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Abstract

Conformal inference is a fundamental and
versatile tool that provides distribution-free
guarantees for many machine learning tasks.
We consider the transductive setting, where
decisions are made on a test sample of m
new points, giving rise to m conformal p-
values. While classical results only concern
their marginal distribution, we show that
their joint distribution follows a Pdélya urn
model, and establish a concentration inequal-
ity for their empirical distribution function.
The results hold for arbitrary exchangeable
scores, including adaptive ones that can use
the covariates of the test+calibration samples
at training stage for increased accuracy. We
demonstrate the usefulness of these theoret-
ical results through uniform, in-probability
guarantees for two machine learning tasks of
current interest: interval prediction for trans-
ductive transfer learning and novelty detec-
tion based on two-class classification.

1 Introduction

Conformal inference is a general framework aiming at
providing sharp uncertainty quantification guarantees
for the output of machine learning algorithms used
as “black boxes”. A central tool of that field is the
construction of a “(non)-conformity score” S; for each
sample point. The score functions can be learnt on a
training set using various machine learning methods
depending on the task at hand. The scores observed
on a data sample called “calibration sample” D.,, serve
as references for the scores of a “test sample” Dy
(which may or may not be observed, depending on the
setting). The central property of these scores is that
they are an exchangeable family of random variables.
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1.1 Motivating tasks

To be more concrete, we start with two specific settings
serving both as motivation and as application.

(PI) Prediction intervals: we observe D, =
(X1,Y1),...,(X,,Yn) a sample of iid. vari-
ables with unknown distribution P, where X; €
R? is a regression covariate and Y; € R is
the outcome. Given a new independent da-
tum (Xp41,Yn41) generated from P, the task
is to build a prediction interval for Y, ;i given
Xn41 and D.,. More generally, in the trans-
ductive conformal setting (Vovk, 2013)), the task
is repeated m > 1 times: given m new data
pOthS Dtest = (Xn+17 Yn+1); R (Xn+m7 Yn+m)
iid from P, build m prediction intervals for

Yn+1, N 7Yn+m given Xn+17 N >Xn+m and Dcal'
(ND) Novelty detection: we observe D., =
(X1,...,X,), a sample of nominal data

points in R?, drawn iid. from an unknown
(null) distribution Py, and a test sample
Diest = (Xnt1s -+ Xnt+m) of independent points
in R%, each of which is distributed as P, or not.
The task is to decide if each X, 4; is distributed
as the training sample (i.e., from Py) or is a
“novelty”.

For both inference tasks, the usual pipeline is based on
the construction of non-conformity real-valued scores
S1,...,Sptm for each member of D, U D, which
requires an additional independent training sample
Dirain (in the so-called “split conformal” approach):

(PI) the scores are (for instance) the regression residu-
als S; = |Y; — (Xi; Dirain)|, 1 < @ < n+m, where
the function pu(x; Dyyain) is @ point prediction of Y;
given X; = z, learnt from the sample Dy, .i,-

the scores are of the form S; = ¢(X;; Dirain), 1 <
i < n +m, where the score function ¢(+; Diain) is
learnt using the sample Di,ain; g(x) is meant to
be large if z is fairly different from the members
Of Dirain (so that it is “not likely” to have been
generated from Pp).
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Figure 1: Task (PI) with adaptive scores in a non-
parametric regression setting with domain shift be-
tween train and calibration+test samples (proof-of-
concept model, see Section . Our contribution is
both to propose adaptive scores and predictions re-
lying on transfer learning (this figure), and uniform
bounds on the false coverage proportion, see Figure

In both cases, inference is based on the so-called split
conformal p-values (Vovk et al.| [2005)):

b= ) (143008, 2 5,0}, i € Il ()

=1

In other words, (n + 1)p; is equal to the rank of S, 4;
in the set of values {Si,...,Sn,Sn+i}, and a small
p-value p; indicates that the test score S,,; is abnor-
mally high within the set of reference scores. The link
to the two above tasks is as follows: for (PI), the pre-
diction interval C(«a) for Y, ; with coverage proba-
bility (1 — «) is obtained by inverting the inequality
p; > « w.r.t. Y,y see below. For (ND), the
members of the test sample declared as novelties are
those with a p-value p; <t for some threshold ¢.

Studying the behavior of the conformal p-value fam-
ily is thus a cornerstone of conformal inference. Still,
classical results only concern the marginal distribu-
tion of the p-values while the joint distribution remains
largely unexplored in full generality.

1.2 Contributions and overview of the paper

In Section |2, we present new results for the joint dis-
tribution of the conformal p-values for general ex-

changeable scores (for any sample sizes n and m).
First, in Section we show that the dependence
structure involved only depends on n and m, and fol-
lows a Pdlya urn model; this entails both explicit for-
mula and useful characterizations. Second, we deduce
a new finite sample DKW-type concentration inequal-
ity (Massart, [1990)) for the empirical distribution func-
tion (ecdf) of the conformal p-values.

We illustrate the interest of the theoretical results
through the application cases (PI) in Section |3| and
(ND) in Section [4] for which dedicated numerical ex-
periments are also provided]

Our theory provides in-probability (i.e. confidence)
bounds for the error proportion when m decisions are
taken simultaneously (transductive setting); further-
more, these bounds are uniform over a certain class
of decisions. More precisely, the proportion of errors
among the m decisions corresponds to the false cov-
erage proportion (FCP) for (PI), resp. the false dis-
covery proportion (FDP) for (ND). We develop upper
confidence bounds for these quantities, in dependence
of prediction interval length for (PI), resp. the re-
jection threshold for (ND), and valid uniformly over
the choice of these parameters. This is in contrast to
marginal guarantees in previous literature only pro-
viding in-expectation guarantees of FCP/FDP at a
fixed level «, and for specific procedures. Obtaining
in-probability bounds for the FDP is a classical and
active theme of multiple testing theory: in contrast
to an in-expectation control, it takes into account the
fluctuations of the error proportion. It thus brings
more fine-grained reliability, while the uniform guar-
antee also offers the practitioner more flexibility for
taking a data-driven decision that is still theoretically
backed up. These guarantees can in particular be cru-
cial when handling sensible data. Similarly, obtaining
a sharp confidence bound on the actual (random) num-
ber of false inferences for (PI) for repeated decisions is
much more informative than a bound on its expecta-
tion.

We insist that we only assume that the scores are ex-
changeable to obtain in-probability guarantees. Ex-
changeability is a classical assumption in conformal
theory, though some recent works have sometimes
dropped it in favor of i.i.d. scores. Deriving results
under the weaker exchangeable assumption is crucial
in the considered applications, because while the data
is assumed i.i.d., we rely on adaptive conformal scores
which depend not only on the training sample (arbi-
trarily), but also on the calibration+test sample in an
exchangeable way. Adaptive scores offer superior per-

'The code used in all our experiments is made
publicly available at https://github.com/ulyssegazin/
TransductiveAdaptive_CP.
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formance in practice (see Figure || for our approach
to transductive transfer PI), are indeed exchangeable
(thus, our theory applies) but noti.i.d. This illustrates
the interest to develop the joint distribution theory
under the weaker exchangeable assumption even if the
underlying data is assumed to be i.i.d., a standard set-
ting (our results also hold if the data is only assumed
exchangeable).

1.3 Relation to previous work

For fundamentals on conformal prediction, see Vovk
et al. (2005); Balasubramanian et al.| (2014). We only
consider the split conformal approach, also named in-
ductive conformal approach in the seminal work of
Papadopoulos et al.| (2002). The split conformal ap-
proach uses a separate training set but is considered
the most practically amenable approach for big data
(in contrast to the “full conformal” approach which
can be sharper but computationally intractable).

The most important consequence of score exchange-
ability is that the marginal distribution of a conformal
p-value is a discrete uniform under the joint (calibra-
tion and test) data distribution. There has been sig-
nificant recent interest for the conditional distribution
of a marginal p-value, conditional to the calibration
sample, under the stronger assumption of i.i.d. scores.
The corresponding results take the form of bounds on
P(p1 < t| D) holding with high probability over
D.a (Vovk, |2012; Bian and Barber, 2022} [Sarkar and
Kuchibhotla), [2023; Bates et al., 2023, where in the
two latter references the results are in addition uni-
formly valid in t). However, the i.i.d. scores assump-
tion prevents handling adaptive scores, for which only
exchangeability is guaranteed; moreover, these works
only handle a single prediction.

Simultaneous inference for the (PI) task has been pro-
posed by [Vovk| (2013)) (see also [Saunders et al., |1999
for an earlier occurrence for one p-value with multiple
new examples), referred to as transductive conformal
inference. It includes a bound on the family-wise er-
ror rate (the probability of committing one or more
PI errors) based on a Bonferroni-type correction. In
the present work we allow the number of PI errors to
be positive but aim at a tight control of this number
in probability (uniformly valid over the choice of PI
length).

Closest to our work, Marques F.| (2023); [Huang et al.
(2023) analyze the false coverage proportion (FCP) of
the usual prediction interval family C(«a/) repeated over
m test points: the exact distribution of the FCP un-
der data exchangeability is provided, and related in
Marques F.[(2023) to a Polya urn model with two col-
ors. We show the more general result that the full

joint distribution of (p1,...,pm) follows a Polya urn
model with (n + 1) colors, which entails the result of
Marques F.| (2023)); Huang et al.| (2023) as a corollary
(see Supplemental . This brings substantial innova-
tions: our bounds on FCP are uniform in a, and we
provide both the exact joint distribution and an ex-
plicit non-asymptotic approximation via a DKW-type
concentration bound. Finally, Bao et al. (2024) also
established an in-expectation control of the FCP af-
ter a selection stage. By contrast, we provide FCP
bounds in probability. In addition, while our theory is
stated without selection stage, it can be applied to a
permutation invariant selection, see Remark

The (ND) setting is alternatively referred to as Con-
formal Anomaly Detection (see Chapter 4 of Balasub-
ramanian et all [2014]). We specifically consider here
the (transductive) setting of [Bates et al.| (2023) where
the test sample contains novelties, and the correspond-
ing p-values for ‘novelty’ entries are not discrete uni-
form but expected to be stochastically smaller. Due to
strong connections to multiple testing, ideas and pro-
cedures stemming from that area can be adapted to
address (ND), specifically by controlling the false dis-
covery rate (FDR, the expectation of the FDP), such
as as the Benjamini-Hochberg (BH) procedure (Ben-
jamini and Hochberg, [1995). Use of adaptive scores
and corresponding FDR control has been investigated
by [Marandon et al.|(2022). Our contribution with re-
spect to that work comes from getting uniform and
in-probability bounds for the FDP (rather than only
in expectation, for the FDR).

2 Main results

2.1 Setting

We denote integer ranges using [¢i] = {1,...,i},
li,5] = {i,...,3}.  Let (Si)ig[ntm) be real ran-
dom variables corresponding to non-conformity scores,
for which (S});jepn) are the “reference” scores and
(Snti)iepm) are the “test” scores. We assume

The score vector (S;)ic[n+m] is exchangeable.
(Exch)

Under (Exch]), the p-values have super-uniform
marginals (see, e.g., Romano and Wolf}2005)). In addi-

tion, the marginal distributions are all equal and uni-
formly distributed on {¢/(n + 1),£ € [n + 1]} under
the additional mild assumption:

The score vector (S;)ic[n+m] has no ties a.s.
(NoTies)

While the marginal distribution is well identified, the
joint distribution of the p-values is not well studied yet.
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In particular, we will be interested in the empirical
distribution function of the p-value family, defined as

~

Fo(t) = m_lil{piﬁt}, telo,1.  (2)

Note that the p-values are not i.i.d. under , SO
that most classical concentration inequalities, such as
DKW's inequality (Massart, [1990), or Bernstein’s in-
equality, cannot be directly used. Instead, we should
take into account the specific dependence structure un-
derlying these p-values.

2.2 Key properties

We start with a straightforward result, under the
stronger assumption

The variables S;,i € [n + m], are i.i.d. (1ID)
For this, introduce, for any fixed vector U =
(Uy,...,Uy,) €[0,1]", the discrete distribution PY on
the set {7#1,6 € [n+ 1]}, defined as

PY({t/(n+1)}) = Uy = Ug-ry, L€ [n+1], (3)

where 0 = U(O) S U(l) S S U(n) S U(n+1) =1 are
the increasingly ordered values of U = (Uy,...,U,).
In words, the n values of U divide the interval [0,1]
into (n + 1) distinct cells (labeled 7#176 € [n+1]),
and PV is the probability distribution of the label of

the cell a Unif[0, 1] variable would fall into.
Note that PY has for c.d.f.

FU(JC) = U(L(n+1)wj)7 T e [0, 1]. (4)

The following result can be considered as well known
from previous literature (see, e.g., proof of Theorem 6
in Bates et al., |2023)); we include a short proof for
completeness.

Proposition 2.1. Assume ([ID)) and (NoTies|) and
1

consider the p-values (p;,i € [m]) given by (1)). Then
conditionally on D,y = (S1,...,S,), the p-values are
i.i.d. of common distribution given by

D1 |DcalNPU7

where U = (Uy,...,U,) = (1= F(S1),...,1—=F(S,))
are pseudo-scores and F' is the common c.d.f. of the
scores of Dy, that is, F(s) = P(S; < s), s € R. In
addition the pseudo-score vector U is i.i.d. Unif|0, 1]
distributed.

Proof sketch. The conditional distribution of p; only
depends on score ordering which is unambiguous due

to , and is thus invariant by monotone trans-
formation of the scores by (1 — F'). Writing explic-
itly the cdf of p; from the uniformly distributed trans-
formed scores yields . See Supplemental for
details.

In the literature, such a result is used to control the
conditional failure probability P(p; < a | D.,;) around
its expectation (which is ensured to be smaller than,
and close to, a) with concentration inequalities valid
under an i.i.d. assumption (Bates et al., [2023} [Sarkar
and Kuchibhotla), [2023; [Bian and Barber}, 2023]).

By integration over U, a direct consequence of Propo-

sition [2.1] is that, under ([ID)) and (NoTies), and un-

conditionally on D,,;, the family of conformal p-values
(pi,i € [m]) has the “universal” distribution P, ,, on
[0,1]™ defined as follows:

Pom = D(Qiai € [[mﬂ), where (5)

i.i.d.
and U = (Uy,...,U,) <" Unif([0,1]).

Our first result is to note that the latter holds beyond
the i.i.d. assumption.
Proposition 2.2. Assume (Exch)) and (NoTies)), then

the family of p-values (p;,i € [m]) given by (1) has
joint distribution P, ,,,, which is defined by - 6) and
1s independent of the specific score distribution.

Proof sketch. The joint distribution of the p-
values only depends on the ranks of the (n + m)
scores. Since the scores have exchangeable distribu-
tion and holds, their ranks form a random
permutation of [n + m]. Thus, the same rank distri-
bution (and consequently joint p-value distribution) is
generated when the scores are i.i.d. Applying Propo-
sition the p-value distribution can be represented

as (5)-(6). See also Supplemental [C.2]

The next proposition is an alternative and useful char-
acterization of the distribution P, .

Proposition 2.3. P, ,, is the distribution of the col-
ors of m successive draws in a standard Pdlya urn
model with n+ 1 colors labeled {7#176 € [n+1]}.

Proposition [2.3] is proved in Supplemental [A] where
several explicit formulas for P, ,, are also provided.
We also show that this generalizes the previous works
of [Marques F.| (2023); Huang et al.| (2023).

Comparing Proposition [2.I] and Proposition 2.2, we
see that having i.i.d. scores is more favorable because
guarantees are valid conditionally on D, (with an ex-
plicit expression for U = U(D.,;)). However, as we
will see in Sections [3] and [ the class of exchange-
able scores is much more flexible and includes adap-
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tive scores, which can improve substantially inference
sharpness in specific situations. For this reason, we
work with the unconditional distribution as in Propo-
sition [2:2] in the sequel.

2.3 Consequences

We now provide a DKW-type envelope for the empiri-
cal distribution function (2|) of conformal p-values. Let
us introduce the discretized identity function

L(t) = [(n+1)t]/(n+1) = EF, (1), t€0,1], (7)
and the following bound:
BDKW()‘7n>m) = 1{)\<1} 1+

)

V2T AT m | _or a2
. —— e n,m
(n+m)t/?

(8)
where 7, ., :=nm/(n+m) € [(n Am)/2,n Am] is an
“effective sample size”.

Theorem 2.4. Let us consider the process ﬁm defined
by [2), the discrete identity function I,,(t) defined by

(7), and assume (Exchl) and (NoTies). Then we have

for all x>0, n,m > 1,

1}»( sup (Fin(t) — In(t)) > A) < BPKW(\, n,m). (9)

t€[0,1]
In addition, BPXW(AZRYY ;n,m) < ¢ for
AL = 1) 10
Bz) = 1A <log(1/5) + 10g2(j + \/%(EFTT;I“’N) ) 1/2,

where W) denotes the function W iterated r times (for
an arbitrary integer r > 1).

Proof sketch. Use the representation @, apply
the DKW inequality separately to (Ui,...,U,) and
to (q1,...,qn) conditional to U, and integrate over
U. See supplemental Section for details (a slightly
more accurate bound is also proposed).

In supplemental Section [E] we illustrate the sharpness
of the inequality @

Remark 2.5. The Simes inequality (Simes, [1986]) is
true for conformal p-values (Bates et al., 2023), which
provides a different confidence envelope on ﬁm. A
comparison with the new DKW bound is provided
in Supplemental [G] It shows that the latter is sharper
in a wide range of situations.

Remark 2.6. Since the distribution P, ,, can be easily
sampled from, AF*% in can be further improved
by considering the sharper but implicit quantile

APmDKW (5 0 ) = min {x >0 Tpma < 6},with

~ / l
Tn,m,x +— Pn,m( sup (Fm( ) - ) > SU> .
ten+1] n+1 n+1

In addition, numerical confidence envelopes for ﬁm
with other shapes can be investigated. For instance,
for any set IC C [m] of size K, we can calibrate thresh-
olds t1,...,tx > 0 such that

Pp~p, .. (Vk € K, Py1) > tr)

=Ppp,,. (Vk €K, Fp(ty) <k/m)>1-05. (11)
A method is to start from a “template” one-parameter
family (tx(\))kex and then adjust A to obtain the de-
sired control (Blanchard et al.l [2020; |Li et al.l [2022).

This approach is developed in detail in Suppl. [B]

3 Application to prediction intervals

In this section, we apply our results to build simul-
taneous conformal prediction intervals, with an angle
towards adaptive scores and transfer learning.

3.1 Setting

Let us consider a conformal prediction framework for
a regression task, see, e.g., |Lei et al.| (2018)), with three
independent samples of points (X;, Y;), where X; € R¢
is the covariable and Y; € R is the outcome:

e Training sample Dy,.,: observed and used to
build predictors;

e Calibration sample D, = {(X;,Y;),i € [n]}; ob-
served and used to calibrate the size(s) of the pre-
diction intervals;

o Test sample Diegy = {(Xpti, Ynsi), @ € [m]}; only
the X;’s are observed and the aim is to provide
prediction intervals for the labels.

In addition, we consider the following transfer learn-
ing setting: while the data points are i.i.d. within each
sample and the distributions of D.,; and D, are the
same, the distribution of Dy, can be different. How-
ever, Dy,.in can still help to build a good predictor by
using a transfer learning toolbox, considered here as
a black box (see, e.g., Zhuang et all [2020] for a sur-
vey on transfer learning). A typical situation of use is
when the training labeled data Dy..;, is abundant but
there is a domain shift for the test data, and we have
a limited number of labeled data D, from the new
domain.

3.2 Adaptive scores and procedures

Formally, the aim is to build Z = (Z;);cm], a family
of m random intervals of R such that the amount of
coverage errors (1{Y,, ;i & Z;})ic[m] is controlled. The
construction of a rule Z is based on non-conformity
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scores S;, 1 < i < n+ m, corresponding to residuals
between Y; and the prediction at point X;:

Si = Y; =l Xi3 (Disain; Dy yrend)) s @ € [n+ml, (12)

where the predictor fi is learnt using Dy..;, and the cal-
ibration+test covariates D2, ... = (X1,..., Xpim).
More sophisticated scores than the residuals have been
proposed in earlier literature (Romano et al. [2019;
Gupta et al., 2022), in particular allowing for con-
ditional variance or quantile prediction and resulting
prediction intervals of varying length. Our theory ex-
tends to those as well and we consider here for
simplicity. We call the scores (12)) adaptive because
they can use the unlabeled data Dz, ..., which is par-
ticularly suitable in the transfer learning framework
where the covariates of Dy, should be mapped to
those of D2 ..., to build a good predictor. Classical
scores can also be recovered via if the predictor
ignores D2, .... The predictor /i can be any “black
box” (an unspecified transfer learning algorithm) pro-
vided the following mild assumption is satisfied, en-

suring score exchangeability:

Vm S Rd, ,EL(«'E, (Dtrainv Dg§1+tcst))

is invariant by permutation of D2y, ,..,. (PermInv)

Since (X, Y;)ie[n+m] are i.i.d. and thus exchangeable,
one can easily show that holds for the adap-
tive scores when the predictor satisfies .
Predictors based on transfer machine learning pro-
cedures typically satisfy . In addition,
is a mild assumption: add a negligible noise
to the scores is an appropriate tie breaking that makes

(NoTied) hold.

Given the scores , we build the conformal p-values
via and define the specific conformal procedure
C(a) = (Ci())ie[m] obtained by inverting {p; > a}
with respect to Y, y;, that is, {p; > a} = {V,4; €
Ci(«)} almost surely with

Ci(a) = [(Xn+i; (Dirains D 1piest)) £ 5(((n+1)(17a()1)]),
13

where Sy < -+ < Sy < Seny1) = +0oo denote the
order statistics of the calibration scores (S1,...,Sy).
Observe that the radius of the interval S((41)(1—a))
can be equivalently described as the (1 — a)-quantile
of the distribution Y}, %_H(Ssi + #_15—%0@ Note also
that C(a) = R™ if a < 1/(n + 1), that is, if the de-
sired coverage error is too small w.r.t. the size of the
calibration sample.

3.3 Transductive error rates

By Proposition the following marginal control
holds for the conformal procedure C(a) (L3):

P(Y,.; ¢ Ci(a)) < a, i€ [m]. (14)

This is classical for non-adaptive scores and our result
already brings an extension to adaptive scores in the
transfer learning setting.

In addition, we take into account the prediction multi-
plicity by considering false coverage proportion (FCP)
of some procedure Z = (Z;);e[m], given by

FCP(Z) :=m™* i WY, ¢ T} (15)

It is clear from that the procedure C(«) con-
trols the false coverage rate, that is, FCR(C(«))) :=
E[FCP(C(«))] < a. However, the error FCP(C(a))
naturally fluctuates around its mean and the event
{FCP(C(«)) < a} is not guaranteed. Hence, we aim
at the following control in probability of the FCP:

P[FCP(C(a)) <@ > 1 — 4. (16)

Several scenarios can be considered: « is fixed and
we want to find a suitable bound @ = FCP, s for
the “traditional” conformal procedure C(a); or con-
versely, @ is fixed and we want to adjust the param-
eter a = tgs of the procedure to ensure the prob-
abilistic control at target level @. For @ = 0, this
reduces to P[Vi € [m], Yo+ € Z;] > 1 -4, ie, no
false coverage with high probability. By applying a
union bound, the procedure C(§/m) satisfies the lat-
ter control, as already proposed by [Vovk| (2013). How-
ever, in this case the predicted intervals can be trivial,
that is, C(6/m) = R™, if the test sample is too large,
namely, m > 6(n + 1). Moreover, in a more general
scenario the practitioner may want to adjust the pa-
rameter ¢ = @ on their own depending on the data,
for example based on some personal tradeoff between
the probabilistic control obtained and the length of
the corresponding prediction intervals — this is the
common practice of a “post-hoc” choice (made after
looking at the data). This motivates us to aim at a
uniform (in «) bound, that is, find a family of random
variables (FCPq,5)qae(0,1) such that

P[Va € (0,1), FCP(C(a)) < FCPus] >1-46. (17)

Establishing such bounds is investigated in the next
section. This gives a guarantee on the FCP in any
of the above scenarios, in particular a post-hoc choice
of the parameter @. As a concrete example, one may
want to choose a data-dependent & to ensure predic-
tion intervals C(«) of radius at most L, namely,

a(L) = (n+1)—1(1+§n:1{5i > L}). (18)
i=1

Guarantee yields a (1—0)-confidence error bound
FCPg(1),s for this choice.
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Figure 2: Plot of FCP(Z) (dashed) and bound
= =DKW

FCPs1) 5 (solid, 6 = 0.2) in function of in-
terval length 2L in the same setting and procedures as
in Figure [T}

3.4 Controlling the error rates

To establish and , we use that from ,
and (15)), FCP(C(t)) = F},,(t) and thus for all ¢ € [0, 1],
{FCP(C(t)) <@} = {Fn(t) <@}
= {mF,(t) < [am|}
= {p(ami+1) > t},
where p(1) < -+ < p() denote an ordered conformal

p-values. We deduce the following result.

Corollary 3.1. Let n,m > 1. Consider the setting
of Section the conformal procedure C(«) given by
and P, ., given by . Then the following holds:

(i) for any @ € [0,1], 6 € (0,1), C(a = tg,5) satisfies
(L6) provided that tgz s is chosen s.t.

Ppop, . (P(l@m)+1) < tas) < 6. (19)

(ii) for any 6 € (0,1), (FCPQ’(;)QE(O,I) satisfies
provided that

Ppp, . (30 € (0,1) : Fp(a) > FCP,;) <.
(20)

Applying Corollary (i), for conformal prediction
with guaranteed FCP, we obtain an adjusted level pa-
rameter which can be computed numerically (an ex-
plicit formula can also be given for a« = 0, see Sup-

plemental @[) Applying Corollary (ii), and thanks

to (9, the following family bound (FCPa,s5)ae(0,1) 18
valid for

——~—~DKW

FCP,; = (a+Anm)H{a>1/(n+1)}, (21

d,n,m

with APXKW > 0 given by (10). Obviously, numerical

o,n,m

bounds can also be developed according to Remark[2.6]
Remark 3.2. Our FDP bounds extend to a selective
inference framework where S = S(Dyvain, Dy s rese)) C
[n + m] is a selection rule invariant by permutation
of DX\, ewr typically S = {i € [n+m] : A(X;) >
0}. The calibration and test samples over the selection
S are 'D57ca1 = {(XZ,YZ),Z esSn [[nﬂ} and DS,test =
{(Xn+i, Ynti)yi € SN [n+ 1,n+ m]}, respectively.
Defining the p-values accordingly, our envelopes are
also valid for the FCP owver the selection S by simply
replacing n by |SN[n]| and m by |SN[n+1,n+m]|.
This complements the recent work of | Bao et al.| (2024)),
where only in-expectation results were established.

3.5 Numerical experiments

To illustrate the performance of the method, we con-
sider the following proof-of-concept regression model:
(W;,Y;) iid. with Y; | W; ~ N(u(W;),0?) for some
unknown function p and parameter o > 0. To accom-
modate the transfer learning setting, we assume that
we observe X; = f1(W;) in Dirain and X; = fo(W;)
in D.y U Dy for some transformations f; and fo.
Three conformal proceduresﬂl' = C(a) = (Ci(a))iclm]
are considered which differ only in the construction
of the scores: first, Z™"°® consists in using a predic-
tor of the usual form fi(:, Dirain) hence ignoring the
distribution difference between Di i and Dy U Diest
(no transfer) with a RBF kernel ridge regression; the
second procedure Z°*" ignores completely Di,ain and
works by splitting D.,, in two new samples of equal
size to apply the usual approach with these new (re-
duced) samples (transfer not needed); the third ap-
proach Z**%" is the proposed one, and uses the trans-
fer predictor fi(+; (Dirain, D1 1esr)) based on optimal
transport proposed by |Courty et al.| (2017). While all
methods provide the correct (1 — «) marginal cover-
age, we see from Figure [1] that Z"*"*" is much more
accurate, which shows the benefit of using transfer
learning and adaptive scores. Here, |Diain| = 5000,
n=m =75, u(x) = cos(xz), W; ~U(0,5), fi(z) = z,
fa(z) = 0.62 + 22/25 and o = 0.1. Next, for each of
the three methods, the FCP and corresponding bounds
(21) are displayed in Figure This illustrates both
that each bound is uniformly valid in L and that trans-
fer learning reduces the FCP (and thus also the FCP
bounds).

2Python code for (PI) based on implementation of
Boyer and Zaffran| (2023).
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4 Application to novelty detection

4.1 Setting

In the novelty detection problem, we observe the two
following independent samples:

e a training null sample D, of ny nominal data
points in R? which are i.i.d. with common distri-
bution Ppy;

e atest sample Dy, = (X;, 7 € [m]) of independent
points in R? either distributed as Py or not.

The aim is to decide if each X; is distributed as the
training sample (that is, as Pp) or not. This long
standing problem in machine learning has been re-
cently revisited with the aim of controlling the pro-
portion of errors among the items declared as novelties
Bates et al.| (2023); let Ho = {i € [m] : X; ~ Py} cor-
responding to the set of non-novelty in the test sample
and consider the false discovery proportion

. |Rﬂ7‘[o|

(22)
for any (possibly random) subset R C [m] correspond-
ing to the X;’s declared as novelties. The advantage
of considering FDP(R) for measuring the errors has
been widely recognized in the multiple testing liter-
ature since the fundamental work of Benjamini and
Hochberg (1995) and its popularity is nowadays in-
creasing in large scale machine learning theory, see
Bates et al| (2023); Marandon et al. (2022)); |Jin and
Candes| (2023); Bashari et al.| (2023), among others.
The main advantage of FDP(R) is that the number of
errors |R N Hol is rescaled by the number of declared
novelties |R|, which makes it scale invariant with re-
spect to the size m of the test sample, so that novelty
detection can still be possible in large scale setting.

4.2 Adaptive scores

Following [Bates et al.| (2023)); [Marandon et al.| (2022),
we assume that scores are computed as follows:

1. Split the null sample D, into Di,ain and De,y =
(Xi,i € [n]) for some chosen n € (1, ng);

2. Compute novelty scores S; = g(X;), ¢ € [n+ m],
for some score function g : R — R (discussed
below);

3. Compute conformal p-values as in .

In the work of Bates et al. (2023)), the score func-
tion is built from Di,.;, only, using a one-class clas-
sification method (classifier solely based on null exam-
ples), which makes the scores independent conditional

t0 Dirain- The follow-up work [Marandon et al.| (2022)
considers a score function depending both on Di,ain
and D, U D, (in a permutation-invariant way of the
sample D, U Dio ), which allows to use a two-class
classification method including test examples. Doing
S0, the scores are adaptive to the form of the novelties
present in the test sample, which significantly improves
novelty detection (in a nutshell: it is much easier to
detect an object when we have some examples of it).
While the independence of the scores is lost, an appro-
priate exchangeability property is maintained so that
we can apply our theory in that case, by assuming in

addition (NoTies).

4.3 Methods and FDP bounds

Let us consider any thresholding novelty procedure
R(t):={ie[m] : ps <t}, t€(0,1). (23)

Then the following result holds true.

Corollary 4.1. In the above novelty detection setting
and under Assumption the family of thresh-
olding novelty procedures 18 such that, with prob-
ability at least 1 — 0, we have for all t € (0,1),

mIy(t) + mAFEY  ___ppw
FDP(R(t)) < —— =: FDP 24

and with an estimation of my,

FDP(R(t)) (25)

KW
=DKW

oLy, (t) + max,.epm g {rA§E Y
oln(t) elnol (A, _. FOP",

- LV[R(#)]

where APEKW s given by and g is any random

s,n,r
variable such that

my > (26)
Yoty H{pi > t} 4+ maxyepp{urfn’y > }
- r )

1—TI,(t)
where r is in the range [m] and the mazimum is equal
to m if the set is empty.

max {r : irtlf

The proof is provided in Supplemental [F]

Remark 4.2. Among thresholding procedures (23),
AdaDetect (Marandon et al., [2022)) is obtained by ap-
plying the Benjamini-Hochberg (BH) procedure (Ben-
jamini and Hochberg], |1995)) to the conformal p-values.
It is proved to control the expectation of the FDP (that
is, the false discovery rate, FDR) at level a. Applying
Corollary [.1] provides in addition an FDP bound for
AdaDetect, uniform in «, see Supplemental [H]
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Figure 3: Plot of FDP(R(t)) (dashed) and
bound WE?W (solid, 4 = 0.2) in function of
the threshold ¢ for R(¢) (23) with a score obtained
either with a one-class classification (non-adaptive) or

a two-class classification (adaptive).

4.4 Numerical experiments

We follow the numerical experiments on “Shuttle”
datasets of [Marandon et al. (2022)@ In Figure
we displayed the true FDP and the corresponding
bound when computing p-values based on dif-
ferent scores: the non-adaptive scores of [Bates et al.
(2023) obtained with isolation forest one-class classi-
fier; and the adaptive scores of [Marandon et al.[(2022)
obtained with random forest two-class classifier. While
the advantage of considering adaptive scores is clear
(smaller FDP and bound), it illustrates that the bound
is correct simultaneously on ¢. Additional experiments
are provided in Supplemental I}

5 Conclusion

The main takeaway from this work is the characteriza-
tion of a “universal” joint distribution P, ,, for confor-
mal p-values based on n calibration points and m test
points. We derived as a consequence a non-asymptotic
concentration inequality for the p-value empirical dis-
tribution function; numerical procedures can also be
of use for calibration in practice. This entails uni-
form error bounds on the false coverage/false discov-
ery proportion that hold with high probability, while

3The Python code uses the implementation of the pro-
cedure AdaDetect of [Marandon| (2022).

standard results are only marginal or in expectation
and not uniform in the decision. Since the results hold
under the score exchangeability assumption only, they
are applicable to adaptive score procedures using the
calibration and test sets for training.
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be the score computation (machine learning
blackbox, for which we are agnostic). Once
the scores are available, all operations men-
tioned in the paper (score ordering, p-value
computation, bound on FDP, BH rejection
algorithm) are in O(nlog(n)) in the data size
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transport transfer learning of |[Courty et al.
(2017)), default parameters of the toolbox
where taken. For AdaDetect, the parameters
for the underlying ML toolboxes are taken
from Marandon| (2022).
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Supplementary Material for
“Transductive conformal inference with adaptive scores”

A Exact formulas for P, ,,

In this section, we provide new formulas for the distribution P, ,, given by . First let for 5 = (j1,...,Jm) €
[n+1]™, M(3) := (Mp(3))kefn+1] Wwhere My(3) := [{i € [m] : ji; = k}| is the number of coordinates of j equal
to k, for k € [n + 1], and M (4)! == [121 (M (5)").

Theorem A.l. P, ,, corresponds to the distribution of the colors of m successive draws in a standard Polya
urn model with n + 1 colors labeled as {#,K € [n+ 1]} (with an urn starting with 1 ball of each color). That
is, forp ~ Py in , we have

(i) Sequential distribution: for all i € [0,m — 1], the distribution of p;y+1 conditionally on p1,...,p; does not
depend on m and is given by

i) = 7§ 1"‘22:1 {pr =3j/(n+ 1)}5

D(pit1 | p1,--- = S i/ (n+1)- (27)

j=1

(i1) Joint distribution: for all vectors j € [n+ 1]™,

7 . n!
Plp=——)=M@{G)!——— 28
(p=27) =Ml (29)
(iii) Histogram distribution: the histogram of p is uniformly distributed on the set of histograms of m-sample
into n + 1 bins, that is, for all m = (mq,...,Mmyy1) € [0, m]" T with my + -+ + M1 = m,
n+m\
B(M((n+ 1)p) = m) = ( " > . (20)

In particular, conditionally on M((n + 1)p), the variable p is uniformly distributed on the set of possible
trajectories, that is, for all vectors j € [n+ 1]™,

P(p= | wns 0p) = 1)) = MU (30

n-+1 m!
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Theorem is proved in Section for completeness. Theorem [A.1] (i) gives the mechanism of the Pélya urn
model: Namely, the urn first contains one ball of each of the n + 1 colors, so p; has a uniform distributed on
{7#17[ € [n+ 1]}; then, given p; = £/(n + 1), we have drawn a ball of color £ and we put back this ball in the

urn with another one of the same color ¢, so py is generated according to the distribution on {7#1, Len+ 1]]}
with equal chance (= 1/(n+2)) of generating k/(n+1), k # ¢, and twice more chance (= 2/(n+2)) of generating
£/(n + 1). Recursively, given py,...,p;, the random variable p;; is generated in {n%;l,é €n+ 1]]} according
to the sizes of the histogram of the sample ((n + 1)p1, ..., (n+ 1)p;), see Figure [

Theorem [A.1] (ii) provides the exact dependency structure between the p-values: for instance, M (j)! = 1 when
the coordinates of j = (j1,...,Jm) are all distinct, while M (5)! = m! when the coordinates of j = (j1,...,Jm)
are the same. This means that the distribution slightly favors the j with repeated entries. This shows that
the conformal p-values are not i.i.d. but have a positive structure of dependency. This is in accordance with
the specific positive dependence property (called PRDS) already shown by Bates et al|(2023)); Marandon et al.|

2022).

Theorem [A.1] (iii) shows an interesting non-concentration behavior of P, ,,, when n is kept small: if the p;’s were
i.i.d. uniform on {#,Z € [n+ 1]} then the histogram M ((n + 1)p) would follow a multinomial distribution
and the histogram would concentrate around the uniform histogram as m tends to infinity. Rather, the p;’s are
here only exchangeable, not i.i.d., and the histogram does not concentrate when m tends to infinity while n is
small. As a case in point, for n = 1, M;((n + 1)p) is uniform on [m], whatever m is, see (29)). Nevertheless, we
will show in the next section that a concentration occurs when both m and n tend to infinity.

Remark A.2. Note that PU in is the conditional distribution that one would get by applying the de Finetti
theorem to the infinite exchangeable sequence (p;)i>1 with (p1,...,pm) ~ P for all m.

Unnormalised histogram of p, ) ) .
Unnormalised histogram of p, conditionnaly on py. -+, py Unnormalised histogram of p; conditionnaly on py.- -+, ps

Unnormalised probability of being equal to

Unnormalised probability of being equal to
Unnormalised probability of being equal to

1/6 2/6 3/6 4/6 5/6 6/6 16 2/6 3/6 46 5/6 6/6 1/6 2/6 3/6 4/6 5/6 6/6
Values of p1 Values of p Values of ps

[ ised histogram of p; conditi onpic.ps Unnormalised histogram of p; conditionnaly on py.- -+ ps Unnormalised histogram of p conditionnaly on py.- -+, ps

Unnormalised probability of being equal to
Unnormalised probability of being equal to

1/6 2/6 3/6 4/6 5/6 6/6 1/6 2/6 3/6 /6 5/6 6/6 1/6 2/6 3/6 /6 5/6 6/6
Values of s Values of ps Values of pg

Figure 4: Illustration of the sequential realization of P, ,, as proved in Theorem (ii) for n =5 and m = 6.

Relation to [Marques F. (2023); [Huang et al| (2023). As a consequence of (27), given any I C
{%_;_136 €n+ 1]]}, we have

]+ Ni(1)
P(pis €1 |p,..., 1-:7,:[9’(1- I’MI),
(pit1 € I|p1,...,pi) it Pit1 € (1)
where N;(I) = {k € [i] : pr € I)}|. In words, it means that the Pélya urn model continues to hold if we group
(or “re-paint”) the initial (n + 1) colors into only two colors, determined by whether the original color label

belongs to I or not.

In particular, we recover the Pélya urn model put forward by Marques F. (2023): letting Z; = 1{p; > a}, we
have that for all ¢ € [0,m — 1], the distribution of Z;,; conditionally on Zi,...,Z; does not depend on m and
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is given by
la(n+ 1)) + 3 142 =} (L= a)(n+ D]+ 3, HZ = j}
D(Z; VA Z;) = = 0 = 1. 31
(Zig1| 20,5 Zi) ol o+ 14 1 (31)
Hence, the distribution of (Zy,...,Z,,) corresponds to the distribution of the colors of m successive draws in

a standard Pélya urn model with 2 colors labeled as {0,1} (with an urn starting with |a(n + 1)] balls 0 and
[(1—a)(n+1)] balls 1).
In particular, we recover Theorem 1 of [Marques F.| (2023) and Theorem 3 in [Huang et al.| (2023).

Corollary A.3 (Theorem 1 in Marques F.| (2023) and Theorem 3 in [Huang et al. (2023))). In the setting of
Theorem [A1], we have for all o € (0,1) and k € [m], by denoting ko = [a(n + 1)],

P (o _ kN _(m m—ko+1)...(n—ko+m—Fk)xko...(ko+k—1)
P<Fm() ) (kz) (n+1)...(n+m) ' (32)

Proof. By Proposition @ and the notation of , we have

P(ﬁm(a) = k) = (Z)E[(U(k@)’“(l = Utre))™ "]

m
m n! ! k+ko—1 —k4n—
_ 1— m +n—ko
(0) =g [, w0 .

_(m n! (k+ko—Dl(m+n—k—kp)!
by using that Uy, follows a beta distribution with parameter (ko,n+1— ko) and by using the beta distribution
with parameter (k + ko,m +n+ 1 —k — ko). This shows the result. O

B Numerical bounds and templates

The bound proposed in Theorem [2.3] are explicit and elegant, but can be conservative in some cases and we
develop here the numerical approach mentioned in Remark

We rely on showing ([11)), which immediately implies a confidence envelope on ﬁm because
~ k ~ k+1
{Vk e : Fn(ty) < } = {Vk ER : Fn(ty) < +}
m m

={VkeK : D(k+1) > t}.

To establish (11]), we use the notion of template introduced by [Blanchard et al (2020), see also [Li et al. (2022).
A template is a one-parameter family ¢, (), A € [0,1], k € K C [m], such that ¢,(0) = 0 and #(-) is continuous
increasing on [0, 1]. From above, we have for all ),

(Vk e K : Fru(ty(\) <k/m} = {Vk € K : paryr) > tu(N)}
= {gg%{tﬁl@(kﬂ))} > )\}-
Hence, let us consider
A(b,n,m) = max{)\ €A Ppep,,, (gleilrcl{tgl(p(k))} > )\) >1- 5}, (33)

where A is the finite set {t, *(¢/(n + 1)),k € K,¢ € [n + 1]}. Then by Proposition we have the following
result.

Theorem B.1. Let us consider the process ﬁm defined by (2)), the distribution P, n, given by (b)), a template
tr(A\), A€ [0,1], k € K as above, and assume (Exch) and (NoTies). Then we have for all § € (0,1), n,m > 1,

]P’(Vk ek : Fp (tk()\(&n,m))) < 7’;> >1-4, (34)

for A(8,n,m) given by (33).
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Here are two template choices:

e The linear template t;(A) = kA/m, K = [m], which leads to the inequality
Gl

]P’(Elt €(0,1) : Fp(t) > -

which recovers the Simes inequality with an adjusted scaling parameter.

e The “beta template” Blanchard et al.| (2020), for which ¢ () is the A-quantile of the distribution Beta(k, m+
1 — k) and thus A = {Fpea(k,m+1-k)(¢/(n+ 1)),k € K,£ € [n+ 1]}. For instance, it can be used with
K = {1+ k[log(m)],k € [K]}.

C Proofs

C.1 Proof of Proposition [2.1

Assumption (NoTies|) implies that marginal score distribution is atomless, so that F' is continuous and 1 — F'(.S;)
has Unif[0, 1] distribution. Therefore, (U1,...,Untm) = (1 — F(S1),...,1 — F(Sntm)) are iid. ~ Unif[0, 1].
Recall

pi=n+1)"" (1 + il{sj > Sn+i})> i € [m],

j=1
since p; is a function of S, y; and D, only, it follows that conditionally on D.,, the variables py,...,p,, are
independent (and identically distributed).

Since F is continuous, it holds FT(F(S;)) = S; almost surely, where F'T is the generalized inverse of F. Therefore
1{S; > Sp+:} = 1{U; < Up+;} almost surely. Hence, p; is distributed as

1 +i1w]~ < Uni}) =+ 171 +_Z§1{U<j> < Uni}).

where U1y < --- < Uy, denotes the order statistics of (Uy,...,U,). Therefore, we have for all x € [0, 1],

P(pl S T | Dcal) = ]P(l -+ ZI{U@) S Un+1} S I(n+ 1)"Dca1)
j=1

= ]P’(l + i l{U(j) < Un+1} < |z(n+1)] ‘Dcal)
j=1

=P(Un+1 < Uam+1)))|Peat) = U(la(n+1)))

which finishes the proof.

C.2 Proof of Proposition

If there are no tied scores, which by assumption (NoTies) happens with probability 1, the ranks R; of the ordered
scores are well-defined and the vector (p1, ..., pm) is only a function of the rank vector (Ry,. .., Rytm). Namely,
R; < R; if and only if S; <5}, and the conformal p-values can be written as

pi=(n+1)"" (1 + D UR; 2 Rnﬂ‘})v i €[l

j=1

Now, by , the vector (R, ..., Ryqm) is uniformly distributed on the permutations of [n 4+ m]. Any score
distribution satisfying (NoTies|) and (Exchl) therefore gives rise to the same rank distribution, and thus the same
joint p-value distribution. This joint distribution has been identified as -@ from the result of Proposition
in the particular case of i.i.d. scores. (Thus the i.i.d. assumption turns out to be unnecessary for what concerns
the joint, unconditional distribution of the p-values, but provides a convenient representation.)
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C.3 Proof of Theorem [A.]]

Proof of (ii) By (Exch]),(NoTies) the permutation that orders the scores (Si,...,Sptm) that is o such that
S0 = So() >+ > So(ntm));

is uniformly distributed in the set of permutations of [n+m]. In addition, ¢ is independent of the order statistics
S(y and we seck for identifying the distribution of (p1,...,pn) conditionally on S(). Next, using again ,
we can assume without loss of generality that j; < --- < j,, when computing the probability in . Now, due
to the definition (T)), the event {(p1,...,pm) = (j1/(n+1),...,jm/(n+ 1)} corresponds to a specific event on o.
Namely, by denoting (a,...,as) the vector of unique values of the set {ji,...,jm} with 1 < a; < - < ap < n,
and My, = 0" 1{ji = ar}, 1 < k < £, the corresponding multiplicities, the above event corresponds to the
situation

Se1) > > So(ai-1) > So(ay) > > Se(ar+Mi—1) >

a1 —1 null scores M, test scores in {Sp41,..., S,,,+M1}

SO'(CL1+M1) > > SO'((I2+M171) > So’(aer]\/Il) > > SU'1(a2+M1+M271) >

as — ay null scores My test scores in {Sninry 41, SntMy+My}

So(ae 1+ Mit+Me_1) > > So(ar Myt +Mp_1—1) > So(agtMi++Me 1) > > So(aptm—1) >

ay — ag_1 null scores M, test scores in {S,,L+Ml+m+M£71+1, ey Sngm}

S(a£+m) > > S(n+m) .

n—ayg+1 null scores

This event can be formally described as follows:

{Vke[[e]] co({ar+ My + -+ My_y,... a0+ My + -+ My, — 1})

:{n+M}%~+ﬂﬁ4+lpum+ﬂL+~'+Mﬁ}

Since o is uniformly distributed in the set of permutations of [n+m], the probability of this event (conditionally
on Sp)) is equal to n!(Hf;:l(Mk!))/(n + m)!, which yields (28).

Proof of (i) By using of (ii), we have

M(j17 te a]z+1)'m++i~_1)|

n!

M (j1, - J) o

Ppit1 = jigr/(n+ 1) [ (pr, - pi) = (Gi/(n+ 1), 4i/ (n + 1)) =

Now, we have

n+1[ /i+1 ntl i
M(ji, ..., jix1)! = [(Z 1{j :j}ﬂ =11 [(Zl{jk =} + 1{jina =j}> !1

j=1 L \k=1 i=1 L \k=1
ntl /i i
= (Z 1{jk Zj}>! 1+ 1{jit1 :j}zl{jk ZJ}]
j=1 \k=1 k=1
=My, ji)! |1+ iy = J}Z 1{jr = J}l :
k=1

This proves .
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Proof of (iii) For all m = (mq,...,mu41) € [0,m]" " with mq + -+ 4+ my,41 = m, we have

P(M((n+1)p)=m)= Y 1{M(j)=m}P(n+1)p=j)

jEn+1]™
n! .
Zm'm > M) =m}
JEn+1]™
ol n! ﬂ' _ nlm!

(n+m)!lm!  (n+m)l’

where we have used (ii) and the multinomial coefficient.

C.4 Proof of Theorem [2.4]

First observe that the LHS of @ is 0 if A > 1 so that we can assume A < 1.

Let us prove @ with the more complex bound

2 2 2V/2mAnm  _ 2nm y2
BDKWrull () — " 2ma m_—2mA | o — 2 )\ 35
( ,n,m) n+me +n+me + )\,TL,M(n+m)3/2e I ( )

where Cy n.m = P(N (A, 02) € [0,)]) < 1, for 02 = (4(n +m))~! and p = n(n + m)~!. Let us comment the
expression of BPXWMI(X 'n_m). As we can see, the role of n and m are symmetric (except in Cj ;. ,, that
we can always further upper-bound by 1), and the two first terms are a convex combination of the usual DKW
bounds for m and n i.i.d. variables, respectively. The third term is a “crossed” term between n and m, which
becomes negligible if n > m or n < m but should be taken into account otherwise.

Below, we establish

IP’< sup (ﬁm(t ) > /\) < BPEWHI(N 0 m); (36)
t€[0,1]
B s (= Fult)+ 1(0) > A) < BV ), (37)
te[0,1]
(HF > )\) < 2BPKW () . m). (38)

The result will be proved from because BPEWII(\ n m) < BPXW(\ n,m) since nV m > nm/(n +m) and
O)\,n,m < 1.

The proof relies on Proposition and the representation @ Let U = (Un,...,U,) iid. ~U(0,1), and denote
FY(x) = U(|(n+1)z)) ® € [0,1]. Conditionally on U, draw (g;(U),i € [m]) i.i.d. of common c.d.f. FU and let

Go(t) =m~1 zm: HaU) <t), teo1],

the empirical c.d.f. of (¢;(U),7 € [m]). By Proposition we have that F), has the same distribution as G,
(unconditionally on U), so that for any fixed n,m > 1 and A > 0,

1P>< sup (B (t) — (1)) > A) - El]P’< sup (G (t) — I (1)) > A ’ U) . (39)

te[0,1] tel0,1]

We now prove the bound (the proof for is analogous). Denote Z = sup,c( 1 (FY(t) — In(t)) € [0,1].
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We write by and the triangle inequality

P( sup (ﬁm(t) — I,(t)) > )\> <E ]P’( sup (Ep(t) — FU (1)) + Z > A ‘ U)
te[0,1] t€[0,1]

<E P(t:&](ﬁm(w ~FU) > (A~ 2), ’ v)

<E _672m()\7Z)(i:|'

The last inequality above is the DKW inequality (Massart} [1990)) applied to control the inner conditional prob-

ability, since conditionally to U, ﬁm is the e.c.d.f. of (¢;(U), € [m]), which are i.i.d. ~ FU; and Z conditional to
U is a constant. Now the last bound can be rewritten as

1 1
/ P(efzm()‘fz)i > v)dv = ¢m2mX’ +/ IP’(()\ -2)+ < 10g(1/v)/(2m)>dv
0 E—ZmAQ

1
. / P(A 7 < V/ioa(1/v)/(@m) ) do
e—2mA2

1
_ o +/ (2> (A~ Vioa(i/0)/@m) ) dv. (40)
e—2mA
To upper bound the integrand above, denote ﬁn the ecdf of (Uy,...,U,); it holds for any = € [0, 1]:

P(Z >zx)= ]P’( sup (U(|(nt1)e)) — L(n+ D)t]/(n+1)) > :v)
t€(0,1]

:]P)(E”C € [n] : U(k) > x+k‘/(n+1))

n

]P’(Elke[[n]] : Zl{Ui§x+k/(n+1)}§k1>

i=1

(sz eln] : Ho(z+k/(n+1)) =[x+ k/(n+1)] < (k—1)/n— [z +k/(n+ 1)]).

P
P(Elk eln] : Hu(z+k/(n+1) =z +k/(n+1)] < —x)

—2na?
)

IN

IA
®

where we used (k —1)/n < k/(n + 1) in the first inequality, and the left-tail DKW inequality for the last one.
Plugging this into yields

1 1

/ P(e_Zm'()\_Z)i > U)dU < e—2m)\2 _|_/ e—2n(A— log(l/v)/(Qm))sz.
0 - e—ZnL)\Q

Now letting u = \/log(1/v)/(2m) (hence v = e~2™" | dv = —4mue~2™"" du), we obtain

A
]P’( sup (Fn(t) — I,(t)) > A) < em2mN —|—4m/ ue2n(A—w)? g2ma’ gy
0

Now, by denoting 02 = (4(n + m))_1 and p = n(n4+m)~!, we get

A A
2nm y2 _ N2 2 _ __nx )2
6"‘*’7’1)\ / ue 2n(A—u) e 2mu du / ue 2(n+m)(u n_*_m) du
0 0

A
C 1 (u—ap)?
:/ ue” 32 (WA gy
0

A

A
(u — /\u)ef%%(ufkuﬁdu n / )\Mefﬁ(uf)\uhdu
0 0

2 2
_o\2_n —oN\2m”_
=c%e min — gle mn + AV 210 Cy -
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where C 5. = P(N (A, 02) € [0, A]). Hence,

A
- N2 2 _ 2nm 2 _5)2_n? _9)2_m?2
/ we—2nO—w)? gm2ma® g =2 (026 NTLEL | S2,20 —|—/\H\/27TUC)\,n,m)
0

_ 2nm 32

_ 2 _ 2
:0'26 2nA —0’26 2mA +)\M‘/27TUCA,n,me ntm

This leads to
2mA2 A 2n(A—u)?  —2mu?
e “m +4m/ ue2nA—u) g=2mu” gy,
0

n —2mA\? m —2n\? nm — 2nm N2
=———t —e MW2r——=-2C e ntm
n+m T aEm * (n+m)3/2 =

which finishes the proof of .

Finally, let us prove BP*W(APY . n,m) < 4 for APV, = U (1) where ¥(") denotes the function ¥ iterated r

times (for an arbitrary integer r > 1), where

- - <log(1/§) +log (14 \/277(5_1"77’5‘&,))

1/2

U(z) =1AT(x); P(z):=

2Tn,m

If ¥(1) = 1, then ¥("(1) = 1 for all 7 and the announced claim holds since BP*W(1,n,m) = 0 by definition.
We therefore assume ¥(1) < 1 from now on. Since ¥ is non-decreasing, by an immediate recursion we have
T+ (1) < w(1) < 1, for all integers 7.

On the other hand, note that for any x € (0, 1) satisfying ¥(z) < z < 1, it holds ¥(z) = ¥(z) and thus

2v/ QW\IJ(I)Tn7m‘| [1 n 2V 2T T m

(n +m)t/2 (n +m)t/2

-1

BP*W(WU(z),n,m) = |} + 0 <.

Since we established that z = W) (1) satisfies ¥(x) < x for any integer r the claim follows.

D Explicit control of

By applying with k£ = 0, the control for @ = 0 is satisfied by choosing

m—k+1)...(n—k+m)
(n+1)...(n+m)
We can also obtain an implicit formula for {5 s when & > 0 as follows. By definition, tg, s is the maximum of the

t € [n+1]/(n +1) such that Ppop, . (P(jam|+1) < t) < 6, or equivalently Py p, , (FCP(C(t)) > @) < 4. The
latter probability can be obtained explicitly from with the formula

Pper,, (FCP(C(t) >a) = Y (m> L (TL(;EOJ_T(;T,Z)]{O SURL

k=|am]|+1

to,gzmax{k/(n—i—l) : 21—5,k€[[n+1]]}.

b

where ko = [t(n + 1)]. Of course whenever this formula is too computationally complex for a practical use
(e.g., when m is large), we can alternative use a Monte-Carlo scheme to simulate draws from P, ,,, and thus
approximate ¢, s as an empirical 6-quantile of p(|qm|+1) With p ~ Py, 1.

E On the tightness of the new DKW bound
The bound BP*W (X, n,m) is simple and explicit and we comment here briefly about its sharpness:

e First, for a fixed m we have BPXW(\ n,m) — 1{/\<1}e’2m)‘2 when n tends to infinity. This bound hence
recovers the usual DKW inequality [Massart| (1990) for ﬁm, which is well expected because n = oo corresponds
to the case of i.i.d. uniform p-values (’theoretical’ p-values rather than ’'conformal’ p-values). In addition,
note that the usual DKW bound (in n) can be also recovered when n is fixed and m tends to infinity.
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e This bound provides the correct variance term. Indeed, we can deduce from Theorem the following

equality: for all ¢,s € R,

CoVPNPn,m (ﬁm (t)’ ﬁm(s)) B

m-+n+1
m(n+2)

Clearly, we have

e The bound is compared to the true probability by using simulations in Figure[5] We observe that the bound

~ Tp,m When m An — +oo.

m+n+1
m(n + 2)

(In(t) ANy (s) — Ln(t) ().

is fairly close to the target when X is large enough or/and m A n is large.

As mentioned in Remark recall that this bound can be made sharper by using (non-explicit) numerical

approximations.

n= 100 and m= 100

—— Estimation of P (.\l\p,dm (F;,,(z) - L) > )\)

—— BPEW(\ n,m)

00

0.0 0.05 010 015 020 025

n= 500 and m= 500

10 —— Estimation of P (bup,ﬂm (1:7.,(?') - Iu(f)) > )\)

—— BPKW(\ n,m)

Figure 5:  Plot of A — P(sup;¢jg 1] (Fo(t) — I, (t)) > A) (Blue) and of A — BPXW(X n,m) (Orange) for different

06

02

n= 500 and m= 100

—— Estimation of P (Mlp,;[, n (F‘,,,([) - l,,(z,)) > )\)

—— BPEW(\ n,m)

n= 1000 and m= 500

—— Estimation of P (bllp,&n 1 (15,,,(1) - I,,(t,)) > )\)

—— BPEW(\ n,m)

values of n and m. These probabilities are estimated with 10* Monte-Carlo iterations.
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F Proof of Corollary

Let mo = |Ho|. We establish the following more general result.
Lemma F.1. With probability at least 1 — 9, we have both

mol, (t) + moAZEW

vt 1), FDP(R(t)) < dm.mo 41
Z;L {p; >t} + max,e[, (u)@ﬁ"ﬁ)
< : 1 > .
mo < max{ r € [m] IItlf =) 2T (42)

Lemma implies Corollary because if 1y is as in , with probability at least 1 — §, mg > mg by ,
and by (41

ol (t) + moARIY. 1oL (t) + max, ey (rARSY)
Vt € (0,1), FDP(R(t)) < 70
© O EPRO S = mer S TV R

Now, let us prove Lemma

First, in the work of [Marandon et al.| (2022), it is proved that (Si,...,Sn, Snti, @ € Ho) is exchangeable condi-
tionally on (S,44,7 € Hi1) (see Lemma 3.2 therein). Hence, the vector (S1,...,Sn, Snti, i € Ho), of size n + my,
and the p-value vector (p;,i € Hy), of size myg, fall into the setting described in Section with calibration
scores being (S;);e,) and test scores being (S,yi)ien,. By Proposition this means (p;, 7 € Ho) ~ Prmg-

Second, consider the event

Q= { SUp (Fino (1) — I () < /\?Ié‘ivno} (43)
tefo,1] Y

By applying Theorem [2.4] and the explicit bound ([I0), we have P(Q) > 1 — 4. Next, |R(t) N Ho| = Mo Fpy (1) <
moln(t) +moA5s W, on Q. This gives (1))

Let us now turn to prove on . For this, let us observe that on this event, we have for all ¢ € (0,1),

m

Sou{pi >t} > > 1pi >t} =mo(l — Fy, (1)

i=1 i€Ho

> mo(l — I,(t)) — max (T)\DKW)

remo] d,n,r

S pi >t} +max, e {urPEW)
1-1I,(t)

Hence, mg is an integer r € [m] such that inf, ( ) > r, which gives (42]).

G Confidence envelope and bounds derived from the Simes inequality

As proved in [Bates et al.| (2023) in the i.i.d. case, and since the joint distribution of the conformal p-values is
the same under exchangeability of the scores (Proposition , the conformal p-values are positively regressively
dependent on each one of a subset (PRDS) under and (NoTies)), see Benjamini and Yekutieli (2001)) for
a formal definition of the latter.

Hence, by [Benjamini and Yekutieli (2001)), the Simes inequality (Simes, |1986]) is valid, that is, for all A > 0, we
have

P( sup (P (t)/1) > A> <1/x (44)

te(0,1]

This envelope can be applied in the two applications of the paper as follows:
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0.8

Error Proportion

_—— FDP,5" : TwoClass (This work)

: ----- FDP(R(t)) : TwoClass (Adaptive score)
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FDP, 5 : TwoClass
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Figure 6: Same as Figurewith in addition Simes bound FDP, 5 (47) (transparent dashed, § = 0.2).

(PI) Under the condition of Corollary the bound

Simes

FCP,; =(o/6)1{a>1/(n+1)} (45)

is valid for (7).
(ND) Under the condition of Corollary the following control is valid

P(vt € (0,1), FDP(R(t)) < FDP,5) > 1 -3, (46)
for
5 Simes Thot/(s
FDP, ;" = — 0/ a7
b LV [R()] 47

for any estimator

M o1{p, >t
mg > m A inf —ZZZI {p: > }

4
te(0,6) 1—t/6 (48)

A comparison between the Simes bound and the DKW bound is presented in Figure |§| for the (ND) task. While
the Simes bound is better for extremely small ¢, the DKW bound is in general sharper.

H Uniform FDP bound for AdaDetect

AdaDetect (Marandon et al., 2022) is obtained by applying the Benjamini-Hochberg (BH) procedure (Benjamini
land Hochberg| [1995) to the conformal p-values, that is, AD, := R(aks/m), where

ko == max{k € [0,m] : Zm:l{pi < ak/m} > k} (49)

i=1
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Table 1: Summary of datasets. “Shuttle” is originally from UCI depository. “Credit card” is from |Dal Pozzolo
et al.| (2015)). “Mammography” is from Woods et al.| (1993]).

Shuttle Credit card Mammography

Dimension d 9 30 6

Feature type Real Real Real
| Dtrain| 3000 2000 2000
n calibration sample size 2000 1000 1000
mo (test) inlier number 1500 500 500
my (test) novelty number 300 260 260
m = mg + my total test sample size 1800 760 760

It is proved there to control the false discovery rate (FDR), defined as the mean of the FDP:
FDR(AD,,) := E[FDP(AD,)] < amg/m. (50)

Applying Corollary we obtain on the top of the in-expectation guarantee the following uniform FDP
bound for AD,: with probability at least 1 — d, we have

Va € (0,1), FDP(AD,) < FDP, ;"

_ ho  MEAPEW A

FDPSY .= (a";f + Z‘S"lmo> 1{ia >0}, (51)
: Y

where l%a is the rejection number of AD,, and my satisfies .

In addition, we consider

——="Simes moOé ~
FDDP. 5% .= —1{1@1 0}, 52
a,d mo > ( )

for any estimator g given by (48).

I Additional experiments

In this section, we provide experiments to illustrate the FDP confidence bounds for AdaDetect, as mentioned in
Remark [£.2] and Section [Hl

The two procedures used are of the AdaDetect type but with two different score functions: the Random
Forest classifier from Marandon et al| (2022) (adaptive score), and the one class classifier Isolation Forest as in

Bates et al., [2023| (non adaptive score). The hyperparameters of these two machine learning algorithms are those
given by Marandon| (2022).

The FDP and the corresponding bounds are computed for the two procedures. The true discovery proportion is
defined by
o |R NHq ‘

o |/7"[1|\/17

where H; = [m] \ Ho; this criterion will be considered in addition to the FDP to evaluate the detection power
of the procedures.

TDP(R) (53)

Following the numerical experiments of [Marandon et al.| (2022) and [Bates et al.| (2023)), we consider the three
different real data from OpenML dataset (CC-BY license)(Vanschoren et al., 2013) given in Table

The results are displayed in Figure [7] for comparison of adaptive versus non-adaptive scores for the different FDP
confidence bounds and the TDP. On Figure [§] we focus on the adaptive scores and corresponding FDP bounds
only; we compare the effect (on the bounds) of demanding a more conservative error guarantee (6 = 0.05 versus
0 = 0.2), as well as the effect of estimating mq via instead of just using the inequality with my = m.

The high-level conclusions are the following:
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using adaptive scores rather that non-adaptive ones results in a performance improvement (better true
discovery proportion for the same target FDR level)

for small target FDR level «, the Simes upper bounds Wi‘f;ag are sharper than the DKW bound, elsewhere
the new DKW bound is sharper than Simes. Furthermore, the relevant region for the Simes bound having
the advantage becomes all the more tenuous as the error guarantee for the bound becomes more stringent
(smaller §). The reason is that the Simes upper bound is linear in 61, while the DKW is only (square root)
logarithmic.

estimating the estimator mg from yields sharper bounds on the FDP and is therefore advantageous.
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Figure 7: Left: FDP(AD,,) (dotted) and bounds FDP,, 5 (51)) (solid) FDP,, s (dashed) (6 = 0.2)
in function of the nominal FDR-level a. Right: corresponding TDP (53]). In AdaDetect, the score is obtained
either with a one-class classification (non-adaptive, blue) or a two-class classification (adaptive, orange); higher
is better.
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Figure 8: Same curves as Figure El (left), but only for two-class classification (adaptive, orange). Left: for
comparison, the bounds FDP were also plotted for a smaller 6 = 0.05 value (blue). Right: for comparison,
bounds FDP also plotted without an estimator of mg (taking m instead of ).
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