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Abstract

In this paper, we tackle the challenge of
white-box false positive adversarial attacks
on contrastive loss based offline handwrit-
ten signature verification models. We pro-
pose a novel attack method that treats the
attack as a style transfer between closely re-
lated but distinct writing styles. To guide the
generation of deceptive images, we introduce
two new loss functions that enhance the at-
tack success rate by perturbing the Euclidean
distance between the embedding vectors of
the original and synthesized samples, while
ensuring minimal perturbations by reducing
the difference between the generated image
and the original image. Our method demon-
strates state-of-the-art performance in white-
box attacks on contrastive loss based offline
handwritten signature verification models, as
evidenced by our experiments. The key con-
tributions of this paper include a novel false
positive attack method, two new loss func-
tions, effective style transfer in handwriting
styles, and superior performance in white-
box false positive attacks compared to other
white-box attack methods.

1 INTRODUCTION

In the ever-evolving digital landscape, adversarial at-
tacks have become a serious concern. An adversarial
attack, which involves presenting manipulated input
to machine learning models to induce incorrect out-
puts, has posed a threat to most models across the field
(Szegedy et al., 2014; Liu et al., 2022a,b; Li et al., 2022;

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

Zhao et al., 2023; Lau et al., 2023; Yu et al., 2023; Guo
et al., 2024). Such attacks can be broadly classified
into two categories: targeted and untargeted attacks.
In targeted attacks, the adversary tries to manipulate
the system to produce a specific outcome. In contrast,
untargeted attacks aim to return an incorrect output,
without any particular outcome in mind. Addition-
ally, depending on the adversary’s knowledge about
the system, attacks can be categorized as white-box
attacks (where the attacker has full knowledge about
the model) and black-box attacks (where the attacker
has no knowledge about the model) (Papernot et al.,
2016; Akhtar and Mian, 2018; Kurakin et al., 2018).
Adversarial attacks have become particularly impor-
tant in the context of personal authentication, and
in particular offline handwritten signature verification
(hereafter referred to as signature verification), given
the recent shift towards the use of biometric informa-
tion. Based on their output, we can distinguish be-
tween existing signature verification approaches based
on classification models and contrastive learning mod-
els. Classification models aim to classify signatures as
genuine or forged based on extracted features (Yılmaz,
2015; Hafemann et al., 2016; Ren et al., 2023). On the
other hand, contrastive learning models aim to learn
a representation where signatures from the same class
are closer in the latent space (Guo et al., 2023), while
those from different classes are far apart (Rantzsch
et al., 2016; Dey et al., 2017).

Notably, among these models, SigNet (Dey et al.,
2017), which employs contrastive learning, has con-
sistently achieved state-of-the-art results across al-
most all public datasets. Given its prominence and
widespread use, we adopted it as our target model for
adversarial attacks in the present work.

The extensive utilization of these systems has conse-
quently increased their susceptibility to a variety of
attack forms. Intriguingly, given the binary output of
these systems – authentic or forged – the nature of at-
tacks in this domain blurs the lines between targeted
and untargeted adversarial attacks. Regardless of the
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Figure 1: Overview of our approach to executing an attack on a contrastive loss based siamese neural network.
The network architecture involves the processing of two inputs: a genuine and a synthesized image. The latter
is initialized using content derived from a forged image, and uniquely, remains the sole trainable element within
this otherwise frozen network setup. Upon processing, the network generates a pair of embedding vectors; these
are integral in computing the attack loss. Simultaneously, style loss is calculated within designated convolutional
layers distributed among the twin branches of the network. A difference loss emerges from the comparison
between the synthesized and the forged images. Moreover, the synthesized image alone serves as the basis for
the calculation of the total variation loss. Crucially, all computed losses are fed back into the synthesized image

attack strategy, the objective remains the same: to get
a wrong decision from targeted systems. In the con-
text of this work, the types of attack of interest are
True Negative (TN) and False Positive (FP) attacks.

TN attack is aimed at authentic signatures. The goal
is to manipulate a genuine signature such that it is
falsely rejected by the model as a forgery. Conversely,
the FP attack targets forged signatures, whose aim is
to subtly modify a forged signature to the point where
it is falsely accepted by the model as being genuine.

The existing attack methods, such as Fast Gradient
Sign Method (FGSM), Iterative Gradient Sign Method
(IGS), and Momentum Iterative Method (MIM), were
primarily designed for classification tasks on images
with richer backgrounds, making them less effective
on signature images which typically have clean back-
grounds (Goodfellow et al., 2015; Kurakin et al., 2018;
Dong et al., 2018). This limitation is further high-
lighted by the evident imbalance between the success
rates of TN and FP attacks (Hafemann et al., 2019).
The clean background of signature images makes any
introduced perturbation stand out, diminishing the
successes of FP attacks. This observation has signifi-
cantly driven our research focus towards FP attacks.

Rather than promoting these attacks, our study seeks
to understand their underlying mechanics and their
impact on contrastive loss based signature verification
systems. The goal is to identify weaknesses in current
authentication methods and further develop counter-

measures to enhance system robustness and security.

The signature verification systems that we target in
this study are predominantly trained with contrastive
loss (Hadsell et al., 2006), a strategy that has proven
highly effective in learning rich representations for
signature verification. To our knowledge, there are
currently no attack methods specifically designed for
contrastive loss based models. Although various at-
tack methods intended for classification models can be
adapted for these systems, their effectiveness is greatly
reduced in FP attacks, as our experimental results will
shortly demonstrate. This highlights the need for an
effective FP attack method on contrastive loss based
models, which will contribute to the development of
more robust and reliable authentication systems.

To this end, in this paper we consider style transfer
as a potentially beneficial tool. Style transfer, the
task of applying the style of one image to the con-
tent of another, has seen impressive advancements over
the years. Pioneering work by Gatys et al. (2015)
used Convolutional Neural Networks (CNN) to sepa-
rate and recombine content and style of arbitrary im-
ages, resulting in artistically appealing results (Gatys
et al., 2015; Johnson et al., 2016; Zhu et al., 2017).
Inspired by their work, we propose to think of signa-
ture verification as a comparison of writing styles with
identical content. By harnessing the power of style
transfer, we aim to bridge the gap between different
writing styles through the perturbations generated by
our attack. By aligning the visual attributes of ma-
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nipulated signatures with those of genuine signatures,
we strive to deceive the model by blurring the distinc-
tion between authentic and forged writing styles. We
believe that this approach can significantly contribute
to enhancing the success rate of FP attacks.

This research serves as a stepping stone towards bol-
stering the security of biometric systems. Our focus on
FP attacks and the application of style transfer aim
to challenge existing vulnerabilities, paving the way
for more comprehensive security measures in biometric
systems, specifically those using contrastive learning.

The main contributions of the present are:

• We propose a novel FP attack method to address
the inability of existing attack methods to con-
trastive loss based signature verification systems.

• We propose two novel loss functions which guide
the generation of deceptive images by minimiz-
ing the distance between the embedding vectors
of the genuine and synthesized images, meanwhile
ensuring minimal perturbations.

• We demonstrate the effectiveness of style transfer
in terms of handwriting style. This is achieved by
the success of embedding the writing-style texture
of the target signature into the perturbation.

• We present state-of-the-art performance in exe-
cuting white-box FP attacks, greatly outperform-
ing the existing white-box attack methods.

2 RELATED WORK

The field of adversarial attacks and its defense on sig-
nature verification systems, though of significant im-
portance, remains under-explored. So far, only a small
amount of work has been done.

Yu et al. (2016) focused on optimizing decision-making
in signature verification systems in the presence of
spoofing attacks. They explored different optimiza-
tion strategies to enhance the robustness of classifi-
cation models used in signature verification. Their
research provided valuable insights into potential ap-
proaches for improving the reliability of signature ver-
ification systems in real-world scenarios. Hafemann
et al. (2019) conducted a study characterizing and
evaluating adversarial examples for signature verifica-
tion, with a specific focus on the impact of different
classification heads . They investigated the vulnera-
bilities of signature verification systems to adversarial
attacks and found an imbalance in the success rates of
True Negative (TN) and False Positive (FP) attacks in
classification models. This highlights the importance
of addressing the robustness and balance of FP attacks

in signature verification, which is one of the motiva-
tions for our research. Li et al. (2021) proposed the
first black-box attack method against signature verifi-
cation systems. They demonstrated the vulnerability
of signature verification models to black-box attacks
and introduced a novel approach to generate adversar-
ial perturbations that are restricted to specific regions
of the signature image. Notably, their targeted model
is also a classification model rather than a contrastive
learning model. Bird et al. (2023) investigated the vul-
nerabilities of signature verification systems to robotic.
Their research highlighted the potential risks associ-
ated with robotic writers in signature verification and
revealed the limitations of using GANs for generating
signatures with similar distributions. Their findings
emphasize the need for robust defenses in signature
verification systems to mitigate these threats.

A common thread in these studies is their focus on
classification models, revealing a significant gap in re-
search concerning adversarial attacks on other types
of models in signature verification systems. This calls
for further research to address this void and diversify
defenses against adversarial attacks.

3 METHODS

In this section, we introduce our novel approach to ex-
ecuting an attack on a contrastive loss based Siamese
neural network. As outlined in Figure 1, the method
incorporates four distinct loss functions in the genera-
tion of misleading synthesized images from a forged
image. These loss functions guide the adversarial
training process by encouraging the feature represen-
tations of the synthesized images to move closer to
those of genuine images. Our attack is white-box due
to its superior performance for adversarial research
and the ease of accessing network information through
hardware-level attacks (Wei et al., 2020; Zhang et al.,
2021).

Firstly, we will define the problem and the specific type
of attacks our method aims to carry out. Then, we will
dive into a detailed explanation of the loss functions
and optimization involved in our approach.

3.1 Problem Definition

Our method pivots from the conventional approach of
attacking classification models to target those based on
contrastive loss. Our main focus is on signature ver-
ification models. The operation process of the model
(Dey et al., 2017) we aim to attack unfolds as follows.

The model applies a threshold τ on the distance mea-
sure D(xi, xj), to segregate signature pairs (i, j) into
classes of similarity or dissimilarity. Pairs possess-
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ing identical identities are labeled Psimilar, while pairs
with different identities are classified as Pdissimilar. In
this framework, the collection of all true positives (TP)
at the threshold τ is expressed as:

TP(d) = {(i, j)|(i, j) ∈ Psimilar and D(xi, xj) ≤ τ}.

Similarly, the set of all true negatives (TN) at distance
τ is defined as:

TN(τ) = {(i, j)|(i, j) ∈ Pdissimilar and D(xi, xj) > τ}.

Subsequently, the true positive rate TPR(τ) and the
true negative rate TNR(τ) for a specific signature dis-
tance τ are computed as follows:

TPR(τ) =
|TP(τ)|
|Psimilar|

, TNR(τ) =
|TN(τ)|
|Pdissimilar|

,

where Psimilar represents the total count of similar
signature pairs. The final accuracy is determined as:

Accuracy = max
τ∈D

(
1

2
· (TPR(τ) + TNR(τ))

)
.

This is the maximal accuracy achievable by adjusting
τ from the smallest to the largest distance value in D,
with an incremental step.

In our method, we strategically choose to focus on FP
attacks due to the asymmetry in difficulty between FP
and TN attacks. Our goal is to craft an algorithm that
can generate deceptive forgeries which would lead to a
decrease in the model’s verification accuracy.

Let us consider a FP attack method towards the above
contrastive loss based signature verification model.
Define a set S, where each element is a pair of im-
ages (Yi,Yj) such that:

S = {(Yi,Yj) | (Xi,Xj) = F (Yi,Yj), D(Xi,Xj) > τ}.

In S, (Xi,Xj) are d-dimensional vectors computed
through a function F (representing the signature verifi-
cation model), and D is the distance measure function
in the embedding space. The decision threshold, τ , is
a constant.

Our objective is to find a transformation function G,
which has Y′

j = G(Yj), such that a new set S ′ is
defined as follows:

S ′ = {(Yi,Y
′
j) | (Xi,X

′
j) = F (Yi,Y

′
j), D(Xi, X

′
j) ≤ τ},

where X′
j represents the new embedding vector ob-

tained from the transformed image G(Yj). The func-
tion G modifies the original image Yj to create a new
image, but does not change Yi or the system parame-
ters. The goal is to ensure that for all pairs in S ′, the
distance between the embedding vectors is less than τ .

3.2 Attack Loss

The proposed attack loss function is designed to guide
the generation of deceptive images through adversarial
training. It operates by encouraging the reduction of
the Euclidean distance between the vector representa-
tions of the synthesized image, denoted byX2, and the
genuine image, denoted by X1. Both X1 and X2 are
calculated from the genuine image and the synthesized
image through the pre-trained model.

L(X1,X2, τ) =

I(∥X1 −X2∥2 > τ)
∥X1 −X2∥2

τ
.

(1)

The function employs a binary indicator I that be-
comes active (i.e., equals 1) when the Euclidean dis-
tance between X1 and X2 is greater than a given
threshold τ . In such cases, the loss is computed as
the ratio of the Euclidean distance to the threshold τ ,
effectively representing the degree to which the cur-
rent distance exceeds the acceptable threshold. The
loss function, L, is defined as in (1).

By minimizing this loss over a number of training iter-
ations (epochs), the adversarial training process grad-
ually adjusts the synthesized image to decrease its Eu-
clidean distance to the genuine image. The aim is that,
after sufficient training, the synthesized image is close
enough to the target in the vector space to deceive
the model, while still maintaining a discernible dis-
tance from the genuine in the image space. Thus, this
loss function is key to our method for generating ad-
versarial samples. It allows us to create images that,
after sufficient training iterations, are close enough to
the target in the vector space to deceive the model,
while still preserving a reasonable level of variation
from their initial state, avoiding directly “copy” the
genuine image.

3.3 Difference Loss

The proposed difference Loss function, denoted as L,
aims to minimize the discrepancies between the syn-
thesized image, represented byX2, and its initial state,
represented by X1. It accomplishes this objective
by calculating the absolute differences between cor-
responding elements of the two vectors and summing
them up:

L (X1,X2) =

N∑
i=1

|X1i
−X2i

| . (2)

The primary purpose of the Difference Loss is to en-
sure that the synthesized image retains a high degree
of similarity to its initial state. By minimizing this
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loss, we strive to generate adversarial samples that
introduce minimal perturbations, as our objective is
to exploit the network’s vulnerability to the smallest
possible perturbation that can lead to incorrect de-
cisions. Consequently, the synthesized images exhibit
subtle differences from the genuine ones, enhancing the
stealthiness of the attack.

Minimizing the discrepancies between the synthesized
image and its initial state using the Difference Loss en-
ables us to craft adversarial samples with minimal vi-
sual alterations, thereby maximizing the effectiveness
of our attack strategy.

3.4 Style Transfer

Inspired by the concept of neural style transfer (Gatys
et al., 2015), we incorporate the concept into our
attack strategy to address the distinctive challenges
posed by signature verification. We treat the verifi-
cation problem as comparing two different but similar
writing styles corresponding to a consistent content.
Thus, a genuine signature and its corresponding forged
signature can be viewed as two images that share iden-
tical content but slightly different styles. With this un-
derstanding, we introduce the style loss and the total
variation loss components into our attack architecture
to generate the perturbations necessary to bridge this
stylistic gap.

3.4.1 Style Loss

The style loss is computed as the mean squared error
between the Gram matrices of the feature represen-
tations of the genuine and synthesized images. Gram
matrices serve as a representation of style, encapsu-
lating the distribution of feature correlations at each
layer of the network. By minimizing the difference in
these matrices, we aim to align the styles of the gen-
uine and synthesized images. This allows us to create
a synthesized image that retains the content of the
genuine image while adopting the style of the target
image. The loss is:

Lstyle(F1,F2) =
1

4N2M2

N∑
i=1

M∑
j=1

(GF1
ij −GF2

ij )2, (3)

where F1 and F2 are the feature representations of
the genuine and synthesized images, respectively. N
is the number of feature maps, M is the height times
the width of the feature map, and Gij represents the
elements of the Gram matrix, which are computed by
taking an outer product of the vectorized feature maps
and then averaging over all positions.

Minimizing this loss function encourages the synthe-
sized image to adopt a style that closely mimics that

of the genuine image. This results in a synthesized
image that bears a strong stylistic resemblance to the
genuine, thereby confusing the model and increasing
the success rate of the attack. This demonstrates the
practical value of style transfer in revealing potential
vulnerabilities in machine learning models, extending
its application beyond the realm of artistic image gen-
eration.

Through the application of style loss, our method suc-
cessfully bridges the stylistic gap between the genuine
and synthesized images, making them more similar to
each other in style. This strategy effectively tricks the
model into making wrong decisions by generating less
obvious subtle perturbations, thereby increasing the
success rate of the attack. By employing style trans-
fer in the context of adversarial attacks, we extend
its application beyond the realm of artistic image gen-
eration, demonstrating its practical value in exposing
potential vulnerabilities in machine learning models.

3.4.2 Total Variation Loss

Total Variation Loss (TV Loss) plays a crucial role
in style transfer tasks. TV loss is typically used as a
regularization term in the loss function. By penalizing
large variations between neighboring pixel values, it
helps reduce high frequency noise and produce more
visually appealing results.

Let’s denote the synthesized image as Y . Then, the
Total Variation Loss can be written as follows:

LTV (Y) =
∑
i,j

((Yi,j+1 −Yi,j)
2+

(Yi+1,j −Yi,j)
2),

(4)

where Yi,j represents the pixel value at location (i, j) in
the synthesized image Y . This loss function computes
the sum of the squares of differences between neighbor-
ing pixel values in both horizontal and vertical direc-
tions. By minimizing this loss, we encourage smooth
transitions between neighboring pixels, thereby reduc-
ing high-frequency noise and producing more visually
coherent synthesized images.

Adding the TV Loss to our objective not only helps
improve the visual quality of the synthesized images,
but also imposes an additional constraint on the solu-
tion space, making it more difficult for the model to
distinguish between the genuine and synthesized im-
ages, thus increasing the attack success rate.

3.5 Total Loss

To strike a balance among all these considerations and
drive the model towards the generation of effective de-
ceptive images, we introduce a composite loss func-
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tion — the Total Loss. The Total Loss function is
a weighted sum of the Attack Loss, Difference Loss,
Style Loss, and Total Variation Loss, combining their
individual strengths to guide the adversarial training.
It can be formulated as follows:

Ltotal = αLattack+βLdifference+γLstyle+δLTV , (5)

where Lattack, Ldifference, Lstyle, and LTV represent
the Attack Loss, Difference Loss, Style Loss, and TV
Loss respectively. The terms α, β, γ, and δ are weight-
ing factors that control the contribution of each indi-
vidual loss to the total loss.

By judiciously selecting these weights, we can influ-
ence the adversarial training process to place varying
emphasis on matching the vector representations (At-
tack Loss), maintaining similarity to the initial image
state (Difference Loss), aligning the style of the images
(Style Loss), and promoting visual smoothness (Total
Variation Loss).

By minimizing the Total Loss, we are able to generate
adversarial images that preserve a high level of stealth
and visual consistency while still effectively confusing
the signature verification model. This indicates that
our method is capable of crafting precise, targeted ad-
versarial attacks aimed at a specific objective. Our
approach underscores the importance of considering
all relevant factors when formulating an attack strat-
egy, including retaining the genuine style of the syn-
thesized image, minimizing noticeable changes to the
image, and getting as close as possible to the target
in the image space, not just in the feature represen-
tation. This comprehensive attack strategy allows our
method to deceive the model more effectively, thereby
increasing the attack success rate.

3.6 Optimization

To optimize our composite Total Loss function, we em-
ploy the Adam optimization algorithm (Kingma and
Ba, 2015), which is widely used for training deep learn-
ing models due to its ability to handle sparse gradients
on noisy problems.

Our method iteratively refines the synthesized image
over multiple epochs. In each epoch, we calculate the
Total Loss and backpropagate it to update the im-
age. Note that only the synthesized image is train-
able, while the weights of the Siamese neural network
remain frozen.

After several training epochs, the synthesized image
becomes a deceptive image that is visually similar to
the genuine image yet is close enough in the vector
space to the target image to deceive the model. By
systematically tuning the loss weights and the thresh-
old, we can control the trade-off between the attack

Algorithm 1 Pseudocode of the proposed method.

Input: genuine image and forged image Ig, If
Parameter: network F parameters W ; weights for
total loss α, β, γ, δ; threshold for attack loss τ ; selected
layers for Lstyle ζ
Output: synthesized image Igen

1: Initialize: Igen ← If
2: Initialize: Lattack ← τ
3: Initialize: Lstyle ← ζ
4: Initialize: Ltotal ← (α, β, γ, δ)
5: featuresg, embedg = FW (Ig)
6: for each epoch e do
7: featuresf , embedf = FW (If )
8: lattack = Lattack(embedg, embedf )
9: ltv = LTV (Igen)

10: lstyle = Lstyle(featuresg, featuresf )
11: ldifference = Ldifference(If , Igen)
12: ltotal = Ltotal(lattack, ltv, lstyle, ldifference)
13: Update Igen via Adam optimization algorithm
14: end for
15: return Igen

success rate and the perceptibility of the attack. The
pseudocode in Algorithm 1 summarizes the proposed
attack method.

This algorithm describes the overall process of adver-
sarial attack on contrastive loss based models. Start-
ing with an genuine and a forged image, we iteratively
optimize a synthesized image to minimize the Total
Loss. As a result, we generate a synthesized image
that is both visually similar to the genuine image and
likely to deceive the model.

4 RESULTS

In this section, we detail the experiments conducted
to evaluate the performance of our proposed adversar-
ial attack method, as well as the subsequent results.
We first present the datasets used in our experiments,
followed by the pre-processing and model training pro-
cedures. Then we discuss the specific settings for each
attack method tested. Finally, we analyze and evalu-
ate the resulting performance metrics of each method.
These results provide a crucial understanding of the
comparative effectiveness of our proposed adversarial
attack strategy compared to existing methods.

4.1 Dataset and Pre-trained Model

We used two data sets in our experiments, the
CEDAR1 and BHSig260-B2, each offering a broad

1Available at https://cedar.buffalo.edu/NIJ
2Available at https://goo.gl/9QfByd
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Table 1: Experimental settings and results. “ST” indicates the style transfer, “FG” indicates the foreground of
the image, “AT” indicates the defense method, adversarial training. The VMI-FGSM is with µ = 0.9, N = 5.

DATASETS
CEDAR BHSig260-BATTACK METHOD

TN ATTACK FP ATTACK TN ATTACK FP ATTACK
PGD (ϵ = 0.3, α = 0.1) 44.57% 0% 100% 0%
PGD (ϵ = 0.05, α = 0.01) 0.07% 0% 68.42% 0%
PGD w/ ST (ϵ = 0.3, α = 0.1) 98.77% 1.23% 99.97% 0.03%
PGD w/ ST (ϵ = 0.05, α = 0.01) 99.93% 0% 97.90% 2.01%
PGD w/ FG (ϵ = 0.3, α = 0.1) 100% 0% 20.34% 0%
PGD w/ FG (ϵ = 0.05, α = 0.01) 100% 0% 72.60% 0%
VMI-FGSM (ϵ = 0.3, β = 3) 100% 0% 100% 0%
VMI-FGSM (ϵ = 0.05, β = 3) 100% 0% 100% 0%
VMI-FGSM (ϵ = 0.3, β = 1.5) 100% 0% 100% 0%
VMI-FGSM (ϵ = 0.05, β = 1.5) 100% 0% 100% 0%
C&W (c = 0.1) 100% 0% 96.20% 0%
C&W (c = 0) 0% 0% 57.98% 0%
MIM (ϵ = 0.3, µ = 0.9) 100% 0% 100% 0%
MIM (ϵ = 0.05, µ = 0.9) 0% 0% 86.81% 0%
IGS (ϵ = 0.3) 100% 0% 100% 0%
IGS (ϵ = 0.05) 20.51% 0% 100% 0%
FGSM (ϵ = 0.3) 100% 0% 98.84% 0%
FGSM (ϵ = 0.05) 100% 0% 81.44% 0%
Ours — 99.71% — 82.93%
Ours w/o ST — 92.32% — 65.02%
Ours after AT — 93.70% — 51.80%

spectrum of signature styles. The CEDAR database
features 1,320 genuine and 1,320 forged signatures,
while the BHSig260-B, focusing on Bengali script sig-
natures, offers signatures from 160 individual writers,
with 24 authentic and 30 forged ones per writer.

Our data split follows the approach of our target model
and is divided into trainset and testset. M out of K
authors are randomly selected for training, while the
remaining authors are reserved for testing. To ensure
balance, we generate an equal number of genuine and
forged pairs. This results in M × 276 training pairs
and (K - M) × 276 testing pairs for each class.

The trainset is used to obtain the pre-trained model
and its decision threshold τ is used in the attack, while
the testset is used in developing the attack method.

In following the procedures of the target model, we uti-
lize the trainset to acquire the pre-trained model and
its associated decision threshold τ for each dataset.
The number of image pairs for FP attack and τ for
each dataset is shown in Table 2.

After the model training and threshold determination,
we applied the model to the testset. Only those signa-
ture pairs correctly decided by the model were selected
for the following adversarial attacks.

Table 2: The decision threshold τ and the number of
data pairs for FP Attack.

DATASET τ FP PAIRS
CEDAR 0.0314 1380
BHSig260-B 0.03 9433

4.2 Experimental Setup

We compare our proposed adversarial attack method3

against the conventional methods FGSM (Goodfel-
low et al., 2015), C&W (Carlini and Wagner, 2017),
IGS (Dong et al., 2018), MIM (Kurakin et al., 2018),
PGD (Madry et al., 2018), and VMI-FGSM (Wang
and He, 2021). To evaluate the effectiveness of the
style transfer component, we also incorporate it into
PGD. We rule out the negative effect of the back-
ground by restricting the perturbations solely on posi-
tions where have pixel bigger than 155/255. To adapt
to our problem, all attack methods use the Contrastive
Loss to make them suitable for our target models. In
the C&Wmethod, we replaced the parameter κ, meant
for classification tasks, with a norm-based metric.

3Implementation is available at https://github.com/
ZhongliangGuo/FP-attack
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genuine forged FGSM
(fail)

MIM
(fail)

IGS
(fail)

C&W
(fail)

vmi-fgsm
(fail)

PGD
(fail)

w/o ST
(succeed)

ours
(succeed)

(a) CEDAR

genuine forged FGSM
(fail)

MIM
(fail)

IGS
(fail)

C&W
(fail)

vmi-fgsm
(fail)

PGD
(fail)

w/o ST
(succeed)

ours
(succeed)

(b) BHSig260-B

Note: “w/o ST” refers to our proposed method without style transfer

Figure 2: Visual results of several attack methods on two pairs of images.

The experimental settings for each method, shown in
Table 1, were chosen based on their reported perfor-
mance in literature and relevance to our work. We
experimented with two sets of parameters. The first
set was chosen to represent aggressive attack parame-
ters, with high epsilon (ϵ = 0.3, for C&W, it is c = 0).
The second set, with lower epsilon (ϵ = 0.05, for C&W,
it is c = 1), represents a more conservative setting.

For our proposed method, three different experiments
were conducted. The first experiment leverages the full
extent of our proposed method, incorporating the style
transfer component. The second experiment, however,
omits the style transformation step. The intention be-
hind this approach is to determine the specific contri-
bution of style transformation to the overall effective-
ness of our attack method. By comparing the results
of the two experiments, we can distinctly observe the
impact of style transformation on the success of our
adversarial attack. For the last experiment, following
the attack with style transfer, we further employed the
generated adversarial samples in the adversarial train-
ing phase. This was done to assess the robustness of
our attack method when faced with enhanced defen-
sive measures. During adversarial training phase, the
training data comprised a mix of normal data and ad-
versarial samples at a ratio of 7:3.

It should be noted that, for all iterative methods, the
number of epochs was fixed at 50. This parameter was
set based on preliminary experiments, aiming to bal-
ance the training time and the performance of attacks.

4.3 Results and Discussion

Upon analyzing the evaluation results displayed in Ta-
ble 1, a clear distinction emerges between the perfor-
mance of conventional adversarial attack methods and
our proposed method when targeting signature verifi-
cation models based on Contrastive Loss. The conven-
tional methods, originally designed for classification
models with intricate backgrounds, achieve commend-

able success rates in TN attacks.

However, when it comes to signature verification,
where images have clean backgrounds, their success
rate plummets to 0% for FP attacks. Compared to
images in other tasks, signature images lack many fea-
tures, primarily focusing on the foreground with min-
imal background elements. The feature set leads to
heightened sensitivity to noise. When noise is intro-
duced, it can convert mismatched local features into
seemingly matched ones, but also cause the model to
misinterpret the overall image scale.

In stark contrast, our method treats the image itself
as a trainable component. Incorporating our proposed
novel loss functions, manages to overcome this chal-
lenge. Figure 2 demonstrates that compared with oth-
ers, our method even without style transfer, does not
change strokes. Such that maintains image scale con-
sistency while introduced noise compensates for local
feature mismatches, which is subject to the transla-
tion invariance of CNN. The introduce of style transfer
further aligns the overall scale and feature positions,
resulting in even better visual result.

This approach allows us to introduce subtle pertur-
bations that correct non-matching local features with-
out causing significant global changes. Quantitatively,
even in the absence of style transfer, our approach
achieves commendable success rates in FP attacks –
92.32% for the CEDAR dataset and 65.02% for the
BHSig260-B dataset. Furthermore, even when faced
with models that have undergone adversarial training
as a defensive measure, our method still demonstrates
impressive success rates: 93.7% on CEDAR and 51.8%
on BHSig260-B.

Further bolstering our method’s effectiveness, the in-
clusion of style transfer leads to a significant increase in
FP attack success rates. With the synergistic combina-
tion of our loss functions and style transfer applied over
50 epochs, our method achieves an impressive 99.71%
success rate in FP attacks on the CEDAR dataset



Guo, Li, Qian, Arandjelović, Fang

and a substantial 82.93% success rate on BHSig260-
B. Style transfer has also had a positive impact on
traditional methods. We notice that integrating style
transfer into PGD significantly enhances its TN at-
tack. Even though FP attack success rates are still
relatively poor, style transfer has at least opened up
the possibility of making traditional attack methods
amendable. We argue that it is because style transfer
can help maintain a better overall scale of the image.

We also rule out the negative effect of baseline meth-
ods on the background. The experimental results in-
dicate that limiting perturbations to the foreground
can effectively enhance the performance of the base-
line method in TN attacks. However, when it comes
to FP attacks, the performance of the baseline method
does not show any improvement. This is consistent
with our hypothesis that local features can be easily
manipulated, while maintaining the consistency of the
global scale proves to be challenging. This underlines
the difficulty in attacking such models.

In Figure 2, we visually demonstrate the efficacy of
different attack methods employed on each dataset.
Illustrations and experimental results show that only
our method has successfully executed FP attacks, that
common attack techniques fail to accomplish.

In summary, our experimental findings highlight the
limitations of traditional adversarial attack methods
when applied to signature verification models with
clean backgrounds. Our approach, which emphasizes
preserving the overall integrity of the image while mak-
ing precise modifications, not only offers a more effec-
tive means of uncovering potential vulnerabilities but
also demonstrates resilience against adversarial train-
ing defenses. This research underscores the impor-
tance of developing more nuanced methods to identify
and address potential security gaps in this domain.

4.4 Ablation Studies

To evaluate the impact of each hyperparameter, we
carry out a series of ablation studies. in terms of set-
ting initial hyperparameters, we aimed to keep the av-
erage loss of four functions in an attack within the
same range (1e0–1e1). We tested 50 random samples
for each dataset. For CEDAR, weights were α=1e1,
β=1e-3, γ=1e11, δ=1e2; for BHSig260-B, they were
α=3e1, β=1e-2, γ=2e11, δ=3e1. Our ablation exper-
iments focused on two metrics: average perturbation
and attack success rate.

As shown in Figure 3, we found that α positively cor-
relates with attack success rate and helps reduce per-
turbation within a certain range. Increasing β effec-
tively lowers perturbation but can also impact the suc-
cess rate. Experiments with γ demonstrated that style
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Figure 3: Summary of hyperparameter ablation study
results.

transfer consistently enhances attack effectiveness. δ
showed minimal impact on performance but aided in
perturbation reduction.

5 CONCLUSION, LIMITATIONS,
AND FUTURE WORK

In this work, we have introduced two novel loss func-
tions and developed a pioneering method for attacking
signature verification models that employ contrastive
loss. By incorporating style transfer principles and our
unique loss functions, our approach has outperformed
traditional adversarial attack methods, particularly in
scenarios with clean backgrounds where conventional
methods often falter.

Our research focuses on a model widely recognized in
the signature verification community, chosen for its
emphasis on similarity matching over traditional clas-
sification, aligning with our research goals. We inves-
tigate its vulnerability to certain attacks, particularly
affecting TN performance, revealing broader risks in
machine learning applications. This emphasizes the
need for robustness evaluation in specialized models.

Our method does have some limitations. It assumes
that attackers have access to a clear, high-quality
example of the target signature, which may not al-
ways be the case in real-world scenarios. Additionally,
while our technique has been effective against models
trained using contrastive loss, it has not been general-
ized against models based on other loss functions.

Future research should explore ways to overcome these
limitations, such as developing methods that can work
effectively even with lower-quality signature examples
or expanding the approach against models using dif-
ferent loss functions. By addressing these challenges,
we can continue to advance the field and develop more
secure biometric verification systems.
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