantitative robustness of statistics. Viewing a real-
valued statistic as a function f : Xn → R that takes
as input n data points X := (x1, . . . ,xn) ∈ Xn and
outputs a real-valued f(X), the breakdown point of f
at the given data X is defined as the minimum number
of corrupted data points that cause the statistic to
“break down.” Formally, the breakdown point of f at
X is

bp(f ;X) := min
1≤l≤n

{l : sup
Zl

|f(Zl)− f(X)| = ∞}, (6)

where the supremum is taken over all possible corrupted
collections Zl that are obtained from X by replacing l
data points of X with arbitrary values. In this sense, a
function f (giving the value of a statistic f(X)) is said
to break down if the difference between the statistics
computed from corrupted data and from the original
data, i.e., f(Zl) and f(X), is as large as possible, which
was defined to be the infinity in the original definition
(6) of the breakdown point. Note that in the literature
(Huber and Donoho, 1983; Huber, 1984, 2011; Lopuhaa
and Rousseeuw, 1991), the (finite-sample) breakdown
point is in fact defined as bp(f ;X)/n, the fraction of
the number of corrupted data points and the sample
size. Nevertheless, for notational simplicity, we regard
the number of data points n as fixed, and define the
breakdown point as a whole number. The breakdown
point bp(f ;X) represents a critical threshold where a
breakdown of f does not occur when the number of
corrupted data points is below bp(f ;X), but break-
down can occur when the number of corrupted data
points is equal to or exceeds bp(f ;X).

We extend the notion of breakdown points to the sit-
uations where the singular vectors ur(X) and vr(X)
and the subspaces spanned by these are the statis-
tics of interest. This involves two distinct considera-
tions: Breakdown of unit-sphere Sk−1 and grassman-
nian Gr(k, r)-valued statistics, and breakdown with
respect to contamination matrices.

Breakdown of Unit Vectors and Subspaces
Viewing each of the singular vectors ur(X) and vr(X)
(or uSp

r (X) and vSp
r (X)) as a statistic, the notion of

breakdown point (6) naturally applies with the follow-
ing modifications. Since a singular vector lies in the unit
sphere Sk−1 (for k = n or p), we measure the difference
between v,w ∈ Sk−1 by θ(v,w) := arccos(|vTw|), the
“angle” between two directions. The maximum differ-
ence in this case is π/2. We will also be interested in the

subspaces spanned by singular vectors. Let V = V(X)
be the subspace spanned by {vr(X) : r = 1, . . . , R}.
Then V ∈ Gr(k,R), the Grassmannian manifold con-
sisting of R-dimensional subspaces in Rk. For two sub-
spaces V = span(V),W = span(W) ∈ Gr(k,R), the
difference may be measured via the largest canonical
angle θ(V,W) := arccos(dmin(V

TW)), where dmin(A)
is the smallest singular value of A. Note that for R = 1,
θ(span(v), span(w)) = θ(v,w). The maximum differ-
ence is also π/2, and we say V : Rn×p → Gr(k,R)
(or Sk) breaks down at X by replacing l data points,
if supZl

θ(V(Zl),V(X)) = π/2. The breakdown point
of V at X is then given by (6) with the definition of
“breakdown” given above.

Breakdown with respect to Contamination of
Matrices A data matrix, to which SVD is performed,
is not always a statistical data matrix in Rn×p consist-
ing of n data points with p variables. We generalize the
mechanism of data contamination from the observation-
wise data contamination (6) to three different types
of data contaminations. Treating each row, column,
or element as a data point, we will discuss row-wise,
column-wise, and block-wise contaminations of data
matrix X.

Let V : Rn×p → Gr(k, r) be a statistic of interest.
The row-wise breakdown point measures the robust-
ness of V in terms of contamination of the rows of
input matrix X, and coincides with the traditional
notion of breakdown point (6) when rows represent
data points. That is, we define bprow(V;X) = min{l :
supZl

θ(V(Zl),V(X)) = π/2, 1 ≤ l ≤ n}, where the
supremum is taken over all possible Zl obtained by re-
placing l rows of X by arbitrary values. Similarly, the
column-wise breakdown point measures the robustness
of V with respect to contaminated columns (viewing
each column as a data point), and is bpcol(V;X) =
min{l : supZl θ

(
V(Zl),V(X)

)
= π/2, 1 ≤ l ≤ p}, in

which Zl is given by replacing l columns of X.

In situations where each element of the n× p matrix X
is considered as an observation, outlying observations
may be scattered across the matrix, and it becomes
challenging to devise an informative notion of robust-
ness. We focus on the case that contamination occurs
within a (possibly non-consecutive) block. For example,
if three elements x1,1, x1,3 and x2,3 of X are contam-
inated, then we say the outliers lie in a block of size
(2, 2), in which the numbers correspond to two rows and
two columns, respectively. We say V breaks downs at
block-size (k, l) (at X) if supZl

k
θ(V(Zl

k),V(X)) = π/2,

where the corrupted data Zl
k are given by replacing

the elements in a k × l block of X. Recall that the
breakdown point bp(f ;X) (6) is a threshold, i.e., the
minimum number of data points needed for the statistic



Robust SVD Made Easy: A fast and reliable algorithm for large-scale data analysis

to break down. To extend the definition of breakdown
point to this block-wise contamination scenario, we
adopt a partial order relation “≺” among the block-
sizes in Bn,p = {(k, l) : 1 ≤ k ≤ n, 1 ≤ l ≤ p}, given by
(i) (i, j) ⪯ (k, l) if i ≤ k and j ≤ l, and (ii) (i, j) ≺ (k, l)
if (i, j) ⪯ (k, l) and (i, j) ̸= (k, l).

The set (Bn,p,≺) is only partially ordered, meaning
that there are block-sizes (i, j) and (k, l) that can not
be ordered; take (2, 3) and (3, 1) as an example. This
is unavoidable due to the two-dimensional nature of
Bn,p. Nevertheless, utilizing the partial order provides a
definition for block-wise breakdown point as a “tipping”
point.

Definition 1. We say that V has a block-wise break-
down point (i, j) at X if (i) for any (k, l) ⪰ (i, j),
V breaks down at block-size (k, l), and (ii) for any
(k′, l′) ≺ (i, j), V does not break down at block-size
(k′, l′).

It is possible that there are multiple block-wise break-
down points for V, and we denote the set of all block-
wise breakdown points of V at X by BP(V;X). The
notion of block-wise breakdown points is more powerful
than row and column-wise breakdown points, as the
following lemma states.

Lemma 2. (i) If (k, 1) ∈ BP(V ;X) for some 1 ≤ k ≤
n, then bpcol(V;X) = 1, and (ii) if (1, l) ∈ BP(V;X)
for some 1 ≤ l ≤ p, then bprow(V;X) = 1.

4 ROBUSTNESS OF SpSVD

We begin by highlighting the lack of robustness of
the standard SVD. Let VR : Rn×p → Gr(p,R) be the
function that gives the rank-R right singular subspace
VR(X) = span(v1(X), . . . ,vR(X)) of input matrix X.
The function UR for the left singular subspace is simi-
larly defined.

Proposition 3. Let X be any n× p real matrix. The
following holds for any R = 1, . . . , n ∧ p.

(i) For some k ≤ R+1, (k, 1) ∈ BP(UR;X). In partic-
ular, bprow(UR;X) ≤ R+ 1, and bpcol(UR;X) = 1.

(ii) For some l ≤ R+ 1, (1, l) ∈ BP(VR;X). In partic-
ular, bprow(VR;X) = 1, and bpcol(VR;X) ≤ R+ 1.

In particular, the first right singular vector v1(X)
breaks down even with contamination of one row of X,
or two elements in a block of size (2, 1). This shows
that the standard SVD is highly sensitive to outliers
in the matrix. Surprisingly, a family of seemingly ro-
bust algorithms for SVD approximation, which we call
Element-wise Loss SVD (or ELSVD for short), turns
out to have very low breakdown points. In particu-
lar, the ELSVD, studied in Gabriel and Zamir (1979);

Liu et al. (2003); Ke and Kanade (2005); Zhang et al.
(2013), is given by solving the following problem: For
r = 1, . . . , R,

(dρr ,u
ρ
r ,v

ρ
r) = argmin

d≥0,u∈Sn−1,v∈Sp−1

ρ(X− duvT )

+ P1(u) + P2(v),
(7)

subject to an orthogonality constraint. In (7), the
function ρ(·) is defined as ρ(Z) =

∑p
i=1

∑n
j=1 ρij(zij)

for Z = (zij), where ρij : R → R are symmetric and
non-negative loss functions, and P1, P2 are regular-
ization terms. Note that for ρij(z) = z2 without the
regularization terms, the solution to (7) coincides with
the standard SVD. The element-wise losses can be set
as the L1 or Huber loss, which are commonly believed
to induce robustness. Let Uρ

R : Rn×p → Gr(n,R) and
Vρ
R : Rn×p → Gr(p,R) be the functions that provide

the Rth left and right singular spaces, respectively,
obtained from ELSVD using some ρ, P1, and P2.

Theorem 4. Suppose that ρij satisfies that ρij(z) → ∞
as |z| → ∞ (for all i, j), and the functions P1, P2 re-
stricted to the domains u ∈ Sn−1 and v ∈ Sp−1 respec-
tively are each upper bounded. Then, the conclusions of
Proposition 3 hold when UR and VR are each replaced
by Uρ

R and Vρ
R.

In contrast, the SVD approximations given by the
proposed SpSVD have higher breakdown points, as we
explain below. Let VSp

R : Rn×p → Gr(p,R) be given by

VSp
R (X) = span(vSp

1 , . . . ,vSp
R ), the dimension-R right

singular subspace approximated by SpSVD. The left
singular subspace function USp

R is defined similarly.

Recall that X̃row = (x1/∥x1∥2, . . . ,xn/∥xn∥2)T ∈
Rn×p denotes the row-normalized matrix. Let ΠR :=
ΠR(X) be the p× p matrix of projection onto the or-

thogonal complement of VSp
R (X), and let λr(X) denotes

the rth largest singular value of X. Define

nR := nR(X) = min
1≤k≤n

{
k : k ≥ inf

X̃k

{(
λR(X̃k)

)2
−
(
λ1(X̃kΠR)

)2}}
,

(8)

where infimum is taken over all possible submatrices
X̃k ∈ R(n−k)×p of X̃row obtained by choosing n − k
rows of X̃row. Similarly, let pR := pR(X) be given by
pR(X) = nR(X

T ). The number nR represents a lower
bound on the minimum number of rows that can break
down VSp

R , since it can be shown that the inequality

in (8) is a necessary condition for VSp
R to break down

with k outliers. Similarly, the number pR is a lower
bound for the column-wise breakdown point for the
left singular subspace approximation USp

R .

Theorem 5. Let X be any n × p real matrix. The
following holds for any R = 1, . . . , n ∧ p.



Sangil Han, Kyoowon Kim, Sungkyu Jung

(i) bprow(U
Sp
R ;X) ≤ R + 1, bpcol(U

Sp
R ;X) ≥ pR, and

for any (k, l) ∈ BP(USp
R ;X), (1, pR) ⪯ (k, l).

(ii) bprow(V
Sp
R ;X) ≥ nR, bpcol(V

Sp
R ;X) ≤ R + 1, and

for any (k, l) ∈ BP(VSp
R ;X), (nR, 1) ⪯ (k, l)

In Theorem 5, (nR, 1) represents a lower bound of

BP(VSp
R ;X). This bound may be perceived as too low

because it only includes the column size 1. However,
the theorem also implies that no breakdown occurs for
VSp
R by contamination of blocks of size (k, l), for any
k < nR and l = 1, . . . , p. This is because every point
in BP(VSp

R ;X) is greater than or equal to (nR, 1). In

other words, if (k, k) ∈ BP(VSp
R ;X), then k ≥ nR.

Evaluating the lower bounds nR and pR appears to be
challenging. Through numerical experiments, we have
observed that while nR and pR depend on the matrix
X, they tend to be larger when there is a larger gap
between λR(X) and λR+1(X); See Section 7.3.5 of the
supplementary material.

We additionally investigate the breakdown points in
COP (Rahmani and Atia, 2017), which adopt screening
out potential outliers; See Section 7.4 of the supple-
mentary material.

5 NUMERICAL STUDIES

In this section we evaluate the empirical performance of
SpSVD in terms of accuracy, robustness and computa-
tional scalability, making comparisons to the standard
SVD algorithm, ELSVD with Huber’s loss of Zhang
et al. (2013), RPCA of Candès et al. (2011), R2PCP
of Brahma et al. (2017), as well as COP of Rahmani
and Atia (2017).

RPCA aims to recover a low-rank matrix and a sparse
outlier matrix from the data matrix by decomposing
it into the sum of the two matrices, while R2PCP
(She et al., 2016; Brahma et al., 2017) models not only
a sparse outlier matrix but also the orthogonal com-
plement of the low-rank matrix where outliers lying.
Since both approaches provide robust low-rank approx-
imations, we apply the standard SVD to the low-rank
approximation to extract the left and right singular vec-
tors and singular value approximations. COP adopts
normalizing and filtering out outliers in constructing
PC directions.

Simulation Experiment We model the data ma-
trix without outliers X ∈ Rn×p as the sum of low-
rank L and E consisting of standard normal random
noises with n = 200 and p = 100. The low-rank L
is L =

∑3
r=1 drurv

T
r , (d1, d2, d3) = (80, 70, 60), and

U = (u1,u2,u3) and V = (v1,v2,v3) are randomly

sampled where the uniform distribution on the set of
orthogonal matrices, respectively. We add a sparse out-
lier matrix S with ∥S∥F = 1 multiplied by η, a scaling
parameter, to the data matrix X, i.e.,

X = L+E, Xη = L+ ηS+E.

The outlier matrix S has non-zero elements only in ar-
bitrary blocks with the block-size (0.05n, 0.05p) ∈ Bn,p

where the block-size is set based on the computation of
the lower bounds nR and pR described in Theorem 5
for a reduced-size matrix; see Section 7.3.5 of the sup-
plementary material. We evaluate the performance of
different methods by gradually increasing η from 0 to
1000, and repeating the simulation 100 times for each
value of η.

(a) Singular Vector (b) Singular Value

(c) Time (d) Scalability

Figure 1: The Approximation Accuracy, Robustness,
and Computation Times Against Increasing Magnitude
η of Outliers In (a), (b), And (c). Panel (d) shows the
computation times over varying size of input matrix.
The y-axes are in log-scale.

Figure 1(a) illustrates the angle between 3-dimensional
left singular subspace of L and the approximated sub-
spaces given by the six methods. We do not report
the results for the right singular subspaces. Except
that COP recovers well the right singular subspaces,
the result is similar to that of the left singular sub-
space. Panel (b) shows the ratio of the approximated
largest singular value of Xη to the largest singular
value of L. In terms of these values, we find that SVD,
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ELSVD, R2PCP, and COP do not exhibit robustness.
While both SpSVD and RPCA appear to show desir-
able performances (with approximation errors for the
singular subspace around 15◦ across varying η), SpSVD
performs consistently better for singular value approx-
imation (d̂Sp1 /d1 ≈ 1 and d̂RPCA

1 /d1 ≈ 0.86). On the
other hand, SpSVD boasts remarkably faster compu-
tation times compared to robust SVD approaches; see
panel (c). Specifically, R2PCP requires approximately
500 times longer computation times on average for
η = 1000.

To measure computational scalability of these algo-
rithms, we increases the size of the matrix from
200× 100 to 2000× 1000, as shown in Figure 1(d). For
this comparison, we have only compared SpSVD with
the standard SVD as a baseline method and RPCA, the
best-performing method among the existing methods.
While the computation time for SpSVD increase at a
rate similar to that of SVD, the computation time for
RPCA increases much faster. Overall, we find that
SpSVD not only accurately approximates the SVD in
the presense of massive outliers, but also is fast, re-
quiring only 70 times longer computation times than
the standard SVD, in contrast to the other methods
which require more than 1000 times longer times for
large-scale data. We have also experimented with a
higher rank case; see Section 7.3.3 of the supplementary
material.

Experiment on Gene Expression Data Matrix
Using the data consisting of gene expression levels of
n = 168 patients with small invasive ductal carcinomas,
obtained from a comparative genomic hybridization
array (Gravier et al., 2010), we consider a scenario in
which a block of size (16, 16) is contaminated (perhaps
by a physical contamination of the array). See Sec-
tion 7.3.4 of the supplementary material for a detailed
description of data pre-processing, and the mechanism
of contamination.

The rank-2 approximation X2 of the original, uncon-
taminated data X (via the standard SVD) is considered
as a groud truth. We also obtain three rank-2 approx-
imations of the contaminated data: by the standard
SVD, denoted by X̂svd

2 using the standard SVD, X̂Sp
2

and X̂rpca
2 obtained by SpSVD and RPCA, respectively.

As expected, the SVD approximation is heavily affected
by the outliers. In contrast, X̂Sp

2 and X̂rpca
2 provide ac-

curate and highly robust approximations of X2. These
are graphically depicted in Figure 3 in Section 7.3.4 of
the supplementary material.

To further compare the performances of SpSVD and
RPCA, we repeat the above experiment for 100 times,
each with different realizations of random contamina-
tion. The quality of approximation X̂Sp

2 is measured by

the relative error, r(X̂Sp
2 ) := ∥X− X̂Sp

2 ∥F/∥X−X2∥F.
The errors r(X̂Sp

2 ) and r(X̂rpca
2 ) are found to be similar,

with values of 1.02 and 1.01, on average, respectively,
and are much smaller than r(X̂svd

2 ) ≈ 51.56. On av-
erage, SpSVD takes only 0.13 seconds for rank-2 ap-
proximation, while RPCA takes 68.56 seconds for the
same task, which is more than 500 times larger than
SpSVD’s computation times.

6 CONCLUSIONS AND FUTURE
WORKS

In this paper, we have presented the SpSVD algorithm
that provides a highly scalable, accurate, and robust
approximation of SVD. To demonstrate robustness,
we have extended the classical notion of breakdown
point to incorporate breakdown of unit vectors and
subspaces, with respect to row-wise, column-wise, and
block-wise contamination of a data matrix. Using the
novel notion of block-wise breakdown points, our the-
oretical analysis further validates that our approach
produces robust singular vector approximations in the
presence of block-wise contamination of input matrix
contamination, outperforming the classical SVD and
ELSVD. Through numerical studies, we have demon-
strated not only the desirable accuracy and robustness
of our approach, but also a much higher computation
efficiency compared to existing methods.

We point out that our theoretical analysis can be fur-
ther improved. In particular, in Theorem 5 we have
only provided lower bounds of breakdown points, and
these bounds are by no means optimal. Moreover,
evaluating the lower bounds for a given X seems very
challenging, as computing nR involves

∑nR

k=1
n!

(n−k)!k!

comparisons, which becomes impractical for large-scale
data with large values of n. A potential future direc-
tion of research is to explore alternative approaches
that provide a tightened lower bound with improved
computational efficiency.

Additionally, we have not theoretically examined the
block-wise breakdown points for many other robust
SVD methods, including RPCA of Candès et al. (2011),
and R2PCP of Brahma et al. (2017). The breakdown
of singular subspaces, described in terms of the maxi-
mal deviation from uncontaminated subspace, may be
explored for other robust SVD methods, but appears
to be technically challenging. Finally, we have not
addressed the issue of rank selection, which becomes
even harder with contaminated data. We leave this as
a future research topic.
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pants and screenshots. [Not Applicable]
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7 Supplementary material

7.1 TECHNICAL DETAILS

7.1.1 Statistical Accuracy Theorem

A statistical accuracy of vSp
r can be measured asymptotically. For this purpose, assume that each p-vector xi

is independently sampled from a mean-zero elliptical distribution (Cambanis et al., 1981), FΣ with covariance
matrix Σ = VΛVT =

∑p
i=1 λiviv

T
i (satisfying λi > λi+1). Translating a result of Graciela and Fraiman (1999)

on the robust PCA estimation of Locantore et al. (1999), we observe the following:

Theorem (Graciela and Fraiman (1999)). Let Xn = [x1, . . . ,xn]
T for increasing n, where xi’s are independently

sampled from FΣ. If Λ = diag(λ1, . . . , λp) consists of distinct non-negative diagonal elements, then for r = 1, . . . , p,
vSp
r (Xn) is a consistent estimator of the rth PC direction vr in the sense that ∥vr −vSp

r (Xn)∥2 → 0 almost surely
as n→ ∞.

Note that the conclusion of above theorem holds when vSp
r (Xn) is replaced by the right singular vector vr(Xn),

which may be used to justify the use of SVD in the estimation of PC directions. The theorem implies that vSp
r (X)

is a statistically accurate approximation of the population PC direction.

Proof. It is known that, for independent and identically distributed (i.i.d.) random variables with a finite
covariance matrix, the sample covariance matrix almost surely converges to the population covariance matrix.
Furthermore, when the eigenvalues of the population covariance matrix are distinct, the eigenvector corresponding
to the jth largest eigenvalue of the sample covariance matrix converges to that of the population covariance
matrix, almost surely.

It is enough to show that Var( x1

∥x1∥2
) = VΛ̃VT where V = (v1, . . . ,vp) is a matrix consisting of PC directions,

and Λ̃ = Diag(λ̃1, . . . , λ̃p) with λ̃1 > · · · > λ̃p. Denote Z = VTx1. Note that the x1 is from an elliptical
distribution, so that characteristic function of x1 is represented by ϕx1

(t) = ψ(tTVΛVt) for some scalar
function ψ : R → R, and the characteristic function of Z is represented by ϕZ(t) = ψ(tTΛt). It implies that
pdfZ(z1, . . . , zj , . . . , zp) = pdfZ(z1, . . . ,−zj , . . . , zp) for any j = 1, . . . , p. Thus, we have

E(
Zi

∥Z∥2
) = 0, E(

ZiZj

∥Z∥22
) = 0.

It implies that the off diagonal elements of Var( Z
∥Z∥2

) are zero. On the other, for j = 1, . . . , p− 1,

E(
Z2
j

∥Z∥22
) = E(

Z2
j

Z2
j + Z2

j+1 +
∑

i ̸=j,j+1 Z
2
i

)

= E(
λjY

2
j

λjY 2
j + λj+1Y 2

j+1 +
∑

i ̸=j,j+1 λiY
2
i

)

> E(
λj+1Y

2
j+1

λj+1Y 2
j+1 + λjY 2

j +
∑

i ̸=j,j+1 λiY
2
i

) = E(
Z2
j+1

∥Z∥22
)

where Y = (Y1, . . . , Yp)
T is a random vector which has a characteristic function ϕY(t) = ψ(tT t). Thus, the

diagonal elements of Var( Z
∥Z∥2

) are decreasing. Hence,

Var(
x1

∥x1∥2
) = VVar(

Z

∥Z∥2
)VT = VΛ̃VT

where Λ̃ = Diag(λ̃1, . . . , λ̃p) with λ̃j = E(
Z2

j

∥Z∥2
2
).

7.1.2 Proof of Theorem 1

Proof. Let Σ0 =
∑p

j=1 djvjv
T
j be the covariance matrix of x1

∥x1∥2
by Statistical Accuracy Theorem. Let Σ̂ϵ be

the sample covariance made with n normalized samples [ x1

∥x1∥ , . . . ,
x(1−ϵ)n

∥x(1−ϵ)n∥
, y1

∥y1∥ , . . . ,
yϵn

∥yϵn∥ ]. By Davis-Kahan
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theorem and taking expectation the both sides, we have E
[
min{∥v̂Sp

j − vj∥2, ∥v̂Sp
j + vj∥2}

]
≤ 22/3

δj
E
[
∥Σ̂ϵ −Σ0∥

]
with spectral norm ∥·∥. The right-hand side can be bounded as

E
[
∥Σ̂ϵ −Σ0∥

]
≤ ϵE

[
∥ 1

ϵn

ϵn∑
i=1

yiy
T
i

∥yi∥22
∥

]
+ (1− ϵ)E

∥ 1

(1− ϵ)n

(1−ϵ)n∑
i=1

xix
T
i

∥xi∥22
−Σ0∥

 .
Using Theorem 4.7.1 (Covariance estimation in Vershynin (2018)), We have

E
[
∥Σ̂ϵ −Σ0∥

]
≤ ϵ+ (1− ϵ) c

(√
p

(1− ϵ)n
+

p

(1− ϵ)n

)
,

where c is an absolute constant. Thus,

E
[
∥v̂Sp

j − vj∥2
]
≤ 1

δj
{2 3

2 ϵ+ (1− ϵ)C(

√
p

(1− ϵ)n
+

p

(1− ϵ)n
)}

≤ 1

δj
(C ′ϵ+ C ′′

√
(1− ϵ)ϵ)

for some absolute constants C ′, C ′′ > 0.

7.1.3 Proof of Lemma 2

We provide a proof for the lemma, where Lemma 2 is a direct consequence of the following lemma.

Lemma 6.

(i) bprow(V;X) = k if and only if (k, l) ∈ BP(V;X) for some 1 ≤ l ≤ p and (i, j) ̸∈ BP(V;X) for any
(i, j) ⪯ (k − 1, p).

(ii) bpcol(V;X) = l if and only if (k, l) ∈ BP(V;X) for some 1 ≤ k ≤ n and (i, j) ̸∈ BP(V;X) for any
(i, j) ⪯ (n, l − 1).

Proof. Assume that bprow(V;X) = k. It implies that V breaks down at block-size (k, p) at X, thus there exists
(i, j) ∈ BP(V;X) such that (i, j) ⪯ (k, p). Since bprow(V;X) > k − 1, V does not break down at block-size
(i, j) at X for any (i, j) ⪯ (k − 1, p). Thus, (k, l) ∈ BP(V;X) for some 1 ≤ l ≤ p and (i, j) ̸∈ BP(V;X) for any
(i, j) ⪯ (k − 1, p).

Assume that (k, l) ∈ BP(V ;X) for some 1 ≤ l ≤ p and (i, j) ̸∈ BP(V ;X) for any (i, j) ⪯ (k− 1, p). Then, we have
bprow(V;X) ≤ k since (k, l) ∈ BP(V;X) for some 1 ≤ l ≤ p, and bprow(V;X) > k − 1 since (i, j) ̸∈ BP(V;X) for
any (i, j) ⪯ (k − 1, p).

The proof of the second part of this lemma about the column-wise brakdown points, can be given by following
the lines of the above, with X replaced by XT and V replaced by VT : Rp×n → R given by VT (XT ) = V(X).
Lemma 2 is proved by setting k = 1 or l = 1 in Lemma 6.

7.1.4 Proof of Proposition 3

Proof. The proof of Proposition 3 can be given by following the lines of the proof for Theorem 4, with ρ(Z) =∑
i,j ρij(zij) =

∑
i,j z

2
ij without the regularizations.

7.1.5 Proof of Theorem 4

Proof. Let (σρ
r ,u

ρ
r ,v

ρ
r) be the rth solution to (7) for X = (xij) ∈ Rn×p. Let U = Uρ

R(X) and let U⊥ be
the orthogonal complement of Uρ

R(X). Denote a unit vector in Rn with the ith element 1 by ei. Since the
dimension of U is R < n, there exist w := d1el1 + · · · + dR+1elR+1

with d21 + · · · + d2R+1 = 1 such that

w ∈ U⊥. Assume that li = i, for notational simplicity and denote w = (w1, . . . , wn)
T = (d1, . . . , dR+1, 0, . . . , 0)

T .
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Let M be a constant satisfying
∑

(i,j)∈I ρij(xij) + b < M where I = {(i, j) : i > R + 1 or j > 1} and

b = supu∈Sn−1 P1(u)+ supv∈Sp−1 P2(v). For arbitrary 0 < ε < 1, define Sε = {u ∈ Rn : |uTw| > ∥u∥2(1− ε2/2)}
and B(c) = {u = (u1, . . . , un) ∈ Rn :

∑R+1
i=1 ρi1(cdi − ui) +

∑n
i=R+2 ρi1(xi1 − ui) < M}. For some M ′ > 0, we

can find a neighborhood of cw with radius M ′, given by B(cw,M ′) := {cw + u ∈ Rn : ∥u∥2 ≤ M ′} satisfying
B(c) ⊂ B(cw,M ′) since ρij diverges at the boundaries of R. Here M ′ > 0 is independent of c > 0. By growing c,
we can choose c0 such that B(c0) ⊂ B(c0w,M

′) ⊂ Sε. Let Z = (zij) = (z1, . . . , zp) ∈ Rn×p be denoted by

{
zij = xij if (i, j) ∈ I,

zi1 = c0di if i = 1, . . . , R+ 1.

Then,

min
a∈Rp

{ρ(Z−waT ) + P1(w) + P2(a/∥a∥)}

≤ min
a1∈R

R+1∑
i=1

ρi1(zi1 − dia1) +

p∑
j=2

min
aj∈R

R+1∑
i=1

ρij(zij − diaj) +

n∑
i=R+2

p∑
j=1

ρij(zij) + b

= min
a1∈R

R+1∑
i=1

ρi1(c0di − dia1) +

p∑
j=2

min
aj∈R

R+1∑
i=1

ρij(xij − diaj) +

n∑
i=R+2

p∑
j=1

ρij(xij) + b

≤ 0 +
∑

(i,j)∈I

ρij(xij) + b < M.

For any u ̸∈ Sε with ∥u∥2 = 1, au ̸∈ B(c0) for any a ∈ R. Hence,

min
a∈Rp

{ρ(Z− uaT ) + P1(w) + P2(a/∥a∥)}

≥ min
a1∈R

n∑
i=1

ρi1(zi1 − via1) ≥M.

Thus, wρ
1 ∈ Sε where (η

ρ
r ,w

ρ
r , s

ρ
r) is the rth solution to (7) for Z. Hence we have |(wρ

1)
Tuρ

r | = |(wρ
1−w+w)Tuρ

r | ≤√
2− 2(1− ε2/2) = ε for all r. Let Uρ = (uρ

1, . . . ,u
ρ
R) ∈ Rn×R be a matrix whose columns are basis vectors

of U , and Wρ = (wρ
1, . . . ,w

ρ
R) ∈ Rn×R be a matrix whose columns are basis vectors of W := Uρ

R(Z). Let

A = WTVVTW and Ã = (ãij) with the (i, j)th element ãij = 0 if i = 1 or j = 1, and ãij = aij otherwise. By
Weyl’s Theorem,

cos2(θ(U ,W)) ≤ ∥A− Ã∥F ≤ 2R2ε.

Since ε is arbitrary, supZ1
R+1

θ(UR(X),UR(Z
1
R+1)) =

π
2 . Thus, (k, 1) ∈ BP(Uρ

R;X) for some k ≤ R+ 1. Moreover,

it implies that, bpcol(U
ρ
R;X) = 1 and bprow(U

ρ
R;X) ≤ R+ 1.

The proof of the second part of this theorem can be given by following the lines of the above, with X replaced by
XT and Uρ

R replaced by UρT
R : Rp×n → R given by UρT

R (XT ) = Vρ
R(X).

7.1.6 Proof of Theorem 5

Proof. We prove the second part of this theorem about the Rth right singular space, VSp
R . Assume that

bprow(V
Sp
R ;X) = m < nR. For an arbitrary small ε, take a corrupted data Zm = (z1, . . . , zn) such that

|I0| = |{i : zi = xi}| = n−m, and choose v⊥ ∈ VSp
R (Zm) such that ∥Π⊥

Rv⊥∥2 < ε where Π⊥
R is the projection
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matrix of VSp
R (X). Let ΠR = (I−Π⊥

R) be the projection matrix of the orthogonal complement of VSp
R (X). Then,

vT
⊥(

n∑
i=1

ziz
T
i

zTi zi
)v⊥ = vT

⊥
(∑
i ̸∈I0

ziz
T
i

zTi zi

)
v⊥ + vT

⊥
(∑
i∈I0

xix
T
i

xT
i xi

)
v⊥

≤ m+ vT
⊥
(∑
i∈I0

(ΠR +Π⊥
R)

xix
T
i

xT
i xi

(ΠR +Π⊥
R)

)
v⊥

≤ m+ vT
⊥
(∑
i∈I0

ΠR
xix

T
i

xT
i xi

ΠR

)
v⊥ + 3(n−m)ε

≤ m+
(
λ1(X̃mΠR)

)2
+ 3(n−m)ε

where X̃m ∈ R(n−m)×p is the submatrix of X̃row obtained by choosing (n−m) rows indexed by I0. On the other
hand,

vT
⊥(

n∑
i=1

ziz
T
i

zTi zi
)v⊥ ≥ sup

V∈Gr(p,R)

min
v∈V

{vT (

n∑
i=1

ziz
T
i

zTi zi
)v}

= sup
V∈Gr(p,R)

min
v∈V

{vT (
∑
i ̸∈I0

ziz
T
i

zTi zi
)v + vT (

∑
i∈I0

xix
T
i

xT
i xi

)v}

≥
(
λR(X̃m)

)2
.

It implies that

(1− 3ε)m ≥
(
λR(X̃m)

)2 − (
λ1(X̃mΠR)

)2 − 3nε,

thus,

(1− 3ε)m ≥ inf
X̃m

{
(
λR(X̃m)

)2 − (
λ1(X̃mΠR)

)2} − 3nε.

Since ε is arbitrary,

m ≥ inf
X̃m

{
(
λR(X̃m)

)2 − (
λ1(X̃mΠR)

)2}.
It is a contradiction since m < nR. Thus, bprow(V

Sp
R ;X) ≥ nR. It implies that (nR, 1) ⪯ (i, j) for any

(i, j) ∈ BP(VSp
R ;X).

To show that bpcol(V
Sp
R ;X) ≤ R + 1, let V = VSp

R (X) and let V⊥ be the orthogonal complement of VSp
R (X).

Denote the unit vector in Rp with the jth element 1 by ej . Since the dimension of V is R < p, there exist
s := d1e

l1 + · · · + dR+1e
lR+1 with d21 + · · · + d2R+1 = 1 such that s ∈ V⊥. Assume that lj = j, for notational

simplicity and denote s = (w1, . . . , wp)
T = (d1, . . . , dR+1, 0, . . . , 0)

T . For X = (x1, . . . ,xp) ∈ Rn×p and c > 0,
define a corrupted matrix constructed by replacing R + 1 columns of X, by ZR+1(c) = (z1(c), . . . , zn(c))

T =
(z1(c), . . . , zp(c)) with zj(c) = cdj1n for j = 1, . . . , R + 1, and zj(c) = xj for j = R + 2, . . . , p. Let Y(c) =

(y1(c), . . . ,yn(c))
T ∈ Rn×p be a row-normalized matrix of ZR+1(c) whose ith row is yi(c) =

zi(c)
∥zi(c)∥2

. Denote

Y := limc→∞ Y(c) = (s, . . . , s)T ∈ Rn×p. By Davis-Khan Theorem,

sin
(
θ
(
s,v1(Y(c))

))
≤ 2

n
∥YTY −Y(c)TY(c)∥F → 0

as c→ ∞ where v1(Y(c)) is the right singular vector corresponding to the largest singular value of Y(c). Note

that the right singular space obtained from SpSVD, VSp
R (Z(c)), equals the right singular space, VR(Y(c)). Thus

sup
ZR+1

θ(VSp
R (X),VSp

R (ZR+1)) ≥ lim
c→∞

θ(VSp
R (X),VSp

R (ZR+1(c))

= lim
c→∞

θ(VSp
R (X),VR(Y(c))) =

π

2
.

It implies that bpcol(V
Sp
R ;X) ≤ R+ 1.

The proof of the first part of this theorem can be given by following the lines of the above, with X replaced by
XT and VSp

R replaced by (VSp
R )T : Rp×n → R given by (VSp

R )T (XT ) = USp
R (X).
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7.2 COMPUTATION COMPLEXITY

7.2.1 Computation Complexity for Algorithm 1

For inputs, small rank R and a data matrix X ∈ Rn×p, Algorithm 1 consists of the following steps: normalization,
rank-R SVD, and finding the solution to (3). Each row of X, which is a p-vector, is normalized for i = 1, . . . , n.
This step requires computation time of O(np). Similarly, column normalization is performed with the same
complexity. We use a partial SVD algorithm to find the rank-R approximation of the normalized data, which
requires O(npR) complexity. Finally, the solution to (3) is computed using a selection algorithm that finds the
smallest value among the npR2 elements. Each step for r = 1, . . . , R takes npR2 computations, resulting in a
total computation burden of O(npR3) for k = 1, . . . , R.

7.2.2 Computation Complexity of Other Methods

In Section 5, we performed comparison of SpSVD with other methods. Brahma et al. (2017) presents computational
complexity of part of the R2PCP algorithm in their paper. Although they propose new batch version of algorithm
to get reduced computational complexity, they did not reveal the total computational complexity of the entire
process. On the other hand, Candès et al. (2011) claims that the dominant cost in RPCA algorithm comes
from computing one partial SVD per iteration. Although the number of iterations in their algorithm appears to
remain nearly constant regardless of dimension, the algorithm in the R package rpca (Sykulski, 2015) requires
significantly more time to run compared to other methods.

7.3 ADDITIONAL DETAILES IN NUMERICAL STUDIES

In this numerical studies, we generate the data, and implement standard SVD and SpSVD using R. We used the
R package rpca (Sykulski, 2015) for RPCA, Matlab implementation for COP, and R2PCP (Brahma et al., 2017)
was implemented using their source code in Matlab.

7.3.1 Data Generation and Adding Contamination in the Simulation Experiment

To generate randomly sampled matrices U and V from the uniform distribution on the set of orthogonal matrices,
respectively, we create a matrix consisting of standard normal random noise and apply QR decomposition. It is
well known that this orthogonal matrix obtained from QR decomposition follows the uniform distribution on the
set of orthogonal matrices of the same size.

To generate the sparse outlier matrix S, we arbitrary choose 0.05% of the indices as I = {i1, . . . , i10} ⊂ {1, . . . , n}
and J = {j1, . . . , j5} ⊂ {1, . . . , p}, respectively. Note that |I| ≥ 4 and |J | ≥ 4. Let UI ∈ R|I|×3 and VJ ∈ R|J|×3

be the submatrices of U ∈ Rn×3 and V ∈ Rp×3 consisting of rows indexed by I and J , respectively. We can
find solutions ã = (ã1, . . . , ã10)

′ ∈ R|I| and b̃ = (b̃1, . . . , b̃5)
′ ∈ R|J| satisfying UT

I ã = 03 and VT
J b̃ = 03. We

define the sparse outlier matrix by S = abT /∥a∥2∥b∥2, where a = (a1, . . . , an)
′ ∈ Rn has elements zero excepts

for elements indexed by I as ail = ãl for l = 1, . . . , 10, and b = (b1, . . . , bp)
′ ∈ Rp has elements zero excepts for

elements indexed by J as bjk = b̃k for k = 1, . . . , 5. Then, the row space and column space of S are orthogonal to
those spaces of L, respectively.

7.3.2 Extra Result for the Simulation Experiment

Due to computational limitations, we compared SVD, SpSVD, and RPCA without iterations for increasing
matrix sizes in Section 5. In addition to those comparisons, we also provide experiments with 100 iterations while
increasing the matrix size from 200× 100 to 600× 300. For C = 1, 1.2, . . . , 2.8, 3, with n = 200 and p = 100, we
generate a data matrix X ∈ RC·n×C·p. To maintain the magnitude of singular values and outliers, we set η as
500C and the singular values (d1, d2, d3) as C · (80, 70, 60). The block of S containing the outliers has sizes of
(0.05nC, 0.05pC). The results are presented in Figure 2.

As C increases, RPCA and SpSVD exhibit better accuracy for the singular spaces and a singular value in
Figure 2(a),2(b),and 2(c). RPCA takes longer time as C increases compared to SVD, and other methods including
ELSVD and R2PCP also require more time as C increases compared to SVD as described in Figure 2(d).
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(a) Right Singular Vector (b) Left Singular Vector (c) Singular Value (d) Computation Time

Figure 2: The Approximation Accuracy, Robustness, and Computation Times against Increasing Scale C in (a),
(b), (c) and (d).

7.3.3 Higher Rank Case

The data matrix without outliers X ∈ Rn×p is set to be the sum of rank-9 L = (lij) and E consisting of standard

normal random noises with n = 1000 and p = 500. The rank-9 L is L =
∑9

r=1 drurv
T
r , (d1, d2, . . . , d8, d9) =

(750, 700, . . . , 400, 350), and U = (u1, . . . ,u9) and V = (v1, . . . ,v9) are randomly sampled where the uniform
distribution on the set of orthogonal matrices, respectively. We add a sparse outlier matrix S = (sij) multiplied
by η = 1000, a scaling parameter, to the data matrix X, i.e.,

X = L+E, Xη = L+ ηS+E.

The outlier matrix S has non-zero elements (sij) only in arbitrarily chosen 0.05n = 50 rows indexed by I50 and
0.05p = 25 columns indexed by J25. Thus,{

sij = lij if i ∈ I50 and j ∈ J25,

sij = 0 otherwise .

The simulation is repeated 10 times.

Table 1: Result of The Additional Simulation Study with The Data Size of 2000 by 1000 and Rank 9

METHOD RIGHT ANGLE LEFT ANGLE RATIO OF SINGULAR VALUE TIME(sec)

SpSVD 4.93 6.11 0.99 17.39
SVD 83.47 81.35 61.42 0.02
RPCA 4.31 6.12 0.96 2987.12
ELSVD 84.92 84.98 63.39 6454.69
R2PCP 77.92 85.49 11.01 890.98
COP 4.19 76.33 18.80 0.09

The results are provided in Table 1. Similarly to the findings in Section 5, SpSVD and RPCA demonstrate
superior performance concerning the angles and the ratio, as indicated in the second, third, and fourth columns.
COP, similar to our proposal (as it normalizes each vector), exhibits robustness in subspace recovery (right
singular subspace). However, it’s important to note that the algorithm in Rahmani and Atia (2017) is robust
PCA algorithms, not robust SVD algorithms. While they succeed in recovering the right singular vectors (the
basis vectors of PC subspaces), they do not provide both left and right singular vectors along with their singular
values simultaneously.
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(a) Ground Truth. (b) X̂svd
2 , r(X̂svd

2 ) = 51.56

(c) X̂Sp
2 , r(X̂Sp

2 ) = 1.02 Time: 0.13 sec (d) X̂rpca
2 , r(X̂Sp

2 ) = 1.01 Time: 68.56 sec

Figure 3: Rank-2 Approximations by SVD, SpSVD and RPCA Using Contaminated Data, Compared with the
Ground Truth.

7.3.4 Real Data

The data X is obtained from the raw data using the following steps. First, each variable in the raw data is
transformed using the logarithm base 2 transformation. Then, we apply one-way ANOVA to the centered and
normalized raw data with respect to the labels of patients, which have two categories: ”good” and ”poor”,
representing the condition of the patients. We select 500 variables from the entire gene expressions based on the
p-values obtained from the one-way ANOVA. Subsequently, we obtain the data matrix X containing these 500
variables and scale it to have zero mean and unit variance.

For the data matrix X = (xij), we arbitrarily choose approximately 0.1n ≈ 16 rows indexed by I16 and 0.1n ≈ 16
columns indexed by J16. We assign outlyingness to the data matrix by amplifying the 162 elements corresponding
to these rows and columns 1000 times. Thus, the data matrix with contamination, denoted as Xη = (xηij), is
given by {

xηij = 1000xij if i ∈ I16 and j ∈ J16,

xηij = xij otherwise .

7.3.5 Lower Bounds of Breakdown Points

In Section 4, we presented the lower bounds nR and pR for the breakdown points of the right and left singular
spaces obtained from SpSVD, respectively. To determine whether nR is equal to k for k = 1, . . . , n, we need to
check the inequality in (8) for all possible submatrices of a row-normalized matrix. However, as the number of
rows n increases, this process becomes increasingly challenging, even for small values of k.

We evaluate the lower bounds of the breakdown points using small-sized data. We construct a data matrix
X = L+E ∈ Rn×p with n = 200× 0.3 = 60 and p = 100× 0.3 = 30, where L is a rank-3 matrix and E is a matrix
consisting of standard normal random noise. The rank-3 matrix L has singular values (d1, d2, d3) = (80, 70, 60)× t,
with t = 0.3, 0.45, 0.6, and the corresponding singular vectors are arbitrarily chosen.

Table 2 illustrates the values of the lower bounds nR(X) and pR(X) for each t = 0.3, 0.45, 0.6 and R = 3. When
larger singular values are assigned, it implies a larger gap between the two successive singular values of order
R and R + 1. We observed that the lower bounds nR and pR tend to increase as the singular values increase.
The lower part of Table 2 also presents similar results for the case where R = 1 and the rank-1 matrix L has a
singular value of 60× t with t = 0.3, 0.45, 0.6. Based on the observation where n = 200× 0.3, p = 100× 0.3, and



Sangil Han, Kyoowon Kim, Sungkyu Jung

the singular values (80, 70, 60)× 0.3, depicted in the first line of Table 2, we roughly choose the size of the outlier
block as (0.05n, 0.05p) in the simulation experiment of Section 5.

Table 2: The Breakdown Points of the Right and Left Singular Spaces Obtained from SpSVD with Various
Singular Values and R. Due to the computational burden, we restricted our computations to nR and pR up to 6.
In cases where the lower bound exceeds or equals 7, we denote it as 7↑, indicating that an exact value cannot be
computed.

The lower bound of breakdown points
Singular values R nR pR
(80, 70, 60)× 0.3 3 3 2
(80, 70, 60)× 0.45 3 5 2
(80, 70, 60)× 0.6 3 6 3
(60)× 0.3 1 6 2
(60)× 0.45 1 7↑ 4
(60)× 0.6 1 7↑ 5

7.4 Breakdown points in existing methods

A reviewer suggested to investigate the breakdown points of the existing methods used in the empirical study.
The singular vectors from the iterative algorithms of RPCA and R2PCP do not have closed-forms, and it is
inherently very challenging to theoretically grasp the breakdown point for these methods. We were not able to
find a right technical tool for such purpose. Note that the authors of RPCA and R2PCP did not investigate the
breakdown for singular vectors.

It turns out that COP has breakdown points upper-bounded by small numbers. (This is in contrast to our
proposal, for which breakdown points are lower-bounded; recall that the higher breakdown point, the more robust
a method is.) The COP algorithm, we used in Section 5, has a tuning parameter m, and consists of two steps:
Screening out m potential outliers, then applying the vanilla SVD. Below we provide details for rank R = 1 SVD
approximation.

Let COPm denote the COP algorithm (that removes m outliers). For data matrix X ∈ Rn×p, let Vm
1 : Rn×p →

Gr(1,p) be given by Vm
1 (X), which is the one-dimensional subspace spanned by the (first) right singular vector of

X obtained by COPm, and Um
1 be the left singular vector, obtained by an application of COPm. In aspects of

our breakdown notions, the breakdown points of Vm
1 and Um

1 for any X ∈ Rn×p are given as

bprow(Vm
1 ;X) ≤ m+ 1,bprow(Um

1 ;X) ≤ 2,

bpcol(Vm
1 ;X) ≤ 2,bpcol(Um

1 ;X) = 1,

(k + 1, 2) ⪰ (i, j) for some (i, j) ∈ BP(Vm
1 ;X),

(2, 1) ⪰ (i, j) for some (i, j) ∈ BP(Um
1 ;X).

Here, (2, 1) ⪰ (i, j) for some (i, j) ∈ BP(Um
1 (X)) implies that block-wise breakdown occurs by changing two

elements in one column of X. Our numerical experiments reflect these theoretical findings: COPm was shown
to be robust and accurate in recovering the right singular subspace (Vm

1 ), but failed to recover the left singular
subspace (Um

1 ). Note that in these studies we have set m to be the true number of outliers.
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