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Halıcıoğlu Data Science Institute

New York University
Center for Neural Science

University of California, San Diego
Dptmnt of Neurobiology &
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Abstract

A number of recent studies have sought to
understand the behavior of both artificial
and biological neural networks by comparing
representations across layers, networks and
brain areas. Increasingly prevalent, too, are
comparisons across modalities of data, such
as neural network activations and training
data or behavioral data and neurophysiolog-
ical recordings. One approach to such com-
parisons involves measuring the dimension-
ality of the space shared between the paired
data matrices, where dimensionality serves as
a proxy for computational or representational
complexity. Established approaches, includ-
ing CCA, can be used to measure the number
of shared embedding dimensions, however
they do not account for potentially unequal
variance along shared dimensions and so can-
not measure e↵ective shared dimensionality.
We present a candidate measure for shared
dimensionality that we call the e↵ective num-
ber of shared dimensions (ENSD). The ENSD
is an interpretable and computationally ef-
ficient model-free measure of shared dimen-
sionality that can be used to probe shared
structure in a wide variety of data types. We
demonstrate the relative robustness of the
ENSD in cases where data is sparse or low
rank and illustrate how the ENSD can be
applied in a variety of analyses of represen-
tational similarities across layers in convolu-
tional neural networks and between brain re-
gions.
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1 INTRODUCTION

Modern experiments across a range of scientific and
technical fields are generating increasingly high dimen-
sional datasets across multiple modalities. In neuro-
science, for example, we can now combine informa-
tion from various sources, including electrophysiologi-
cal recordings from di↵erent brain regions, or from the
same neurons under di↵erent conditions. Additionally,
comparisons of such measured neural activity with dif-
ferent data modalities, from behavioural variables to
neural network models, are increasing used to build
and test theories of neural function.

One broad approach to unravelling the relationships
contained in a given pair of multi-area and/or multi-
modal datasets involves decomposing the total vari-
ability in the two data matrices into independent
and shared components. While both independent
and shared components are typically informative, in
the context of neuroscience, the subspace spanned by
the shared variability between neural populations or
modalities of data is of particular interest as it can
often give useful insight into the computational pro-
cesses at play (Semedo et al., 2019).

These subspaces can be individually characterized
through their dimensionality, a measure which is often
cast as a surrogate for computational or representa-
tional complexity. For example, low dimensional rep-
resentations in neural networks are thought to make
these robust to noise, improve their task performance,
and o↵er interpretable and compact representations of
data for downstream decoding. High dimensional rep-
resentations, on the other hand, have a higher expres-
sivity and more flexibly adapt to newer tasks (Sorscher
et al., 2022). Thus, dimensionality is a way to under-
stand the performance of a network and its ability to
represent a wide range of data. This approach has
been applied to biological and artificial neural net-
work behaviour (Litwin-Kumar et al., 2017; Saxena
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and Cunningham, 2019; Recanatesi et al., 2019; Ma
et al., 2018), and an interesting vein of recent work
has also used dimensionality to measure the accuracy
of neural network models of biological systems (El-
moznino and Bonner, 2022; Canatar et al., 2023). The
dimensionality of shared subspaces, however, has re-
ceived comparatively little attention.

A number of recent studies have begun to explore the
relationship between the dimensionality of neural re-
sponses and that of connected tasks or stimuli, finding
that the two are related in theory (Gao et al., 2017)
and in experiment (Semedo et al., 2019). To date,
the study of shared dimensionality has relied on model
based methods that may not generalize easily to other
contexts and often require sequential hypothesis test-
ing for each candidate shared dimension. Until now, a
simple, model free measure has been lacking.

In this work, we present a candidate model-free mea-
sure of the dimensionality of the shared subspace be-
tween two datasets, which we call the e↵ective number
of shared dimensions (ENSD). The ENSD is a gen-
eralization of the participation ratio (PR), a widely
used measure of the e↵ective dimensionality for a sin-
gle dataset (Del Giudice, 2021), to two datasets that
share at least one dimension. We show that this mea-
sure can also be decomposed into interpretable com-
ponents that describe geometric features of the shared
subspace.

We start by exploring the properties of the ENSD, in-
cluding an associated distance metric and measure of
eigenvector alignment, using simple manipulations of
synthetic data. We then contrast the ENSD with CKA
and CCA, two frequently used techniques for analysing
shared structure in paired datasets, finding that the
ENSD provides a descriptive measure of shared dimen-
sionality that is exceptional in its robustness to sparse
data. Finally, we demonstrate how these tools can be
used to probe both artificial and biological neural sys-
tems in di↵erent modalities: i) convolutional neural
network activations, ii) neural recordings from the vi-
sual cortex and iii) sparse connectomic data from the
fruit fly. We conclude with some discussion about ar-
eas of future development. Although the present work
focuses on neuroscience and machine learning applica-
tions of the ENSD, interest in multimodal data anal-
ysis reaches well beyond these fields as integration of
data from di↵erent sources becomes routine in appli-
cations across the sciences.

2 APPROACH

2.1 Background

The participation ratio The participation ratio
(PR) is a measure of the dimensionality of a data ma-
trix. Since its introduction in atomic spectroscopy, the
PR has found use in disciplines from quantum and con-
densed matter physics to economics, sociology and ma-
chine learning. The PR has also found wide use in neu-
roscience (Altan et al., 2021; Mazzucato et al., 2016;
Recanatesi et al., 2019, 2021; Litwin-Kumar et al.,
2017), and is considered a reasonable measure of neu-
ral data dimensionality (Gao et al., 2017).

To estimate the PR, consider an n⇥p matrix X, where
the covariance of the rows of X are given by CX =
1
p E[XX>]. We assume X to be centered without loss
of generality. We then denote the eigenvalues of CX

as �1 > �2 > · · · > �n. The PR is given by

�X =
(
Pp

i=1 �i)2Pp
i=1 �

2
i

=
trace(CX)2

trace(C2
X)

,

where we can estimate �X by noting that �X ⇡
trace(XX>)2

trace(XX>XX>) . This measure quantifies the disper-

sion (inverse concentration) of the eigenvalue distri-
bution, giving a more intuitive sense for the e↵ective
dimensionality of a data set than many of the existing
alternatives (Gao et al., 2017; Recanatesi et al., 2020,
2021).

To see this, consider the set of n non-negative eigen-
values �1, . . . ,�n. By normalizing these values we can
write the distribution of the variance over the eigenvec-
tors: �̂i = �i/

P
j �j . A common measure of the con-

centration of a distribution is
Pn

i=1 �̂
2
i , which is con-

strained to the interval [ 1n , 1]. Therefore, (
Pn

i=1 �̂
2
i )

�1

varies on [1, n], where the lower limit corresponds to
the most concentrated scenario, where all of the vari-
ance is described by one eigenvector, and n to the
scenario where all of the normalized eigenvalues are
equally distributed and equal to 1/n. If �i are the
eigenvalues of CX , then �X = (

Pn
i=1 �̂

2
i )

�1 is simply
a measure of how evenly distributed the variance is
among all eigenvectors. For several typical eigenspec-
tra, the PR explains between 80-90% of the variance
in a dataset (Gao et al., 2017).

2.2 Our Contribution: The e↵ective number
of shared dimensions

The PR can also be written as a matrix inner product.
We show this by defining the scaled covariance matrix,

ĈX = XX>

trace(XX>) . Multiplying this quantity by the
participation ratio of X we obtain the quantity GX =
�XĈX . Then the PR can be expressed as
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Figure 1: A. Schematic illustrating ENSD. B. Constituent parts of the similarity measure ⌧X,Y : ⇤, a rank-1
matrix of eigenvalue (outer) products (top), W a matrix of eigenvector overlaps (bottom). Examples of W are
shown for datasets with i) fully aligned, ii) partially aligned and iii) orthogonal eigenvectors. Ws constructed
from top 5 eigenvectors are shown, ordered by eigenvalue magnitude.

�X = trace(GXGX).

While the PR is a measure of the dimensionality of one
dataset, the above representation for the PR suggests
a simple generalization that can be applied to obtain
the shared dimensionality of two datasets, X and Y.
The only requirement is a shared first dimension, n,
so we define Y to be n ⇥ q. We can now write the
expression

⌫X,Y = trace(GXGY )

= trace(�XĈX�Y ĈY )

= �X�Y ⌧X,Y

where GY is defined as above, �Y is the participation
ratio of Y, and ⌧X,Y = trace(ĈXĈY ).

We call ⌫X,Y the e↵ective number of shared di-
mensions (ENSD). Just as the PR is a description
of the dispersion of variance across eigenvectors, the
ENSD is both a description of how much of the vari-
ability across datasets can be jointly explained and
how dispersed that explanation is (Fig.1A). In the fol-
lowing sections, we explore the various properties of
this shared dimensionality measure analytically and
through a series of illustrative toy examples.

Properties of the ENSD The following are prop-
erties of the ENSD which can be proven analytically.
The full derivations can be found in the supplementary
material (SM1).

Equality with �X – The ENSD reduces to the PR
when both matrices are equivalent up to orthonormal
transformation. That is, ⌫X,X = �X .

Upper bound – Just as the PR is upper bounded
by min{n, p}, the ENSD also admits an upper bound:

⌫X,Y  p
�X�Y . Note that the upper bound is not

min(�X , �Y ); the shared subspace can be of higher ef-
fective dimensionality than X or Y. This occurs when
dimensions of e.g. X which contribute little to �X
align with high variance dimensions of Y, amplifying
the contribution of these low variance dimensions. The
upper bound is achieved when X = YU, where U is
an arbitrary orthonormal matrix, although there may
be other conditions under which the upper bound is
achieved.

Decomposition in terms of eigenvalues and
eigenvectors – The ENSD may be rewritten in
terms of the eigenvalues and eigenvectors of its con-
stituent matrices. The scaled covariance matrix can
be diagonalized as ĈX = UXLXU>

X , where LX is the

diagonal matrix of normalized eigenvalues �̂X and U
are the principal axes of the data. We may then write

⌧X,Y = trace(UXLXU>
XUY LY U

>
Y )

=
X

i

X

j

�̂i,X �̂j,Y trace(u
>
i,Xuj,Y u

>
j,Y ui,X)

=
X

i

X

j

�̂i,X �̂j,Y w
2
i,j , (1)

where ui,X is the ith eigenvector of ĈX , and wi,j =
u>
i,Xuj,Y (for a full derivation, see SM1). This expres-

sion explicitly shows how ⌫X,Y is a function of both

the eigenvalues of ĈX and ĈY and the inner products
of their constituent eigenvectors. For X = Y, the en-
tries of w2

i,j = 1 8i = j and w2
i,j = 0 otherwise, and we

therefore find �X = 1P
i �̂

2
i,X

.

Since every term in (17) is indexed by i and j we can
rewrite them as entries in the i, jth position in a ma-
trix. Let �>

X = (�1,X ,�2,X , . . . ), and
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W =

0

B@
w2

1,1 w2
1,2 . . .

w2
2,1 w2

2,2 . . .
...

. . .

1

CA

then ⌧X,Y = �>
XW�Y and therefore the ENSD can be

expressed in terms of eigenvalues of eigenvectors:

⌫X,Y =
�>
XW�Y

(�>
X�X)(�>

Y �Y )
.

This way of expressing ⌧X,Y allows for an intuitive
interpretation of this factor: it captures the overlap
between the two subspaces viaW, which is then scaled
by the similarities of the eigenspectra, ⇤ = �X ⌦ �Y

(Fig.1B). This similarity measure is then weighted by
the individual dimensionalities of the two subspaces
in the equation for ⌫X,Y to arrive at a final numerical
estimate for the dimensionality of the shared subspace.

Corresponding distance metric – Williams et al.
(Williams et al., 2021) noted that inner products can
be converted to distances via an arccosine transforma-
tion. We can apply such a transformation such that
the distance metric

d⌫X,Y =
2

⇡
arccos

p
�X�Y ⌧X,Y

satisfies the equivalence and symmetry requirements
as well as the triangle inequality and is therefore a
proper distance metric. That we can define such a
dissimilarity metric is interesting, first because we can
demonstrate a formal relationship between the dimen-
sionality of shared subspaces and a distance in a space
defined by a set of equivalence relations. Second, be-
cause this intuition can be put to work in down-stream
analyses such as k-nearest neighbors, hierarchical clus-
tering, and a suite of other methods for representa-
tional similarity analysis.

3 RELATED WORK

The geometry of shared subspaces has been stud-
ied in a wide range of contexts in neuroscience un-
der the rubric of representational similarity analysis
(Schoonover et al., 2021; Zhuang et al., 2020; Mirza
et al., 2018; Zhou et al., 2018; Freiwald and Tsao,
2010), and machine learning (Kornblith et al., 2019;
Williams et al., 2021; Morcos et al., 2018; Wang et al.,
2018), as well as in the intersection of the two domains
(Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al.,
2014).

Of the methods developed and employed in this lit-
erature, the ENSD is closely related to the Hilbert-
Schmidt Independence Criterion (HSIC) (Gretton

et al., 2005) and Centered Kernel Alignment (CKA)
measure (Kornblith et al., 2019). Specifically, the
CKA is the ENSD normalized by its upper bound:
CKA(X,Y) = ⌫X,Yp

�X�Y
=

p
�X�Y ⌧X,Y . This relation-

ship implies that the CKA score can be interpreted
as the fraction of possible shared dimensionality that
a system is using and allows us to draw a connection
between similarity indices and dimensionality.

Nevertheless, to the best of our knowledge there are
no other methods explicitly designed to compute the
e↵ective number of shared dimensions between two
datasets in a manner analogous to dimensionality es-
timation for a single dataset via the PR. However, a
number of methods can be employed to compute the
embedding dimensionality of shared subspaces. These
include CCA, where the number of shared dimensions
between two datasets is estimated as the number of
significant canonical correlations. Model based regres-
sion techniques such as reduced rank regression (RRR)
have also been applied to measure the dimensionality
of shared ‘communication’ subspaces between neural
populations (Semedo et al., 2019). We compare these
methods to the ENSD in the context of shared sub-
space dimensionality estimation below.

4 PROBING THE ENSD WITH
SYNTHETIC DATA

In this section, we illustrate important properties of
the ENSD via application to synthetic data. First, we
clarify the di↵erence between e↵ective shared dimen-
sionality, as estimated by the ENSD, and the embed-
ding dimensionality as estimated via CCA. Second, we
demonstrate how shared subspace dimensionality esti-
mation via ENSD relates to two alternative methods,
CCA and RRR, in the sparse and low sample number
data regimes.

E↵ective vs. embedding dimensionality As
shown above, the ENSD incorporates both the degree
of overlap between the set of basis vectors and the
spectral decay in both datasets, giving an estimate of
e↵ective shared dimensionality. We contrast this with
the integer valued estimate of the embedding dimen-
sionality obtained via CCA as the number of signifi-
cant canonical correlations (with p < 0.05). Although
many variants of CCA exist, here we focus on the orig-
inal method as outlined in Hotelling (1936).

We compare estimated dimensionality via ENSD
(⌫X,Y ) and CCA (DCCA) for simple synthetic
datasets X and Y (of sizes n ⇥ p and n ⇥ q
respectively), with singular value decompositions
given by X = (U1,U2)SXV>

X , where SX =
diag(�X,1, . . . ,�X,p) and Y = (U1,U3)SY V>

Y , where
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Table 1: E↵ective vs strict/embedding dimensionality

aligned basis partially aligned basis

flat � decay �
flat � decay �

" 5 # 5 " 5 # 5

ENSD 10 3.4 5 5 3.1 0.1
CCA 10 10 5 5 5 5

Average estimated dimensionality over n = 100 syn-
thetic datasets. ": highest variance dimensions are
shared, #: lowest variance dimensions are shared.

SY = diag(�Y,1, . . . ,�Y,q). The shared subspace is de-
fined by the n⇥ r matrix U1, while U2 is n⇥ (p� r)
and U3 is n⇥ (q�r). We assume U>

i Uj = 0 for i 6= j.
The ⌫X,Y can then be written as

⌫X,Y =
(
Pr

i=1 �
2
X,i�

2
Y,i)(

Pp
i=1 �

2
X,i)(

Pq
i=1 �

2
Y,i)

(
Pp

i=1 �
4
X,i)(

Pq
i=1 �

4
Y,i)

(2)

When all singular values are equal (flat spectra), we
obtain

⌫X,Y =
(r�2

X�2
Y )(p�

2
X)(q�2

Y )

(p�4
X)(q�4

Y )
= r (3)

and ⌫X,Y is precisely the number of matched eigenvec-
tors as expected. When datasets X and Y contain low
dimensional structure, their (ordered) singular value
spectra will reflect this as a decay. We model such
spectra as exponentials with decay rate �X and �Y .
As � increases, the spectra decay more quickly and
thus �X , �Y and ⌫X,Y all decrease towards the lower
limit of 1 (where all variance is concentrated on the
first eigenvector).

To illustrate how ⌫X,Y and DCCA vary as functions of
a) eigenvector alignment and b) spectral decay rates,
we analyze simple synthetic data in which we indepen-
dently modulate these components (details in SM2).
For a), we consider i) r = 10 (complete alignment)
and ii) r = 5 (partial alignment). For b) we consider
both i) flat spectra (�i =

1
n , 8i) and ii) decaying spec-

tra (�X = �Y > 0).

The results of this analysis are shown in Table 1. Both
methods agree on the number of shared dimensions
when spectra are flat: i) ⌫X,Y = DCCA = r = 10 (col.
1) and ii) ⌫X,Y = DCCA = r = 5 (cols. 3 and 4,
respectively). When � > 0, the ENSD and CCA dis-
agree, reflecting the fact that the ENSD incorporates
information about the distribution of variance in the
shared subspace. That is, when the subspaces for X
and Y overlap but variance is unequally shared across
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Figure 2: Comparison of dimensionality estimation ac-
curacy for 3 methods in a simulated experiment, aver-
aged over 50 experiments at di↵erent sample sizes and
two levels of sparsity. Data were generated using the
pCCA model (Bach and Jordan, 2005) with 5 shared
latent variables. Details in SM3.

these dimensions, the ENSD estimates a lower e↵ec-
tive dimensionality, (e.g., ⌫X,Y = 3.4, vs. DCCA = 10
col. 2)

When only a subset of basis vectors are shared between
the two datasets, the variance along those shared
dimensions will determine the e↵ective dimensional-
ity. When basis vectors with the highest variance are
shared , the estimated dimensionality is significantly
larger than the case in which basis vectors with the
lowest variance are shared (", D = 3.1 vs #, 0.1, cols.
5 and 6, Table 1). In both cases, CCA correctly iden-
tifies the embedding dimensionality of the shared sub-
space, D = 5. In SM2, we also compare shared di-
mensionality estimates via ENSD and CCA as a func-
tion of spectral decay in the above synthetic data.
CCA robustly identifies the embedding dimensional-
ity even when spectral decay is significant, while ENSD
smoothly decreases with the decay rate, accounting for
the increasingly uneven distribution of variance with
spectral decay (SM-Fig.6).

Estimating shared dimensionality in sparse and
low sample regimes Here, we compare shared
dimensionality estimation via ENSD to i) CCA
(Hotelling, 1936) and ii) RRR (Izenman, 1975), for
which we used the cross validation procedures outlined
in (Semedo et al., 2019). We generated data using
the probabilistic CCA model (Bach and Jordan, 2005;
Browne, 1979) with two data sources each with obser-
vation dimension of size 30, 5 shared latent dimensions
and private latent dimensions of 10 and 15 (details in
SM3). In addition to varying the number of samples
used, we randomly sparsified the observations at two
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levels.

Two observations are apparent from our analysis
(Fig.2). First, the ENSD is the most robust of the
three methods to variations in both sample size and
observation sparsity. Second, the ENSD is system-
atically biased downwards from the number of shared
dimensions used to generate the data. This bias is con-
sistent with the interpretation of ENSD as the e↵ective
number of shared dimensions. As we discussed in Sec-
tion 2.2, any degree to which there is unequal variance
of shared components would contribute to a deviation
in the estimated number of dimensions. We therefore
expect ENSD to routinely report shared dimensional-
ity that is somewhat smaller than the integer number
of dimensions needed to embed the shared structure.

5 APPLICATION TO ARTIFICIAL
NEURAL NETWORKS

A recent line of work has sought to evaluate deep neu-
ral network (DNN) models of the visual system via
their dimensionality. For example, Elmoznino and
Bonner (2024) found that the ability of DNNs to pre-
dict neural activity was strongly positively correlated
with the PR of their internal representations of nat-
ural images, irrespective of task optimization or ar-
chitecture. The authors also introduce the notion of
alignment pressure (AP), which describes how strongly
aligned high variance dimensions are across represen-
tations. The ability of a DNN to predict neural re-
sponses, they reason, should be a combination of the
breadth of its internal representation (the PR) and
how well that representation describes the data (the
AP). A DNN with a low PR, for example, can pre-
dict neural data reasonably well if its AP is high.
The authors do not, however, provide a measure to
quantify the AP of two datasets; the ENSD fills this
gap, formalizing the empirical relationship between
AP (through the W matrix) and PR.

Inspired by a recent study (Kornblith et al., 2019)
which explored representational similarity within
and between layers of convolutional neural networks
(CNNs) using CKA, we applied the ENSD to measure
the shared dimensionality between layers of a CNN.
We trained a TinyTen CNN (Tatro et al., 2020) to
classify the CIFAR-10 dataset and computed both the
CKA and ENSD between all pairs of layers, repeating
this across six random initializations of the same net-
work. The average layer by layer ENSDs and CKAs
across initializations are shown in (Fig.3A,B). This
analysis reveals that the dimensionality of representa-
tions as measured by the PR (main diagonal, Fig.3A)
first increases and then decreases with layer depth.
The ENSD between subsequent layers (eg. along the
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Figure 3: A. Across layer ENSD and B. CKA av-
eraged over 6 networks. C. Average ENSD, upper
bound and CKA across layers (o↵-diagonals of A and
B). D. Comparison of shared dimensionality estimates
between visual cortical areas using RRR and ENSD.
Open markers represents a stimulus orientation for one
session, closed markers are averages over sessions.

1st diagonal) follows this same pattern of expansion
and contraction. This kind of initial expanding of di-
mensionality may be helpful in expanding represen-
tations for ease of learning classification boundaries
(Sorscher et al., 2022).

In contrast, the average between-layer CKA remains
relatively constant across layers (Fig.3B). We note that
the CKA can be interpreted as the fraction of the
maximum possible ENSD that the measured system
uses (see section 2.2). Since this proportion stays rel-
atively constant and close to the maximum, early lay-
ers seem to be learning a representation of the data
that remains relatively unchanged throughout the net-
work. A decrease towards the readout layer may be a
consequence of the network learning a lower dimen-
sional representation that optimizes for the particu-
lar image classification task. That the ENSD includes
dimensionality information therefore provides a more
detailed assessment of the relationships between rep-
resentations within a network.

6 APPLICATION TO NEURAL
DATA

Re-analysis of visual electrophysiology data In
a recent study, Semedo et al. (Semedo et al., 2019) ex-
amined correlated neural activity between primary and
secondary visual cortices (i.e. V1, V2). Their analysis
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demonstrated that correlations in trial-by-trial fluctu-
ations were detectable both within and between re-
gions and that these correlations were indicative of a
shared (“communication”) subspace that displayed di-
mensionality similar to the dimensionality of the stim-
ulus used in the task. The authors used RRR to deter-
mine the dimensionality of this subspace. We propose
that our measure can be equivalently used to conduct
this analysis without model fitting.

We repeated their analysis, applying the ENSD to
their data (Fig.3D) and obtaining qualitatively similar
results for both target V1 and V2 populations from a
size-matched source V1 population, although our re-
sults are somewhat downward-biased, as expected (see
Fig.3D). Because we were able to conduct our analysis
without model fitting, computation time was an or-
der of magnitude smaller using ENSD as compared to
RRR (see SM4), opening the door to analysis of much
larger-scale datasets in the future.

Analysis of olfactory connectivity data The ol-
factory system faces a set of fundamentally di�cult
challenges, including the rapid identification and dis-
crimination of odor stimuli drawn from the extremely
high dimensional space of volatile chemicals (Mayhew
et al., 2022). Odorants evoke responses in a large
repertoire of receptors, which compress this high di-
mensional space via a poorly understood combinato-
rial code. In the fly, for example, 51 genetically de-
fined receptors relay information, via antennal lobe
projection neurons (AL PNs), to two downstream ar-
eas (Fig.4A): i) the mushroom body (MB), an area
that has been shown to mediate adaptive olfactory
learning (Aso et al., 2014) and ii) the lateral horn (LH),
a relatively poorly characterized area thought to medi-
ate innate olfactory behaviour (Das Chakraborty and
Sachse, 2021). Understanding how the olfactory sys-
tem makes consistent sense of the complex chemical
space via the interaction of parallel processes is of im-
portance beyond neuroscience, as the computational
principles supporting olfaction can be applied to more
general problems in AI.

Recent work has explored the relationship between the
fruit fly olfactory network’s connectivity, the e↵ective
dimensionality (PR) of its representations and perfor-
mance in discrimination tasks, finding (similarly to the
the DNNs described in Section 5) that high dimen-
sional representations facilitate classification (Litwin-
Kumar et al., 2017). Here, we use the ENSD to further
probe structure-function relationships in the fly. We
make use of a recently released connectomic dataset
from a single fly to probe AL inputs to the two afore-
mentioned downsteam areas (AL!LH and AL!MB
connectivity data contained in highly sparse matrices

L and M respectively, Fig.4B). Our results from Sec-
tion 2.2 demonstrate that the ENSD is well suited
to shared dimensionality estimation for such sparse
datasets.

First, we asked to what extent the feedforward connec-
tivity to these areas contains interpretable structure.
We address this by computing the participation ratio
of L and M and comparing these values to the corre-
sponding null models. Our randomizing procedure re-
moves correlations between channels but preserves the
marginal statistics of the data matrices (Caron et al.,
2013) (see SM5 for details). Deviations from random-
ness indicate the presence of a structured component.
Our analysis reveals that i) both connectivity matrices
contain a degree of nonrandom organization and ii) L
is significantly more structured than M (Fig.4C). This
is in line with results showing that input to the MB
is largely unstructured, facilitating high dimensional
representations for associative learning (Litwin-Kumar
et al., 2017; Zheng et al., 2022), while inputs to the LH
are more structured, with lower dimensional represen-
tations driving fast, innate behavioural programs.

To determine if the structure identified in the two
pathways is related and significant, we compare the

ENSD to that of shu✏ed data via�⌫ = ⌫(L,M̃)�⌫(L,M)
⌫(L,M)

(the tilde indicates a shu✏ed matrix). The decrease
in shared dimensionality (and increase in distance)
after shu✏ing indicates that the LH shares a statis-
tically significant representational subspace with the
MB, emerging from similar input connectivity patterns
(Fig.4D).

The W matrix allows us to probe this alignment fur-
ther, as it directly describes the overlap between the
eigenvectors odf the two matrices. We find a sin-
gle statistically significant and strongly overlapping
dimension: the first PC of M and the second PC
of L (Fig.4E). We also found statistically significant
but weak overlaps between two other pairs of eigen-
vectors. The strongly aligned subspace is therefore
1-dimensional. Comparing eigenvector loadings onto
this shared subspace reveals that the structure is dom-
inated by a set of channels that are tuned to food re-
lated odorants (specifically yeast and fermented fruit,
Fig.4F). This is consistent with findings from (Choi
et al., 2022), but our analysis also demonstrates that
this food dominated shared subspace is statistically
significant (i.e. not simply a byproduct of having more
connections and therefore a higher connection proba-
bility amongst such channels).

Finally, we use a second dataset containing AL!MB
connectivity from another fly (Zheng et al., 2022) to i)
confirm that the shared input structure to LH and MB
is consistent across individuals (see SM5) and ii) show
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Figure 4: A. Schematic of the parallel pathways of the fly olfactory system. B. Binarized connectivity matrix
between the 51 types of glomeruli in the AL and the principal neurons in the LH or MB.C. PRs of the connectivity
matrices for the LH (left) and MB (right) and corresponding null models. D. E↵ect of shu✏ing on the ENSD (left)
and the distance (right) between the LH and MB connectivity data. E.W matrix of eigenvector overlaps between
the LH and MB. Eigenvector overlaps corresponding to the top 5 eigenvalues shown, all statistically insignificant
overlaps (p > 0.05), are set to zero. F. Loadings of the di↵erent glomeruli onto the shared dimension (red border
in E), color-coded by their odorant tuning (from (Choi et al., 2022)). G. W matrix showing eigenvector overlaps
between the two MB datasets (left) and their corresponding eigenspectra (right) compared to null models (grey
line). Star indicates statistical significance (p < 0.05).

that all of the structure in the MB inputs is shared
across the two individuals (Fig.4G).

Overall these analyses reveal that i) part of the struc-
ture observed in inputs to the LH and MB is shared
between the two areas, ii) this shared subspace relates
to an ethologically relevant odor scene and iii) is con-
sistent across individuals, and iv) all of the structure
in the MB inputs is shared between individuals. The
food-tuned shared subspace between LH and MB in-
puts revealed by our analysis may play an important
role in the circuitry that permits olfactory learning in
the MB pathway to alter innate food related behaviour
mediated by the LH pathway, as recently observed in
(Eschbach and et al, 2021; Lerner et al., 2020). SM5
contains additional ENSD based multimodal analy-
ses of these connectivity matrices and paired odorant
odorant evoked neural activity.

7 DISCUSSION

The capacity to characterize shared structure between
diverse datasets will be increasingly important in many
scientific fields as high dimensional and multimodal
data collection becomes routine. Here we present the
ENSD, a simple and interpretable tool to character-

ize shared linear subspaces in paired datasets. We use
synthetic data to probe the behavior of the ENSD with
respect to known structure, as well as comparing it to
existing data analysis methods. We bring this com-
parison to the realm of real data in three examples:
i) comparing CKA and ENSD analyses of CNN acti-
vations, showing that ENSD provides a richer insight
into the structure of activity, ii) comparing ENSD to
RRR, showing how the ENSD can be used to more
easily arrive at existing results from electrophysiology
experiments, and iii) showing how the ENSD can be
used to generate novel analyses of fly olfactory con-
nectivity data. We find that strategically probing the
shared dimensionality of pairs of connectivity datasets
reveals interpretable shared structure both within and
between the inputs to two neuropils of the fly olfac-
tory system (Fig.4). Furthermore, we find that these
interpretable structures are consistent across individ-
uals, implying a genetic origin. That we were able to
recover all of this from application of a single measure
to connectomic data serves to showcase the utility and
interpretability of the technique.

We have shown that the ENSD has a number of ad-
vantages compared to existing, model-based methods
for estimating shared variability in paired datasets:
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robustness to sample size and observation sparsity,
minimal computation time (just 5 matrix multipli-
cations), and easily interpretable components. The
ENSD also o↵ers an interpretation of the recently
introduced CKA score as a fraction of the possible
shared dimensionality that a system is using. Because
of this relationship, we expect that critiques of CKA
also apply to the ENSD, including a lack sensitivity
to low variance dimensions (Davari et al., 2022; Ding
et al., 2021; Nguyen et al., 2021). Shared structure in
low variance dimensions can still be detected via the
empirical W matrix and an appropriate null model for
the data.

Another important aspect to consider is the robust-
ness of the ENSD to noise. A previous analysis of
linear dimensionality estimation revealed that the PR
tends to overestimate dimensionality when su�cient
noise is added to synthetic data or when the underly-
ing data manifold is nonlinear (Altan et al., 2021) and
it is likely that the ENSD inherits these properties.
However, amongst common shared dimensionality es-
timators, the ENSD changes the least in response to
variations in sample size and random sparsening rate
(Fig.3.A). Both of these features are indicative of a rel-
ative robustness to various sources of noise. Moreover,
alternative techniques typically require costly multiple
hypothesis testing to estimate shared dimensionality, a
requirement that is troublesome for exploratory anal-
yses.

While we focused on use cases in neuroscience and ma-
chine learning, we stress that this technique can be
productively applied in other fields, from physics to
sociology, to ask related questions about shared vari-
ance contained in data. Important areas for future
development include i) extending the ENSD to incor-
porate scale-dependence, which can reveal di↵erences
in local and global structure that may be obscured
by other dimensionality measures (Recanatesi et al.,
2020), ii) extending the measure to non-linear dimen-
sionality metrics via kernelization of the ENSD, and
iii) extending the ENSD via a generalized notion of
e↵ective dimension (Del Giudice, 2021).
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Supplementary Material: The E↵ective Number of Shared
Dimensions Between Paired Datasets

SM1 Properties of ⌫X,Y

In the following discussion, we consider the n⇥ p matrix X, and the n⇥ q matrix Y, where n > p, q.

Matrix expression for ⌫X,Y

⌫X,Y =
trace(Y>XX>Y)trace(X>X)trace(Y>Y)

trace(X>XX>X)trace(Y>YY>Y)

Equality with �X

⌫X,Y = �X�X⌧X,X (4)

= �X�Xtrace[ĈXĈX ] (5)

= �X�X
1

�X
(6)

= �X (7)

Upper bound

Just as �X is upper bounded by p, the ENSD also admits an upper bound. To see this, first recall that the
Cauchy-Schwartz inequality gives

(u>v)2  (u>u)(v>v)

for any vectors u and v. Noting that u and v in the above expression may be the vectorizations of matrices U
and V we may equivalently write

trace[U>V]2  trace[U>U]trace[V>V].

Substituting U = ĈX and V = ĈY gives

trace[Ĉ>
XĈY ]

2  trace[Ĉ>
XĈX ]trace[Ĉ>

Y ĈY ], (8)

and using the notation presented in Section 2 of the main paper we may write inequality (8) as

⌧2X,Y  1

�X�Y
,

and therefore p
�X�Y ⌧X,Y  1. (9)
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Finally, multiplying both sides of inequality (9) by
p
�X�Y gives the upper bound for ⌫X,Y ,

⌫X,Y  p
�X�Y .

and additionally, it is clear that ⌧X,Y is upper bounded by the inverse of the geometric mean of the participation
ratios, 1p

�X�Y
.

Decomposition in terms of eigenvalues and eigenvectors

The ENSD may be rewritten in terms of the eigenvalues and eigenvectors of it’s constituent matrices, via the
scaled diagonalized covariance matrix, trace[ĈX ] = UXLXUX , where LX is a matrix with eigenvalues �̂X on
the diagonal and U are the principal axes of the data. We first rewrite the trace term,

⌧X,Y = trace[ĈXĈY ] (10)

= trace[UXLXU>
XUY LY U

>
Y ] (11)

= trace

2

4
 
X

i

�̂i,Xui,Xu>
i,X

!0

@
X

j

�̂j,Y uj,Y u
>
j,Y

1

A

3

5 (12)

= trace

2

4
X

i

X

j

�̂i,X �̂j,Y ui,Xu>
i,Xuj,Y u

>
j,Y

3

5 (13)

=
X

i

X

j

�̂i,X �̂j,Y trace
⇥
ui,Xu>

i,Xuj,Y u
>
j,Y

⇤
(14)

=
X

i

X

j

�̂i,X �̂j,Y trace[u
>
i,Xuj,Y u

>
j,Y ui,X ] (15)

=
X

i

X

j

�̂i,X �̂j,Y trace[wi,jwi,j ] (16)

=
X

i

X

j

�̂i,X �̂j,Y w
2
i,j , (17)

where wi,j ⌘ u>
i,Xuj,Y . Equation (17) explicitly shows how ⌫X,Y is a function of both the eigenvalues of ĈX

and ĈY and also the inner products of their constituent eigenvectors. If we rewrite the participation ratio in the
same way, we find that wi,j = 1 8i, j, so

�X =
1

P
i �̂

2
i,X

,

allowing us to rewrite the ENSD as

⌫X,Y =

P
i

P
j �̂i,X �̂j,Y w2

i,j

(
P

i �̂
2
i,X)(

P
j �̂

2
j,Y )

.

Since every term in (17) is indexed by i and j we can rewrite each in terms of the i, jth entries of a matrix. Let
�>
X = (�1,X ,�2,X , . . . ), and

W =

0

B@
w2

1,1 w2
1,2 . . .

w2
2,1 w2

2,2 . . .
...

. . .

1

CA ⇤ = �X�>
Y

then

⌧X,Y = > (⇤�W) (18)

= �>
XW�Y (19)

and

⌫X,Y =
�>
XW�Y

(�>
X�X)(�>

Y �Y )
.



The E↵ective Number of Shared Dimensions Between Paired Datasets

This way of writing out ⌧X,Y allows for an intuitive interpretation of this term: it captures the overlap between
two subspaces with W, which is then scaled by the respective eigenspectra, ⇤. This similarity measure is then
weighted by the individual dimensionalities of the two subspaces in the equation for ⌫X,Y to arrive at a final
numerical estimate for the dimensionality of the shared subspace.

The corresponding distance metric, according to Williams et al. (2021), may also be expressed in this way, as

d⌫X,Y =
2

⇡
arccos

�>
XW�Y

(�>
X�X)1/2(�>

Y �Y )1/2
(20)

=
2

⇡
arccos

�>
XW�Y

k�Xk2k�Y k2
(21)

SM2 Probing the ENSD using synthetic data

Partially shared subspaces

For the simplest toy example we construct a scenario where we define the number of shared dimensions between
X and Y to be an integer r. Suppose the singular value decompositions of these matrices are given by the n⇥ p
matrix X = (U1,U2)SXV>

X , where SX = diag(�X,1, . . . ,�X,p) and the n⇥q matrix Y = (U1,U3)SY V>
Y , where

SY = diag(�Y,1, . . . ,�Y,q), where the key feature we impose is that Ui ? Uj for i 6= j. The shared subspace is
defined by the n⇥ r matrix U1, while U2 is n⇥ (p� r) and U3 is n⇥ (q� r). A few relations follow from these
assumptions:

trace(XX>) = trace

✓
(U1,U2)SXV>

XVXS>
X

✓
U>

1

U>
2

◆◆
(22)

= trace

✓
(U1,U2)S

2
X

✓
U>

1

U>
2

◆◆
(23)

= trace

✓
(U1,U2)SXV>

XVXS>
X

✓
U>

1

U>
2

◆◆
(24)

= trace

✓✓
U>

1

U>
2

◆
(U1,U2)S

2
X

◆
(25)

= trace

✓✓
U>

1 U1 U>
1 U2

U>
2 U1 U>

2 U2

◆
S2
X

◆
(26)

= trace

✓✓
Ir 0r⇥p�r

0p�r⇥r Ip�r

◆
S2
X

◆
(27)

= trace
�
S2
X

�
(28)

=
pX

i=1

�2
X,i (29)

Following similar steps we find

trace(XX>XX>) = trace

✓
(U1,U2)S

2
X

✓
U>

1

U>
2

◆
(U1,U2)S

2
X

✓
U>

1

U>
2

◆◆
(30)

= trace

✓
(U1,U2)S

2
XS2

X

✓
U>

1

U>
2

◆◆
(31)

= trace
�
S2
XS2

X

�
(32)

=
pX

i=1

�4
X,i (33)
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We therefore find that the PR for X can be written as

�X =
trace(XX>)2

trace(XX>XX>)
(34)

=
(
Pp

i=1 �
2
X,i)

2

Pp
i=1 �

4
X,i

(35)

Similarly,

trace(YY>) = trace

✓
(U1,U3)SY V

>
Y VY S

>
Y

✓
U>

1

U>
3

◆◆
(36)

= trace

✓
(U1,U3)S

2
Y

✓
U>

1

U>
3

◆◆
(37)

= trace
�
S2
Y

�
(38)

=
pX

i=1

�2
Y,i (39)

Following equation (5) above for the formula for ⌧XY we may write

⌧XY =
1

trace(XX>)trace(YY>)
trace(XX>YY>) (40)

= trace

✓
(U1,U2)S

2
X

✓
U>

1

U>
2

◆
(U1,U3)S

2
Y

✓
U>

1

U>
3

◆◆
(41)

= trace

✓
(U1,U2)S

2
XS2

X

✓
U>

1

U>
2

◆◆
(42)

= trace
�
S2
XS2

X

�
(43)

=
pX

i=1

�4
X,i (44)

and ⌫X,Y can be written

⌫X,Y =
(
Pr

i=1 �
2
X,i�

2
Y,i)(

Pp
i=1 �

2
X,i)(

Pq
i=1 �

2
Y,i)

(
Pp

i=1 �
4
X,i)(

Pq
i=1 �

4
Y,i)

(45)

or, as described in the main text, if the dimensionality of both matrices are maximized (corresponding to flat
eigenspectra),⌫X,Y reduces to exactly the number of shared eigenvectors.

Synthetic data in Section 4

We generate (zero-padded) data matrices by manipulating the singular value decompositions: X =

(U1,U2,U3)X SX (V1,V2,V3)
>
X 2 Rm⇥p and Y = (U1,U2,U3)Y SY (V1,V2,V3)

>
Y 2 Rm⇥q. Matrices

U1 2 Rm⇥a, U2 2 Rm⇥b and U3 2 Rm⇥c, a + b = c are a partition of a randomly generated orthonormal
basis (eigenvectors are in columns). Matrix S = (diag((( �1:cPc

i �i
), [0]1⇥c)), [0]m⇥d�m), where d = p or q, � = e��j

and j indexes singular values. We generate a set of common orthonormal bases UA 2 Rm⇥a and substitute these
into columns of UX and UY to construct the simple synthetic data considered in Section 4, with parameters
m = 2n, n = c = 10, a, b 2 {5, 10}, and �X = �Y .

Continuous partially shared subspaces

An illustrative extension of this simple example is a continuous relaxation of this model with the modification
that Y(↵) = [

p
↵U1 +

p
(1� ↵)U3, U4]SY V>

Y , where again all Ui are orthonormal and Ui ? Uj for i 6= j,
and ↵ 2 [0, 1].
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particular order – the column corresponding to the first eigenvalue to last (black line), last to first (grey line) or
in random order (colored lines). B. Plots of the derivatives of the PR (�, left), the similarity term (⌧ , center)
and the ENSD (⌫, right) as a function of the eigenvalue decay of matrix Y.

We then have

trace(Y>Y) =
qX

i=1

�2
Y,i, trace(X>X) =

pX

i=1

�2
X,i, (46)

trace(X>XX>X) =
pX

i=1

�4
X,i, trace(Y>YY>Y) =

qX

i=1

�4
Y,i, (47)

trace(X>XY>Y) = ↵
rX

i=1

�2
X,i�

2
Y,i (48)

Therefore,

⌫X,Y = ↵
(
Pr

i=1 �
2
X,i�

2
Y,i)(

Pp
i=1 �

2
X,i)(

Pq
i=1 �

2
Y,i)

(
Pp

i=1 �
4
X,i)(

Pq
i=1 �

4
Y,i)

(49)

We can see that (49) is simply (45) multiplied by ↵. Therefore, in the case where the dimensionalities of X
and Y are maximized (i.e. �X,i =

p
µX and �Y,i =

p
µY , 8i) then we have, as expected, ⌫(X,Y(↵)) = ↵r.

Additionally, since �X and �Y are constant, ⌧XY / ↵r as well and achieves the upper bound ( 1p
�X�Y

) when
↵ = 1.

Dimensions explaining more variability contribute more to ⌫

Consider an n⇥ p matrix X = UXSXV>
X , where SX = diag(�1, . . . ,�p) and �i > �i+1, and a second basis UX̃ ,

where again all columns of Ui are orthonormal and Ui ? Uj for i 6= j. We now generate a second matrix, X̃k,
which is identical to X except that the kth column of UX is replaced with the kth column of UX̃ . Since all
columns of UX and UX̃ are mutually orthogonal, �X̃k

= �X irrespective of which column of UX is swapped.

The only term in ⌫X,X̃ that is a↵ected is the similarity term, ⌧X,X̃k
= > (⇤�W) . Since the matrices are

identical except for their eigenvectors, swapping columns of UX only a↵ects the matrix of eigenvector overlaps,
W.

For i, j 6= k, Wi,j = 0, as the associated eigenvectors are orthogonal, and for all i = j 6= k,Wi,j = 1, as
UX̃,j = UX,i. When i, j = k, now Wk,k = 0, whereas before the swap it was equal to 1. Since the kth term

in the sum (17) is now zero, ⌧X,X̃k
decreases by an amount �̂2

k. The eigenvectors are strictly decreasing, so
swapping out the kth eigenvector always results in a larger change to ⌧X,X̃ , and therefore ⌫X,X̃ , than swapping
out the (k + 1)th vector.

An example of this is shown in figure 5A, where we plot the ENSD and ⌧X,X̃ as a function of the number of

columns swapped in X̃ for di↵erent swapping orders. In this case, both X and X̃ are of dimensionality ⇠ 7.5. In
the case where we successively swap the columns in UX for columns in UX̃ from largest to smallest eigenvalues
(black line), ⌧X,X̃ and ⌫X,X̃ decrease more quickly than if the columns were swapped from smallest to largest
eigenvalue (grey line). Random column swaps (colored lines) all produce ⌫X,X̃ and ⌧X,X̃ within the envelope
defined by these two modifications.
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text), are aligned and spectral decay is defined by a common variable, �.

The ENSD captures amplification of shared variability

Finally, in section 3 of the main text we consider the case where the eigenspectra of the two matrices have di↵erent
decay rates which produces some interesting phenomena. We consider two n ⇥ p matrices, X = USXV> and
Y = USY V>, so X and Y are identical except for their rates of eigenvalue decay. The decrease in the PR
is not linear, as shown by the plot of its derivative with respect to � (Fig.5B, left). Likewise, the derivative
of ⌧X,Y is strictly positive but decreasing over time as ⌧X,Y approaches the upper bound (Fig.5B, center). In
this limit, the shared dimensionality is contained entirely in the first dimension of X and Y, and ⌫X,Y ! 1.
The ENSD, however, shows some interesting behavior, first increasing then decreasing (see Fig.2C in the main
text). We might expect that the ENSD would strictly decrease as the matrices become more di↵erent. However,
its derivative goes from positive to negative in the brief period that @�

@�  @⌧
@� (Fig.5B, right), which causes the

shared dimensionality to be greater than the participation ratio. After the inflection point, @�
@� > @⌧

@� the shared
dimensionality is again below the participation ratio, and the decrease in ENSD is mainly due to the decrease
in participation ratio of Y.

SM3 Comparison of shared dimensionality estimation techniques

We sought to evaluate the ENSD compared to alternative measures of shared dimensionality using synthetic data
where ground truth is known. To our knowledge, only two alternatives exist: model-based estimation of shared
dimensionality using reduced rank regression (RRR) and statistically-based estimation using canonical correlation
analysis (CCA). For the RRR method we followed the procedure outlined in Semedo et al. (2019). Briefly, the
RRR model is used to predict variability in one dataset from the variability of the other. Models are constructed
with dimensionalities varying from 1 to k and each assessed via cross-validation. The model dimensionality with
the best predictive CV score is selected as the shared dimensionality. For the CCA method, we conducted CCA
using canoncorr() function in Matlab (version 9.13.0. Natick, Massachusetts: The MathWorks Inc., 2022.).
Each canonical correlation with a p-value of <0.05 (corrected for false discovery rate) was considered significant.
The significant canonical correlations were then summed to give the estimate of dimensionality.

Synthetic data was generated using the probabilistic CCA (pCCA) model Bach and Jordan (2005); Browne
(1979). Briefly, the pCCA model is a structured factor analytic model where in observations of vector measure-
ments for two data sources (yA,yB) are determined by P latent variables whereby

✓
yA

yB

◆
= Ax+ ✏ (50)

where ✏ ⇠ N (0,D), with D diagonal, and x ⇠ N (0, IP ). The shared subspace is structured through the parti-

tioning of x such that x =
�
x>
A,x

>
S ,x

>
B

�>
where xA is latent variability associated exclusively with measurements

yA, xB is latent variability associated exclusively with measurements yB , and xS is latent variability associated
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Supplementary Figure 7: Wallclock time of electrophysiology data analysis using ENSD and RRR. Each marker
represents a single run of the analysis.

with both measurements yA and yB . The latent dimensionality P is given by the sum of the dimensionality of
all components; P = PA + PS + PB . The mixing matrix is structured to maintain the partitioning of variability
via the following block structure

A =

✓
AA ASA 0
0 ASB AB

◆
. (51)

In addition to the noise variable ✏, we tested the robustness of these methods by randomly setting each observation
to 0 with 2 di↵erent probabilities (0.2 and 0.8). We simulated data using this model with 31 observations of each
yA and yB , PA = 10, PB = 15, PS = 5. Sample sizes ranged from 50 to 500 and each sample size was repeated
across 50 di↵erent experiments. Nonzero elements of A were drawn iid from a standard normal distribution for
each experiment. Means and standard deviations reported in Figure 3 are taken over all experiments.

SM4 Re-analysis of visual cortex electrophysiology data

For the electrophysiology data analysis in Section 5, we conducted estimation of dimensionliaty via RRR ac-
cording to Semedo et al. (2019) using code retrieved from the authors’ github repository (https://github.com/
joao-semedo/communication-subspace). The data was retrieved from a publicly available CRCNS repository
Zandvakili and Kohn (2019). Data collection was described in detail in Zandvakili and Kohn (2015).

Briefly, an anesthetized macaque was presented with a visual stimuli consisting of a series of oriented gratings
with one of 8 di↵erent orientations. Extra-cellular electrophysiological recordings were conducted simultaneously
in V1 (97 single units via Utah array) and V2 (31 single units via tetrodes) during stimulus presentation. Each
stimulus orientation was analyzed separately. For each run of an analysis, the V1 sample sizes were matched to
the V2 sample size by randomly sampling both a “target” and “source” subsample from V1. V1 dimensionality
was taken to be the optimal RRR model dimensionality to predict the target V1 dataset from the source V1
dataset. Shared dimensionality was taken to be the optimal RRR model dimensionality to predict V2 neural
responses using the source V1 dataset as regressors. The estimation procedure was repeated 10 times for each
dataset and the results were averaged. We calculated ENSD values for each of these 10 resamplings for each
stimulus orientation and results for each resampling were averaged to give 1 shared dimensionality value for each
stimulus orientaion. Since the ENSD is not limited to matrices that share both dimensions, we were able to
complete the analysis using the full V1 dataset. The results from this analysis reveal that size-matching may be
causing an underestimation of the dimensionality of the communicaation subspace between the two areas.

Although absolute computation time for each method was fast, the wallclock computation time for ENSD was
about two orders of magnitude faster than for RRR (Fig. 7), which has implications for analysis times for very
large datasets.

https://github.com/joao-semedo/communication-subspace
https://github.com/joao-semedo/communication-subspace
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SM5 Analysis of olfactory connectivity data

In section 5 of the main text, we explore shared structure in three olfactory datasets from D. Melanogaster. Each
is a neural connectivity matrix obtained by electron microscopy Sche↵er (2020); Zheng et al. (2022) describing
connectivity from the fly Antennal Lobe (AL) to one of two downstream areas, the Lateral Horn (LH) and
Mushroom Body (MB). Two such matrices were extracted from one individual via the Hemibrain dataset:
LFlyEM (dimensions 108 ⇥ 1400) and MFlyEM (dimensions 108 ⇥ 1761) Schlegel et al. (2021). These data
describe the number of synapses between individual AL and LH/MB cells. The final matrix was obtained from
a second individual via the FAFB dataset, MFAFB (dimensions 109 ⇥ 1344) and describes binary connectivity
between individual AL and LH/MB celxls Zheng et al. (2022). We contract the first dimension (uniglomerular
projection neuron (uPN)), by adding together uPNs associated to the same olfactory channel (originating in the
same glomerulus). This results in a consistent first dimension of size nchannels = 51 across all three datasets. A
threshold is then applied to binarize the FlyEM datasets, ✓ 2 [1, 3, 5, 10]. ✓ is set to 3 in the main text. Here,
we also apply the ENSD to the synaptic count data.

As we are interested in investigating shared structure between these datasets, we compare each dataset to a null
model in which correlations contained in the empirical data are removed via shu✏ing. Our shu✏ing procedure
for binary connectivity matrices follows Caron et al. (2013); Zheng et al. (2022) and results in an ensemble of
null model matrices, each of which has the same the marginal statistics (row and column sums) as the empirical
data. We use an ensemble of size x = 300 for the ✓ = 3 analyses and x = 100 for other ✓ values. To shu✏e the
synaptic data, we first apply a threshold to the data and then shu✏e via the above procedure. Finally, synaptic
counts are added back in randomly such that the row sums are held constant, i.e. synaptic counts from each
channel/glomerulus are the same as the empirical data, but column sums are allowed to diverge. Rows in each
matrix, empirical or null model, are mean centered.

It is important to note that in each analysis, only one matrix is shu✏ed (indicated by a grey bar in the figure
header). We choose to shu✏e the less structured matrix of the pair, i.e. MFlyEM or MFAFB , rather than both
matrices. Shu✏ing the matrix with more structure, i.e. LFlyEM , would result in a random matrix which may be
(and in our case is) more similar to the less structured matrix. This similarity is, from our perspective, artificial,
as we are interested in understanding how the structured components in two datasets relate to one another, not
the random components.

In Supplementary Figures 9-11, we present an extended analysis of the data from the main text. This includes
pairwise analyses of the three connectivity matrices in SM-Fig.9A, with synaptic count data for the LFlyEM

and MFlyEM replacing the binary data from the main text. In SM-Fig.9B, we show that the overlap between
shared dimensions (eigenvector 1 in LFlyEM and eigenvector 2 in MFlyEM and MFAFB) is significantly increased
in empirical data vs the null model. In SM-Fig.10, we confirm that the shared subspace is not an artefact of
threshold choice, but a robust feature of the data by analyzing the changes in ⌫ and d⌫ for all synaptic and
binary thresholding configurations. In In SM-Fig.8, we confirm that the shared structure (aligned 1D subspace)
cannot be explained by the marginal statistics of the data alone as the loadings and proportions of synapses or
connections for each information channel are relatively uncorrelated.

Because our shu✏ing procedure significantly a↵ects the dimensionality of the data (shu✏ed matrices are higher
dimensional), ⌫, which is sensitive to this dimensionality via the �X�Y component, may be less indicative of
shared structure than d⌫ . For instance in the comparison between MB inputs across individuals (final column
of SM-Fig.9), ⌫ increases for the null model relative to the data. In this case and in others, the change in d⌫
more clearly indicates shared structure that has been disrupted by shu✏ing. We expect that in studies where
the procedure for generating samples from the null model doesn’t significantly change dimensionality, ⌫ would
be equally useful for detecting shared structure, as well as giving an interpretable value for the size of the shared
variability component.

Finally, we show the connectivity data reordered by loading on the shared dimension in SM-Fig.11. The LH
consists of two major cell types: output neurons (LHONs) and local neurons (LHLNs), as well as a few minor cell
types (other). By reorganizing the components of LFlyEM corresponding to these cell types, we can see that both
the LHON and LHLN populations contain subpopulations of cells that are strongly tuned to the food related
features of the shared dimension, while the other cell types do not contain any strongly tuned neurons. We also
note that, while the output neurons contain subpopulations that are both positively and negatively tuned to the
shared dimension, the local neuron population only contains a subpopulation that is positively tuned to these
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features. This is an interesting circuit feature that we intend to study in future work. The MB contains a single
primary cell type, the Kenyon Cell (KC), and is physically organized into a series of lobes. Reordering MFlyEM

by loading onto the shared dimension reveals that all three lobes, ↵/�,↵0/�0 and �, contain subpopulations of
neurons that are both positively and negatively tuned.

Additionally, we use the ENSD to probe variability shared between a subset of connectivity data from the
Hemibrain dataset (FlyEM ) and neural activity in a subset of channels obtained from Badel et al. (2016). The
activity data describes the responses of 37/51 channels to a set of 84 odorous stimuli, including fermentation
and other food related odorants/blends. The raw data is preprocessed to a matrix of Z-scored responses R
shown in SM-Fig.12A. We find that input connectivity to the LH is significantly tuned to features of the neural
responses (including but not limited to food related features. SM-Fig.12B, first column), relative to shu✏ed LH
connectivity, whereas the MB input (second column) is more weakly tuned to the neural activity (comparison of
�d⌫ plots in columns 1 and 2). We confirm that the subspace shared between LH and MB inputs is also present
in the subset of connectivity data used for this analysis (last column). This di↵erence in tuning between LH and
MB inputs is consistent with the putative roles of these two neuropils in innate vs learned olfactory behaviour.
This analysis demonstrates that the ENSD is a simple and useful tool for uncovering consistent relationships
between datasets of di↵erent modalities.
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statistically insignificant overlaps (p > 0.05), are set to zero. Bottom row : Comparison of loadings onto shared
dimension. B. The shared structure identified in W is not preserved when one dataset is shu✏ed.



The E↵ective Number of Shared Dimensions Between Paired Datasets

θ=1 θ=10θ=5
binary

LFlyEM

MFlyEM 0

- 0.05

0
0.1

0

-0.05

0

0.1

0

0.06

0

0.04

L

M

L

M

L

M

M M

MFAFB

LFlyEM

0

0.10

-0.1

0

-0.05

0

0.1

0

-0.05

0

0.08

L L L

M

FAFB

MFAFB

MFlyEM 0

0.08

0

0.06

0

0.05

0

0.1

0

0.1

0

0.04

synaptic

LFlyEM

MFlyEM
0

0.05

0

0.04

0

0.05

0

0.03

0

0.05

0

0.04

L

M

L

M

L

M

ν dν

0

0.7

0

0.6

0

0.85

0

0.7

FAFB FAFB

Supplementary Figure 10: Shared subspace analysis from the main text is consistent across a range of synaptic
threshold values.



Gia↵ar, Rullán Buxó and Aoi
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Supplementary Figure 12: A. The response of a subset of 37 olfactory channels to 84 odorants from four
categories: monomolecular species, natural odorant blends, concentration series and binary mixtures (matrix R)
Badel et al. (2016). B. Multimodal data analysis with the ENSD. Comparing synaptic count data from FlyEM
(using the corresponding 37 channels) with odorant response data in R. Top row : changes in ENSD and distance
metric when one dataset is shu✏ed (underlined in grey). Second row : W matrices containing eigenvector overlaps
corresponding to the top 5 eigenvalues shown, all statistically insignificant overlaps (p > 0.05), are set to zero.
Bottom row : Comparison of loadings onto shared dimension.
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Code availability

Code to reproduce the main results of this work is available at https://github.com/hamzagiaffar/ensd.git.
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