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Abstract

Feature normalization is a crucial step in ma-
chine learning that scales numerical values to
improve model effectiveness. Noisy or impure
datasets can pose a challenge for traditional
normalization methods as they may contain
outliers that violate statistical assumptions,
leading to reduced model performance and
increased unpredictability. Non-linear Tanh-
Estimators (TE) have been found to provide
robust feature normalization, but their fixed
scaling factor may not be appropriate for all
distributions of feature values. This work
presents a refinement to the TE that em-
ploys the Wasserstein distance to adaptively
estimate the optimal scaling factor for each
feature individually against a specified target
distribution. The results demonstrate that
this adaptive approach can outperform the
current TE method in the literature in terms
of convergence speed by enabling better ini-
tial training starts, thus reducing or elimi-
nating the need to re-adjust model weights
during early training phases due to inade-
quately scaled features. Empirical evalua-
tion was done on synthetic data, standard toy
computer vision datasets, and a real-world
numeric tabular dataset.

1 INTRODUCTION

Knowledge representation (KR) is the process of ar-
ranging and organizing information such that a com-
puter can interpret and manipulate it. The goal of KR
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is to express information, concepts, and associations
in a precise manner that a computer can understand.
There are several ways to represent data, with feature
vectors being one of the most typical for many applica-
tions and data types. A feature vector is a numerical
representation of a data instance in which each fea-
ture relates to a different attribute or characteristic of
the instance. Feature scaling (FS), also known as data
normalization, is a data pre-processing technique that
is used to adjust the range and scope of variables (i.e.
features). Effective pre-processing of numeric data and
KRs is crucial and fundamental for good model perfor-
mance, as the ranges of feature values can vary widely,
but comparable feature value domains are usually es-
sential for optimal training. When it comes to training
time, convergence, and model performance, adequate
FS can be the difference between generating a strong
or weak model, or even between complete failure and
success. Furthermore, especially for neural networks,
gradient descent converges much quicker with FS than
without it, yet not all FS methods are equally effective.

Different types of data (e.g. numeric tabular data, im-
ages, sound waves, time series, text, etc.) typically
support different normalization techniques. Non-linear
trend removal, for example, is not applicable to tex-
tual data. Methods on tabular data, however, are
commonly widely applicable since they operate on nu-
merical values; and so, prevalent in many data do-
mains. Re-scaling through min-max normalization,
mean/median normalization, standardization (alias Z-
score normalization), and scaling to unit length are
some of the most popular scaling methods for tabu-
lar features. Other non-linear transformations include
translations to uniform distributions (e.g. with quan-
tile transformations) or Gaussian distributions (e.g.
with power transformations), and polynomial feature
generations. There are many more methods, such as
data discretization, clipping, log-scaling, etc.

FS is a sub-field of data pre-processing (PP), separate
from different related tasks like data cleaning, transfor-
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mation, integration, noise detection, or missing value
imputation [Garćıa et al., 2016]. PP and FS are well
explored, and many reviews exist [Garćıa et al., 2015,
Subasi, 2020, Jayalakshmi and Santhakumaran, 2011,
Li et al., 2021].

The domain range and distribution of input fea-
ture values are crucial in machine learning. Out-
liers are data points that deviate considerably
from the rest of the observations in a particu-
lar data collection [Miller, 1993, Chiang et al., 2003,
Rousseeuw and Hubert, 2011], e.g. extreme statistical
points at the tails of feature distributions or points
that come from a completely different distribution
(out-of-distribution). Outliers can have a negative
impact and mislead the training process, resulting
in longer training times, poorer generalization, in-
ferior performance, and the violation of statistical
assumptions. There are different types of outliers
[Foorthuis, 2018]; classified as univariate or multi-
variate, i.e. independent or dependent of other fea-
tures, and further divided into three categories: point
anomalies, conditional outliers, and collective outliers.

Tanh-estimator (TE) normalization was initially pro-
posed as a method that suppresses univariate outliers
for point anomalies by applying a tanh function in
conjunction with a fixed spread value on feature-wise
pre-scaled data (Eq.1) [Hampel et al., 2011]; squishing
and bounding extreme values inside a desired range.
The pre-scaling employs the Hampel function (Eq.2)
[Hampel, 1974, Shevlyakov et al., 2008] for robust es-
timation that is not unduly influenced by anomalies,
by lowering the importance of points towards distri-
bution tails. A trade-off between robustness and op-
timality can be imposed by changing the function’s
hyper-parameters, e.g. to produce stronger or weaker
effects on feature distribution tails. The tanh spread-
factor directly influences the standard deviation of the
pre-scaled feature distributions; stretching or contract-
ing them respectively. The authors employed a con-
stant, fixed spread value for all features, introducing a
new parameter that requires manual tweaking. How-
ever, incorrect or unfortunate spread values may ex-
cessively squish or stretch the value distribution too
much, which can be harmful to training. Hence, the
idea of having a fixed spread value for all features with
possibly rather different distributions is questionable.
Also, given large feature input dimensions, manually
tuning and estimating the spread value of features can
be very time-consuming, inefficient, and impracticable.

This paper presents the Wasserstein tanh-estimator
(WTE), an adaptive form of tanh-normalization
that automatically estimates the ideal spread value
that best minimizes the Wasserstein distance (WD)
[Panaretos and Zemel, 2019] between a given fea-

ture distribution and some target distribution (e.g.
a standard Gaussian), calculated for each fea-
ture independently. WTE builds and improves
upon follow-up work on the tanh-normalization
[Latha and Thangasamy, 2011], which applies the
tanh directly on the standardized features without
applying the Hampel estimator for efficiency reasons.
WTE can clearly enhance the convergence speed com-
pared to relying on a single fixed default spread value
(e.g. of 0.01), particularly in the initial phases of train-
ing. Our method’s essential qualities are as follows:

• It minimizes the distribution disparity between
normalized features and a target distribution to
prevent poor or sub-optimal feature distributions.

• It requires no hyper-parameter tuning and finds
the ideal spread value via simple scalar minimiza-
tion methods (e.g. Brent [Brent, 1971]).

• The pre-processing can (optionally) be further in-
corporated into the model’s training procedure
and optimized accordingly.

For example, it is often advantageous to have feature
output distributions that closely resemble a standard
Gaussian. WTE can efficiently compute and deter-
mine the optimal spread values for all features given
a target distribution, enhancing training effectiveness
and minimizing the need for weight readjustments
caused by otherwise sub-optimal FS.

2 RELATED WORK

Tanh-normalization for FS has been shown to be
effective on multiple tasks [Bhanja and Das, 2018,
Jain et al., 2005, Ribaric and Fratric, 2005]. It is ro-
bust to noise and univariate outliers, but more intri-
cate to compute than simpler methods (e.g. Z-scores).
TE was originally defined as [Hampel et al., 2011]:

ϕ(x) :=
1

2

[
tanh

(
0.01

(x− µΨ)

σΨ

)
+ 1

]
(1)

µΨ, σΨ are the mean and standard deviation of
the Hampel estimator (HE) scores [Hampel, 1974,
Shevlyakov et al., 2008]. The HE is a three-part re-
descending M-estimator [Hampel, 1973]; it can en-
tirely reject gross outliers while not totally dismissing
moderate outliers using the re-descending function Ψ:

Ψ(x) =


x, 0 ≤ |x| ≤ a

a sign(x), a ≤ |x| ≤ b
a(c−|x|)

c−b sign(x), b ≤ |x| ≤ c

0, c ≤ |x|

(2)
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The parameters a, b, c ∈ R have an effect on points at
the distribution tails and determine the robustness of
the estimator.1 Note that Ψ itself is not the normaliza-
tion. If the influence of a high number of distribution
tail-points is minimized based on the parameters, the
estimate becomes more robust to outliers but less ef-
ficient (optimal). Here, ”efficiency” refers to utilizing
data for precise estimates. A less efficient FS may dis-
tort the data more but can be more resilient to noise
and outliers. In contrast, if the estimate can be in-
fluenced by a large number of tail-points, it becomes
less robust but more efficient (linear dependencies are
better preserved). The tanh-distribution in the trans-
formed domain has a mean of 0.5 and a standard devia-
tion of about 0.01. The spread of the normalized scores
is determined by the constant (i.e. 0.01) in the tanh-
normalization equation [Jain et al., 2005]. By defini-
tion, the range of the tanh-estimator is [0, 1], but it can
easily be constraint linearly within the range of [−1, 1]

using the normalization of ϕ′(x) := tanh
(
0.01 (x−µΨ)

σΨ

)
.

Choosing the right Hampel parameters is crucial but
challenging. Thus, a modified tanh-normalization was
proposed [Latha and Thangasamy, 2011] that used the
raw features’ mean and standard deviation instead
of the Hampel scores; considerably simplifying and
rewriting the normalization of each feature x ∈ X
to ϕ′′

X(x) := tanh(0.01 · x); where x is the respec-
tive standardized value. This avoids the complexity
of the Hampel function, resulting in a much more
straightforward formula and easier computation. They
did, however, still employ a default constant value
of 0.01 (which we refer to as the spread value in
this paper); and can be seen as a configurable hyper-
parameter. Thus, although the normalization is now
both robust and fast to compute, it still requires cor-
rect spread parameter estimates or manual tweak-
ing [Jain et al., 2005]; as also noticed in other work
[Atrey et al., 2010], where the constant spread value in
the tanh normalization for a fingerprint modality was
increased to 0.1. Further issues regarding the spread
value were also reported in other use-cases; e.g. where
face match scores generated using a multi-layer per-
ceptron classifier and a non-linear tanh function pre-
sented problems [Nandakumar et al., 2007]: the out-
puts peaked at -1 and 1, resulting in poor performance.
This shows and underscores the importance of prop-
erly pre-scaling features before the tanh function.

The tanh function was also utilized in other differ-
ent FS approaches. For example, Linear-Tanh-Linear

1Ψ functions are non-decreasing near the origin, but
decreasing (towards zero) far from the origin. Andrew’s
Sine Function [Hinkley, 1973] and Tukey’s Biweight Func-
tion [Beaton and Tukey, 1974] are alternatives to Hampel’s
Ψ function. Redescending M-estimators to handle outliers
are also used in regression contexts [Khan et al., 2021].

(LTL) [Singh and Gupta, 2007] was presented for bio-
metric systems and is based on the tanh-estimator over
a set of scores OG

k and a set of imposter scores OI
k for a

characteristic k. It maps the non-overlapping region of
imposter scores to a constant value of zero and the non-
overlapping region of scores to a constant value of one.
The tanh-estimator is then used to map the values of
the overlapping region between OG

k and OI
k via a non-

linear tanh function. The authors concluded that LTL
is both, efficient and robust; but again, used a fixed
spread value of 0.01. Additionally, the tanh-function’s
resilience to anomalies has also found application in
trimmed estimators [Leonowicz et al., 2005] for robust
averaging when the number of trials is small and the
data is highly non-stationary or contains outliers, and
also used to compress over-large values on images
to decrease their effect on later stages of processing
[Tan and Triggs, 2010]. Lastly, a similar robust nor-
malization method, yet without the use of tanh, is the
double sigmoid normalization [Cappelli et al., 2000],
which converts scores within a region linearly and
scores outside the region non-linearly. However, it also
necessitated cautious tweaking of hyper-parameters.

Returning to the implications of selecting a spread
value α, there is no justification for why any given fixed
α should be optimal for all feature distributions. In
essence, it is far more plausible that each feature distri-
bution will have its own (ideal) spread value, and that
a spread of e.g. 0.01 may even be harmful to training in
many cases. Previous work on tanh-normalization has
not sufficiently addressed this concern, and given the
impact of FS, a robust and adaptable feature normaliz-
ing approach is highly desirable. Therefore, this work
addresses the challenge by calculating the feature-
wise ideal spread value α̇ and building on previous
work which computes the mean and variance of the
features without the Hampel estimator and directly
performs standard feature-based standardization be-
fore the tanh function [Latha and Thangasamy, 2011].
That is, instead of relying on a predetermined global
fixed default spread, this paper proposes a better solu-
tion that directly identifies the best α̇ for each feature
in tanh(α̇x). In particular, we discuss and elaborate
on the key role of α in improving training convergence.

3 BACKGROUND

By replacing the default value of 0.01 with α, an ad-
justable parameter is introduced. The correct choice of
α is critical since it regulates the spreading of the out-
put values prior to the non-linear tanh transformation
and, thus, affects the distributions of the normalized
feature values. We might want to keep these distribu-
tions close to e.g. a Gaussian. To measure how much a
given distribution deviates from a desired distribution,
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we can use the WD. Formally, the p-th WD between
two distributions u, v on R is defined as:

Wp(u, v) := inf
π∈Π(u,v)

(∫
R×R

d(x, y)p dπ(x, y)

)1/p

(3)

where Π is the set of joint distributions π for pairs
(x ∼ u, y ∼ v) with marginals u, v. For p := 1 and
d(x, y) := |x− y|, it follows [Ramdas et al., 2017]:

W1(u, v) = inf
π∈Π(u,u)

∫
R×R

|x− y| dπ(x, y)

=

∫ ∞

−∞
|U(t)− V (t)| dt

(4)

where U, V are the cumulative distribution functions
(CDF) of u, v respectively. Informally, the WD met-
ric is considered the smallest ”cost” of converting one
probability distribution to another.

4 METHODS

Without loss of generality, we restrict feature value
normalization within the interval [−1, 1]; aligned with
the domain of tanh. Transformations to other do-
mains (e.g. [0, 1]) can be easily obtained by simple
linear transformations. This work adopts and builds
upon the formula for the modified tanh-normalization
(MTN) [Latha and Thangasamy, 2011] which applies
tanh on standardized features, and omits the Hampel
function. Spread values are considered ideal if they
minimize the target WD loss (Eq.7).

4.1 Feature Mapping

Under the premise that the optimal distribution of fea-
ture values follows a target distribution with desired
properties (e.g. zero mean, unit Gaussian variance
[LeCun et al., 2012]) the MTN formula is not ideal due
to a global constant spread value for all features. Let
µX , σX be, respectively, the mean and standard de-
viation of the values x ∈ R of a feature X with an
arbitrary but fixed (discrete) distribution. The fixed
spread value can be replaced by a tunable α:

ϕα
X(x) := tanh

(
α(x− µX)

σX

)
(5)

The goal is to find the best α for each feature such
that the CDF Fϕα

X
of the discrete output distribution

ϕα
X approximates that of a target distribution. Exem-

plary, this work will use a standard Gaussian as the
target distribution. Let FZ be the CDF of the stan-

dard Gaussian fZ(x) :=
e−x2/2
√
2π

. The objective loss LW

is defined per feature via the first WD and Eq.4 as:

LW (α) :=

∫ ∞

−∞
|FZ(t)− Fϕα

X
(t)| dt (6)

By minimizing the WD in Eq. 6 wrt. the spread value
α, we make the normalized feature distribution most
similar to the target distribution (e.g. the Gaussian).
However, the normalized tanh feature values are con-
strained to the range [−1, 1], whereas the Gaussian is
defined for all real values. One can here modify the
probability density function (PDF) of fz for values
< −1 and > 1 to be zero and allow a better com-
parison without considering tail-distributions; or use
a truncated2 Gaussian fq

Z at a quantile 0 < q < 1,
scaled to a domain of [−1, 1]. Low q values have greater
min/max values, which squish the mass density to-
wards the center, whereas high values distribute the
mass more towards the tails. The parameter q, thus,
serves to determine the probability mass threshold of
the truncation. By varying the standard deviation
of the truncated Gaussian, one can choose distribu-
tions where the probability mass is either concentrated
in the middle or distributed more evenly. To assure
equivalent domain ranges (i.e. [−1, 1]), let the PDF

f̂q
Z(x) :=

2(fq
Z(x)−min(fq

Z))

max(fq
Z)

− 1. F̂ q
Z(t) is the respective

CDF function. The new truncated loss is:

Lq
W (α) :=

∫ 1

−1

|F̂ q
Z(t)− Fϕα

X
(t)| dt (7)

Direct minimization of Lq
W over α is not convex, as

can be seen in Figure 5, where convexity is broken for
several different feature distributions around α ≈ 0.6.
However, when a normal Gaussian is used as the tar-
get distribution (and also for several other distribu-
tions), we observe that the loss function Lq

W (α) is
quasi-convex (Figure 5), which implies a single (global)
minimum. Thus, to calculate the optimal spread per
feature given q, the efficient numerical optimization
method Brent3 [Brent, 1971] can be leveraged. Alter-
natively, other gradient-free algorithms [Brent, 2013]
may also be used. Because this pre-processing step
will only be executed once, its performance is not crit-
ical. For a specific feature, its optimal spread value α̇
is the spread α that minimizes the WD loss Lq

W (α) for
a given the target distribution, given by:

α̇ := argmin
α

Lq
W (α) (8)

2Let ppf be the percent point function (alias quan-
tile function) of fZ such that FZ

(
ppf(q)

)
= q. For

x ∈ [ppf(q), ppf(1− q)]; fq
Z(x) is the truncated Gaussian.

3Brent uses a fast-converging secant technique or in-
verse quadratic interpolation, but if necessary, adopts a
more robust bisection approach.
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4.2 Ideal Spread Value

The ideal spread values (Eq.5) are incorporated
into the MTN formula [Latha and Thangasamy, 2011],
wherein the static spread value of e.g. 0.01 is replaced
by the corresponding ideal α̇ of each feature. Conse-
quently, the ideal non-linear tanh transformation func-
tion for each individual feature becomes:

hα̇(x) := tanh

(
α̇(x− µX)

σX

)
(9)

4.3 Trainable Spread Value

In many machine learning domains, one can here addi-
tionally learn a training-objective-specific spread value
γ (and fine-tune α̇) as part of the training process, e.g.
via back-propagation optimization. Let τ > 0 be a
trainable parameter. Then, a corresponding trainable
tanh-estimator hγ can be defined by simply setting

γ := τα̇, and so, hγ(x) := tanh
( τα̇(x−µX)

σX

)
. By ad-

justing τ , we can learn the ideal spread of the feature
distribution during training end-to-end. Because the
backward optimization here is solely dependent on τ , α̇
is still only computed once before the training and can
be reused for different training runs. The model can
now ”learn” which normalization (i.e. spread value) is
the best for optimizing a specific model loss and train-
ing objective; also in conjunction with other features.
Recall that otherwise α̇ is determined independently
of other features and specific training goals.

5 EXPERIMENTAL METHODS

We used several common statistical distributions for
analysis, including an Alpha-Gamma distribution with
parameters α = γ = 4.0, a generalized Pareto distri-
bution with parameter ξ = 1, a symmetric bi-modal
distribution with parameters location=-3, scale=1,
size=10, etc. We further created an artificial synthetic
classification set of size 10,000 with ten classes. Each
class in the synthetic set consisted of two Gaussian
distributed clusters spanning along the vertices of a
hyper-cube. To introduce covariance, features were in-
dependently drawn and then randomly (linearly) com-
bined within each cluster. Outliers are restricted to
mixtures of Gaussian distributions, which may be a
limitation here. Additionally, 5% of the labels were
randomly assigned, introducing multivariate outliers.
A small feed-forward neural network with four hid-
den layers, each containing 64 neurons, was used to
classify the synthetic data. The Gaussian Error Lin-
ear Unit was chosen as the activation function. Syn-
thetic data sets are useful for benchmarking because
they offer control of data properties and allow quick
and deliberate performance testing. WTE was also

evaluated on four commonly used toy computer vi-
sion datasets (Fashion-MNIST, EMNIST, CIFAR10,
and CIFAR100) using ResNet9. Pixel values were nor-
malized after applying a gray-scale conversion; images
were re-scaled to a size of 32x32. We used classifica-
tion performance over time as the evaluation metric.
As a real-world dataset, CDC Diabetes Health Indica-
tors [Teboul, 2023] was used. For a fair and accurate
evaluation, each training iteration involved initializing
the model weights identically for all different FS meth-
ods. That is, model weight initialization was identical
for all methods within a training run but different be-
tween different runs. The results were averaged across
five runs. Cosine annealing was used as the learning
rate scheduler, starting at 0.001.

6 RESULTS

6.1 Classification With Neural Networks

We evaluated the effectiveness of neural networks in
classifying synthetic data (Figure 1), computer vision
toy data (Figure 2), and real-world data (Figure 3); for
different spread values. The features of synthetic and
real-world data were normalized individually. Pixel-
normalization for vision sets was on the gray-scale
channel. The goal was to examine the impact of FS on
the training for different tasks. Specifically, we show
that inadequate spread initialization in TEs can harm
training convergence; which highlights the importance
of choosing a proper normalization spread value.

Training converged much faster with feature-wise ideal
spread values α̇ than with a fixed global default spread
value for all features of α = 0.01, as expected. On syn-
thetic tabular data (points drawn from linear Gaussian
combinations), an α = 1 exhibited a similar training
convergence as α̇, but the value range was too large.
Notice, how α = 1 is equivalent to directly applying
tanh to the standardization. Conversely, using a global
default spread of α = 0.01 achieved the worst perfor-
mance on the synthetic dataset, and considerably con-
strained the effective feature range. Overall, the prob-
ability mass of the KDE of the normalization for α̇ pro-
duced the best distribution, with all features having
similar peak densities and being Gaussian-like inside
[−1, 1]. On the computer vision sets, α̇ demonstrated
substantially less performance variance between inde-
pendent runs. Here, although the ideal spread val-
ues α̇ clearly improved training convergence speed,
the final scores towards the end of the training were
about the same for all α values. This suggests that
a good choice of α strongly contributes to a better
training start and reduces or eliminates the need to
adjust training weights to poorly chosen feature dis-
tribution. Furthermore, recall that, while features are
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Figure 1: Comparing normalized KDEs and model performance on synthetic data. Training accuracy is depicted
in the left figure; the others show the KDEs of the normalized features. A default spread of α = 0.01 showed
the worst convergence. α̇ resulted in the best probability mass distribution.

Figure 2: Comparing the training performance of ideal, trainable, and fixed spread values on four different toy
computer vision datasets after tanh-normalizing the gray-scale pixel value distribution.

initially normalized independently, back-propagation
(optionally) allows us to alter each spread value in re-
lation to the other features. Yet, the performance of
hα̇ and hγ for a trainable γ := τα̇ was nearly equal
and did not show any noticeable performance gains.
The motivation here was that, since α̇ is calculated
based on a particular target distribution, the optimal
FS for a given task might require a different target
distribution, e.g. one that is not Gaussian. By allow-
ing the parameter τ to adjust (i.e. be learned), the
spread value can further be adapted towards the ”op-
timal” spread for a given task. Lastly, we analyzed the
classification performance of different spread values on
the larger real-world CDC Diabetes Health Indicators
dataset (Figure 3). Again, the adaptive normalization
outperformed the use of a fixed global spread value in
terms of convergence speed. But as before, fine-tuning
τα̇ did not substantially improve performance.

Overall, our primary finding was that slow convergence
rates in tanh normalizers were primarily due to poorly
dispersed density masses in the scaled feature distribu-
tions. Inadequate spread values resulted in bad density
dispersion and forced initial model weights to adjust
to the input domain, thereby slowing down conver-
gence speed. Thus, a fixed global spread value is sub-

optimal; but ideal spreads are easily determined.

Figure 3: Classification scores on the CDC Diabetes
Health Indicators dataset for different spread values.

6.2 Analytical Optimization

Although the probability mass of a Gaussian is dis-
tributed symmetrically following a tanh transforma-
tion, a default spread of α = 1 is not suitable since
the output probability density places too much weight
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on the tails. The transformation might be even worse
for other standardized (but non-Gaussian) inputs. In-
stead of being scattered at the extremes, the bulk of
the output probability mass should be spread around
the center. That is, having the majority of the mass
in the middle and just a small amount (e.g. outliers)
squeezed on the tails. The spread parameter of the
tanh mapping can be changed to tweak this trade-
off. For example, if α is excessively large, the abso-
lute value of practically all features will be extremely
close to one. Similarly, if α is too low, the majority of
values will be close to zero. Both situations are unde-
sirable because they contradict the purpose of FS. As
a result, the target distribution helps to disperse the
probability mass appropriately. Figure 4 below shows
the kernel density estimate 4 (KDE) of a truncated
min-max normalized target Gaussian with q = 0.001
following the tanh-transformation, i.e. the KDE of hα,
for various spread values α. In particular, for data X,
the kernel estimate analyzed is KDE(hα(X)). Notice
that KDE(X) ̸= hα(X). The spread value has a strong
influence on the KDE of the tanh normalization, with
very low spread values strongly squishing the proba-
bility mass towards the center.

Figure 4: A truncated standard Gaussian with
q=0.001 (black) is compared to the KDE of its tanh-
normalization output for various α spread values
(blue). The result for α = 1 is shown in red.

Yet, often, inputs are not normally distributed. Stan-
dardization assures a mean and standard deviation of
zero and one, respectively, but does not change the
underlying (histogram) distribution, i.e. the distribu-
tion is relocated and stretched/shrunk, but not ”dis-
torted”. By minimizing the loss, we merely reduce the
mismatch between the output’s KDE and a desired
target distribution. In other words, we find the spread
value α which results in the lowest possible WD loss
after applying the tanh normalization. It is worth not-
ing that even if we apply additional linear transforma-

4An estimation that uses a continuous probability den-
sity curve to describe the data distribution.

tions afterward on the output, such as constraining the
range to [0,1] instead of [-1,1], the optimal spread value
α̇ remains the same, but the WD loss may vary. Fig-
ure 5 below depicts the WD losses of different distri-
butions for different spread values. Empirically, it ap-
pears that, for a standard Gaussian as the target, min-
imizing over the spread value α may be quasi-convex
and feature a unique (global) minimum. The loss itself
is, however, not convex. The loss function is also not
symmetric, despite point symmetry of tanh; remem-
ber, it is non-linear. Hence, adding or subtracting a
spread value ϵ± α̇ for a distance α̇ > ϵ > 0 has a dif-
ferent impact. E.g., the WD may increase ”left” from
α̇ more strongly than ”right” of it.

Figure 5: Wasserstein loss against different spread val-
ues for various standardized distributions.

A standard (non-truncated) Gaussian has ≈ 68.27%
of its probability density within a range of [−1, 1],
≈ 27.18% for [−2,−1)∪ (1, 2]; ≈ 4.28% for [−3,−2)∪
(2, 3]; and≈ 0.27% elsewhere. For tanh-normalization,
the percentages are subject to the spread value. Given
a standard normal distributed input, for α = 1 more
than two-thirds of the transformed features will have
absolute values less than 0.762, and more than a quar-
ter will have absolute values in [0.762, 0.964]. Simi-
larly, the default spread value from the literature of
0.01 [Jain et al., 2005, Latha and Thangasamy, 2011],
on the other hand, would here squish more than 99.8%.
This raises the question of why such a convention has
persisted as this can be considered a terrible scale for
feature normalization and may explain why practition-
ers would resort to different alternative (manually ad-
justed) spread values. In fact, α = 0.01 was initially
chosen for a transformation using Hampel, rather than
for the standardized features in MTN, but manual
tweaking and correction were even for Hampel still in-
volved and often necessary [Jain et al., 2005].

Table 1 shows the probability density coverage for var-
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ious spread values. Entries represent the supremum of
the absolute output value for the tanh normalization
for a certain percentage of the probability density. The
target distribution is a standard Gaussian distribution.

Table 1: Approximate probability density coverage.

α 68.2% 95.4% 99.8% 100%

0.01 0.0010 0.0020 0.0030 1
0.10 0.0997 0.1974 0.2913 1
0.25 0.2449 0.4621 0.6351 1
0.50 0.4621 0.7616 0.9051 1
0.75 0.6351 0.9051 0.9780 1
1.00 0.7616 0.9640 0.9951 1

It emphasizes the issue of selecting spreads that are
too small, as the maximum absolute values remain ex-
tremely low. Too large spread values, however, were
not as detrimental, but still far from ideal.

Close to zero, the tanh function is almost linear, with
non-linearity more apparent on larger (absolute) val-
ues. A very small spread value, yielding a very small
effective range, introduces little non-linearity. Con-
sequently, apart from excessively compressing feature
values, this minimal non-linearity fails to diminish the
impact of outliers or enhance robustness against noise.
Weights will have to re-adapt throughout training,
but linearity within individual features is largely ”pre-
served”. Large spread values, on the other hand, intro-
duce more non-linearity and greater affect the normal-
ization’s distribution. If non-linearity is imposed too
strongly, potentially assumed linear relationships (e.g.
on the weighted sum) may become distorted. Overall,
already values ≤ 0.1 exhibit a considerable WD diver-
gence, and so the tanh estimator’s default spread of
0.01 is a very unfortunate choice here. Table 2 con-
tains an overview of spread values and their numeri-
cal loss for different ground distributions. The ideal
spread value for a Gaussian target distribution was of-
ten similar across most distributions; yet not identical.

Table 2: Ideal spread values.

DISTRIBUTION ≈ α̇ Lq=0.001
W

Normal 0.3328 0.011
Exponential 0.3336 0.087
Alpha 0.3885 0.071
Gamma 0.3326 0.043
Gumbel L 0.3422 0.044
Cosine 0.3153 0.020
GenPareto 0.3873 0.174
Bimodal 0.2516 0.107

7 DISCUSSION

Pre-processing of feature values is important to en-
sure optimal model performance. For numeric feature
vector representations, it is crucial to ensure that the
ranges of feature values are comparable so that no
single feature dominates the others; which e.g. could
cause bias. FS is often used here to remap the indi-
vidual features into comparable (unit) ranges. It can,
however, be sensitive to outliers in the data and even
outliers in the individual feature dimensions. Tanh-
estimators offer robust feature normalization. They
utilize a fixed scaling factor for all features, which
raises the question of whether this is suitable given
the vast variation of possible feature distributions.

In a series of tests, poorly spread density masses of
normalized feature value distributions were to blame
for slow training convergence. When a fixed global
spread value is used to normalize all features, this is
expected to happen, particularly e.g. if feature dis-
tributions vary greatly. This work proposed an adap-
tive form of the tanh-normalization that calculates the
ideal spread based on minimizing the Wasserstein dis-
tance of feature distributions against a target distribu-
tion to control the probability density of the normal-
ization. The method particularly enhances the litera-
ture’s current method, boosting training convergence
speed by avoiding unnecessary model weight adaption
due to poor FS. This paper repeatedly highlighted the
importance of determining ideal feature-wise spread
values and provided theoretical motivation. Our solu-
tion determines the ideal spreads automatically and
effectively, avoiding time-consuming manual adjust-
ments. Just as the traditional tanh-normalization, it is
robust to outliers, efficient, and very simple to incorpo-
rate, but further ensures a normalizing transformation
that gives an effective probability mass distribution.

8 CONCLUSION

For machine learning models to be effective, proper
feature pre-processing (FP) is fundamental. The
choice of the FP method holds great importance,
as inadequate FP can have a (strong) negative im-
pact on training convergence and model performance,
especially in machine learning. Although Tanh-
Normalization provides outlier resilience, it does so by
using a fixed global spread value for all features dur-
ing the FP; which is not optimal. Instead, a better
approach is to choose a spread value that aligns the
FP output best with a desired, e.g. well-distributed,
target distribution. The ideal tanh spread value is cal-
culated automatically. This not only improves model
training convergence noticeably but also eliminates the
need for time-consuming manual parameter tuning.
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[Garćıa et al., 2016] Garćıa, S., Ramı́rez-Gallego, S.,
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1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Not Applicable]

(c) Clear explanations of any assumptions. [Not
Applicable]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Yes]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]


