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Abstract

Offline Reinforcement Learning (RL) aims
to learn a near-optimal policy from a fixed
dataset of transitions collected by another pol-
icy. This problem has attracted a lot of atten-
tion recently, but most existing methods with
strong theoretical guarantees are restricted to
finite-horizon or tabular settings. In contrast,
few algorithms for infinite-horizon settings
with function approximation and minimal as-
sumptions on the dataset are both sample
and computationally efficient. Another gap in
the current literature is the lack of theoretical
analysis for the average-reward setting, which
is more challenging than the discounted set-
ting. In this paper, we address both of these
issues by proposing a primal-dual optimiza-
tion method based on the linear programming
formulation of RL. Our key contribution is a
new reparametrization that allows us to de-
rive low-variance gradient estimators that can
be used in a stochastic optimization scheme
using only samples from the behavior policy.
Our method finds an e-optimal policy with
O(e~*) samples, while being computationally
efficient for infinite-horizon discounted and
average-reward MDPs with realizable linear
function approximation and partial coverage.
Moreover, to the best of our knowledge, this is
the first theoretical result for average-reward
offline RL.

1 INTRODUCTION

We study the setting of Offline Reinforcement Learning
(RL), where the goal is to learn an e-optimal policy
without being able to interact with the environment,
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but only using a fixed dataset of transitions collected
by a behavior policy. Learning from offline data proves
to be useful especially when interacting with the en-
vironment can be costly or dangerous (Levine et al.,
2020).

In this setting, the quality of the best policy learn-
able by any algorithm is constrained by the quality
of the data, implying that finding an optimal policy
without further assumptions on the data is not feasi-
ble. Therefore, many methods (Munos and Szepesvari,
2008; Uehara et al., 2020) make a uniform coverage
assumption, requiring that the behavior policy explores
sufficiently well the whole state-action space. However,
recent work (Liu et al., 2020; Rashidinejad et al., 2022)
demonstrated that partial coverage of the state-action
space is sufficient. In particular, this means that the
behavior policy needs only to sufficiently explore the
state-action pairs visited by the optimal policy.

Moreover, like its online counterpart, modern offline RL
faces the problem of learning efficiently in environments
with very large state spaces, where function approx-
imation is necessary to compactly represent policies
and value functions. Although function approxima-
tion, especially with neural networks, is widely used in
practice, its theoretical understanding in the context
of decision-making is still rather limited, even when
considering linear function approximation.

In fact, most existing sample complexity results for
offline RL algorithms are limited either to the tabu-
lar and finite horizon setting, by the uniform coverage
assumption or by assuming access to a (convex) opti-
mization oracle — see the top section of Table 1 for
a summary. Notable exceptions in terms of computa-
tional efficiency are the works of Xie et al. (2021) and
Cheng et al. (2022), who provide a computationally
efficient version of their method for infinite-horizon
discounted MDPs under realizable linear function ap-
proximation and partial coverage assumptions. De-
spite being some of the first concrete implementations,
the practical versions of those algorithms differ signifi-
cantly from their information-theoretic counterparts,
and thus the sample-complexity guarantees proven in



the corresponding papers do not immediately carry
over to them.

More similar to our work are those of Zhan et al. (2022),
and Rashidinejad et al. (2023) who also consider a linear
programming approach to offline learning in infinite-
horizon discounted MDPs. Yet, like many works which
consider the broader general function approximation
setting, their method may remain oracle-efficient even
in the simpler linear MDP setting — see the caption of
Table 1. Moreover, all methods referenced so far only
work in the finite-horizon or infinite-horizon discounted
setting, which is inappropriate for modeling practical
problems where it is hard to pre-specify a fixed decision-
making horizon. This issue is readily addressed by the
average-reward framework, which however is known to
be much more difficult to handle using techniques famil-
iar from the discounted-reward setting. For example,
methods based on approximate dynamic programming
like Zhu et al. (2023) make crucial use of the contractive
property of the discounted Bellman operators, which
does not generally hold in the average-reward setting
(especially not under the general assumptions we make
in our work). Therefore, this work is motivated by the
following research question:

Can we design a linear-time algorithm with polyno-
mial sample complezity for the discounted and average-
reward infinite-horizon settings, in large state spaces
under a partial-coverage assumption?

We answer this question positively by designing a
method based on the linear-programming (LP) for-
mulation of sequential decision making (Manne, 1960a).
Albeit less known than the dynamic-programming for-
mulation (Bellman, 1956) that is ubiquitous in RL, it
allows us to tackle this problem with the powerful tools
of convex optimization. We turn in particular to a re-
laxed version of the LP formulation (Mehta and Meyn,
2009; Bas-Serrano et al., 2021) that considers action-
value functions that are linear in known state-action
features. This allows to reduce the dimensionality of
the problem from the cardinality of the state space
to the number of features. This relaxation still allows
to recover optimal policies in linear MDPs (Yang and
Wang, 2019; Jin et al., 2020), a structural assumption
that is widely employed in the theoretical study of RL
with linear function approximation.

Our algorithm for learning near-optimal policies from
offline data is based on primal-dual optimization of the
Lagrangian of the relaxed LP. The use of saddle-point
optimization in MDPs was first proposed by Wang and
Chen (2016) for planning in small state spaces, and
was extended to linear function approximation by Chen
et al. (2018); Bas-Serrano and Neu (2020), and Neu
and Okolo (2023). We largely take inspiration from

this latter work, which was the first to apply saddle-
point optimization to the relazed LP. However, primal-
dual planning algorithms assume oracle access to a
transition model, whose samples are used to estimate
gradients. In our offline setting, we only assume access
to i.i.d. samples generated by a possibly unknown
behavior policy. To adapt the primal-dual optimization
strategy to this setting we employ a change of variable,
inspired by Nachum and Dai (2020), which allows easy
computation of unbiased gradient estimates.

Notation. We denote vectors with bold letters, such
as © = [r1,...,24]' € R% and use e; to denote the
i-th standard basis vector. We interchangeably de-
note functions f : X — R over a finite set X, as
vectors f € R!¥l with components f(z), and use
> to denote element-wise comparison. We denote
the set of probability distributions over a measur-
able set S as Ag, and the probability simplex in
R¢ as A4. For a policy m : X — A4 and function
v : X — R (or corresponding vector v € RI*l) we
use the notation (7w ov) (z,a) = w(a|z)v(z). We use
o :R% - Ay to denote the softmax function defined as
oi(x) =€/ 2?21 e®i. We use upper-case letters for
random variables, such as S, and denote the uniform
distribution over a finite set of n elements as U(n).
In the context of iterative algorithms, we use F;_1 to
denote the sigma-algebra generated by all events up
to the end of iteration ¢ — 1, and use the shorthand
notation E; [-] = E [-| Fz—1] to denote expectation con-
ditional on the history. For nested-loop algorithms,
we write F;;—1 for the sigma-algebra generated by all
events up to the end of iteration ¢ — 1 of round ¢, and
E.;[] =E[:| Fi,i—1] for the corresponding conditional
expectation.

2 PRELIMINARIES

We study discounted Markov decision processes (MDP,
Puterman, 1994) denoted as (X, A, p,r,v), with dis-
count factor v € [0,1] and finite, but potentially very
large, state space X and action space A. For every
state-action pair (z,a), we denote as p(- | x,a) € Ay
the next-state distribution, and as r(z,a) € [0, 1] the
reward, which is assumed to be deterministic and
bounded for simplicity. The transition function p is
also denoted as the matrix P € RI¥*AXI*| and the
reward as the vector r € RI**Al The objective is
to find an optimal policy ©* : X — A 4. That is, a
stationary policy that maximizes the normalized ex-
pected return p(m*) = (1 — 7)Ex [>,2 0 v'r(Xe, Ae)],
where the initial state X, is sampled from the ini-
tial state distribution vg, the other states according
to Xe11 ~ p(-| X, A¢) and where the notation E,[] is
used to denote that the actions are sampled from policy



Algorithm Partial Sample Computational Function Infinite Horizon
g Coverage Complexity Complexity Approximation piccounted Avg. Reward

PEVI (Jin et al., 2021) v O(e™?) O(n) general X X
ngeLéstzﬁozggg) X O(e72) oracle-based general v X
50821311)’ practical (Xie et al., '4 O(e™%)/0(e™3) oracle-based general / linear v X
SOP;%_RL (Zhan et al., v 0™ %) oracle-based general v X
iLgliégga;Shlquad 4 O(e™?) oracle-based general v X
90_2031){AB (Zhu et al., 4 0(e™?) oracle-based general v
PDOR (ours) v o™ O(n) linear v v

Table 1: Comparison of selected methods for offline RL. The table shows some of the most relevant works for
offline RL, and their characteristics. It is important to notice that many of these methods are designed for the
general function approximation setting, while we focus on the easier setting of linear MDPs. However, most
existing methods make use of oracles, which makes their computational complexity difficult to estimate, and while
an efficient implementation can be derived by replacing the oracles appropriately, it is usually not immediate to
prove sample complexity results for these practical versions.

7w as Ay ~ w(-|X;). Moreover, we define the following
quantities for each policy m: its state-action value func-
tion " (¢, a) = Ex[35% 0 /' (Xe, Ar) | Xo = , Ao = al,
its value function v™ (z) = E,[¢" (x, Ap)], its state occu-
pancy measure 7 (z) = (1 —v)EL[>,2 7' 1{X; = z}],
and its state-action occupancy measure u”(z,a) =
m(alz)v™(z). These quantities are known to satisfy
the following useful relations, more commonly known
respectively as Bellman’s equation and flow constraint
for policy 7 (Bellman, 1966):

q" =7 +yPv" v =(1—=7)y+yP'u". (1)

Given this notation, we can also rewrite the normalized
expected return in vector form as p(7) = (1—7)(vp, v™)
or equivalently as p(7) = (r, u™).

Our work is based on the linear programming formula-
tion due to Manne (1960b) (see also Puterman, 1994)
which transforms the reinforcement learning problem
into the search for an optimal state-action occupancy
measure, obtained by solving the following Linear Pro-
gram (LP):

maximize (r, @)
subject to ETpu=(1—7y)vg+vPp (2)
pn=0

where E € RI¥*AXI¥| denotes the matrix with com-
ponents E, ,) v = 1{z = 2'}. The constraints of this
LP are known to characterize the set of valid state-
action occupancy measures. Therefore, an optimal
solution p* of the LP corresponds to the state-action
occupancy measure associated to a policy m* maxi-
mizing the expected return, and which is therefore
optimal in the MDP. This policy can be extracted as

*(alr) = p*(x,a)/ Y 54 1w (2, a). However, this lin-
ear program cannot be directly solved in an efficient
way in large MDPs due to the number of constraints
and dimensions of the variables scaling with the size of
the state space X. Therefore, taking inspiration from
the previous works of Bas-Serrano et al. (2021); Neu
and Okolo (2023) we assume the knowledge of a feature
map @, which we then use to reduce the dimension of
the problem. More specifically we consider the setting
of Linear MDPs (Jin et al., 2020; Yang and Wang,
2019).

Definition 2.1 (Linear MDP). An MDP is called
linear if both the transition and reward functions can
be expressed as a linear function of a given feature map
©: X x A— R% That is, there exist 1) : X — R? and
w € R? such that, for every z,2’ € X and a € A:

T(mva) = (%(waa%w% p(a:/ | x,a) = <¢($7a)aw($/)>'

We assume that for all z, a, the norms of all relevant vec-
tors are bounded by known constants as [[¢(x,a)l, <
Dy, |5, %(@)ll, < Dy, and Jwll, < Dy More-
over, we represent the feature map with the matrix
& ¢ RIM*AIXd with rows given by ¢(z,a)", and simi-
larly we define ¥ € R**I*! as the matrix with columns

given by ¥ (x).

With this notation we can rewrite the transition matrix
as P = ®W. Furthermore, it is convenient to assume
that the dimension d of the feature map cannot be
trivially reduced, and therefore that the matrix ® is
full-rank. An easily verifiable consequence of the Linear
MDP assumption is that state-action value functions
can be represented as a linear combinations of (. That



is, there exist 8™ € R? such that:
q" =r+yPv" = ®(w+ Tv") = PO". (3)

It can be shown that for all policies 7, the norm of 8™
is at most Dg = D, + % (cf. Lemma B.1 in Jin et al.,
2020). We then translate the linear program (2) to our
setting, with the addition of the new variable A € R?,
resulting in the following new LP and its corresponding
dual:

maximize (w, A)

subject to E'p = (1—7)vg+~y¥'A )
A=Dp
w20,

minimize (1 — v){vp, v)

subject to 0 = w +yPv (5)
Ev > 0.

It can be immediately noticed how the introduction of
A did not change neither the set of admissible us nor
the objective, and therefore did not alter the optimal
solution. The Lagrangian associated to this set of linear
programs is the function:

L(v,0, A, 1) = (1 —v)(vo,v) + (A, w+yPv — 6)

+ (1, 6 — Ew) (6)
= <>‘7 w> + <’U, (1 - 'Y)VO + ’Y‘IJTA - ETH/>
+(60,2"n — A). (7)

It is known that finding optimal solutions (A*, u*) and
(v*,0*) for the primal and dual LPs is equivalent to
finding a saddle point (v*, 8*, X*, u*) of the Lagrangian
function (Bertsekas, 1982). In the next section, we will
develop primal-dual methods that aim to find approxi-
mate solutions to the above saddle-point problem, and
convert these solutions to policies with near-optimality
guarantees.

3 ALGORITHM AND MAIN
RESULTS

This section introduces the concrete setting we study
in this paper, and presents our main contributions.

We consider the offline-learning scenario where the
agent has access to a dataset D = (W)}, collected
by a behavior policy mg, and composed of n random
observations of the form W, = (X7, Xy, A;, Ry, X}).
The random variables X, (X;, A;) and X, are sampled,
respectively, from the initial-state distribution vg, the
discounted occupancy measure of the behavior policy,
denoted as pp, and from p(- | X, A¢). Finally, R,

denotes the reward r(X;, A;). We assume that all
observations W; are generated independently of each
other, and will often use the notation ¢, = p(X;, A).

Our strategy consists in finding approximately good
solutions for the LPs (4) and (5) using stochastic op-
timization methods, which require access to unbiased
gradient estimates of the Lagrangian (Equation 7). The
main challenge we need to overcome is constructing suit-
able estimators based only on observations drawn from
the behavior policy. We address this challenge by in-
troducing the matrix A = Ex a~u, [@(X, A)p(X, A)T]
(supposed to be invertible for the sake of argument for
now), and rewriting the gradient with respect to A as

VAl p;v,0) = w +yPov — 0
=A A (w+ TV —0)
= ATE[p(X, Ad)p(Xi, Ar)" (w + 7 Pv — 6)]
= AT'E (Xt Ar) (R +y0(X7) — (6, (X4, Ar)))] -

This suggests that the vector within the expectation
can be used to build an unbiased estimator of the de-
sired gradient. A downside of using this estimator is
that it requires knowledge of A. However, this can be
sidestepped by a reparametrization trick inspired by
Nachum and Dai (2020): introducing the parametriza-
tion B = A~!\, the objective can be rewritten as

(B, p1;v,0) = (1 —7){vo,v) + (B, A(w +7Tv — 6))
+ (u, ®0 — Ev).

This can be indeed seen to generalize the tabular
reparametrization of Nachum and Dai (2020) to the
case of linear function approximation. Notably, our
linear reparametrization does not change the structure
of the saddle-point problem, but allows building an un-
biased estimator of Vg£(3, p; v, 8) without knowledge
of A as

g8 = P(Xi, Ar) (Ry +yv(X;) — (0, (X1, Ar))) -

In what follows, we will use the more general
parametrization 8 = A~°\, with ¢ € {1/2,1}, and con-
struct a primal-dual stochastic optimization method
that can be implemented efliciently in the offline setting
based on the observations above. Using ¢ = 1 allows
to run our algorithm without knowledge of A, that is,
without knowing the behavior policy that generated
the dataset, while using ¢ = 1/2 results in a tighter
bound!, at the price of having to assume knowledge
of A.

Our algorithm (presented as Algorithm 1) is inspired
by the method of Neu and Okolo (2023), originally

!By “tighter bound” we refer to dependence on the cover-
age ratio introduced in Definition 3.1. We give more details
on this in Section 6.



designed for planning with a generative model. The
algorithm has a double-loop structure, where at each
iteration ¢ we run one step of stochastic gradient ascent
for 3, and also an inner loop which runs K iterations
of stochastic gradient descent on € making sure that
(p(z,a),6) is a good approximation of the true action-
value function of ;. Iterations of the inner loop are
indexed by k. The main idea of the algorithm is to com-
pute the unbiased estimators gg + 1 and gg . of the gradi-
ents Vo L(B¢, te; -, 0+ ) and VgL(B, -; vy, 0;), and use
them to update the respective variables iteratively. We
then define a softmax policy 7 at each iteration ¢ using

the @ parameters as m;(alz) = o (a Zf;acp(m, a), 0l>)
The other higher-dimensional variables (g, v;) are de-
fined symbolically in terms of 3¢, 8; and 7, and used
only as auxiliary variables for computing the estimates
go.+, and gg+. Specifically, we set these variables as

() =) mlalz)(p(z,a),0,), (®)

pie e (z,a) = m(alz) (1 — ) L{XY, = x}
+ Y(Pr, AT BNI{X] , =2}). (9)

Finally, the gradient estimates can be defined as

Gp.t = A oy (R + o (X)) — (01,6y) ., (10)
Gotk =Py — AC*l‘Pt,k<‘Pt,k;5t>~ (11)

These gradient estimates are then used in a projected
gradient ascent/descent scheme, with the 5 projection
operator denoted by II. The feasible sets of the two
parameter vectors are chosen as /o balls of radii Dy
and Dg, denoted respectively as B(Dy) and B(Dg).
Notably, the algorithm does not need to compute v (),
pek(z,a), or my(alx) for all states x, but only for the
states that are accessed during the execution of the
method. In particular, m; does not need to be computed
explicitly, and it can be efficiently represented by the
single d-dimensional parameter vector Zle 0,.

Due to the double-loop structure, each iteration ¢ uses
K samples from the dataset D, adding up to a total
of n = KT samples over the course of T iterations.
Each gradient update calculated by the method uses a
constant number of elementary vector operations, re-
sulting in a total computational complexity of O(|.A|dn)
elementary operations. At the end, our algorithm out-
puts a policy selected uniformly at random from the T'
iterations.

3.1 Main result

We are now almost ready to state our main result.
Before doing so, we first need to discuss the quantities
appearing in the guarantee, and provide an intuitive
explanation for them.

Algorithm 1 Primal-Dual Offline RL (PDOR)
Input: Learning rates «,(,n, initial points 6y €
B(Dg),ﬁl € B(DB), w1, and data D = (Wt)?zl
fort=1to T do

Initialize 6; 1 = 6;_;
for k=1to K —1do
Obtain sample W; j, = (Xto,k,Xt)k,Am,Xt”k)

otk = m oo [(1 - Yexy, +
VP (Xt ke, At k) Acfl,@t>ext’yk]
ge,t,i q’THt,k -

AC_IQO(Xt,k, A i) (e (X, A i), Be)
0: k11 = Ugp,) 0k —nGeti) // Stochastic
gradient descent

end for

1 K
O = %D ket Ok

Obtain sample W; = (X7, Xy, As, X})

v, = E"(m, 0 86,)

s = AT'o(X, A) (R + yu(X)) —
(p(Xy, Ar), 6))

Br1 = pp,) (B + Cgp.t)
ent ascent

// Stochastic gradi-

Tip1 = o(a 25:1 0;)
end for
return m; with J ~U(T).

// Policy update

Similarly to previous work, we capture the partial cov-
erage assumption by expressing the rate of convergence
to the optimal policy in terms of a coverage ratio that
measures the mismatch between the behavior and the
optimal policy. Several definitions of coverage ratio
are surveyed by Uehara and Sun (2022). In this work,
we employ a notion of feature coverage ratio for linear
MDPs that defines coverage in feature space rather
than in state-action space, similarly to Jin et al. (2021),
but with a smaller ratio.

Definition 3.1. Let ¢ € {l/2,1}. For a policy m,
we denote by (7)) = Ex a~u~[@(X, A)] the average
feature vector under m. We define the generalized
coverage ratio as?

Coo(n™;mp) = ¢(W*)TA_20¢(7T*).

We defer a detailed discussion of this ratio to Section 6,
where we compare it with similar notions in the litera-
ture. We are now ready to state our main result.

Theorem 3.2. Given a linear MDP (Definition 2.1)
such that ™ € B(Dg) for any policy w. Assume that
the coverage ratio is bounded C, (7*;75) < Dg. Then,

When A is not invertible but @ (7*) is in the column
space of A, we can define the coverage ratio using the
Moore-Penrose pseudoinverse, and set it to +o00 otherwise.



for any comparator policy m*, the policy output by an
appropriately tuned instance of Algorithm 1 satisfies
E [(u”* — pTeut, r}] < ¢ with a number of samples n.

that is O (5—4D3D30ng2—26 log \A|).

The concrete parameter choices are detailed in the
full version of the theorem in Appendix A. The main
theorem can be simplified by making some standard
assumptions, formalized by the following corollary.

Corollary 3.3. Assume that the bound of the feature
vectors Dy, is of order O(1), that D, = Dy, = V/d and
that D% = c- Cyo(m*;mB) for some positive univer-
sal constant c. Then, under the same assumptions of

Theorem 3.2, n. is of order O(d C“"jz(cﬂ(l ﬂf))Qlog‘Al)

4 ANALYSIS

This section explains the rationale behind some of the
technical choices of our algorithm, and sketches the
proof of our main result.

First, we explicitly rewrite the expression of the La-
grangian (7), after performing the change of vari-
able A = A°S3:

(B, w;v,0) = (1 =) (v, v) + (B, A°(w + 7TV — 0))

+ (u, 80 — Ev) (12)
= (B, Aw) + (v,(1 = 7)vo + 7P AB - E"p)
+(0,8" — A°B). (13)

We aim to find an approximate saddle-point of the
above convex-concave objective function. Omne chal-
lenge that we need to face is that the variables v and
p have dimension proportional to the size of the state
space |X|, so making explicit updates to these param-
eters would be prohibitively expensive in MDPs with
large state spaces. To address this challenge, we choose
to parametrize p in terms of a policy 7 and 3 through
the symbolic assignment pu = pg ., where

Hpe(@,a) = m(ala) (L= wo(a) + 1 ((x). AB) .

This choice can be seen to satisfy the first constraint
of the primal LP (4), and thus the gradient of the
Lagrangian (13) evaluated at pg , with respect to v
can be verified to be 0. This parametrization makes
it possible to express the Lagrangian as a function of
only 8,3 and 7 as

f(aaﬁvﬂ-) = S(ﬁ,”ﬁ,ﬂ'; v, 9)
= (B, A°w) + (0, @ ug . — A°B). (14)

For convenience, we also define the quantities vg =
E'pg . and v (s) = >, m(als)(0,¢(x,a)), which

enables us to rewrite f as

f(aa;B77T) = <Acﬁ7w - 0> =+ <’U9,ﬂ.,l/,3>
= (1 =7)(v0,v0.x)
+ (A°B,w +yPvg . — 6). (15)

The above choices allow us to perform stochastic gradi-
ent / ascent over the low-dimensional parameters 8 and
B3 and the policy 7. In order to calculate an unbiased
estimator of the gradients, we first observe that the
choice of pt;, in Algorithm 1 is an unbiased estimator

of ug, x,:
Ev [0, )] = mi(ale) (1= )P(Xf = 2)
+ B [1{X = o0, A1) )
= m(alz) (1 = 7o (@)
+9> sz a)p(a|T, a)p(z, d)TAC‘l,Bt)

= mi(ala) ((1 -

= lu,Btaﬂ't (iL’, a’)?

V(@) + yp(a) AN )

where we used the fact that p(z|Z,a) = (Y (x), (Z,a)),
and the definition of A. This in turn facilitates prov-
ing that the gradient estimate gg ¢, defined in Equa-
tion 11, is indeed unbiased:

PEy i (o] — AT B [SDt,k‘PI,k} Bt
—A°B; = Veﬂ(ﬁt, Hts U, )

A similar proof is used for gg+ and is detailed in Ap-
pendix B.3.

Et k. [Go.t.k] =
= (I)Tl‘l’ﬁtﬂft

Our analysis is based on arguments by Neu and Okolo
(2023), carefully adapted to the reparametrized version
of the Lagrangian presented above. The proof stud-
ies the following central quantity that we refer to as
dynamic duality gap:

T
Gr (8,7 07.r) = §j (B*,7":6,) — f(By, 713 67)).

Here, (0:,08:,m:) are the iterates of the algorithm,
0% = (0;)L_, a sequence of comparators for 6, and
finally 8* and 7* are fixed comparators for 3 and T,
respectively. Our first key lemma relates the subopti-
mality of the output policy to Gr for a specific choice
of comparators.

Lemma 4.1. Let 6; = 0™, 7 be any policy, and
B = AC@T " Then, E [(u”* — pToe )] =
Gr(B*, 7" 05.x)-

The proof is relegated to Appendix B.1. Our second

key lemma rewrites the gap Gr for any choice of com-
parators as the sum of three regret terms:



Lemma 4.2. With the choice of comparators of
Lemma 4.1

1
Gr (87" 0ir) = 7> (00~ 6].90.)

t=1
+(B" — Bt,98.,t)
+ >0 () 3w (als) — milals)) (B, () ),

a

where gg; = ‘I)Tﬂﬁf,,m — A°By and ggr = A°(w +
WlI’vemﬂ't - 075)

The proof is presented in Appendix B.2. To con-
clude the proof we bound the three terms appearing in
Lemma 4.2. The first two of those are bounded using
standard gradient descent/ascent analysis (Lemmas B.1
and B.2), while for the latter we use mirror descent
analysis (Lemma B.3). The details of these steps are
reported in Appendix B.3.

5 EXTENSION TO
AVERAGE-REWARD MDPS

In this section, we briefly explain how to extend our
approach to offline learning in average reward MDPs,
establishing the first sample complexity result for this
setting. After introducing the setup, we outline a
remarkably simple adaptation of our algorithm along
with its performance guarantees for this setting. The
reader is referred to Appendix C for the full details, and
to Chapter 8 of Puterman (1994) for a more thorough
discussion of average-reward MDPs.

In the average reward setting we aim to optimize the ob-
jective p™(x) = liminfr_, o0 %Eﬂ [Zthl r(zt, at) ‘ T =
a:], representing the long-term average reward of pol-
icy m when started from state z € X. Unlike the
discounted setting, the average reward criterion pri-
oritizes long-term frequency over proximity of good
rewards due to the absence of discounting which ex-
presses a preference for earlier rewards. As is standard
in the related literature, we will assume that p™ is well-
defined for any policy and is independent of the start
state, and thus will use the same notation to repre-
sent the scalar average reward of policy m. Due to the
boundedness of the rewards, we clearly have p™ € [0, 1].
Similarly to the discounted setting, it is possible to de-
fine quantities analogous to the value and action value
functions as the solutions to the Bellman equations
q" =r—p"1+ Pv™, where v™ is related to the action-
value function as v™(z) = ) 7(alz)q¢" (x,a). We will
make the following standard assumption about the
MDP (see Section 17.4 of Meyn and Tweedie (1996)):

Assumption 5.1. For all stationary policies 7, the
Bellman equations have a solution q™ satisfying

SUPg 4 q" (l‘, CL) - inf:r,a qr (fL', a) < Dq.

Furthermore, we will continue to work with the linear
MDP assumption of Definition 2.1, and will additionally
make the following minor assumption:

Assumption 5.2. The all ones vector 1 is contained in
the column span of the feature matrix ®. Furthermore,
let o € RY such that for all (x,a) € Z, (¢(z,a), @) = 1.

Using these insights, it is straightforward to derive a
linear program akin to (2) that characterize the opti-
mal occupancy measure and thus an optimal policy
in average-reward MDPs. Starting from this formula-
tion and proceeding as in Sections 2 and 4, we equiva-
lently restate this optimization problem as finding the
saddle-point of the reparametrized Lagrangian defined
as follows:

L(B,1m;p,v,0) = p+ (B,A°lw + Pv — 0 — pg])
+ (u, PO — Ev).

As previously, the saddle point can be shown to be
equivalent to an optimal occupancy measure under the
assumption that the MDP is linear in the sense of Def-
inition 2.1. Notice that the above Lagrangian slightly
differs from that of the discounted setting in Equa-
tion (12) due to the additional optimization parameter
p, but otherwise our main algorithm can be directly
generalized to this objective. We present details of the
derivations and the resulting algorithm in Appendix C.
The following theorem states the performance guaran-
tees for this method.

Theorem 5.3. Given a linear MDP (Definition 2.1)
satisfying Assumption 5.2 and such that 0™ € B(Dg)
for any policy w. Assume that the coverage ra-
tio is bounded Cy, o(m*;7p) < D%. Then, for any
comparator policy ©*, the policy output by an ap-
propriately tuned instance of Algorithm 2 satisfies
E [(u”* — p™ou, 7)] < e with a number of samples n.

that is O (=~ D3DL "2 Dhd* > log |A| )

As compared to the discounted case, this additional
dependence of the sample complexity on D, is due to
the extra optimization variable p. We provide the full
proof of this theorem along with further discussion in
Appendix C.

6 DISCUSSION AND FINAL
REMARKS

In this section, we compare our results with the most
relevant ones from the literature, with a particular
focus on discussing the relations between the coverage
ratios used in our work and the ones used in related
literature. Our Table 1 can be used as a reference. As
a complement to this section, we refer the interested



reader to the recent work by Uehara and Sun (2022),
which provides a survey of offline RL methods with
their coverage and structural assumptions. Detailed
computations can be found in Appendix E.

An important property of our method is that it only
requires partial coverage. This sets it apart from classic
batch RL methods like fitted Q-iteration (Ernst et al.,
2005; Munos and Szepesvari, 2008; Chen and Jiang,
2019), whose analysis requires a stronger uniform-
coverage assumption. Interestingly, our results defy
the common wisdom in the related literature that sug-
gests that obtaining guarantees under weaker partial-
coverage assumptions requires the use of pessimistic
adjustments (e.g., Jin et al. (2021); Xie et al. (2021))—
indeed, notice that our algorithm does not implement
any form of explicit pessimism. In fact, as we argue
below, the notion of coverage that our guarantees de-
pend on is in many senses much weaker than the most
commonly used notions appearing in the literature.

Let us review some existing notions of coverage and
contrast them to our notion. Jin et al. (2021) (Theorem
4.4) rely on a feature coverage ratio which can be
written as

C°(rm*;mp) = Ex, amnpe [\/LP(X, A)TA (X, A)} .
(16)
Although, in general, C, . is incomparable with C°, a
simple geometric argument shows the advantages of our
coverage. A boundedness condition on C°(7*;7wg) re-
quires the column space of A to span the subspace of R¢
spanned by optimal features, span{p(z,a)|p™ (z,a) >
0}. In contrast, boundedness of C, . only requires
@(m*) € range(A). Intuitively, we only require the
behavior policy to witness a single direction in feature
space (the average feature vector under 7*) compared
to a whole, potentially d-dimensional, subspace. This
can make a big difference, especially when d is large.
In Appendix E, we show an example where C° can be
arbitrarily larger than both Cy /2 and Cy 1.

This kind of coverage ratio has appeared in the lit-
erature before, but only for finite-horizon problems.
Concretely, Zanette et al. (2021) propose a computa-
tionally intense algorithm that demonstrates a regret
bound scaling with a quantity essentially equivalent to
our C, /2. Uehara and Sun (2022) and Zhang et al.
(2022) use a coverage ratio that is conceptually similar
to Equation (16),

TA*
Cl(r*;7p) = sup y2u

, 17
U Ay (17)

where A* = Ex au- [(X, A)p(X, A)"]. Some linear
algebra shows that C, /5 < dCt. Tt should be noted
that the algorithm from Uehara and Sun (2022) also
works with unknown features, at the cost of being

computationally inefficient. The algorithm from Zhang
et al. (2022) instead is limited to the finite-horizon
setting.

We can gain some further insight from the special
case of tabular MDPs, although it is hard to com-
pare our ratio with existing ones there, because in
this setting, error bounds are commonly stated in
terms of sup, ,# (#:4)/up(z,0), often introducing an
explicit dependency on the number of states (e.g.,
Liu et al., 2020). However, looking at how the
coverage ratio specializes to the tabular setting can
still provide some insight. First, C, /(7% 75) =
>, (@) /up (2,0), which of course is smaller than
the more standard C°(n*;7p) = =, # ®9)/up(z,a).
Interestingly, Cy, 1 /2(7*;m5) = 1+ X?(p*||up), where
X2 denotes the chi-square divergence, a crucial quan-
tity in off-distribution learning based on importance
sampling (Cortes et al., 2010). An analogous quantity
was used by Li et al. (2014) to characterize the sam-
ple complexity of off-policy policy evaluation. Unfor-
tunately, Cy 1 (7*;7p) = 3, . (#" @0)/up(2,0))? is non-
comparable with C in general, and larger than C ; /2.
A similar quantity to C,, 1 was used by Lykouris et al.
(2021) in the context of RL with adversarial corrup-
tions.

The most directly comparable works to ours are those
of Xie et al. (2021) and Cheng et al. (2022), which are
the only known practical methods to consider function
approximation in the infinite-horizon setting, with mini-
mal assumptions on the dataset. They both use the cov-
erage ratio Cr(n*;mp) = maxser I =TH%s /17112,
where F is a function class and 7 the Bellman operator.
This can be shown to reduce to Equation (17) for lin-
ear MDPs (cf. Appendix E). However, the specialized
bound of Xie et al. (2021) (Theorem 3.2) scales with the
potentially larger ratio from Equation (16). Both their
algorithms have superlinear computational complexity
and a sample complexity of O(¢~%). While the authors
make plausible arguments in their paper that their
method can be efficiently implemented in the linear
setting and may obtain a sample complexity of order
of order 72, these statements are not supported with
rigorous proofs. Hence, our result is technically the
first provably computationally effective method that
achieves a rate better than O(¢7%), with the additional
benefit of using a single-direction coverage ratio as
discussed in the above paragraphs.

The above discussion outlines two major open prob-
lems that we leave open for future work. First, we
highlight that so far, no computationally efficient algo-
rithm exists for our setting that achieves the minimax
optimal sample complexity rate of O(¢~2) (Xiao et al.,
2021; Rashidinejad et al., 2022). Regarding our own
algorithm, it is clear that the extra O(e~?) factor in



our bounds is due to the nested-loop structure of the
algorithm. How to remove this component from our al-
gorithm design is currently unclear, but we suspect that
that borrowing ideas from the literature on optimistic
descent methods (Korpelevich, 1976; Rakhlin and Srid-
haran, 2013) or two-timescale stochastic approximation
(Borkar, 1997) may bring us closer to an answer. A
second limitation of our contribution is that, in order to
scale with C, 12, our method requires prior knowledge
of A. We believe that this limitation can be relaxed
at the price of a significantly more involved analysis,
for instance by setting aside some fraction of the data
set to estimate A (or directly A~!, using techniques
from (Neu and Olkhovskaya, 2020, 2021)). We opted to
focus on this slightly stylized scenario to maintain the
clarity of our technical contribution. That said, as long
as one is happy with a bound that scales with Cy 1, a
simple and elegant version of our algorithm can provide
such bounds without prior knowledge of A. Whether
or not it is possible to unify the advantages of the two
versions of our algorithm is an exciting question for
future research.
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Supplementary Material

A COMPLETE STATEMENT OF THEOREM 3.2

Theorem A.1l. Consider a linear MDP (Definition 2.1) such that @™ € B(Dg) for all 7 € II. Further, suppose
that C, (m*;mp) < D%. Then, for any comparator policy w* € 11, the policy output by Algorithm 1 satisfies:

) 2D% 1 2D2 (G%, aDiD% G
E [(u" —u”"“‘,rﬂg 5 loslA o Cpe Dol 7 O.c.
T aT nk 2 2 2
where:
3. =3D2 (1= + (1 +~")DZIAIF), (1)
G%.=3(1+ (1+~*)DLDg) D> V. (19)
In particular, using learning rates n = G:f\e/?, ¢ = G;f%, and o = Dingf\‘;%l, and setting K =

2Dg2 G +Dg Dy log | A|
205G,

T , we achieve E [(u“* — u"'ouf,rﬂ < € with a number of samples n. that is

0 (e"‘DéDZ;Dé, Te(A2 ) |2 log |A|) .

By remark A.2 below, we have that n. is simply of order O (»3‘4D§Df'f,cDéaZQ_QC log \A|)

Remark A.2. When ¢ = 1/2, the factor Tr(A2¢~1) is just d, the feature dimension, and ||A[>°"" = 1. When ¢ = 1

and A is unknown, both [|A[|, and Tr(A) should be replaced by their upper bound DZ. Then, for ¢ € {1/2,1},
we have that Tr(A%¢~1) HAH%C*l < Di—iqee,



B MISSING PROOFS FOR THE DISCOUNTED SETTING

B.1 Proof of Lemma 4.1

Using the choice of comparators described in the lemma, we have
v+ (s) = (1= y)o(s) +y(ap(s), A°A—°@T ™)
= (1 =wo(s) + Y p(sls’;a)u™ (s',a') = v™ (),

hence pig+ -+ = u” . From Equation (14) it is easy to see that
f(ﬁ*,7*§0t) _ <A76¢TH*,ACW> + <0t; @T;U'* _ AcAfcq)Tu*>
- </l‘7r*a (I)w> - <H*77“>~

Moreover, we also have

ve; x, (5) = Zwt(a|s)<0”‘,<p(x,a))
= 3w als)a™ (5,0) = v (s, a).

Then, from Equation (15) we obtain
f(B, e, 0F)
( )+ (B, A%(w + 7 T™ — 07))
= (L= 7m0, v™) + (B, A Ex A, [0(X, A)p(X, A)'(w + 7 Tv™ — 7))
( )+ (Bt ATEX Ay [r(X, A) + 7 (p(|X, A),0™) — g™ (X, A)]p(X, A))])
= (L=){wo,v™) = (u™,7),

where the fourth equality uses that the value functions satisfy the Bellman equation ¢™ = r + vPv™ for any
policy 7. The proof is concluded by noticing that, since oy is sampled uniformly from {m;}I_ |, E [(pu™out r)] =

T -
%Zt:lEKN 77">]- 0
B.2 Proof of Lemma 4.2

We start by rewriting the terms appearing in the definition of Gp:
f(B",7:6:) — f(Be,m;0;) = f(B*,7%60;) — [(B", 75 64)
+ f(B%, 73 0¢) — f(Be, 715 6:)
+ f(Be, 13 0t) — f(Be, 73 07). (20)

To rewrite this as the sum of the three regret terms, we first note that

f(B,m;0) = (A°B,w — 6,) + (v, Vo, ),

which allows us to write the first term of Equation (20) as
f(,@*,ﬂ'*;Ot) - f(ﬁ*aﬂ-t;et) = <Ac(/3* - ﬁ*)vw - 0t> + <Vﬁ*7’09t7ﬂ'* - Uet,“’t>
= (vp+, Yy _(m"(al) = me(al ))(8:. o (-, ),

a

and we have already established in the proof of Lemma C.3 that vg- is equal to v™ for our choice of comparator.
Similarly, we use Equation (15) to rewrite the second term of Equation (20) as

F(B 75 01) — f(Be, 745 0:) = (1 — ) (vo, ve,,x, — Vo,x,) + (B — Bt, A(w + vPvg, x, — 0;))
= <,3* - /Btag,@,t>-
Finally, we use Equation (14) to rewrite the third term of Equation (20) as
F(Bes i 00) — [(Be 3 07) = (Br — Be, Aw) + (0, — 07, ® T g, x, — A°Br)
= (0; — 0:790,t>'



B.3 Regret bounds for stochastic gradient descent / ascent

Lemma B.1. For any dynamic comparator 01.7 € Dg, the iterates 0+, ...,07 of Algorithm 1 satisfy the following
regret bound:

oy DR (1)
nK 2 '

MH

tngt

t:l

Proof. First, we use the definition of 8; as the average of the inner-loop iterates from Algorithm 1, together with
linearity of expectation and bilinearity of the inner product.

T T 1
Z t7get‘|:ZKE

t=1

K
Z Gtk t»ge,t>] . (21)
k=1

R

We then appeal to standard stochastic gradient descent analysis to bound each term fR; separately.

We have already proven in Section 4 that the gradient estimator for @ is unbiased, that is, E; x [goc.k] = go.¢-
It is also useful to recall here that gg +, does not depend on 6, ;. Next, we show that its second moment is
bounded. From Equation (11), plugging in the definition of p;  from Equation (9) and using the abbreviations

Por = 2ame(aley ) (x} ), a), o = @(Tek, ark), and @ =37, mi(alaf ) (@t ., a), we have:

Ev | Igo.c.il”]

=K [H (11—~ ¢tk+7<Pt k{Per, A ﬁf> @t,k(%otkaAcflﬂtHﬂ

<3(1-9) Di + 3’YQEt k |:H907/5 k Sotk,Ac_15t>H2] + 3E¢ k [H‘Pt,k@Pthc_lﬂt)Hﬂ
<3(1—7)’DL +3(1 +7°)DLEwk [(pik, A1 B1)?]

=3(1—7)°D, +3(1++° )D2 B AT Ey i [pinple] AT By

= 3(1—7)°DL +3(1 +7°)DZ 1Bl pzes -

We can then apply Lemma D.1 with the latter expression as G2, B(Dg) as the domain, and 7 as the learning rate,
obtaining:

2
al 1000 — 072 3nED% ((1=7)% + (1+9%) 1Bel3ec 1 )
Z (O — 0], 90.1)| < 5 +
n 2
k=1
opz 3nKDL (1= + (1477 Bul3ee s )
< + .
n 2
Plugging this into Equation (21) and bounding ||ﬁt||A2c < Dﬁ ||AH26 ' we obtain the final result. O

Lemma B.2. For any comparator 3 € Dg, the iterates B, ...,Br of Algorithm 1 satisfy the following regret
bound:

N 2D%2  3¢T(1+ (1 +~2)D2D2) Tr(A2¢1
e[S -] < 28 O
t=1

Proof. We again employ stochastic gradient descent analysis. We first prove that the gradient estimator for 3 is



unbiased. Recalling the definition of gg from Equation (10),

E[§g.t|Fi—1,0: = E [A o (R + yvi(X]) — (1, 04)) | Fe—1, ;]
= AN B [prpd | w B [prvn (X)) — Ee [iip] ] 61)
= AT (Aw +VE; [pivi(X])] — A,)
= At (Aw +VE [r P (| Xt, Ar)ve] — Aot)
= AT Aw +E; [pip] | Tv, — AG;)
= A(w +7Pvg, r, — 0:) = gs.t,

recalling that v, = vg, r,. Next, we bound its second moment. We use the fact that r € [0,1] and ||v]|ec <
| @6, |00 < D,Dg to show that

E[1g5.4113 1Fi-1,6:] = E [| A @ulRe + 70u(X)) = (01, 00| 1 Fi1, 0t |

< 3(1+ (1 +°) D2 DJ)E; | A2 }

{
(14 (1++*)D2D3)E, [T (A2 D g, T )}

3
3(1+ (1497 D5 Dg) Tr(A* 7).

Thus, we can apply Lemma D.1 with the latter expression as G2, B(Dg) as the domain, and ¢ as the learning
rate. O

Lemma B.3. The sequence of policies 71, ..., of Algorithm 1 satisfies the following regret bound:

log|A| | aTD3Dj

E YD v @) Y (n (ale) — mi(ale)(0r, pla.a)) | < =2 4 —2

t=1zeX a

Proof. We just apply mirror descent analysis, invoking Lemma D.2 with ¢, = ®6;, noting that ||¢:||., < Dy, De.
The proof is concluded by trivially bounding the relative entropy as H (7*||m1) = E, o ~* [D (7 (:|z)||71(:|z))] <
log | A O



C ANALYSIS FOR THE AVERAGE-REWARD MDP SETTING

This section describes the adaptation of our contributions in the main body of the paper to average-reward
MDPs (AMDPs). In the offline reinforcement learning setting that we consider, we assume access to a sequence
of data points (X, A¢, Re, X{) in round ¢ generated by a behaviour policy mp whose occupancy measure is
denoted as ppg. Specifically, we will now draw i.i.d. samples from the wundiscounted occupancy measure as
X, Ay ~ pp, sample X ~ p(-| Xy, At), and compute immediate rewards as R; = r(Xy, A;). For simplicity, we
use the shorthand notation ¢; = ¢(X¢, A;) to denote the feature vector drawn in round ¢, and define the matrix
A =E[p(Xy, Ar)p(Xe, AT

Before describing our contributions, some definitions are in order. An important central concept in the theory of
AMDPs is that of the relative value functions of policy m defined as

T
v™(x) = lim E, lz (X, Ay) — p"

T—o0
t=0

XofE],

T

ZT XtaAt

t=0

T = lim E
¢ (w.0) = i Er

WXOZxaAoza]7

where we recalled the notation p™ denoting the average reward of policy 7 from the main text. These functions
are sometimes also called the bias functions, and their intuitive role is to measure the total amount of reward
gathered by policy 7 before it hits its stationary distribution. For simplicity, we will refer to these functions as
value functions and action-value functions below.

By their recursive nature, these value functions are also characterized by the corresponding Bellman equations
recalled below for completeness

q"=r—p"1+ Pv",

where v™ is related to the action-value function as v™ (z) = Y 7(a|z)q™ (z,a). We note that the Bellman equations
only characterize the value functions up to a constant offset. That is, for any policy w, and constant ¢ € R,
v™ + ¢l and g™ + c1 also satisfy the Bellman equations. A key quantity to measure the size of the value functions
is the span seminorm defined for ¢ € RY*4 as lally, = SuP(gaycxxa 9(z,a) —inf(; a)yexxaq(z,a). Using this
notation, the condition of Assumption 5.1 can be simply stated as requiring ||q’T|| < Dy for all .

Now, let m* denote an optlmal pohcy with max1mum average reward and introduce the shorthand notations
pr=p" . ur=pu" =v™ ,v*=v" and q* = q" . Under mild assumptions on the MDP that we will clarify
shortly, the followmg Bellman optimality equations are known to characterize bias vectors corresponding to the
optimal policy

qg"=r—p*1l+ Pv*,

where v* satisfies v*(x) = max, ¢*(z, a). Once again, shifting the solutions by a constant preserves the optimality
conditions. It is easy to see that such constant offsets do not influence greedy or softmax policies extracted from
the action value functions. Importantly, by a calculation analogous to Equation (3), the action-value functions
are exactly realizable under the linear MDP condition (see Definition 2.1) and Assumption 5.2.

Besides the Bellman optimality equations stated above, optimal policies can be equivalently characterized via the
following linear program:
maximize (u,r)
subject to E'u=PTpu
(1) =1
> 0.

(22)

This can be seen as the generalization of the LP stated for discounted MDPs in the main text, with the added
complication that we need to make sure that the occupancy measures are normalized® to 1. By following the same
steps as in the main text to relax the constraints and reparametrize the LP, one can show that solutions of the

3This is necessary because of the absence of vy in the LP, which would otherwise fix the scale of the solutions.



LP under the linear MDP assumption can be constructed by finding the saddle point of the following Lagrangian:

L 150,0,0) =p+ (X, w+Pv -0 — po) + (u, PO — Ev)
=p[l=XN0)]+(0,2"t—A)+ (v, T'X\— E" ).

As before, the optimal value functions ¢* and v* are optimal primal variables for the saddle-point problem, as
are all of their constant shifts. Thus, the existence of a solution with small span seminorm implies the existence
of a solution with small supremum norm.

Finally, applying the same reparametrization 3 = A~°X as in the discounted setting, we arrive to the following
Lagrangian that forms the basis of our algorithm:

We will aim to find the saddle point of this function via primal-dual methods. As we have some prior knowledge
of the optimal solutions, we will restrict the search space of each optimization variable to nicely chosen compact
sets. For the 3 iterates, we consider the Euclidean ball domain B(Dg) = {8 € R? | ||B||, < Dg} with the bound
Dg > || ®"p*||a-2. Since the average reward of any policy is bounded in [0, 1], we naturally restrict the p iterates
to this domain. Finally, keeping in mind that Assumption 5.1 guarantees that ||q“||sp < Dy, we will also constrain
the 6 iterates to an appropriate domain: B(Dg) = {6 € R? | ||6]|, < Dg}. We will assume that this domain is
large enough to represent all action-value functions, which implies that Dg should scale at least linearly with
D,. Indeed, we will suppose that the features are bounded as [|¢(x,a)||, < D, for all (x,a) € X x A so that our
optimization algorithm only admits parametric g functions satisfying ||q|| ., < D,Dg. Obviously, Dg needs to be
set large enough to ensure that it is possible at all to represent g-functions with span D,.

Thus, we aim to solve the following constrained optimization problem:

min max £(8, u; p,v,0).
p€[0,1],vERY,0€B(Do) BEB(Dp),wERT *A ( )

As done in the main text, we eliminate the high-dimensional variables v and g by committing to the choices
v = Vg, and p = pg . defined as

UB,#(I') = Zﬂ(am <07 90(1'7 a)> )

a

pp.x (2, a) = m(alz)(P(x), A°B).

This makes it possible to express the Lagrangian in terms of only 8,7, p and 6:

f(ﬂv’]r; P, 0) =p + <ﬂ ) Ac[w + ‘I’Ue,w -6 - PQ]> + <l*l’,3,7r 3 PO — Ev@,ﬂ'>
=p+(B,A%Nw + Tvgr — 0 — po))

The remaining low-dimensional variables 3, p, @ are then updated using stochastic gradient descent/ascent. For
this purpose it is useful to express the partial derivatives of the Lagrangian with respect to said variables:

9p = A[w + Pvg . — 0 — po]
9p=1—(B,A)
do = (I’Tﬂﬁ,w - Acﬁ

C.1 Algorithm for average-reward MDPs

Our algorithm for the AMDP setting has the same double-loop structure as the one for the discounted setting.
In particular, the algorithm performs a sequence of outer updates t = 1,2,...,7T on the policies m; and the
iterates B;, and then performs a sequence of updates i = 1,2,..., K in the inner loop to evaluate the policies
and produce 6, p; and v;. Thanks to the reparametrization 3 = A~°A, fixing m, = softmax(zz;ll P6;,),
vi(x) = D camilalz) (p(x,a),0;) for x € X, and py(x,a) = m(alr) ((x), A°B;) in round ¢ we can obtain
unbiased estimates of the gradients of f with respect to 8, 3, and p. For each primal update ¢, the algorithm
uses a single sample transition (X, As, Ry, X}) generated by the behavior policy mp to compute an unbiased



Algorithm 2 Offline primal-dual method for Average-reward MDPs
Input: Learning rates ¢, «,§,n, initial iterates 81 € B(Dg), po € [0,1], 8y € B(Dg), m €11,

fort=1to T do
// Stochastic gradient descent:
Initialize: Ot(l) =0;_q;
for:=1to K do
Obtain sample Wi ; = (X4, A, Rei, X{ ;);
Sample Aé,z‘ ~ 7rt(-|Xt”i);

Compute gy 1 =1 — (@1, A1 B¢);
g@,t,i = 80;5,1 <<Pt,’ia Ac_l,Bt> - Sot,’i <‘Pt,iv Ac_lﬁt>;

Update p{' T = io,1] (o = €Go1.0);
i+1 i P
Ot( ) HB(DQ)(Ot( ) - N96.t,:)-

end for 1
Compute pr = - 31, p};

1 —x L6
0 = gzz‘ﬂ Bt( )9

// Stochastic gradient ascent:

Obtain sample W; = (X, Az, Ry, X{);

Compute vi(X{) = ), m(a|X}) (p(X}, a), 0;);
Compute gg, = A iRy + v (X{) — (0, 1) — pil;
Update Bi11 = lgpy) (B + Cgg1);

// Policy update:
Compute 7441 =0 (a 22:1 'I>0k).

end for
Return: 7; with J ~U(T).

estimator of the first gradient gg for that round as g5, = A“ '@ [Ry + v (X[) — (04, ¢) — p¢]. Then, in iteration
i=1,---, K of the inner loop within round ¢, we sample transitions (X;;, A¢ i, R, X ;) to compute gradient
estimators with respect to p and 6 as:

Gpti = 1= {pri, A" By)
Goi = Pri(Pri AT Be) — pri (i, AT By

We have used the shorthand notation ¢ ; = ¢(Xy 4, Ari), @1, = ¢(X;;, A; ;). The update steps are detailed in
the pseudocode presented as Algorithm 2.

We now state the general form of our main result for this setting in Theorem C.1 below.

Theorem C.1. Consider a linear MDP (Definition 2.1) such that 8™ € B(Dg) for all m € II. Further, suppose
that C, (m*;mp) < D%. Then, for any comparator policy w* € II, the policy output by Algorithm 2 satisfies:

, 2D% log|A] 1  2D2 (Gh. aD3D% EG%. nGj
E[ T 7'l'out7 }< B8 2] B,c 0~ p,C ,c’
Wr ot S et gtk T2 T e T2 T
where
Gh.=Tr(A*")(142DgD,)?, (23)
2. =2(1+DFIAIFT) (24)

2¢—1
G =4Dg D || All" (25)



2Dg o — \v/2log |A| é. _ 1
Gg, VT’ DeD,NT’ Gp VK’

, we achieve E [(u”* — u""’“%?‘)] < € with a number of samples ne that is

and n = G,;ZCD\G/F’ and setting

In particular, using learning rates ¢ =

4D g2 Gy +2Dg D, log | Al

K=T-
G%ﬁc+4DgG§’c

0 (540317@?, Te(A2 1) |A[ 225D log |A|) .

By remark A.2, we have that n. is of order O (5_4D3D}P2C_2Déd2_2c log |A|)

Corollary C.2. Assume that the bound of the feature vectors Dy, is of order O(1), that Dy, = Dy, = Vd which
together imply Do < /d+1++/dD, = O(v/dD,)) and that D = ¢-Cy (7% mp) for some positive universal constant
c. Then, under the same assumptions of Theorem 3.2, n. is of order O (e *D}Cy o(7*;7p)*d* > log|Al).

Recall that C, /5 is always smaller than C 1, but using ¢ = 1/2 in the algorithm requires knowledge of the
covariance matrix A, and results in a slightly worse dependence on the dimension.

The proof of Theorem C.1 mainly follows the same steps as in the discounted case, with some added difficulty
that is inherent in the more challenging average-reward setup. Some key challenges include treating the additional
optimization variable p and coping with the fact that the optimal parameters 8* and B8* are not necessarily
unique any more.

C.2 Analysis

We now prove our main result regarding the AMDP setting in Theorem C.1. Following the derivations in the
main text, we study the dynamic duality gap defined as

T

Z(f(/@*ﬂr*;ptaet)_f(/atvﬂ-t;p:aB:))' (26)

t=1

* PR * 1
Gr(B*, 7 pl.r, 01.7) = T

First we show in Lemma C.3 below that, for appropriately chosen comparator points, the expected suboptimality
of the policy returned by Algorithm 2 can be upper bounded in terms of the expected dynamic duality gap.
Lemma C.3. Let 0} such that (p(x,a),0f) = (p(x,a),0™) —inf, oycxxa (@(x,a),07) holds for all (x,a) €
X x A, and let v} be defined as v{(x) = 3, 4 mi(alz) (p(z,a),0F) for all x. Also, let pf = p™, ™ be an optimal
policy, and B* = A=°® T u* where p* is the occupancy measure of 7*. Then, the suboptimality gap of the policy
output by Algorithm 2 satisfies

Er (0" = p™,m)] = Gr(B%, 7% p1r, 01.1)-

Proof. Substituting (8*,7*) = (A~“®"u*, 7*) in the first term of the dynamic duality gap we have

f(B*, 75 p1,00) = pe + (A°@Tu" , A%[w + g, o — 0; — pro])
=pi+(u* 7+ Pvg, - — PO, — p,1)
= (u*,r)+ (u*, Evg, »» — ®O,) + p[1 — (n*, 1)]
= (u",7)

Here, we have used the fact that p* is a valid occupancy measure, so it satisfies the flow constraint E"u* = P"u*
and the normalization constraint (p*,1) = 1. Also, in the last step we have used the definition of vy, »+ that
guarantees that the following equality holds:

(™, ®0,) = Y v (2) Y w(alx) (0, p(x,a)) = D v (2)ve, 2 (2) = (1", Bvg, n).

TEX acA reEX



For the second term in the dynamic duality gap, using that 7, is F;_j-measurable we write

f(ﬁhﬂ-t; p:79:>

= pi + (Be, A%w + Wvo; r, — 0] — piel])

= p: + <ﬁt ) ACil]Et [‘Pt%"ﬂw + \I”Ugt*m-t - 0: - PIQ]D

= P: + </8taEt AC_l‘Pt |:Rt + Zp(x‘Xtht)Wt(alm> (cp(x,a), 0:> - <90(Xt7At)’ 0:) - PZ‘H >

= )07” + </8t7Et ACilsot |:Rt + Zp('r|Xtht)7rt(a|x) <<P('T7 a‘)707rt> - <90(Xta At)a 07Tt> - th]] >

= " A (Be B [AT (X, Ag) 4 (p(-] X0, A),0™) — ¢ (X, Ar) — p™]])
=p"t =(u"r),

where in the fourth equality we used that (p(z,a) — (2, a’),0F) = (p(z,a) — p(z’,a’), 0™ ) holds for all z, a, 2’ a’
by definition of #;. Then, the last equality follows from the fact that the Bellman equations for m; imply
q"t(z,a) + p™ =r(z,a) + (p(-|z,a),v™).

Combining both expressions for f(8*,7*; p:, 6;) and f(B, m; pf, 0F) in the dynamic duality gap we have:

1 T
Gr(B" 7" plir, OLir) = 7 > (= p™,r)) =Ep [(u* — ™, r)].
t=1

The second equality follows from noticing that, since oy is sampled uniformly from {m;}Z |, E[(p™oue, 7)]
T Zle E [(p™,r)]. This completes the proof.

0o

Having shown that for well-chosen comparator points the dynamic duality gap equals the expected suboptimality
of the output policy of Algorithm 2, it remains to relate the gap to the optimization error of the primal-dual
procedure. This is achieved in the following lemma.

Lemma C.4. For the same choice of comparators (8*,7*; pi.1,07.1) as in Lemma C.3 the dynamic duality gap
associated with the iterates produced by Algorithm 2 satisfies

E [gT(ﬁ*7 71'*; pT:T5 BIT)]
205 , H(x*|m) 1, 2D}
- (T oT 20K nK
N ¢ Tr(A%71)(1 + 2Dy, Dg)? N aDZ D
2 2

2
®+¢(1+D3IAIZ) +2nDL DB AL

Proof. The first part of the proof follows from recognising that the dynamic duality gap can be rewritten in terms
of the total regret of the primal and dual players in the algorithm. Formally, we write

gT(ﬁ*vﬂ-*; pT:T? QT:T)
1
T

T T
Z (B, 75 pe, 0¢) — f(Be, i pr, 01)) + % Z (f(Be,me; pr, 1) — f(Be, e 07, 67)) -

t=1 t=1

Using that 8* = A=°® " u*, q, = (p(z,a),6;), v; = vg, , and that gz, = A°[w + Wv, — O, — p;0], we see that
term in the first sum can be simply rewritten as

f(ﬂ*ﬂT*% Pt 0t) - f(ﬂm 7Tt§/)t,9t)
= (8", A°lw + Pvg, - — 0; — pr0]) — (B:, A°[w + Pvg, r, — 0; — pr0])
=(B" = B¢, A°lw + Pv; — 0; — pio]) + (PTAB" ,ve, r+ — Vo, r,)
= (8" = Br,9a:) + >_ v (@) (7" (|2) = mi(2), g (,)) -

reX



In a similar way, using that ETu; = $TA°B, and the definitions of the gradients g, and gg ;, the term in the
second sum can be rewritten as

f(Be, 5 pt,0¢) — [(Be, 7 7, 0F)
= pt + (Bt , A°[w + o, x, — O — pro]) — p; — (B, A°lw + Yve; », — O] — pol)
= (pt — p})[1 — (Be, A°0)] — (0, — 6; , A°By) + (E" puy, vo, =, — Vor,x,)
= (pt — pi)[1 — (B, A°0)] — (0: — 07, A°Bt) + (P, 0, — 0;)
= (pt — p)[1 — (Be, A°0)] + (0 — 6], 2"y — A°B)

K
= (pt — pi)gpt + <9t - Bt*>go,t> = %Z ((Pgl) = P{)9pt + <9 —6;.90 t>)

i=1

Combining both terms in the duality gap concludes the first part of the proof. As shown below the dynamic
duality gap is written as the error between iterates of the algorithm from respective comparator points in the
direction of the exact gradients. Formally, we have

* * * * 1
gT(B y T 5 P1:Ts lzT) = T

[M]=

<<,5 —Bt,9p.4) + Z (o) = 7 (|w), gy, )>>

reX
T K
ZZ( —h 9M+<9()—9§,go¢>>-

Then, implementing techniques from stochastic gradient descent analysis in the proof of Lemmas C.5 to C.7 and
mirror descent analysis in Lemma B.3, the expected dynamic duality gap can be upper bounded as follows:

t=1

N‘H

E [gT(ﬁ*a W*; pT:T? QTT)]

2 *
J2D5 H@lm) 1 2D

(T ol 26K nK
Tr(A2c-1)(1+2D,Dg)? aD2ZDj o o
1o )(2 eDo)” | 20 ¢ (1+D3IAIL) + 2002 D5 A5
This completes the proof O

Proof of Theorem C.1 First, we bound the expected suboptimality gap by combining Lemma C.3 and C.4.
Next, bearing in mind that the algorithm only needs T(K + 1) total samples from the behavior policy we optimize
the learning rates to obtain a bound on the sample complexity, thus completing the proof. O

C.3 Missing proofs for Lemma C.4

In this section we prove Lemmas C.5 to C.7 used in the proof of Lemma C.4. It is important to recall that sample
transitions (Xy, Ag, Ry, X},) in any iteration k are generated in the following way: we draw i.i.d state-action pairs
(X%, Ag) from pp, and for each state-action pair, the next Xj, is sampled from p(-| X, Ax) and immediate reward
computed as R; = r(Xy, Ax). Precisely in iteration ¢ of round ¢ where k = (¢,4), since (X, A ;) are sampled
Lid from pp at this time step, B ; [0ri0] ;] = E(za)ops [9(2, a)p(z,a)T] = A.

Lemma C.5. The gradient estimator gg, satisfies E [gm | Fre1, Ot} =4gg, and
E[llgs. /3] < Tr(A*7)(1+ 2Dy Dg)*.

Furthermore, for any B* with 3* € B(Dg), the iterates By satisfy

1§ 2

T 5 _
E Z<ﬂ*—ﬂt,gm>] 2D, CTT(A* 1) (1+2D, Do)’




Proof. For the first part, we remind that 7; is F;_j-measurable and wv; is determined given 7; and 8;. Then, we
write

E[Gp+|Fi-1,0:] = E [A“ pi[Ry + vi(X{) — (01, 00) — pi] | Fio1,6:]

=FE [AC Yo [Ry + Eormp( X2, A0) [we(@")] = (B4, 1) — pe] [Fe—1, et]
E [A“ @i [Re + (p(-| Xt Ar),v0) = (8, 00) — pi) |Fio1, 01 ]

=E [A“ o] [w + Tv, — 0, — pro] | Fi—1,0: ]

= AT @iy |[Fio1,0;] [w + $v, — 0, — py0]

= A’lw + v, — 0; — pro] = gg,-

Next, we use the facts that r € [0,1] and ||v¢]|oc < ||®0;||oc < DyDg to show the following bound:
E (195,43 1Fi-1. 6] = E [[|A“ ulRe +v0(X]) = (61, 00))[[3 1 Fi-1. 6 |
=E [|Ri + v (X)) ~ 000l A 01| |} 111,01
<E [(1 +2D,Dg)? | A |2 | Fie, Ot}
= (1+2D,Dg)’E [¢;A2(C—1)¢t \Fi, at}
— (1+2D,Dp)’E [Tr(A%—lhptga;) \Fio1, et}
< Tr(A* 1) (1 +2Dy,Dg)?.

The last step follows from the fact that A, hence also A%¢~!, is positive semi-definite, so Tr(A2¢~1) > 0. Having
shown these properties, we appeal to the standard analysis of online gradient descent stated as Lemma D.1 to
obtain the following bound

T ) -
181 — B*[l; = (T Tr(A?*"')(1+4 2D, Dg)?
E E *— < .
L1<,3 Bt ,95,t>] = % + 5
Using that ||3*]|, < Dg concludes the proof. 0

Lemma C.6. The gradient estimator g, satisfies Bii[gpii] = gpe and Be; [g5,,] < 2+ 2D Al
Furthermore, for any pf € [0,1], the iterates pgi) satisfy

K
IﬂZUtWMJ_%+MO+WﬁnJ
=1

Proof. For the first part of the proof, we use that 3; is F; ;_i-measurable, to obtain
Et,i [Gp,i] = Eti [1— {1, A B1)]
=E;; [1- <<Pt,i90z,i9, Ac_lﬂtﬂ
=1— (A%, B) = gp-

In addition, using Young’s inequality and ||,6,5HA2c 1 < D% ||A||2C ! we show that

Eri (3204 = Bui | (1= (e A7'81))°]
<24 2B [BIA i1, AT By]

2c—1

=2+2|BelAse—r <2+ 2DF AL

For the second part, we appeal to the standard online gradient descent analysis of Lemma D.1 to bound on the
total error of the iterates:

K PO
>0 - pi)gp,tl < (t%t) + ¢k (1+ DB IAILT).




Using that (pgl) - p;f)Q < 1 concludes the proof. O

Lemma C.7. The gradient estimator gg , ; satisfies By ; [gg,m} =gg i and Ey; [Hggmﬂg] < 4DL2PD% HA||§C_1.

Furthermore, for any 0; with |0}|, < Deg, the iterates Ot(i) satisfy

E > (4) * 2D(29 2 12 2¢—1
> (01 = 00 90..) | < =% +2mKDLDR AL (28)

i=1
Proof. Since By, m, p; and 6} are F; ;_;-measurable, we obtain

E; [Qa,t,i] =E¢; [90:51 <4Pt,z', Acflﬁt> — P, <4Pt,i, Acflﬁtﬂ
=®'E,; [eX;’i,A;J. (Ptis Acflﬁtﬂ —Eei [pripri] A6
=®'Ey; [[m 0 p(+| X, Ab)] (1., A Be)] — A°By
= ®[m 0 WEy; [@ri07 ] A Be] — A°By
= ‘I’[Wt © ‘I’TAC,Bt] — A°By
=@, — AB, = 9ot

Next, we consider the squared gradient norm and bound it via elementary manipulations as follows:

B [[180,0:l;) = Ees [0t (2 A8 = s (o1 A8
< 2K, [Hipfgz <‘-Pt,iaA071ﬁt>||§] +2E¢; [H‘Pt,i <4Pt,i7Acflﬁt>H§}

= 2B [ﬁ;Akl%vi H‘P;zH; Soz,iAklﬁt} + 2K, ; [ﬁIAkl‘Pt,i ||90tz||§ S"I,iACflﬁt}
<2DZE; [BIA“ ' pripr ;AT B + 2DZE, i [BIAT  pripr ;AT B

~ 2D, AT AN1B] D3 (AT AN

< 4DZ|Bl32e-1 < 4ADLDE AT

Having verified these conditions, we appeal to the online gradient descent analysis of Lemma D.1 to show the
bound )
oY — o

2 4 onKD2D% Al

£ o |
E lz <9§1) - f,go,t>] <

i=1

We then use that ‘

0; — Gt(l) H2 < 2Dg for 6;, Bt(l) € B(Dg), thus concluding the proof. O



D AUXILIARY LEMMAS

The following is a standard result in convex optimization proved here for the sake of completeness—we refer to
Nemirovski and Yudin (1983); Zinkevich (2003); Orabona (2019) for more details and comments on the history of
this result.

Lemma D.1 (Online Stochastic Gradient Descent). Given y1 € B(D,) and n > 0, define the sequences
Yo, yYnt1 and hy, -+, hy such that fork=1,---  n,

Yk+1 = Upp,) (yk + T}Ek> ;

~ . 2
and hy satisfies E {hk |Fk,1} = hy and E [HthQ |.7-'k1] < G2. Then, fory* € B(D,):

E Zn:< x h > < ||y1 _y*Hg + nnGQ
— Yy Yk, N > 277 2 .

Proof. We start by studying the following term:
%12 7 * 2
lyes1r —y*ll5 = "HB(D?,)(yk +nhi) —y H2
- 2
< Hyk + nhy — yH2
* 12 * T 2| 2
= llyr = y*ll2 — 2n <y - yk,hk> +1 HthQ

The inequality is due to the fact that the projection operator is a non-expansion with respect to the Euclidean

norm. Since E [ﬁk |]-'k,1} = hy, we can rearrange the above equation and take a conditional expectation to obtain

2 2
Iy =13 = B [lyers = 7115 1 s |
2n

2
W = yr, i) < + g]E U‘thQ |-7'—k—1}

2 2
lys = y*llz = E [ lyksr = 7115 | Fo—1 G?
+ Ui
2n 2’

2
where the last inequality is from [E [ ‘th ]:k—l] < G2. Finally, taking a sum over k = 1,--- ,n, taking a
2

marginal expectation, evaluating the resulting telescoping sum and upper-bounding negative terms by zero we
obtain the desired result as

n b = 3 = E [lgner 713, @
* 5 n 2
E < — Yk, h > < £ G
E Y = Yk Nk 1 o + 5 E
k=1 k=1
I 2 2
My =yl | mGE
- 2n 2

O

The next result is a similar regret analysis for mirror descent with the relative entropy as its distance generating
function. Once again, this result is standard, and we refer the interested reader to Nemirovski and Yudin (1983);
Cesa-Bianchi and Lugosi (2006); Orabona (2019) for more details. For the analysis, we recall that D denotes the
p(a)
q(a)
that, for any two policies 7, 7', we define the conditional entropy* H («||7') = 3" 1 v™(2)D (7 (-|z)||7’(-|z)).

relative entropy (or Kullback-Leibler divergence), defined for any p,q € A4 as D (p|lq) = >, p(a)log

, and

4Technically speaking, this quantity is the conditional entropy between the occupancy measures u™ and ,u’r,. We will
continue to use this relatively imprecise terminology to keep our notation light, and we refer to Neu et al. (2017) and
Bas-Serrano et al. (2021) for more details.



Lemma D.2 (Mirror Descent). Let qq,...,qr be a sequence of functions from X x A to R so that |¢:||,, < Dq
fort=1,....T. Given an initial policy m1 and a learning rate o > 0, define the sequence of policies ma, ..., ™41
such that, fort=1,...,T:

Ter1(alz) o me (@),

Then, for any comparator policy 7*:

H(n*|m)  aTDg

S @) (0 ) )y ) < ), T

t=1zeX

Proof. We begin by studying the relative entropy between 7*(-|z) and iterates m;(-|z), 741 (+|2) for any x € X

D (5" () e () = D (o)) — 3 el o ")
acA t\a|T
eaqt(z,a)
- Pt - %W (ale)log Y wreq mi(a|z)eva@a’)
=D (" (-|z)||me(-|x)) — a{x*(-|z), ¢ (x, ) + log Z ﬂ-t(a|x)eaqt(9¢,a)

acA
=D (r"(|2)[[m:(-[)) — (7" (-|2) = mi(-|2), qe (2, -))
+ log Z 7 (az)e®e (@) — o Z me(alz)q(z, a)

acA acA

<D (" (|2)llme(-|2)) — (™ (|2) = me(-|2), ge (2, -)) + %

where the last inequality follows from Hoeffding’s lemma (cf. Lemma A.1 in Cesa-Bianchi and Lugosi, 2006). Next,
we rearrange the above equation, sum over t = 1,--- , T, evaluate the resulting telescoping sum and upper-bound
negative terms by zero to obtain

D (m*(-|z) |1 (-]2)) n algi(z, )3,
o 2 '

(o) = mie(fe), gz, ) <

Mq

t:l

Finally, using that ||¢:||cc < D, and taking an expectation with respect to « ~ v™ concludes the proof. O



E DETAILED COMPUTATIONS FOR COMPARING COVERAGE RATIOS

In this section, after reviewing the different versions of coverage ratio discussed in the paper, we prove several
inequalities that hold between them. For ease of comparison, we only consider discounted linear MDPs (Defini-
tion 2.1).

Definition E.1. Recall the following definitions of coverage ratio given by different authors in the offline RL
literature:

L Cpo(n*;m5) = Ex ampe [(X, A)]T A7*Ex 4wy [p(X, A)] (Ours)
2. C°(r*;75) = Ex ape [\/¢(X, ATATo(X, A)} (e.g., Jin et al. (2021))
3. Co(m*;mp) = Ex anpe [0(X, A)TAT1p(X, A)] (e.g., Gabbianelli et al. (2023))

Y Ex acp [0(X,A)p(X,A) ]y
YTEX, anpp [0(X, A) (X, A)T]y

4. Ot (n*;7mp) = SUp, cRd (e.g., Uehara and Sun (2022))

—T7flI2x )
5. Crx(m";mp) = maxfer H (e.g., Xie et al. (2021)),
1B

where ¢ € {1,2}, A = Ex 4., [0(X, A)p(X, A)7] (assumed invertible), F C RY¥*A and 77 : F — R defined as
(T f)(z,a) =r(z,a) + 73,0 0 p(a'|2,a)m(a’[2") f(2', a’) is the Bellman operator associated to policy .

Remark E.2. By Jensen’s inequality, it is clear that C° < +/C?°. However, C° is conceptually similar to the more
common C° and allows for interesting comparisons with the other notions of coverage, as shown later in this
section.

In the following, we construct a problem instance where C'° can be arbitrarily larger than C, ., regardless of the

value of ¢, thanks to the single-direction property of our coverage ratio discussed in Section 6.

Proposition E.3. There exists a linear MDP with two states, two actions and feature dimension d = 3, such that,
for every e € (0,1), there exists a behavior policy wg, such that Cy, o(7*;mR) is bounded by a constant independent
of € for all ¢ € {1/2,1}, while C°(7*;75) = Q(e~'/?), where 7* is the unique deterministic optimal policy of the
MDP.

Proof. Let |X| = {x1,z2} and A = {a1,a2}. Consider the following 3-dimensional feature map where ¢;; is short
for p(xi, a;):
P11 = [4707 1]T7 P12 = [1a171]Ta
P21 =1[0,4,1]", a2 =[-1,-1,1]".
Following the notation of Definition 2.1, let 1 (x1) = (x2) = [0,0,1/2]7 and w = [1,1,0]T, obtaining
p(zk|zi,a;) = 1/2 for all ¢, j, k € [2], and the following reward function:
T(xlva‘l) = 43 T(.Tl, a2) = 27
r(ze,a1) =4, r(ze,a2) = —2.
Finally, let vo(z1) = vo(z2) = 1/2. It is easy to see that, for any discount factor v > 0, the MDP admits a unique

deterministic optimal policy, 7*(x1) = 7*(x2) = a1, with optimal value p* = 4(1 — ). The state-action occupancy
measure induced by this optimal policy is

* * 1 * *
w(x1,a1) = p*(w2,a1) = 3 p (w1, a2) = p*(w2,a2) = 0.

Now fix an € € (0,1). Let the behavior policy be

7TB(G1|QC1):6, 7TB((12|£L'1):176,

mp(ai|re) =€, mp(az|ze) =1 —€.



The state-action occupancy measure induced by the behavior policy is

MB($1,G1) = MB(£U1,CL2) =

N N
—
|
M

pup(xe,a1) = =, pe(z2,a2) =

The feature covariance matrix under 7, is then
1+7¢ 1—€ 2e¢
A=Ex auusloX, D)p(X,A)T = |1-¢ 147 26|,
2¢ 2¢ 1

from which we obtain the coverage ratio

C(x"s7mp) = Ex amy [V ATATR(XA)] = [ s = 272, (29)

To compute Cy, .(7*; mg), note that the expected feature vector under 7* is

B(1*) = Ex ane (X, 4)] = [2,2,1] .

Hence:
* — (% —1—( % 5
Conpolsms) = 2(n") TA (") = 120 <5, (30)
3
*, — A(* TA—2— *) < . 1
08071(7.[- 77TB) (P(ﬂ- ) 90(71- ) (1+46)2 <3<5 (3 )

The previous proof admits a simple geometric interpretation: for e — 0, the span of the features visited by
the behavior policy degenerates to span({¢12, @22}), which belongs to a 2-dimensional subspace of R?, while
the optimal features span the whole R3. So, according to the notion of coverage from Jin et al. (2021), the
data fail to cover the span of the optimal features. However, the average optimal feature @(7*) belongs to the
very same subspace covered by the data, which is enough according to our notion of coverage. In particular,

P(m*) = 3/2¢p12 — 1/2p22.
The following is a generalization of the low-variance property discussed in Section 6.
Proposition E.4. Let V [Z] = E[||Z — E[Z]||%] for a random vector Z. Then, for any pair of policies 7,75

Ctp,c(ﬂ-*;ﬂ-B) = EX,ANM* [(P(X7 A)TA_2C(10(Xa A)] - VX7A~M* [A_CSO(Xv A)] :

In particular, Cy 1 jo(7*;m) < C°(n*;7p) for all 7, mp.

Proof. We just rewrite C, . from Definition E.1 as

Coe(m75) = |Ex anp- [AC0(X, A)] |

The result follows from the elementary property of variance V [Z] = E[|| Z||*] — |E[Z]||>. The second statement
follows from the non-negativity of the variance, but can also be obtained directly via Jensen’s inequality. O

Proposition E.5. CT(7*;7p5) < C°(n*;7p) < dCt(n*;7R).

Proof. Let (X*, A*) ~ p* and M =E [p(X*, A*)p(X*, A*)]. First, we rewrite C° as
Co(n*;mp) = E [p(X*, A*)TA (X", A%)]

= E [Tr(p(X*, A" A (X", A%))]
=E [Tr(p(X*, A")p(X*, A*)TA™Y)] (32)
=Tr MA_l) (33)

>
L
~
g
>
L
~
%)
S~—"
—
w
e~
~



where we have used the cyclic property of the trace (twice) and linearity of trace and expectation. Note that,
since A is positive definite, it admits a unique positive definite matrix A'/2 such that A = AY2AY/2. We rewrite
CT in a similar fashion

.
M
Cl(z*;mp) = sup yT Y
yerd Y'AyY
TA—l/QMA—1/2
= sup z = : (35)
z€R4 'z
= Amax(ATV2MATY?), (36)

where Apax denotes the maximum eigenvalue of a matrix. We have used the fact that both M and A are positive
definite and the min-max theorem. Since the quadratic form A~Y/2MA~1/2 is also positive definite, and the
trace is the sum of the (positive) eigenvalues, we get the desired result. 0

Proposition E.6 (cf. the proof of Theorem 3.2 from (Xie et al., 2021)). Let F = {fo : (z,a) — (p(z,a),8)|0 €
O C R} where ¢ is the feature map of the linear MDP. Then

Crx(n*imp) < CM(n*5mp),
with equality if © = R?,
Proof. Fix any policy 7 and let 7 = T™. By linear Bellman completeness of linear MDPs (Jin et al., 2020),

TfeFforany f € F. For fo:(x,a) — (p(z,a),0), let TO € © be defined so that T fg : (z,a) — (p(x,a),T0).
Then

O ) = P (£, 4) = T (X, )] -
T I B [(FOXA) - THCX )]
EX7A~M" [<(P(X7 A)’ 0 — T0>2}
B Bx oy [(9(X.A), 0 T6)7] (38)
— max EX,AN,LL* [<‘P(X’ A)’ y>2]
= I Ex Ao [(0(X, A),0)7] (39)
= ma; Yy ]EX,ANM* [QO(X, A)SO(X’ A)T] Y (40)
yER yTEXA,ANI»bB [@(Xv A)(p(Xv A T] y7

where the inequality in Equation (38) holds with equality if © = R O
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