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Abstract

Item Response Theory (IRT) models aim to
assess latent abilities of n examinees along
with latent difficulty characteristics of m test
items from categorical data that indicates the
quality of their corresponding answers. Clas-
sical psychometric assessments are based on
a relatively small number of examinees and
items, say a class of 200 students solving an
exam comprising 10 problems. More recent
global large scale assessments such as PISA,
or internet studies, may lead to significantly
increased numbers of participants. Addi-
tionally, in the context of Machine Learning
where algorithms take the role of examinees
and data analysis problems take the role of
items, both n and m may become very large,
challenging the efficiency and scalability of
computations. To learn the latent variables
in IRT models from large data, we lever-
age the similarity of these models to logis-
tic regression, which can be approximated ac-
curately using small weighted subsets called
coresets. We develop coresets for their use
in alternating IRT training algorithms, facil-
itating scalable learning from large data.

1 INTRODUCTION

Item Response Theory (IRT) is a paradigm often em-
ployed in psychometrics to estimate the ability of
tested persons, called examinees, through tests com-
prising multiple questions, called items. The proba-
bility p;; that an item ¢ € [m] := {1,...,m} will be
solved by a person j € [n], depends on characteristic
parameters of the item as well as on an ability param-
eter of the examinees.
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The number of tested persons can be very large in
contemporary global large scale assessments. For
instance, the Programme for International Student
Assessment (PISA) evaluates the education quality
across 38 OECD countries by measuring the literacy
of 15 year old students in reading, mathematics, and
sciences. In this and other large scale (meta-)studies,
nearly n ~ 600000 examinees are being tested regu-
larly (Muncer et al., 2021; OECD, 2019). The number
of items in the case of PISA is, however, compara-
tively small, m = 10 — 30 in each category. Beyond
educational applications, IRT can be applied to bench-
mark studies where the examinees are artificial intelli-
gence agents or machine learning algorithms, and the
items are various problems. Then, the number of both,
items and examinees, can in principle become arbitrar-
ily large (Martinez-Plumed et al., 2019). When the
input data dimensions, n and m, become large as mo-
tivated above, the computational effort to learn the
parameters of IRT models grows. Sometimes it is not
even possible to store the entire input or all latent vari-
ables simultaneously in main memory, which limits the
applicability of IRT algorithms in large scale settings.

A basic algorithmic pattern for learning IRT models
is an alternating optimization procedure akin to EM
algorithms. This is a classical approach taught in stan-
dard undergraduate courses in psychology, and thus it
is highly significant. Given fixed values for the abil-
ity parameters, we optimize the item specific difficulty
characteristics. Then, the updated difficulty charac-
teristics are fixed while the abilities are being opti-
mized. These two steps constitute one phase that is
iterated over and over again until some termination
criterion is met, such as convergence or exhaustion of
an iteration budget.

To make this algorithmic pattern scalable to large
data, we note that especially learning the item param-
eters from a huge number of examinees takes consid-
erable time and space to be processed. In automated
settings with a large number of test items, the same
situation appears in the second step of each phase.
Here, we note that in simple so called 1PL and 2PL
(one/two parameter logistic) IRT models, each step
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consists of solving a set of logistic regression problems,
where only the labels differ for each examinee or item.
For logistic regression, it is known how to handle large
data in a time and memory efficient way using a suc-
cinct summary as a replacement for the data. Such a
proxy is commonly known as a coreset that provably
preserves the negative log-likelihood up to little errors
(Munteanu and Schwiegelshohn, 2018).

1.1 Owur Contributions

We review and motivate IRT models for various tasks
and from different perspectives, ranging from the edu-
cational and social sciences to machine learning, where
scalable IRT algorithms become important. From this
starting point

1. we leverage the similarity of 2PL IRT models to
logistic regression and adapt previous coresets to
facilitate scalable learning of 2PL models,

2. we develop new coresets for the more general and
more challenging class of 3PL IRT models,

3. we empirically evaluate the computational bene-
fits of coresets for IRT algorithms while preserving
their statistical accuracy up to little distortions.

To our knowledge, our work provides the first sublinear
approximation to the IRT subproblems considered in
the alternating optimization steps with proven math-
ematical guarantees.

1.2 Related Work

Development of IRT The history of IRT began with
the formulation of the Rasch model (Rasch, 1960).
This was soon extended to modeling items with several
parameters such as the 2PL and 3PL models (Birn-
baum, 1968). IRTs became popular in the United
States through the book of Lord and Novick (1968).
Other extensions include models for items with several
ordered categories (Masters, 1982; Samejima, 1969),
and models with continuous data such as the 2PL
model with beta distributions (Noel and Dauvier,
2007). By now, IRT models are widely used for de-
veloping and scoring tests. For instance, large-scale
assessments such as PISA (OECD, 2009, 2019) and
the Trends in International Mathematics and Science
Study (TIMSS) (von Davier, 2020) use IRT models for
scoring responses, making them comparable between
students who received different sets of items.

IRT in Machine Learning To the best of our knowl-
edge there are no rigorous theoretical guarantees on
algorithms for learning the latent parameters of IRT
models. Recently, IRT models have been used as a tool
for analyzing machine learning classifiers (Martinez-
Plumed et al., 2019). An extension building on beta

distributions is the 3%-model by Chen et al. (2019) in-
troduced and applied to assess the ability of machine
learning classifiers. IRT was also introduced to en-
semble learning (Chen and Ahn, 2020). Recently, an
IRT based analysis of regression algorithms and prob-
lems was suggested by Munioz et al. (2021). Martinez-
Plumed et al. (2022) proposed an empirical estimation
for the difficulty of Al tasks using IRT models.

Coresets for Logistic Regression Reddi et al.
(2015) used gradient-based methods to construct core-
sets for logistic regression, though without a bound
on their size. Later, Huggins et al. (2016) applied
the framework of sensitivity sampling (Langberg and
Schulman, 2010) noting that there are instances that
require linear size to be approximated. Munteanu
et al. (2018) proved that compression below Q(n) is
not possible in general. They developed the first prov-
ably sublinear coresets for logistic regression on mild
inputs X of size n and dimension d, introducing a data
dependent parameter p(X) to capture the complexity
of compressing the data. This enabled a parameterized
analysis giving a coreset, which for a given parameter
e € (0,1/2) provides a multiplicative approximation
factor of (1 + ¢) within size O(u3d®/e*), hiding poly-
logarithmic terms in n. This was recently improved
to O(u?d/e?) (Mai et al., 2021) by importance sub-
sampling using ¢; Lewis weights as a replacement for
the previous square root of ¢5-leverage scores. More
recently, it was extended to a single pass online al-
gorithm along with a lower bound claiming linear de-
pendence on p (Woodruff and Yasuda, 2023a). Core-
sets for logistic regression were recently extended to
p-generalized probit models (Munteanu et al., 2022)
giving the first coresets in this line whose size are inde-
pendent of n. There are further extensions to a certain
class of near-convex functions (Tukan et al., 2020) and
to monotonic functions (Tolochinsky et al., 2022).

2 PRELIMINARIES

IRT Models There are various IRT models that are
employed in the literature, mainly differing in their
number of parameters used to describe the character-
istics of examinees and items, respectively. Although
an examinee can in principle be described using mul-
tiple parameters, a common choice is only one abil-
ity parameter, denoted 6, for examinee j € [n]. The
number of parameters describing item characteristics
varies more distinctively across IRT models, building
or generalizing one over the other. The simplest of all
is the Rasch model, named after its inventor (Rasch,
1960), and is mathematically equivalent to the 1PL
model. Here, one only takes into account how the
ability 6; differs from the difficulty b; of solving item
i, expressed in units of the ability parameter 6; (Baker
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and Kim, 2004). The 2PL-model, introduced by Birn-
baum (1968), is a basic model that is most commonly
used. It describes item ¢ introducing a discrimination
or scale parameter a; in addition to its difficulty. The
next step in this sequence of generalizations is adding
to each item a default guessing parameter c¢;, which
leads us to the 3PL model. We note that there ex-
ist even more general 4PL models (Barton and Lord,
1981). In this paper, however, we do not go into de-
tails about more general models than 3PL. Putting all
parameters together in a probabilistic model, we ar-
rive at the item characteristic curve (ICC)! specifying
the probability of passing test item ¢ depending on the
ability parameter 6;:

4 1-— C;
(& )
1 + exp(—alﬂj + bz)

pi(0;) = (1)

The probability of an incorrect answer is consequently

1701'

1—pi(0;) = .
p( j) 1+exp(ai9j—bi)

(2)

We note that this defines a logistic sigmoid curve, see
Figure 1, with a lower asymptote of ¢; > 0.

We describe the interpretation of the parameters cor-
responding to an item i:

e The discrimination parameter a; specifies how flat
or steep the curve ascends from ¢; to 1. For exam-
ple, a very steep ascend indicates that the item is
nearly unsolvable unless the examinee has gained
a special competence or knowledge. A knowledge-
able examinee, however, is nearly guaranteed to
pass the item. A flat curve indicates that the ex-
aminee needs to learn the necessary competences
and gain some ’experience’ in solving the task.

e The difficulty parameter b; specifies the threshold
where passing or failing the item have equal 0.5
probability (when ¢; = 0). Examinees with a sig-
nificantly smaller ability 6; have a low probability
of passing, while those with a much larger ability
have a high probability of passing.

e Finally, the guessing parameter c¢; indicates the
probability of passing, say a multiple choice item,
by randomly answering the question without hav-
ing any knowledge or ability for solving the task.

In the special case of ¢; = 0 for all i, Equation (1)
simplifies to the 2PL model and further constraining
a; =1 for all ¢ yields the 1PL (Rasch) model.

The 2PL parameters are in principle unbounded, i.e.,
a;,b; € R, though we may safely assume that a; > 0
to account for the reasonable fact that with growing
ability it becomes more likely to solve an item, but the

'The exponent in the ICC is often defined as —a;(0; —
b;). Rescaling b; = b; /a; (note a; > 0) yields our definition.

Figure 1: Item Characteristic Curve examples
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reverse situation never occurs. Another prior knowl-
edge that we may assume for the additional guessing
probability is that ¢; € [0,0.5) since we do not want a
randomly answered item to be solved with higher prob-
ability than a coin flip. In practical settings where we
encounter multiple choice items we may often assume
a lower bound such as ¢; > cpin = 1/k, where & is the
number of offered choices.

The difficulty in learning IRT models as introduced
above comes from the fact that all parameters are un-
observed latent variables, meaning that they are nei-
ther given nor explicitly observed. The data only con-
sists of binary observations® Y;; € {—1,1}, indicating
for item ¢ € [m] and examinee j € [n] whether the item
was answered correctly Y;; = 1 or not Y;; = —1. For
notational convenience, we let the data be arranged in
a matrix Y = (Yij)ie[m],je[n] e {-1,1}ymxm,

We stress that our coreset results are quite general
in that they approximate the IRT model, and their
use is not restricted to a specific algorithm. Neverthe-
less, we choose to build and evaluate our coresets on
the following classical approach due to its high signif-
icance in standard undergraduate courses in psychol-
ogy. Learning the latent parameters of IRT models
involves a non-convex joint maximum likelihood opti-
mization problem that encounters identifiability prob-
lems (San Martin et al., 2015). Due to the fact that
the parameter space increases with the sample size, we
need to condition on one set of parameters to optimize
for the other. This yields an alternating two-step opti-
mization approach that operates as follows (cf. Baker
and Kim, 2004):

General Algorithmic IRT Framework

1. Initialize all latent parameters.
2. While termination criterion is not met:

(a) Learn the ability parameters, given fixed item
characteristics.

2Some literature specifies labels in {0,1}.
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(b) Learn the item characteristics, given fixed
ability parameters.

Starting from a proper initialization, the algorithm op-
timizes one set of parameters given the other until con-
vergence (to a local optimum) is detected or a given
iteration budget is exhausted. It is noteworthy that in
the case of a 2PL IRT model, the two conditional op-
timization subproblems are not only convex but corre-
spond exactly to standard logistic regression problems
in two dimensions. The 3PL model, however, is more
challenging, since it involves optimization over a com-
bination of unbounded logistic loss functions as well as
bounded non-convex sigmoid functions. We will elab-
orate on this in Section 3 below.

Coresets for the IRT Framework Given massively
large input data and a potential solution to an opti-
mization problem, it is often already prohibitively ex-
pensive to evaluate or even to optimize the loss func-
tion with respect to the entire input. In such situa-
tions, it is preferable to have a much smaller subset of
the data, such that solving the optimization problem
on this small summary gives us an accurate approx-
imate solution compared to the result obtained from
analyzing the entire data.

This leads us to the concept of coresets that we want
to compute in order to make the optimization steps
2(a) and 2(b) scalable to large data. Both can be
treated similarly. For the sake of presentation, we
thus focus on the optimization in step 2(b) since in
most natural settings the number of examinees exceeds
the number of items, i.e. n > m. The optimization
step 2(b) can be decomposed into m independent in-
stances, indexed by i € [m], of the following form,
each summing over the huge number of n examinees:
Juw(Xni) =32 e wig(@;mi), where X is an n x d ma-
trix comprising the currently fixed ability parameters
as row vectors x; € R?, along with their corresponding
labels Y;; from the data matrix, n; € R¢ are vectors
comprising the item characteristic parameters to be
optimized in the current iteration, and w € R" is a
vector of non-negative weights that is dropped from
the notation whenever all weights equal w; = 1.

A significantly smaller subset K C X,k := |K| < |X]|
together with corresponding weights u € R¥ is a (1+¢)-
coreset for X if it satisfies that

v € R |fu(Xn) = fu(En)| < - fu(Xn).  (3)

We refer to Definition A.1 in the appendix for details.
Intuitively, a coreset evaluates for each possible solu-
tion to the same value as the original point set up to
a factor of (1 & ), and moreover it implies that the
minimum obtained from optimizing over the coreset
is within a (1 + O(g)) approximation to the original

optimum (see Lemma A.26), while the memory and
computational requirements are significantly reduced.

Unfortunately, (1 + ¢)-coresets of size k < n cannot
be obtained for the logistic regression problem in gen-
eral. Thus, such coresets can neither exist for 2PL IRT
models, nor for 3PL models. To facilitate an analysis
beyond the worst case, a data dependent parameter p
was introduced by Munteanu et al. (2018), which can
be used to bound the size of data summaries with the
above accuracy guarantees and thus it enables a for-
mal analysis and construction of small coresets for the
logistic regression problem, as well as for other related
problems. Their original definition will suffice for the
2PL model.

Here, we extend the definition slightly to impose that
additionally to the £;-norm ratio between the positive
and the negative entries, also their fraction in terms of
£y-norm? is bounded, i.e., the ratio of the number of
positive and negative entries. This will be needed in
our extension to the 3PL model. We let for p € {0,1}*

, x;nP Xn)*
i/l SN (6.0

pp(X) = = -
? neRI\{0} Exm<o |zin|P ne€RI\{0} [(Xn) Hp
and say X is p,-complex if p,,(X) < p, for a bounded
1 < pp < min{m,n}. We say X is p-complex if
max{po, 1} < p < min{m,n}. It follows that

X)) "M/ < NXm) Tl < - [(X0) "Ml (4)

For the left hand side inequality, note that for every n
the supremum also considers —n, for which the roles
of positive and negative entries are reversed.

Constructing Coresets Recall that the loss func-
tions that we encounter when we train IRT models are
defined as sums of individual point-wise losses. It is
well-known from the related work on logistic regres-
sion that the multiplicative approximation guarantees
provided by coresets cannot be obtained by uniform
sampling. We elaborate on this with a focus on IRT
in Appendix C for completeness of presentation.

A common method for obtaining coresets to approxi-
mate such functions by importance sampling is called
the sensitivity framework that was introduced by
Langberg and Schulman (2010). They defined the
sensitivity of an input point as their worst case in-
dividual contribution to the entire loss function. The
sensitivity of a point x; for the function f,(Xn) =
> et wig(@;n) is 05 = sup, w;g(x;n)/ fu(Xn). This

3The case p = 0 is often abusively referred to as a norm
in the literature.

4We note that pu-complexity has been generalized to ar-
bitrary p € {0} U [1,00) (Munteanu et al., 2022; Tukan
et al., 2020). Here, we require only the cases p € {0,1}.
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was subsequently combined with the theory of VC di-
mension to obtain a meta-theorem. It states that we
can take a properly reweighted subsample using sam-
pling probabilities that are proportional to the sensi-
tivities. This yields a (1 + ¢)-coreset if its size is taken
to be k = O(5(Alog S +log 1)). Here S = > jein O
denotes the total sensitivity, A denotes the VC di-
mension of a set system derived from the functions
g(x;n), and 9 is the failure probability (Feldman et al.,
2020). Omne complication, however, is that comput-
ing the exact sensitivities is usually as hard as solv-
ing the problem under study. Fortunately, any up-
per bounds on the sensitivities suffice as a replace-
ment. However their overestimation should be con-
trolled carefully since the total sensitivity grows and
is an important parameter that determines the coreset
size. Further details on the sensitivity framework are
in Appendix A.1. In the following we can assume that
the problem of constructing coresets reduces to bound-
ing the VC dimension and estimating the sensitivities
for the functions under study.

3 CORESETS FOR IRT MODELS

3.1 2PL Models

For a suitable presentation of our technical results
on coresets for IRT models, we use the following no-

tation. For the item parameters, we define vectors
a; = (ai,b)T,i € [m] and similarly we define for
the examinees 3; = (0;,—1)7,j € [n] and collect

them in matrices A = [041 am] € R2X™ and
B=[A Bn] € R?*™. Now, given the item char-
acteristics and the ability parameters, the probability
of observing the data matrix Y can be rewritten as

! (5)

i€lm].j€ln] 1 + exp(—Y;;al B;)

To compute a joint maximum likelihood estimate of
the item and ability parameters, a basic approach is
to fix one set, say the item parameters A, and opti-
mize over the ability parameters B, and then switch
their roles. This process is repeated in an alternating
manner (Baker and Kim, 2004) as we introduced in
the general algorithmic IRT framework, see Section 2.
This leads us to minimizing the following negative log-
likelihood function switching back and forth between
the roles of data and variables: f(A | B) =

~Y..aTB)) =
D icim e L+ xP(Yial B) = £(B | A).

Pr(Y[A, Bl =]]

In particular, for a given fixed B € R2X", we can write
x; = injﬂjT for every j € [n], and then set X; =
() jem) € R™*? for each i € [m] to optimize for

min,, cg2 Zje[n] In(1 + exp(z;0)). (6)

By symmetry, for a given fixed A € R?*™, we can

write 2; = Y] for every i € [m], and set X(;) =
(i) iepm) € R™*?2 for each j € [n] to optimize for

ming, e Zie[m] In(1 + exp(2:5;)). (7)

Note that the objective functions given in Equa-
tions (6) and (7) are equivalent to plain logistic re-
gression (cf. Munteanu et al., 2018), where core-
sets for logistic regression were constructed using the
sensitivity framework. To obtain an upper bound
on the sensitivity of the input, the authors related
the single contributions of input points x; to the
square root of the so called f>-leverage scores: [; =
SUP, cra\ {0} |z;n?/|| X nl|3 , a measure that can be de-
rived from the row norms of an orthonormal basis
for the space spanned by the data matrix, see Defi-
nition A.6 and Lemma A.7 for details.

However, in (Munteanu et al., 2018), the label vector
Y was a fixed vector in R™, while here, Y is a ma-
trix in R™*™ ie., we have to deal with a different
label vector for each item, respectively for each ability
parameter, that is fixed in one iteration, and thus the
matrices X ;) differ across a large number of iterations.
Fortunately, the leverage scores — only depending on
the spanned subspace, not on its representation — are
invariant to sign flips as we show in the next lemma.

Lemma 3.1. Suppose we are given a matric X €
R™*™ (for any m,n € N) and an arbitrary diago-
nal matriz D = (dij)icm],je(m], with dij € {=1,1} if
i =7, and d;; = 0 otherwise. Then the leverage scores
of X are the same as the leverage scores of DX.

This insight allows us to use the square root of the
la-leverage scores of A, respectively B, as a fixed im-
portance sampling distribution across all iterations
where the same latent parameter matrix is involved
as a fixed 'data set’ even though the signs may arbi-
trarily change in each iteration. Let us consider the
optimization problem in Equation (6)°. Here, we are
given the ability parameter matrix B € R?*™ and the
label matrix Y € R™*". We can directly use The-
orem 15 of (Munteanu et al., 2018), for logistic re-
gression in d = 2 dimensions (with uniform weights)
to get a small reweighted coreset for each optimiza-
tion of an a; € R2. To this end, we approximate the
lo-leverage scores l;,j € [n] of B and sample a core-
set proportional to \/E + 1/n, where \/E captures
the importance of coordinates with a large linear con-
tribution, and the augmented uniform 1/n is useful
to capture small elements near zero that can domi-
nate when their number is large, since their logistic
loss is bounded below by a nonzero constant. As in

5The subsequent discussion also applies verbatim to the
problem in Equation (7).
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(Munteanu et al., 2018), this yields a coreset whose
size is dominated by an O(y/n) factor which can be
repeated recursively O(loglogn) times to decrease the
dependence to polylog(n). Moreover, by Lemma 3.1 it
suffices to sample one single coreset that is valid across
all iterations ¢ € [m] optimizing for «; and whose size
is only inflated by an additive log(m) term to control
the overall failure probability using a union bound over
the m iterations. This yields the following theorem.

Theorem 3.2. Let X5y = (=Yi;8] )jem € R™*?
be pi-complez, for each i € [m]. Let e € (0,1/2).
There exists a weighted set K € RF*2 of size® k €
O( (log( )2 + log(m)), that is a (1 + €)-coreset si-
multaneously for all X(;y, i € [m] for the 2PL IRT
problem. The coreset can be constructed with constant
probability and in O(n) time.

We note that despite the fact that there are more
recent theoretical improvements such as (Mai et al.,
2021; Munteanu et al., 2022), we build our results on
the techniques of Munteanu et al. (2018). Even though
an analogue of Lemma 3.1 can be proven for the scores
of these references, the practical performance of the
classic result is often better or only slightly worse than
the competitors and at the same time it is significantly
faster to compute (cf. Mai et al., 2021; Munteanu
et al., 2022). Recent advances (Woodruff and Yasuda,
2023b) also improve theoretical bounds for the root
leverage scores of Munteanu et al. (2018), which par-
tially explain and corroborate their success in practical
applications, though in a different setting from ours.

3.2 3PL Models

An often addressed concern about 3PL IRT models
is the difficulty to properly estimate the guessing pa-
rameter ¢; (Baker and Kim, 2004), since it is hard
to distinguish between sufficiently high abilities, and a
large guessing probability. Different to the 2PL model,
the subproblem of optimizing the item characteristics,
conditioned on fixed ability parameters is already non-
convex. Thus, parameter estimation is significantly
more challenging” and can greatly benefit from an in-
put size reduction. To this end, we now develop core-
sets for the 3PL model.

We would like to reduce the 3PL model to solving lo-
gistic regression problems, as we have done for the 2PL
model, by first fixing the additional parameter ¢; in or-
der to learn all other parameters (a;, b;, 0;)icm),jen) @S
before, and at the end of one iteration of the main loop
fix the other parameters in the model to optimize only

5The O notation omits o(logn) terms for a clean presen-
tation. The full statements can be found in the appendix.

"Indeed, parameters are not identifiable (San Martin
et al., 2015).

for ¢;,i € [m]. Unfortunately, if we would optimize
the guessing parameter ¢; in this way, the optimizer
would conclude that either® ¢; = 0 or ¢; = 1 since the
objectives are monotonic in ¢;. Thus, we would never
reach a realistic estimate for ¢;.

Using the notation of Section 3.1, we cannot rewrite
Equations (1) and (2) in a uniform way to express
the probability of observing the label matrix Y as in
Equation (5). Although the guessing parameters c¢;
are inseparable from the corresponding a;, b; parame-
ters during optimization, we denote them in a separate
vector C' = (c1,...,¢m)T. Then, we have that

e (1—0>
— Llicimyjem \ 1+ exp(a?5;)

ijfl] 1 - C’i
X H ml.jen <Ci +

T exp(—am) - 8

where the products iterate only over all indexes in the
subscript, that satisfy the condition in the superscript.
Similar notations are used for the sums below. Let

gi(z) = —ln(H_le_Tgi(z)) =In(1+exp(z))—In(l—¢;) and

hi(z) = —In(c; + H_(}Xfip‘i_z)) The general algorithmic
IRT framework with an alternating optimization, see
Section 2, that we already dealt with for the 2PL mod-

els, can be applied to the 3PL models as well for the fol-

Pr[Y|A, B,C|

lowing objective function f(A,C | B) = f(B | A,C) =
[Yij=—1] [Yi;=1]
o gi=Yual B+ > hi(=YialBy).
i€[m)],j€ln] i€[m],j€[n]

Let us assume that A and C are fixed, the other case
will be addressed later. As in the case of 2PL we can
write #; = —Y;al, for each i € [m], and X(;) =
(%) iem) € R™*2, Then, we aim at minimizing for

each j € [n] over 8; € R?, the objective f(8; | A,C) =
[Yij=—1]
Zié[m]

For all z it holds that g;(z) > 0 and h;(z) > 0. The
functions g¢;(z) and h;(z) have different shapes and
cannot be represented as a single function. In par-
ticular, all functions g;(z) are similar to the logistic
regression loss up to an additive shift of —In(1 — ¢;),
with 0 < —In(1 — ¢;) < In2, since ¢; € [0,0.5).
The others, h;(z), are sigmoid functions satisfying
0 < hi(z) <In(1/¢), for all values of z.

[vi=1]

)+ S ). O

In the 3PL case, assuming that each matrix X; is
u1-complex does not give sufficient bounds for the dis-
tribution of input points to the two different types

8This can be any other upper or lower bound on ¢; €
{Cmin, Cmax }, but the problem remains the same.
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of functions. Therefore we split X(;) into submatri-
ces Xéj), containing the rows indexed by ¢ with la-
bels Y;; = —1, and Xé;.) containing the rows with
Y;; = 1. Now, we assume that Xéj) and X{;) are both
p-complex, and sup, cpy oy 12X (;ynll1/[| X7l < 241

The detailed technical analysis is deferred to the ap-
pendix due to page limitations. Here, we only give a
high level description. We first upper bound the sensi-
tivities for both types of functions separately and show
that the total sensitivity over all functions remains
sublinear. To this end consider the set of (shifted)
logistic functions g;. Those can be handled using the
p1-complexity of X'j) as in (Munteanu et al., 2018) up
to technical modifications and adjusting constants.

For the second set of sigmoid functions h; we use the
po-complexity property of both sets to bound the to-
tal number of elements in X E ;5 and X 6 from below.
This is needed to obtain unif)orm upper bounds for
the sensitivities across all labelings, which together
with Lemma 3.1 assures that one coreset suffices across
all iterations j € [n]. We further leverage the pg-
complexity of X(’S,) to conclude that the fraction of
positive elements in X 6) B; is sufficiently large.

The final open issue is to bound the VC dimension.
Again, we handle both sets of functions separately.
Since both types of functions are strictly monotonic
and invertible tranformations of a dot product, they
can be related to a set of affine separators that have
bounded VC dimension of d+1 = 3 (Kearns and Vazi-
rani, 1994). By a classic result of Blumer et al. (1989)
the VC dimension of the union of both sets of func-
tions can be bounded by O(d 4+ 1). Leveraging the
disjointness of our sets, we can give a simpler proof
that leads to a bound of 2(d + 1) = 6. Another union
over O(logm) weight classes concludes the VC dimen-
sion bound of O(logm). This yields our second main
result:

Theorem 3.3. Let each X(j;) = (—Yial)iepm €

R™*2.  Let Xéj) contain the rows i of X where
Yi; = —1 and let X&) comprise the rows with
Y;; = 1. Let ij) and X&) be p-complex, and

sup, g o0y 1 X(;)mll1 /I X{jymll < 2p1 for each j € [n].

Lete € (0,1/2). There exists a weighted set K € RF*2
2

of size k € O (log(m)? + log(n))), that is a

2
(1 + &)-coreset foraall Xy, J € [n] simultaneously for
the SPL IRT problem. The coreset can be constructed

with constant probability and in O(m) time.

The remaining case f(A,C | B) requires another

“?2 factor. The analysis is deferred to Appendix A
due to page limitations. The discussion starts above
Lemma A.22. In addition, we provide a parameter
estimation guarantee for 7-PL, with 7 € {2, 3}:

Theorem 3.4 (Informal version of Theorem A.25 in
Appendix A.6). Assume the conditions of Theorem 3.2
resp. Theorem 3.3. Then the optimal solutions for the
T-PL problem, for T € {2,3}, on the full input (Mopt)
and on the coreset (Neore) satisfy

||770pt — Neorell1 < O(l[ril) : f(Xnozvt)'

4 EXPERIMENTS

All experiments were run on a HPC workstation with
AMD Ryzen Threadripper PRO 5975WX, 32 cores at
3.6GHz, 512GB DDR4-3200. Our Python code’ im-
plements the IRT framework introduced in Section 2
where Steps 2(a) and 2(b) solve Eq. (6) and (7), resp.
their 3PL variants. The coreset is only computed in
step 2(b) for reducing the number of examinees, i.e.,
the dominating dimension n, since the number of items
m is relatively small in our data; the coreset construc-
tion would dominate over analyzing the complete data.

Experimental Setup We focus on 2PL models,
which can be estimated more stably, as discussed be-
fore. We generate synthetic 2PL/3PL data by drawing
item and ability parameters for each j € [n], i € [m]
from the following distributions: a; ~ N(2.75,0.3)
truncated at 0, b ~ N(0,1) and 6; ~ N(0,1).
For 2PL, we fix ¢, = 0, and for 3PL, we trun-
cate ¢; ~ N(0.1,0.1) within [0,0.5). The response
probabilities p;; := p;(#;) are computed as in Equa-
tion (1). Each label is drawn from a Bernoulli dis-
tribution with the corresponding response probability,
ie., Y;; ~ Bernoulli(p;;). We also use real world data
(see their dimensions in Table 1): SHARE (Borsch-
Supan, 2022), measuring health indication of elderly
Europeans, and NEPS (Blossfeld and Rofibach, 2019;
NEPS-Network, 2021), measuring high school abilities
of ninth grade students.'”

In our estimation algorithm, the ability parameters 6;
and the item difficulties b; are bounded by b;,0; €
[-6,6], and the item discrimination parameters are
bounded by a; € (0,5]. Without imposing identifi-
cation restrictions, the scale of estimated IRT param-
eters a, b, and 6 is arbitrary. Therefore, we rescale
them to obtain standardized parameters. To this end,
we subtract the mean of 6 from each b;, multiply a; by
the standard deviation of # and finally standardize 6
to zero mean and unit variance.

We vary the number of examinees n, the number of
items m, and the size of the coreset k. For every com-
bination we run 50 iterations of the main loop. Each

90ur Python code is available at https://github.com/
Tim907/IRT.

10While PISA serves as a motivational example, their
data is not available readily analyzable in one large batch.
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experiment is repeated 20 times. We report results for
a few selected configurations in Table 1 and Figures 2
and 3. The majority of the results is in Appendix B.

Since p is a crucial complexity parameter, we estimate
its value for all different data sets in Appendix F.
The majority and mean values for u are small con-
stants ranging between 2 and 20. Only in rare cases
takes large maximum values for some label vectors. We
checked the corresponding labels, and found that the
large values occur only in degenerate cases, in which
the maximum likelihood estimator of the model is un-
defined, for example, when an item is solved by all or
none of the students.

Computational Savings The parameter estimation
using coresets is significantly faster than using the full
input set. The coresets use only a small fraction of the
memory used by the full data, while approximating
the objective function very closely.

For the 2PL models on the synthetic data sets, the
running time gains were at least 32 % and up to 66 %
(see Tables 1 and 2). At the same time, the amount
of memory used never exceeds 1% of the original size.
The largest instances we found across the literature
are n ~ 500000 (OECD, 2019) and m ~ 5 000 (Munoz
et al., 2021). We added a synthetic example of this size
whose total running time (for a single repetition) was
reduced from 6.5 to 3.8 days. Besides running time,
the memory spent for this large experiment is larger
than 5 GB, impossible to be handled by standard psy-
chometric tools.

For the real-world data sets, SHARE (Borsch-Supan,
2022) and NEPS (NEPS-Network, 2021), we show that
a relative error of £ = 0.05 can be achieved using less
than 6 % of the memory used when working on the full
data. For the (relatively small) NEPS data set, the
running time gain was about 30 %, except when the
coreset sizes exceed half of the input size. We note that
for the SHARE data set, the running time gains are
small, and can even be (slightly) negative. This is due
to its very small original dimensions (especially m =
10), for which the time for the coreset construction can
dominate the overall running time.

For 3PL models, solving the original problem is more
difficult and thus takes longer. Indeed, the subprob-
lems estimating the sets of parameters in each phase
are non-convex and cause the computational issues dis-
cussed in Section 3.2. As a consequence, reducing the
input size increases the running time gain up to 86 %
(see Tables 1 and 6). The memory used by the coresets
is between 5% and 20 % of the original data.

The data dimensions considered across our experi-
ments are huge compared to data that is usually col-

lected for IRT studies. On the other hand, even the
largest data dimensions, are chosen small enough to
be able to estimate the models on the full data set.
However, our theoretical results prove that the sub-
sample grows sublinearly with arbitrarily increasing
data, showing the potential for larger future data.

Figure 2: 2PL Experiments on real world SHARE and
NEPS data: Coreset sizes vs. relative error and mean
absolute deviation (MAD), cf. Table 4 and Figure 9.
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Coreset Size

Parameter Estimation Accuracy Overall, we find
that incorporating coresets leads to comparable esti-
mates as on the full data set. The differences are
larger for 3PL. The bounded ¢; norm deviation (see
Theorem 3.4/A.25) explains that either small errors
are evenly distributed over many parameters, or large
deviations affect only a few spikes. The accuracy
clearly improves with increasing coreset size, cf. Ta-
ble 1 and Figure 2, and Appendix B, especially Table 3
and Figure 9. Our coresets compare favorably against
the results obtained from uniform sampling, and clus-
tering coresets as baselines, cf. Appendices C and D.
They also compare similarly to ¢; Lewis weights and
{1 leverage scores, see Appendix E.

For the 2PL models, the bias for the parameters esti-
mated on the coresets in comparison to the full data
sets are small and negligible in comparison to the scale
of the parameter, see Figure 3. For the 3PL models,
the bias is larger. This is because the item parame-
ters of the 3PL model are not identifiable (San Martin
et al., 2015) in the estimation approach, where even
the sub-problems are non-convex. In this case, the
coresets and the full data set (or, similarly, different
starting values) may lead to different parameter es-
timates although they have a similar likelihood. In-
deed, the close likelihood approximation provided by
coresets not only mimics good model fit. Even when
the model fits badly, it ensures that a proper diagno-
sis for detecting misspecification can be performed on
coresets. For the ability parameters 6 in 2PL models,
the estimates are almost identical between the coresets
and the full data. For 3PL, the estimates are bi-modal
due to multiple local optima (Figure 3, bottom right).
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Table 1: Mean running times (in minutes) taken across 20 repetitions (of 50 iterations of the main loop) per
data set 2-/3-PL, (Sy)nthetic, SH(ARE), NE(PS), for different configurations of their data dimensions: number
of items m, number of examinees n, and coreset size k. The (relative) gain is defined as (1 — meancere/meang,) -
100 %. For the quality of the solutions, let frn and feore(j) be the optimal objective values on the input and on

the coreset for the j-th repetition, resp. Let foore = minj feore(j)- Relative error: r.err. & = |feore —
(cf. Lemma A.26). Mean Absolute Deviation: mad(«a) = % (lagun — Gcore|] + |bfun —

Franl/ feun

bcore| + ‘Cfull - ccore|);

mad(0) = % > |60l — Ocore|, evaluated on the parameters attaining the optimal fr and feore-

data n,mk meang, (min) meang.(min) gain | r.err. ¢ mad(a) mad(d)
2PL-Sy 50000, 500, 500 136.981 45.547  66.749% | 0.04803 0.525 0.008
2PL-Sy 100000, 200, 1 000 122.252 61.459 49.727% | 0.03404  0.379 0.008
2PL-Sy 500000, 500, 5000 1278.845 591.878 53.718% | 0.01445 0.171 0.001
2PL-Sy 500000, 5000, 5000 9363.750 5536.684 40.871% | 0.00076  0.120 0.013
2PL-SH 138997,10,8000 28.853 27.637  4.216% | 0.01935  0.061 0.007
2PL-NE 11532,88,1000 5.968 4.009 32.829% | 0.02007  0.320 0.045
3PL-Sy 50000, 100, 10000 211.468 93.780 55.653% | 0.00212  0.384 0.010
3PL-Sy 50000, 200, 10000 369.816 145.674  60.609 % | 0.02186  0.488 0.001
3PL-Sy 200000, 100, 10 000 893.183 196.802 77.966 % | 0.01789  0.524 0.003

Figure 3: Parameter estimates for the coresets compared to the full data sets. The first row shows the bias
for the item parameters a,b (and ¢ for 3PL). The vertical axis is scaled to display 2std. (4std. for 3PL) of the
parameter estimate obtained from the full data set. The second row shows a kernel density estimate for the
ability parameters 6, standardized to zero mean and unit variance, with a LOESS regression line in dark green.
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5 CONCLUSIONS

We develop coresets to facilitate scalable and efficient
learning of large scale Item Response Theory models.
Coresets enable significantly larger IRT studies and
will hopefully motivate larger surveys. Our implemen-
tation and experiments illustrate that standard algo-
rithms for IRT can greatly benefit from using coresets
in the estimation process. We observe large computa-
tional savings as well as accurate parameter recovery
on a small but carefully selected fraction of the large
data. We note that in our experiments, estimates were
recovered with negligible errors when using coresets.
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Future research could incorporate coresets into state
of the art IRT solvers that are more complicated than
the standard approach but achieve much better esti-
mation accuracy already on the original data. Further,
it would be interesting to develop coresets for more
general IRT models, including (ordered) categorical
(Masters, 1982), continuous (Chen et al., 2019), mul-
tidimensional (DeMars, 2016), and multilevel (Adams
et al., 1997) IRT models. Other interesting avenues
are to extend to probit IRT models (Munteanu et al.,
2022) or to incorporate sketching for logistic regression
(Munteanu et al., 2021, 2023; Munteanu, 2023) such as
to avoid storing the full latent parameter matrices.
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A OMITTED PROOFS

A.1 Technical Details on the Sensitivity Framework

Definition A.1 (Coreset, cf. Feldman et al., 2020). Let X € R"*? be a set of points {x1,...,r,}, weighted by
w € R%,. For any n € RY, let the cost of n w.r.t. the point x; be described by a function w; - f (xin) mapping
from R to (0,00). Thus, the cost of n w.r.t. the (weighted) set X is f, (Xn) = >, w; - f(win). Then a set
K € RF* (re)weighted by u € RE ) is a (1 + ¢)-coreset of X for the function f, if k < n and

vn € RY: | fu (Xn) — fu (Kn)| < e fu (Xn).

In our analysis we use sampling based on so-called sensitivity scores, the range space induced by the set of
functions, and the VC-dimension. We define these notions next.

Definition A.2 (Sensitivity, (Langberg and Schulman, 2010)). Consider a family of functions F = {g1,...,9n}
mapping from R? to [0,00) and weighted by w € RZ,. The sensitivity of g, for the function f,(n) =
2 ren) Wege(n), where 1 € R4, is

wege(n)
fuw (77) ’

o¢ = sup (10)

The total sensitivity is & =3, () 0¢.

Definition A.3 (Range space; VC dimension). A range space is a pair R = (F,ranges), where F is a set and
ranges is a family of subsets of F. The VC dimension A(R) of R is the size |G| of the largest subset G C F
such that G is shattered by ranges, i.c., [{GN R : R € ranges}| = 2/¢1.

Definition A.4 (Induced range space). Let F be a finite set of functions mapping from R? to Rsq. For every
z € R? andr € Rxg, let range o(z,7) = {f € F : f(z) > r}, and ranges(F) = {range r(z,7) : € R4, r € R>¢}.
Let Rr = (F,ranges(F)) be the range space induced by F.

To construct coresets for the IRT models, we use a framework that combines sensitivity scores with the theory
of VC dimension, originally proposed by Braverman et al. (2016, 2021). We employ a more recent and slightly
modified version, stated in the following theorem.

Theorem A.5 (Feldman et al., 2020, Theorem 31). Consider a family of functions F = {f1,..., fn} mapping
from R to [0,00] and a vector of weights w € R%. Let £,0 € (0,1/2). Let s; > o;. Let S =31 s > G.
Given s; one can compute in time O (|F|) a set R C F of

1
@) (S; (AlogS—i—log))
€ )

weighted functions such that with probability 1 — & we have for all n € RY simultaneously

Sowifitn) =Y wifitn)| <> wifi(n),

feF fER feF

Swj

where each element of R is sampled i.i.d. with probability p; = %J from F, u; = RIS denotes the weight of a
J
function f; € R that corresponds to f; € F, and where A is an upper bound on the VC dimension of the range
space Ry~ induced by F* that can be defined by defining F* to be the set of functions f; € F where each function
Sw]‘

is scaled by Rl
J

Note that Theorem A.5 does not put additional requirements on the set of the functions F besides an upper

bound on the sensitivities, and a bounded VC-dimension of the range space induced by those functions.

A.2 Omitted Proofs for the 2PL Model

Definition A.6 (Leverage scores, cf. Drineas et al., 2012). Given an arbitrary matriz X € R™*4 with m > d,
let U denote the m x d matrix consisting of the d left singular vectors of X, and let u; denote the i-th row of the
matriz U as a row vector, for all i € [m]. The i-th leverage score corresponding to row xz; of X is given by

li = [luill3-
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Lemma A.7. Let X = UXVT be the singular value decomposition of X. The three definitions are equivalent:

1. The i-th leverage score (corresponding to row x;) is given by
li = [luill3-

2. The i-th leverage score is given by

l; = sup jzinf®
neR4\ {0} ||X77||§

3. The i-th leverage score is given by

Li=eTX (XTX) 7 X7,

Proof. Statement 1 is equivalent to Definition A.6 since the SVD yields U, which is exactly the matrix of the
left singular vectors of X.

Statement 2 is equivalent to Statement 1 since by a change of basis

|2 nl2 CSI 12 2 12 2
A nf? s w31l _ Bl _ o

seravfoy 1IX0l3  peravioy 1UNNE — U3 Inll3

The conclusion follows from the Cauchy-Schwarz inequality (CSI) and the fact that U is an orthonormal matrix.
The inequality is tight due to the supremum over all n € R? and the existence of n* = ul € R? that realizes
equality in CSI.

Let e;, for ¢ € [m], be the standard basis vectors in R™ containing 1 as i-th coordinate, and 0 everywhere else.
Li=el X (XTX) ' X7
= FusvT (vsUuTusvT) T vsUTe, = SUSVT (VERVT) T vsuTe;
=l USVIVE2VTVSU T e; = ] USE 22U e,
=l UUTe; = wjul = ||ui|3
since U and V are orthonormal matrices, and ¥ is a square diagonal matrix. O

Lemma A.8 (Restatement of Lemma 3.1). Suppose we are given a matriz X € R™*™ (for any m,n € N) and
an arbitrary diagonal matriz D = (dij)ie[m],je[m), With dij € {=1,1} if i = j, and d;; = 0 otherwise. Then the
leverage scores of X are the same as the leverage scores of DX.

Proof. Let D = diag({—1,1}™) be chosen as in the statement. Then it holds that D? = DD = I,,,. Further it
holds that el D = d;;el’, where e; denotes the ith standard basis vector, i.e., the vector containing a 1 as its i-th

coordinate, and zeros everywhere else. The i-th leverage score of X can be expressed as ¢; = el X (X Tx ) “x Te;
by Lemma A.7 (cf. Drineas et al., 2012). Similarly, for the i-th leverage score ¢; of DX we have that

;=T (DX) (X"D"DX) " (XTDT)e
— (F'D) X (XTD*X) ™' XT (D"¢;)
— duel X (XTX) 7 XTeydyy = d% - £ = 4,
as we have claimed. O

Theorem A.9 (Restatement of Theorem 3.2). Let X ;) = (—Yij,B]T)je[n] € R™ 2 be pi1-complex, for eachi € [m)].

Let ¢ € (0,1/2). There exists a weighted set K € RF*2 of size!! k € ON(’;—E(Iog(n)4 + log(m)), that is a (1 +¢)-
coreset simultaneously for all X ;), i € [m] for the 2PL IRT problem. The coreset can be constructed with constant

probability and in O(n) time.

' We use the O notation to omit o(logn) terms for a clean presentation. The full statements can be found in the proof.
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Proof. The proof is immediate from Theorem 19 from (Munteanu et al., 2018) for logistic regression in d = 2
dimensions. Especially the reduced size k follows directly from setting the dimension to constant, using p; < n,
and union bounding over the i € [m] iterations, which contributes the log(m) term. Further O((loglog(n))?*)
terms, hidden in our O notation, appear since the construction is applied recursively O(loglogn) times.

We further argue how the construction can be completed in O(nnz(X;)) loglog(n)) = O(n) time. The algorithm
of Theorem 19 from (Munteanu et al., 2018) approximates the £y-leverage scores using an ¢5-subspace embedding
using a CountSketch with constant distortion (say ¢ = 1/10) for a fast Q R-decomposition, and a Gaussian matrix
to approximate the row-norms of @ by reducing from d to O(log(n)) dimensions, as in (Drineas et al., 2012).
Further, they require an O(log(n)) factor for reducing to 1/n° error probability.

In our work, however, the dimension is only d = 2, and so it is not necessary to reduce this. Further, since
we aim at a constant failure probability, it is only necessary to boost the error probability of the CountSketch
by a factor O(loglog(n)) for a union bound over the recursive applications, which inflates its size by this exact
amount. Thus, the running time for applying the CountSketch with a constant distortion remains bounded by
O(nnz(X(;)) loglog(n)) = O(n) and the remaining steps all depend only on O(loglog(n)), i.e., the size of the
sketch. O

A.3 Bounding the Sensitivities for the 3PL Model
Let the functions g; and h; be defined as in Subsection 3.2. I.e., we let them be instances of the following form.

].—Ci

gi(z) =—1In (1—&-6><p(z)) =1In(1 4+ exp(z)) — In(1 — ¢;) and

hi(z) = —In (cz- T 16) .

Throughout this subsection we will use the following fact.

Lemma A.10. It holds for all values of i € [m] that z < g;(z) for all z > 0, and g;(z) < 2z, for 2 > In (1+ V/3).

Proof. The lower bound is valid for all z > 0, as 2 < g;(2) & e* < 1+4+¢e* < (1 +¢€*) /(1 — ¢) for ¢ € [0,0.5). For
the upper bound we have that g;(2) < 2z < (1 —¢;) - €** —e* — 1 > 0. The quadratic expression is nonnegative
for the values of z that satisfy e* > 1+ \/§, ie., for z > In (1 + \/3) > 1.005. O

We use the sensitivity framework of Theorem A.5, where all input weights w, are set to 1. Let fi (X3;) =
D icim)vi;=—19i (xiB;). Let fo(XBj) = 3 ic(m)vi;=1 hi (xiB;), as in Equation (9).

Let m/ and m/, be the number of summands in Equation (9) with Yj; = —1 and with z;8; < 0 and x;3; > 0,
respectively. Similarly, let m” and m/[ be the number of summands in Equation (9) with Y;; = 1 and with
z;B; < 0 and x;3; > 0, respectively. Let m’ = m’_ +m/_and m” = m” 4+ m/[. For simplicity we rearrange the
indices of summands within the functions f; and f; to ¢ € [m/] and ¢ € [m”] respectively. In the following lemma
we bound the relation between m’ and m”. Recall that we assumed that a; > 0 holds for all items i € [m].

Lemma A.11. Given the matriz X(j) = (=Yijo )ieim) € R™*2. Let Xéj) and Xy contain the m’ and m" rows
of X(jy that satisfy Yi; = —1 and Yi; = 1, respectively. Let Xéj) and X(’;) be p-complex. Then it holds that X ;)
is 2u-complex, and that

m//

240

<m' <m”- 2u0. (11)

Proof. To see the first claim of the lemma, we note that for p € {0,1}

I(XHm lly ICXEm) llp + 11Xyl
ner2\{o} [(Xinm "o neravioy (X(m) = o + 1XGym = llo —
XM ™l ICXym

< sup — —— + sup — —
werevioy 1KMo + 10Tl werevgoy TCXGm Tl + 1CX0m Ty
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< sup ICXEm Tl - XTI
~nera\foy [Xm e neravioy I(XTm)~lp
< o+ pp = 2tp-

For the second claim we use the properties of the space R2. Since a; > 0 for all i € [m], the original points
a; = (a;,b;) lie in the halfspace with positive first coordinate. By choosing /) = (1,0)7, it holds that ;) =
—Yi;a;, which is positive if ¥j; = —1 and negative if ¥j; = 1. Thus, it follows that |[(X;)7)"[lo = m’ and
(X))~ llo = m”. The definition of the 2uo-complexity of X ;) implies that:

Xym™ X a0t /
2up > sup Il (J)n)7||0 > IS (J)',A])iHO _ ﬂ,,
senibioy T&m) o = Ty o~ m

The second bound of Equation (11) can be obtained similarly using § = (—1,0)%. This concludes the proof. O

Unfortunately an analogous expression to Equation (11) in ¢;-norm does not follow verbatim. For technical

I1X(ymlla
o < 207
X7yl = 2H1

reasons we thus need to assume that sup, cp\ (0}
J

The following three lemmas follow the approach of Clarkson and Woodruff (2015) and Munteanu et al. (2018),
adapted here to work for our different sets of functions g; and h;, to bound the sensitivities for the first part of
the sum defining f(8; | A,C), cf. Eq. (9). For the first two lemmas it suffices to assume that the matrices X’
and X" are pi-complex, thus, by Lemma A.11 X is 2u1-complex.

Lemma A.12. Let X' € Rm'“, X" e R™" %2 pe p1-complex. Let U be an orthonormal basis for the columnspace
of X. If for index ¢ B; € R? satisfies 1.005 < x¢f3;, then it holds that g, (weB;) < 12u3 - |Uell2 - f1 (X 5;).

Proof. Let X = UR, where U is an orthonormal basis for the columnspace of X. Let U, be the ¢-th row of U.
From Cauchy-Schwarz inequality (CSI), orthornomality of U, Lemma A.10, 1.005 < z,3;, u1-complexity of X,
and the positivity of g, we have that

CSI
ge (xeB) = ge (UeRB;) < ge ([[Uell2 - [RB;l[2) = ge ([|Ue]2 - [[URB;]|2)
= ge (|Uell2 - 1XBjll2) < 2 [|Uell2 - [ XBjll2 < 2 |Uell2 - [ XBjll1
(4)
<2 [Uella - (1 +20)[1X7B5lln < 2 [[Uell2 - 3pa (1 + pa) [1(X7B) * |11
<12} Ul > |wiByl

i€[m’]:xz; ;>0

<12p3 - [Uelle- > gi(@iy) < 12uF - Ul - f1 (XB;)

i€[m’]:xz; ;>0
0

Lemma A.13. Let X' € R™*2 pe pa-complex. If for index ¢, B; € R? satisfies 1.005 > 43;, then it holds that
9e (weBy) < (404 21) - 7 - fu (XBy)-

Proof. Let K= = {i € [m'] : #;8; < —2} and K™ = {i € [m'] : x;8; > —2}. It holds for all ¢ that ¢;(—2) =
In(1+ exp(—2)) — In(1 — ¢;) > In(1 + exp(—2)) > £, and ge(zf;) < g¢(1.005) < In(1 + exp(1.005)) + In2 < 2.5,
due to the monotonicity of g, and our assumption that ¢; € [0,0.5). It holds that |[K~| + |[KT| =m/.

In case that K+ > %/ we have that

f1(XB;) = Z gi (xiB;) + gi (ziBj) > gi (zif35)

€K+t 1€EK— €K+
m 1 _ m m’
> (—2)> D 2 ST g5 T ).
> 3 a0 g2 22 i ade)
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In case that Kt < mT/ itis K= > 7"7/ and thus

AXBY) > Y @By > > |wBil=11(X'8)" I

i€[m’]:x;B; >0 i€[m/]:z;8; 20
OQI&XB) I _ 1
JUKB) I L g
m m i€[m/]:x; 8; <0
1 |[K—|-]—2] m’ 2m’
> — zi B3| > > ©2.5 2> - ge(wey).
M1 iEZK:, i3] H1 2.5 o (eB;)
The claim follows by summing the upper bounds for g,(z,8;) from both cases. O

We combine Lemma A.12 and Lemma A.13 to obtain the following result that provides upper bounds on the
sensitivities of the functions g, regarding the combined function f1(X3) + f2(X3), as well as an upper bound
for the total sensitivity on the first part of the sum that defines f(3; | 4, C).

Lemma A.14. Let X' € le“,X” e R™"%2 pe w-complex. Let U be an orthonormal basis for the columnspace
of X. For each i € [m'] the sensitivity of g; (xiB3;) for the function fi + fo is bounded by o) < s; = 42.5u% -
(IUillz + ). The sum of sensitivities for g;,i € [m'] is bounded by S" < 170u3v/m’.

Proof. From Lemma A.12 and Lemma A.13 we have for each i € [m/] that

;o gi (z:5) gi (z:35)
TSP RO + /2 (X5,) © fi(XBy)

1
<1253 (|0l + ) = o,

5 1
<1242 - ||Uill + <4o+ ’;) -

Since the Frobenius norm of the matrix U is |Ul|r = \/ng[z] 2 ielm) |Ui;|1? = \/Zje[Z]l = /2, due to the

orthonormality of U, we have that

D SR N ) gl l17 Iy
i€[m’]

i€ m] i€m]
s (Ul i+ )
< 42542 (2\/ﬁ+ 1) < 42542 - aVmd
= 170p3Vm/.
O

The second part of the sum defining f(8; | A,C) contains the functions corresponding to labels Y;; = 1. The
following lemma bounds their sensitivities. Let £ = max{In(1/¢;) | 7 € [m]} (over the entire input).

Lemma A.15. Let X” € R™"*2 be pg-complex. For each € € [m"] the sensitivity of hy (xeB;) for the function
fi + f2 is bounded by o) < 3.5E - (1+ po) - - = s/. The sum of sensitivities for h;,i € [m/] is bounded by
S" <'35E - (1+ po).

Proof. Since each function hy, ¢ € [m'], satisfies 0 < hy(z¢83;) < E, we have that for each ¢ € [m"], B; € R?
satisfies

f2(XB;) = Z hi (x:85) + Z hi (xi55)

i€[m’]):x;8; >0 i€[m’’]):x;B;<0

> Y @Bz Y hi(0)

1€[m/ ]:x;8; >0 i€[m’’]:x; ;>0
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= Y 1n<1i6i>2 > 1n<§):m11n<§)

i€[m/ ]:x; ;>0 1€[m/ ]:x; ;>0

, m
— 3.5FE

. hg (mgﬁj) .

The sensitivity of hy (z¢f8;) regarding the function f; + f2 is then bounded by

N

he (2435) _ he(@eBy) _ 35E

) .
< - 3.5F (1 +#0) — g
my m

" — 94>

IN

o) = sup

g, J1(XBj)+ fa(XB;) = fa(XBy)

while the sum of sensitivities of the functions h;,i € [m”] regarding the function f; + f2 is bounded by

g — Z s < 3.5E - (L + po) -m" =3.5E - (1+ o).

ml/
i€[m”]

Lemma A.16. The total sensitivity is bounded by & < 170uy/m + 7TEu € O (y/m).

Proof. Theorems A.14 and A.15 can be combined to bound the total sensitivity in terms of m/, m”, and we can
relate the latter quantities to m using Lemma A.11. This implies that the total sensitivity for the function f; + fo
is

S <S=98+8" =170V + 3.5E(1 + po) < 170p>/m + TEp € O (vVm).

A.4 Bounding the VC Dimension for the 3PL Model

In order to apply the sensitivity framework, we need to bound the VC dimension of the range spaces induced
by the sets of (weighted) functions g; and h;. Let g;(n) = g (z;n) and h;(n) = h; (x;n). The dimension of the
domains of our functions is d = 2 (in both cases where a; or ; take the role of the variable n). We first bound
the VC dimension in the case that all weights are fixed to the same (though arbitrarily chosen) positive constant
p. This is dealt with in the following two lemmas:

Lemma A.17. The range space induced by G, = {pgq: i € [m]}, p € Rso, satisfies A (Rg,) <d+1=3.

Proof. The function g : R — R>( is monotonically increasing and invertible. Let G C G,, z € R, and r € R. It
holds that
rangec(1,7) = {pgi € Gp: pgi(n) =1} = {pgi € Gp: xin > g~ (r/p)}.

Then it follows that

’{rangec(n,r): neR*re Rzo}’
= [{{pgi € G: min > g7 (r/p)}: n € R?,r € Rxo}]
=|[{{g: € G:en>7}: n€R* T €R}Y.

Since each function g; is associated with the point x;, the last set is the set of points shattered by the hyperplane
classifier x; + 1[;,5—r>0). Its VC dimension is thus d + 1 = 3 (Kearns and Vazirani, 1994), implying that
|{rangeq(n,7): n € R?,r € Rxo}| = 2/l can only hold if |G| < d + 1 = 3. Therefore, the VC dimension of the
range space induced by G, is bounded by d + 1 = 3. O

Lemma A.18. The range space induced by H, = {ph¢): i € [m]}, p € Rso, satisfies A (Ry,) <d+1=3.
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Proof. The functions h; : R — (0,1n (1/¢;)) are monotonically decreasing and invertible independent of the choice
of ¢;. Let H C H,, n € R? and r € R. For r > In(1/c¢;)/p we have rangey(n,r) = 0. Otherwise, it holds that
r <In(1/¢;)/p and

range; (n,r) = {ph; € H,: phi(n) > r} = {ph; € H,: xin < h™'(r/p)}.
It follows that

‘{rangeH(n,r): neRre R20}|
=[{{phi € H: 2 <h™'(r/p)}: n € R*,r <In(1/c;)/p} U{0}]
<|{{phi € H: zin < 7}:n e R* 1 €R}|.

Since each function h; is associated with the point x;, the last set is the set of points that is shattered by an
affine classifier x; — 1[;,,_r<0)- As before in Lemma A.17 we conclude that the VC dimension of the range
space induced by H, is at most d +1 = 3. O

Blumer et al. (1989) gave a general Theorem for bounding the VC dimension of the union or intersection of ¢
range spaces, each of bounded VC dimension at most D. Their result gives O(tDlogt). Here, we give a bound
of O(tD) for the special case that the range spaces are disjoint.

Lemma A.19. Let F be any family of functions. And let Fy,..., Fy C F, each non-empty, form a partition of
ey

F, i.e., their disjoint union satisfies | J,_F; = F. Let the VC dimension of the range space induced by F; be
bounded by D for all i € [t]. Then the VC dimension of the range space induced by F satisfies A (Rx) < tD.

Proof. We prove the claim by contradiction. To this end suppose the VC dimension for F is strictly larger than
tD. Then there exists a set G of size |G| > ¢tD that is shattered by the ranges of Rg. Consider its intersections
G; = GNF;,i € [t] with the sets F;. By their disjointness, G; must be shattered by the ranges of f,. Note that
at least one of them must therefore have |G|/t > D, which contradicts the assumption that their VC dimension
is bounded by D. Our claim thus follows. O

Corollary A.20. Let F = GUH be the set of functions in the SPL IRT model where each function is either of
type g; € G or h; € H and each function is weighted by 0 < w; € W := {uy,...,us}. The range spaces induced
by F satisfies A (Rr) < 6t.

Proof. We partition G, and ‘H into disjoint subsets Gy, ,...,G,, C G, and Hy,,- .., Hy, € H where the functions
in any of those sets have the same weight. By the subset relation and using Theorems A.17 and A.18, the VC
dimension induced by any of these sets is bounded above by d + 1 = 3. Further we have that F = GUH =

" Lot
(U;21Gi) U (U;—1H:) is a partition of F into 2t disjoint subsets by construction. The claim follows by invoking
Theorem A.19. O

A.5 Putting Everything Together for the 3PL Model

Theorem A.21 (Restatement of Theorem 3.3). Let each X(jy = (=Yi;0] )icpm) € R™*2. Let X{;) contain the
rows i of X(;y where Yi; = —1 and let XE;.) comprise the rows with Y;; = 1. Let Xéj) and X&) be p-complex.
Let sup, cpy qoy 1 X(;ynll1 /[ XTj il < 21 for each j € [n]. Lete € (0,1/2). There exists a weighted set K € RF*2

of size k € O(“Qsiz\/m(log(m)2 +1log(n))), that is a (14 €)-coreset for all X(;), j € [n] simultaneously for the 3PL
IRT problem. The coreset can be constructed with constant probability and in O(m) time.

Proof. For a single computation of 3;, say (1, our input consists of a matrix X(;) and labels Y;;, that define the
function f; + fo. We want to apply Theorem A.5 to the set of functions g; and h; that occur in their respective
parts of f; + f2, and obtain a (1 + ¢)-coreset K for the function fi + fo on X(q).

Theorems A.14 and A.15 bound the sensitivities of single functions g; and h;, while Theorem A.16 bounds the
total sensitivity S. Corollary A.20 yields an upper bound of 6¢ on the VC dimension A of the range space
induced by the functions g; and h;, where t denotes the number of different weights. We discuss the choice of ¢
at the end of the proof.
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The algorithm to compute the coreset K requires to compute the upper bounds on the sensitivities of Lemma A.14
for the submatrix X él) (of X(1y), that depend on an orthonormal basis of the columnspace of X(;). This enables
the algorithm to sample the input points with probabilities proportional to the values s; (which equal either s
or s/, depending on the function), divided by the total sensitivity.

This can be done by computing the QR-decomposition of X(;) = QR, in time O (mdz) = O (m) (Golub and
Van Loan, 2013). @ is an orthonormal basis for the columnspace of X(;y. From QQ = U we compute the row-norms
|Ui|l2, and thus the values of s;. Sampling the |K| elements can be done using a weighted reservoir sampler
(Chao, 1982) in linear time O (m). The total running time is thus O (m).

Although X (1) being in R™*2 enables a fast (linear time) QR-decomposition, it is advisable in practice to use a
fast @QR-decomposition as in (Drineas et al., 2012), since this reduces the constant factors (depending on d = 2
in this paper). The idea is that we can obtain a fast constant factor approximation to the square root of the
leverage scores ||Q;||2, with success probability 1 — §” = 1 — §/2, and use these as the input to the reservoir
samplers. Using CountSketch, i.e., the sketching techniques of Clarkson and Woodruff (2013), we reduce the size
of the matrix to be decomposed to only O(d?), which is a small constant rather than O(m).

As in the 2PL case, for any other coordinate §;, 2 < j < n within one iteration, the labels Y;; come from
{=1,1}. Lemma 3.1 implies that the leverage scores of X(q), that have been used for the coreset construction
for 31, remain the same for all other X(;), and thus can be used for all other coordinates 3;, 2 < j < n as well.
Since the sensitivity scores remain the same, we can use the same coreset for the optimization of all 3;, j € [n].

To control the success probability of sensitivity sampling over all 5;,j € [n], let 6’ = §/(2n). Then the total
failure probability (for the approximation of the leverage scores and the coreset sampling) is at most 6" +n-§' =
6/2446/2=09.

It remains to bound the number of different weights used for the sampling, and in the VC-dimension bound of
the involved range space. Each function g; and h; is sampled with probability proportional to /(> sh4+> s
and s/(>° st + Z ) respectively. We can round the sensitivities st and s/ up to the next power of 2, and
obtain the values 8 and 57 respectively. It holds that s} < §, < 2g and sy < §7 < 2s, for all i € [m]. Then,

we can sample the functions 9 and h; proportional to the probablhties s;/(z + > A”) and 8/ /(-8 + > 8Y),

respectively. It holds that > &, + Y387 <2(3° s + > s/) = O(u?\/m), by Theorem A.16.

We observe that:
9i(xiB;) Ai=0 gi(0)
L2282 e ) © R+ A
In(2) — In(1 — ¢;)
Zyw__ (In(2) = In(1 = &) + Xy, —; (—In(e; + 25%))
In(2) S In(2)
e)) +m - (n(2) ~ 2m(@)m’ + n(@)m”

Ci

v

m/ - (In(2) — In(1 —
1 1

2m/ + 2m/”’ 2m (12)

We can analogously conclude that

hi(0) ln(%)
CZF0) + fo(0) © 2m

Equations (12) and (13) imply that there can be at most ¢t = O(log(m)) values of §; and §;, which implies that
A = O(log(m)). Thus we can construct a single coreset K of size

K| =0 (S (AlogS—i—log (;)))

o(” VI log (2 /) log(m >+log<n>>)

(13)

20 (15 (g +1og(a)) ). (14
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for all X(;), j € [m], with constant success probability at least 1 — ¢ in time O(m), as claimed. O

Finally, we need to address the differences between the coresets for f(5; | A,C) (claimed by Theorem 3.3), and
the coresets for f(a;,c; | B). In the 2PL case the two cases were interchangeable, since the function depended
on one parameter only. Here, for f(«;,¢; | B) function g; and h; are functions of two parameters, a; and ¢;. We
need the following result that gives us a lower bound on the sum of the logistic loss functions.

Lemma A.22 (Munteanu et al., 2021, Lemma 2.2). Let Z € R"*? be a p1-complex matriz for bounded p, < oo,

and let z; be its rows. For all y € R? it holds that
ZMOHW%WZﬁﬂ+Mm%
. 1
i€[n]

We slightly adapt the notation of the functions g; and h; (we change of the index to emphasize that the fixed
parameters encoded in the rows of X are now f3;,j € [n]). To keep in mind that these functions are functions of
an additional variable ¢;, we write

1701‘

gj(z,¢;) =—1In (1—|—exp(z)

> =1In(1+exp(z)) —In(1l — ¢;)

and

l—Ci
P )= _—1 . [ —
hJ(Z,Cz) n(cl—kl o ( Z))

The following lemma claims that by increasing the value of ¢; by a small additive value, the sum of all functions
will increase only by a small multiplicative error. Since the roles of n and m are reversed, we also let n’ and n”
take the role of m’ and m” respectively.

Lemma A.23. Let
f(Xai,¢) = fi(Xas, ) + fo(Xay, )
= Z gj(zjau, ) + Z hj(zjo,¢;).

J€E[n],Yi;=—1 j€ln],Yi;=1

Then it holds that
€
f(Xaz',Ci) — | Xag, ¢+ iz <ef(Xag,c).

Proof. For the sigmoid functions h; we have that

o) == n (4 oo ) =t (o=,

1+ exp(—2) 1+ ciexp(—=2)

Then using the fact that the functions h; and their differences are monotonic, we have that

W 14+ (e + ;—2) exp(—=z)
N 1+ ¢ exp(—2)

¢ + ﬁ € 5 ek
S In =Inl(1l + 2 S — § 5> (15)
Ci Cift cp? T op

where we assume that 1/k is a constant lower bound for all ¢;, see the discussion on parameters ¢; in Section 2.

For the logistic functions g; it holds that

gj(z,ci + %) —gj(z,¢;) =—1In (1 —c— %) +In(1 —¢)
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e = 4e
=In|1 . < - < — 16
n<+1—ci—i>1—ci—i 2’ (16)
1 m
since ¢ < 1/2 and €/pu? < 1/4. We may assume that x > 4. Then, Equations (15) and (16) imply that
4
‘f(Xai70i> _f(XaiaCi+%)‘ Sn/'i;-kn//'é SHE%
7 [ 7 [

n/

< 2ne(1+ 2p10) 5

2 <6k ef(Xay,c),
where the last two inequalities follow from Lemma A.11 and Lemma A.22 (since In(1+exp(z;ja;)) < gj(z;04,¢)).
Rescaling € by the constant 6k completes the proof.

Then, we can obtain coresets for the case where we wish to optimize the item parameters on a reduced number
of examinees using the following corollary.
Corollary A.24. Let each X;y = (—Y;jﬁjT)je[n] € R"*2, Let Xéi) contain the columns j of Xy where Yi; = —1

and let XE;) comprise the columns with Y;; = 1. Let X{i) be p-complex and Xé;) be p-complex for each i € [m].
Let ¢ € (0,1/4). There ervists a weighted set K € R¥*2 of size k € O(“t_:},/ﬁ(log(n)2 + log(m))), that is a

(1+¢)-coreset for all X(;), i € [m] simultaneously for the 3PL IRT problem. The coreset can be constructed with
constant probability and in O(n) time.

Proof. The correctness and the running time of the corollary follow from Theorem 3.3 with reversed roles of n
and m, and with the following adaptations.

The claims on the sensitivity bounds can be taken verbatim, since they hold uniformly for arbitrary values of
¢ €0,1/2).

To bound the VC dimension of the induced range spaces we divide the interval [0,1/2) that contains all ¢; into
a grid of O(pu?/e) segments of length no larger than ¢’ = ¢/(6xu2), and round up each ¢; to the closest point on
the grid (cutting off at 1/2). Hereby, each ¢; is approximated by an additive error of at most &', and the function
f(Xay, ¢;) is approximated by a multiplicative error 1 4 € using Lemma A.23.

Then we construct a partition into O(”?2 log(n)) classes, as in Theorems A.19 and A.20, such that the functions
in each class have the same type g; or h;, the same grid value ¢; as a discretization of ¢;, and the same weight.

We obtain that the VC dimension of the induced range space is bounded by O(“?2 log(n)).

Rounding up the guessing parameters ¢; causes an additional multiplicative error (1+¢). Since (1+¢)? < 1+ 3¢,
we rescale ¢ = £/3 to obtain the claim of the corollary. O

A.6 On the Quality of the Solution Found on a Coreset

Theorem 3.2 and Theorem 3.3 guarantee that the values of the IRT loss functions evaluated on the whole input
set and on the coreset, respectively, differ at most by an e-fraction of the optimal value of the IRT loss function
of the whole set. Here we show that the parameters that realize the optimal values of the loss function on the
whole input and on the coreset are also close to each other.

To this end, for any given matrix M € R"*4, let 0.}, (M) = inf,ega o) 1L (cf. Golub and Van Loan, 2013).
Recall that the loss function f(Xn) for 3PL models is represented by the sum of different functions g;(z) and
hi(z), where g;(z) was lower bounded by z by Lemma A.10 for all z > 0. For 2PL models, we have h;(z) = g;(2)
since ¢; = 0 for all items. From Lemma A.23, we have that the coreset produces ¢; that are within O(ﬁ) to
the corresponding optimal value. The following theorem handles the remaining parameters, conditioned on an

arbitrary choice of all other parameters, in particular also for the optimal set of parameters.

Theorem A.25. Let X be any matriz that satisfies the conditions and p-assumptions of Theorem 3.2 resp. 3.3,
and let K, weighted by u € R* be any (1 + €)-coreset for X. Let Nopt and Neore be the minimizer of the IRT loss
function f(Xn) and f,,(Kn), respectively. Let 7 =1 for the 2PL resp. T =2 for the 3PL model. Then

14 1) (2 + 3¢
gt~ Teores < (L(L))(uo) (X o).

O min
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Proof. The coreset definition implies that f(Xncore) < (14 3¢) - f(Xnopt). Further, we have for the 3PL model
that

1
r(ni)n(X) : Hnom — Neorel1 < ||X770pt — XNecore|l1

S ||Xn0pt||1 + ||chore||1
S (1 +:U’) (H(Xnopt)JrHl + H(chorc)JrHl)

)
< X+ )2 (X Mope) Tl + (X Mcore) 1)

=(1+p)?-( Z |Ziopt| + Z |ZiNcore|)

ag

z; €X', @i Nopt >0 2, €X', TiMNcore >0
2
§ (]— + :U') : ( E gi(xinopt) + E gi(xincorc))
IieX/vzinopt>O T'ieX/7$incore>O

< (1 + M)Q ' (f(Xnopt) + f(chore))
< (14 1) (f(Xnopt) + (14 32) f(Xopt))
= (1+ )% (2+32) - F(Xnopt)-

Finally, for the 2PL model, the additional factor of (1 4+ p) in the line tagged with (%) is not necessary since
X = X'. Thus, the claim holds in both cases. O

Lemma A.26. Let K, weighted by the non-negative weights u € R¥, be any coreset for X for the function f..
Let e € (0,1/2). Let 1) € argmin, cga fu(Kn). Then it holds that

fuw(X7) < (14 4e) min f,,(Xn).
neR

Proof. Let n* € argmin, cga fu,(X7). Then we have that

1 1 1+¢

fulK) < /- fu(B7) < 57— fu(X07) < (14 4e) - fu(X7)

FulX0) < 7 <

The first and the third inequality follow from the coreset property (Definition A.1 and Eq. (3)). The second
inequality follows from the fact that © minimizes f,(K7) over all possible n € R?. The last inequality follows
from e € (0,1/2). O
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B ADDITIONAL EXPERIMENTAL RESULTS

See Tables 2 to 7 and Figures 4 to 13 for additional experimental results on the parameter estimation accuracy
along with the results already reported in the main paper.

Table 2: 2PL Experiments on synthetic data: The means and standard deviations (std.) of running times, taken
across 20 repetitions. In each repetition, the running time (in minutes) of 50 iterations of the main loop was
measured per data set, and for different configurations of the data dimensions: the number of items m, the
number of examinees n, and the coreset size k. The (relative) gain is defined as (1 — meancoreset/meang,) - 100
%. The largest experiment was run only once, due to the large running time. Some measures thus do not apply,
indicated by N/A values in the last row.

Full data (min) Coresets (min)
data n m k \ mean std. \ mean std. \ gain

2PL-Syn 50000 100 100 34.565 5.220 22.752 3.692 | 34.178 %
2PL-Syn 50000 200 500 65.745 11.897 30.121 4.645 | 54.185 %
2PL-Syn 50000 500 500 136.981 12.556 45.547 3.863 | 66.749 %

2PL-Syn 100000 100 100 75.135  11.881 51.029  7.524 | 32.084 %
2PL-Syn 100000 200 1000 | 122.252  12.043 61.459  10.654 | 49.727 %
2PL-Syn 100000 500 1000 | 231.276  23.793 80.861  11.161 | 65.037 %
2PL-Syn 200000 100 1000 | 155.053 18.877 | 99.352  12.055 | 35.924 %

2PL-Syn 200000 200 2000 247.654  34.069 119.075  13.717 | 51.919 %
2PL-Syn 200000 500 2000 466.832  48.734 169.494  21.862 | 63.693 %

2PL-Syn 500000 100 5000 339.057 115.382 228.041  75.920 | 32.743 %
2PL-Syn 500000 200 5000 518.274  77.108 291.678  44.327 | 43.721 %
2PL-Syn 500000 500 5000 | 1278.845 494.938 591.878 221.218 | 53.718 %

2PL-Syn 500000 5000 5000 \ 9363.750 N/A \ 5536.684 N/A | 40.871 %

Table 3: 2PL Experiments on synthetic data: The quality of the solution found. Let fan and feoe(;) be the
optimal values of the loss function on the input and on the coreset for the j-th repetition, respectively. Let
feore = Min; feore(j)- Mean and standard deviation of the relative deviation |feore — feore(j)|/ feore (in %): mean
dev and std. dev. Relative error: rel. error é = |feore — frun|/frn (cf. Lemma A.26). Mean Absolute
Deviation: mad(«) = % > (|afull — @core| + |bfull — beore|); mad(8) = % > |0suil — Ocore|, evaluated on the parameters
that attained the optimal fry and feore- The largest experiment was run only once, due to the large running
time. Some measures thus do not apply, indicated by N/A in the last row.

data n m k [ mean dev std. dev | rel. error ¢ | mad(a) mad(f)
2PL-Syn 50000 100 100 6.146 % 2178 % 0.13452 1.108 0.045
2PL-Syn 50000 200 500 2241 % 0918 % 0.05214 | 0.508 0.011
2PL-Syn 50000 500 500 1.533 % 0.892 % 0.04803 0.525 0.008
2PL-Syn 100000 100 100 7203 % 2918 % 0.14776 | 0.970 0.040
2PL-Syn 100000 200 1000 1.086 % 0.544 % 0.03404 0.379 0.008
2PL-Syn 100000 500 1000 0.999 %  0.542 % 0.03140 | 0.345 0.005
2PL-Syn 200000 100 1000 1.936 % 0.849 % 0.04400 | 0.374 0.008
2PL-Syn 200000 200 2000 0.743 % 0411 % 0.02375 | 0.248 0.003
2PL-Syn 200000 500 2000 1.273 %  0.565 % 0.03013 | 0.268 0.002
2PL-Syn 500000 100 5000 0.551 % 0.184 % 0.01399 0.142 0.002
2PL-Syn 500000 200 5000 0731 %  0.275 % 0.01689 | 0.180 0.002
2PL-Syn 500000 500 5000 0.473 % 0.239 % 0.01445 0.171 0.001

2PL-Syn 500000 5000 5000 | N/A N/A | 0.00076 | 0.120 _ 0.013
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Figure 4: 2PL Experiments on synthetic data: Parameter estimates for the coresets compared to the full data
sets. For each experiment the upper figure shows the bias for the item parameters a and b. The lower figure
shows a kernel density estimate for the ability parameters § with a LOESS regression line in dark green. The
ability parameters were standardized to zero mean and unit variance. In all rows, the vertical axis is scaled such

as to display 2std. of the corresponding parameter estimate obtained from the full data set.
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Figure 5: 2PL Experiments on synthetic data: Parameter estimates for the coresets compared to the full data
sets. For each experiment the upper figure shows the bias for the item parameters a and b. The lower figure
shows a kernel density estimate for the ability parameters § with a LOESS regression line in dark green. The
ability parameters were standardized to zero mean and unit variance. In all rows, the vertical axis is scaled such

as to display 2std. of the corresponding parameter estimate obtained from the full data set.
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Figure 6: 2PL Experiments on synthetic data: Parameter estimates for the coresets compared to the full data
set on the largest generated set with n = 500000 and m = 5000. For the experiment the left figure shows the
bias for the item parameters a and b. The right figure shows a kernel density estimate for the ability parameters
0 with a LOESS regression line in dark green. The ability parameters were standardized to zero mean and unit
variance. The vertical axis is scaled such as to display 2std. of the corresponding parameter estimate obtained
from the full data set.
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Table 4: 2PL Experiments on real world SHARE (Borsch-Supan, 2022) and NEPS (NEPS-Network, 2021) data:
The quality of the solution found. Let fry and feore(;) be the optimal values of the loss function on the input
and on the coreset for the j-th repetition, respectively. Let feore = ming feore(j)- Mean and standard deviation
of the relative deviation |feore — feore(j)|/feore (in %): mean dev and std. dev. Relative error: rel. error
€ = | feore — frun|/ fran (cf. Lemma A.26). Mean Absolute Deviation: mad(a) = + 3" (|afui — @eore| + |brul — beore|);

n

mad(f) = % > |0suil — Ocore|, evaluated on the parameters that attained the optimal fry and feore-

data n m k [ mean dev std. dev | rel. error £ | mad(a) mad(f)
SHARE 138997 10 500 5335 %  2.098 % 0.11347 | 0.770 0.090
SHARE 138997 10 1000 1.682 % 0.930 % 0.06193 0.307 0.040
SHARE 138997 10 2000 1.251 %  0.820 % 0.04263 | 0.129 0.015
SHARE 138997 10 4000 0.686 % 0.414 % 0.02791 0.108 0.013
SHARE 138997 10 6000 1.930 % 0.611 % 0.03546 | 0.095 0.007
SHARE 138997 10 8000 0.600 % 0.252 % 0.01935 0.061 0.007
SHARE 138997 10 10000 1557 %  0.407 % 0.02713 | 0.092 0.014
SHARE 138997 10 20000 0.356 % 0.168 % 0.01415 0.045 0.003
NEPS 11532 88 100 4363 % 2.176 % 0.09335 | 1.477 0.171
NEPS 11532 88 200 3.324 % 1.480 % 0.07134 0.930 0.142
NEPS 11532 88 500 1.969 %  0.657 % 0.03795 | 0.499 0.075
NEPS 11532 88 750 1.478 % 0.524 % 0.02675 0.432 0.062
NEPS 11532 88 1000 1.191 %  0.395 % 0.02007 | 0.320 0.045
NEPS 11532 88 2000 0.352 % 0.120 % 0.00506 0.182 0.026
NEPS 11532 88 5000 0.220 %  0.169 % 0.00147 | 0.101 0.015
NEPS 11532 88 10000 0.301 % 0.200 % 0.00094 | 0.071 0.012




Scalable Learning of Item Response Theory Models

Table 5: 2PL Experiments on real world SHARE (Borsch-Supan, 2022) and NEPS (NEPS-Network, 2021) data:
The means and standard deviations (std.) of running times, taken across 20 repetitions. In each repetition, the
running time (in minutes) of 50 iterations of the main loop was measured per data set for different configurations
of the data dimensions: the number of items m, the number of examinees n, and the coreset size k. The (relative)

gain is defined as (1 — mean oreset/meang,y) - 100 %.

Full data (min)

Coresets (min)

data n m k \ mean std. \ mean std. \ gain
SHARE 138997 10 500 | 28.853 1.618 | 30.436 1.451 | —5.484 %
SHARE 138997 10 1000 | 28.853 1.618 | 29.649 1.375 | —2.758 %
SHARE 138997 10 2000 | 28.853 1.618 | 28.578 0.195 0.953 %
SHARE 138997 10 4000 | 28.853 1.618 | 27.861 0.070 3.439 %
SHARE 138997 10 6000 | 28.853 1.618 | 27.746 0.080 3.837 %
SHARE 138997 10 8000 | 28.853 1.618 | 27.637 0.085 4.216 %
SHARE 138997 10 10000 | 28.853 1.618 | 27.560 0.082 4.481 %
SHARE 138997 10 20000 | 28.853 1.618 | 27.525 0.085 4.603 %
NEPS 11532 88 100 5.968 0.061 4.020 0.010 | 32.640 %
NEPS 11532 88 200 5.968 0.061 4.113 0.257 | 31.084 %
NEPS 11532 88 500 5.968 0.061 4.402 0.333 | 26.237 %
NEPS 11532 88 750 5.968 0.061 4.036 0.014 | 32.373 %
NEPS 11532 88 1000 5.968 0.061 4.009 0.016 | 32.829 %
NEPS 11532 883 2000 5.968 0.061 3.940 0.057 | 33.983 %
NEPS 11532 83 5000 5.968 0.061 4.779 0.105 | 19.920 %
NEPS 11532 88 10000 5.968 0.061 5.849 0.064 2.003 %

Figure 7: 2PL Experiments on the real world SHARE data (Borsch-Supan, 2022). Parameter estimates for
the coresets compared to the full data sets. For each experiment the upper figure shows the bias for the item
parameters a and b. The lower figure shows a kernel density estimate for the ability parameters 6 with a LOESS
regression line in dark green. The ability parameters were standardized to zero mean and unit variance. In all
rows, the vertical axis is scaled such as to display 2std. of the corresponding parameter estimate obtained from
the full data set.
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Figure 8: 2PL Experiments on the real world SHARE data (Borsch-Supan, 2022). Parameter estimates for
the coresets compared to the full data sets. For each experiment the upper figure shows the bias for the item
parameters a and b. The lower figure shows a kernel density estimate for the ability parameters 6 with a LOESS
regression line in dark green. The ability parameters were standardized to zero mean and unit variance. In all
rows, the vertical axis is scaled such as to display 2std. of the corresponding parameter estimate obtained from
the full data set.
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Figure 9: 2PL Experiments on real world SHARE (Borsch-Supan, 2022) and NEPS data (NEPS-Network, 2021):
A comparison between the coreset sizes and the the quality of the solution found, by the relative error and the
mean absolute deviation (a), cf. Table 4. Let fri and feore(;) be the optimal values of the loss function on the
input and on the coreset for the j-th repetition, respectively. Let feore = ming feore(j)- Relative error: rel. error
€ = | feore — frun|/ feun (cf. Lemma A.26). Mean Absolute Deviation: mad(«) = % > (latan — @core| + |brant — beorel)s
evaluated on the parameters that attained the optimal fry and feore. The coreset sizes for the NEPS data end
at 10000, to not exceed the input data size.
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Figure 10: 2PL Experiments on real world NEPS data (NEPS-Network, 2021): Parameter estimates for the
coresets compared to the full data sets. For each experiment the upper figure shows the bias for the item
parameters a and b. The lower figure shows a kernel density estimate for the ability parameters 6 with a LOESS
regression line in dark green. The ability parameters were standardized to zero mean and unit variance. In all
rows, the vertical axis is scaled such as to display 2std. of the corresponding parameter estimate obtained from
the full data set.
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Figure 11: 2PL Experiments on real world NEPS data (NEPS-Network, 2021): Parameter estimates for the
coresets compared to the full data sets. For each experiment the upper figure shows the bias for the item
parameters a and b. The lower figure shows a kernel density estimate for the ability parameters 6 with a LOESS
regression line in dark green. The ability parameters were standardized to zero mean and unit variance. In all
rows, the vertical axis is scaled such as to display 2std. of the corresponding parameter estimate obtained from
the full data set.
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Table 6: 3PL Experiments on synthetic data: The means and standard deviations (std.) of running times, taken
across 20 repetitions. In each repetition, the running time (in minutes) of 50 iterations of the main loop was
measured per data set for different configurations of the data dimensions: the number of items m, the number
of examinees n, and the coreset size k. The (relative) gain is defined as (1 — meancoreser/means,) - 100 %.

Full data (min)

Coresets (min)

data n m k \ mean std. \ mean std. \ gain
3PL-Syn 50000 100 2000 | 211.468  31.355 | 41.648  5.197 | 80.305 %
3PL-Syn 50000 100 5000 | 211.468  31.355 | 90.243 12.134 | 57.325 %
3PL-Syn 50000 100 10000 | 211.468  31.355 | 93.780 13.929 | 55.653 %
3PL-Syn 50000 200 2000 | 369.816  36.676 | 50.588  1.962 | 86.321 %
3PL-Syn 50000 200 5000 | 369.816  36.676 | 89.274 30.368 | 75.860 %
3PL-Syn 50000 200 10000 | 369.816  36.676 | 145.674 25.702 | 60.609 %
3PL-Syn 100000 100 5000 | 412.616  65.389 | 125.407 15.408 | 69.607 %
3PL-Syn 100000 200 5000 | 722.319 118.262 | 150.164 26.767 | 79.211 %
3PL-Syn 200000 100 10000 | 893.183 112.257 | 196.802 14.608 | 77.966 %

Table 7: 3PL Experiments on synthetic data: The quality of the solution found. Let fan and feoe(;) be the
optimal values of the loss function on the input and on the coreset for the j-th repetition, respectively. Let
feore = Miny feore(j)- Mean and standard deviation of the relative deviation |feore — feore(j)|/ feore (in %): mean
dev and std. dev. Relative error: rel. error é = |feore — frunl/frun (cf. Lemma A.26). Mean Absolute
Deviation: mad(«) = % > (|afull — Gcore| + |bfull — beore| + |Cull — Ceore|); mad(0) = % > |0 — Ocore|, evaluated on
the parameters that attained the optimal fr, and feore-

data n m k [ mean dev std. dev | rel. error ¢ | mad(a) mad(f)
3PL-Syn 50000 100 2000 4.495 % 2.392 % 0.45212 2.820 0.625
3PL-Syn 50000 100 5000 2.061 % 1.935 % 0.03228 0.968 0.048
3PL-Syn 50000 100 10000 2.237 % 2417 % 0.00212 0.384 0.010
3PL-Syn 50000 200 2000 5.280 % 3.065 % 0.43784 2.832 0.649
3PL-Syn 50000 200 5000 4.536 % 2.615 % 0.01662 0.906 0.037
3PL-Syn 50000 200 10000 3.306 % 1.459 % 0.02186 0.488 0.001
3PL-Syn 100000 100 5000 8.370 % 3.944 % 0.02065 1.375 0.101
3PL-Syn 100000 200 5000 4.819 % 1.784 % 0.06281 1.545 0.140
3PL-Syn 200000 100 10000 3.413 % 2.529 % 0.01789 0.524 0.003
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Figure 12: 3PL Experiments on synthetic data. Parameter estimates for the coresets compared to the full data
sets. For each experiment the upper figure shows the bias for the item parameters a and b. The lower figure
shows a kernel density estimate for the ability parameters § with a LOESS regression line in dark green. The
ability parameters were standardized to zero mean and unit variance. In all rows, the vertical axis is scaled such

as to display 4std. of the corresponding parameter estimate obtained from the full data set.
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Figure 13: 3PL Experiments on synthetic data. Parameter estimates for the coresets compared to the full data
sets. For each experiment the upper figure shows the bias for the item parameters a and . The lower figure
shows a kernel density estimate for the ability parameters § with a LOESS regression line in dark green. The
ability parameters were standardized to zero mean and unit variance. In all rows, the vertical axis is scaled such
as to display 4std. of the corresponding parameter estimate obtained from the full data set.
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C COMPARISON TO UNIFORM SAMPLING

The interested reader may ask why not to simply use uniformly sampled subsets of the input instead of coresets,
as this is arguably the de facto standard baseline used for estimating IRT models from subsamples. For instance,
Karadavut (2016) showed in an extensive comparison that uniform sampling works better than standard ¢s-
leverage score methods (note that we use square root ¢-leverage scores, which makes a large difference). Further,
uniform sampling is commonly used for constructing training data by subsampling from the complete data space
{=1,1}™*" (Bonifay and Cai, 2017).

However, it is well known that uniform samples of sublinear size cannot yield strong multiplicative approximation
guarantees, even for mild data with ;. = 1. This also holds for other techniques that rely on uniform subsampling,
such as stochastic gradient descent (SGD) as the authors demonstrate theoretically, and practically in (Munteanu
et al., 2018). Coresets, in contrast, are designed to provably approximate the loss to within a (1 + ¢) factor with
sublinear sample size in the natural case where p is bounded.

To corroborate this in the context of IRT models, we compared between the approximation achieved by uniformly
sampled subsets of the input and our coresets, after 50 iterations for 2PL IRT models on synthetic data (generated
as described in the main body) and on real-world SHARE (Borsch-Supan, 2022) and NEPS data (NEPS-Network,
2021). The results are measured for both methods in terms of mean absolute deviations of calculated estimates
from the actual item parameters and from the actual ability parameter, as well in terms of the relative error of
the objective function, cf. Lemma A.26, summarized in Tables 8 to 10.

Initial experiments showed that the uniform samples were consistently less accurate by (at least) one order of
magnitude regarding the Mean Absolute Deviation (MAD). To get an impression of the best performance of the
two methods, we repeat both experiments using uniform samples and the coresets 20 times independently and
compare the best result for each method to one another. Note that the information on which repetition gave the
best result is not available in practice, so this is an overly optimistic scenario.

Indeed, for the best performing repetition, the parameter estimates from uniform samples w.r.t MAD are com-
parable up to a negligible amount. But the relative error of the objective function approximation using uniform
samples is very large. For the synthetic data, the relative error is always around 50 %, while for the real-world
data, we see that the error actually decreases as the data sample size grows. However, to get a result of compa-
rable quality to the coresets, the uniform sample needs to comprise almost the whole input, while our coresets
achieve the same error using a tiny fraction of the input (cf. Table 10).

We also note that downstream tasks, such as calculating gradients, uncertainty quantification measures, Hessian,
Fisher information etc. require a close approximation of the objective function. We thus conclude that coresets
are better suited than uniform sampling, even in optimistic situations where the latter yields accurate point
estimation results.
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Table 8: 2PL experiments on synthetic data for uniformly sampled subsets vs. coresets. Comparison of the
best solutions found taken across 20 repetitions (each running 50 iterations of the main loop) per data set for
different configurations of the data dimensions: the number of items m, the number of examinees n, and the
uniform sample/coreset size k. Let fui, funif(j) and feore(j) be the optimal values of the loss function on the
input, on the uniform sample for the j-th repetition, and on the coreset for the j-th repetition, respectively. Let
Junit = Miny funie(j), and feore = Miny feore(j)- Comparison made w.r.t. Relative errors: r.err. Eunf= |funif —
franl/ feun, reerr. Ecore=|feore — frun|/ faun (cf. Lemma A.26), and Mean Absolute Deviations (MAD): madcere (@) =
%Z(lafull - acore' + |bfu|| - bcore|); madcore(g) = % Z |9fu|| - 0core|~ madunif(a) = %Z(‘afull - aunif' + |bfull - bunif|);
madunif(9> = % Z |9fu|| - 9unif|'

Uniform sampling Coresets

n m k \ mad,nf(«) mad,nif(0) r.err. &y \ madcyre(@) madeye(d) r.€rT. Ecore
50000 100 100 1.023 0.029 0.49127 1.108 0.045 0.13452
50000 200 500 0.475 0.009 0.49284 0.508 0.011 0.05214
50000 500 500 0.450 0.004 0.49262 0.525 0.008 0.04803
100000 100 100 0.975 0.077 0.49173 0.970 0.040 0.14776
100000 200 1000 0.318 0.007 0.49389 0.379 0.008 0.03404
100000 500 1000 0.351 0.002 0.49377 0.345 0.005 0.03140
200000 100 1000 0.331 0.005 0.49643 0.374 0.008 0.04400
200000 200 2000 0.241 0.003 0.49442 0.248 0.003 0.02375
200000 500 2000 0.239 0.002 0.49436 0.268 0.002 0.03013
500000 100 5000 0.146 0.002 0.49479 0.142 0.002 0.01399
500000 200 5000 0.157 0.002 0.49478 0.180 0.002 0.01689
500000 500 5000 0.167 0.001 0.49477 0.171 0.001 0.01445

Table 9: 2PL experiments on real-world SHARE data (Borsch-Supan, 2022) for uniformly sampled subsets
vs. coresets. Comparison of the best solutions found taken across 20 repetitions (each running 50 iterations
of the main loop) per data set for different configurations of the data dimensions: the number of items m, the
number of examinees n, and the uniform sample/coreset size k. Let frun, funif(j) and feore(j) be the optimal
values of the loss function on the input, on the uniform sample for the j-th repetition, and on the coreset for
the j-th repetition, respectively. Let funf = min; funir(j), and feore = ming feore(j)- Comparison made w.r.t.
Relative errors: r.err. Eunis= |funit — frunl/frun, re€rr. Ecore= |feore — frun|/ frun (cf. Lemma A.26), and Mean
Absolute Deviations (MAD): madcee(cr) = %Z(Mfu” — Geore| F |bfull — Deore]); madeore(0) = % > 10sull — Ocore-
madunif(a) = %Zﬂafull - aunif‘ + |bfu|| - bunif|); madunif(a) = % Z ‘afull - 0unif|~

Uniform sampling Coresets

n m k \ mad,nf(«) madynif(0) r.err. &y \ madcyre(@) madeye(d) r.€rT. Ecore
138997 10 500 0.722 0.071 0.49618 0.770 0.090 0.11347
138997 10 1000 0.232 0.034 0.49534 0.307 0.040 0.06193
138997 10 2000 0.179 0.020 0.49255 0.129 0.015 0.04263
138997 10 4000 0.083 0.004 0.48608 0.108 0.013 0.02791
138997 10 6000 0.086 0.005 0.47939 0.095 0.007 0.03546
138997 10 8000 0.082 0.006 0.47202 0.061 0.007 0.01935
138997 10 10000 0.059 0.008 0.46502 0.092 0.014 0.02713
138997 10 20000 0.058 0.010 0.42961 0.045 0.003 0.01415
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Table 10:

2PL experiments on real-world NEPS data (NEPS-Network, 2021) for uniformly sampled subsets

vs. coresets. Comparison of the best solutions found taken across 20 repetitions (each running 50 iterations
of the main loop) per data set for different configurations of the data dimensions: the number of items m, the
number of examinees n, and the uniform sample/coreset size k. Let fru, funif(j) and feore(;) be the optimal
values of the loss function on the input, on the uniform sample for the j-th repetition, and on the coreset for
the j-th repetition, respectively. Let funf = min; funif(j), and feore = min; feore(j). Comparison made w.r.t.
Relative errors: r.err. Eunis= |funit — frunl/frun, r-€rr. Ecore= |feore — frun|/ frun (cf. Lemma A.26), and Mean

Absolute Deviations (MAD): madcye(er) = %Z(Mfu” — Geore| F |bfull — Deore]); Mmadeore(6) =
madunif<a) = %Zﬂafull - aunif‘ + |bfu|| - bunif|); madunif(e) = % Z ‘gfull - Hunif|'

%n Z ‘afull - 0core|-

Uniform sampling Coresets

n m k \ madnif(e) madyne(d) r.err. &y \ madcore(®) madeore(d) r.€T. Ecore
11532 88 100 1.561 0.185 0.48878 1.477 0.171 0.09335
11532 88 200 1.056 0.131 0.48762 0.930 0.142 0.07134
11532 88 500 0.635 0.096 0.47713 0.499 0.075 0.03795
11532 88 750 0.486 0.068 0.46702 0.432 0.062 0.02675
11532 88 1000 0.393 0.053 0.45664 0.320 0.045 0.02007
11532 88 2000 0.227 0.030 0.41390 0.182 0.026 0.00506
11532 88 5000 0.107 0.011 0.28429 0.101 0.015 0.00147
11532 88 10000 0.029 0.002 0.06711 0.071 0.012 0.00094
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D COMPARISON TO CORESETS FOR CLUSTERING

The interested reader may find that the alternating optimization algorithm resembles some kind of EM-type
algorithm, akin to the popular Lloyd’s algorithm for the k-means clustering problem. One crucial difference,
however, is that in the IRT context, both sets of parameters to be estimated are unknown latent variables, while
for the k-means problem, one set of 'parameters’, is implicitly given by the data, and the task reduces to finding
the other set (the k cluster centers). We also note that in the IRT problem, the desired output is an explicit
description of m ability parameters, and n item parameters. One can thus not hope to reduce one (or both) of
the dimensions only once and work only on this single reduced coreset, as is possible for k-means.

Despite the above mentioned differences, the interested reader may ask why we should construct new coresets for
the IRT models, if already existing solutions from a plethora of coresets designed for clustering problems would
serve as well.

Recently, Schwiegelshohn and Sheikh-Omar (2022) provided an extensive empirical comparison of various coreset
constructions. The best performing coresets in practice were generated by ‘distance sampling’, which is based
on sensitivity sampling (Feldman and Langberg, 2011; Langberg and Schulman, 2010), the same coreset design
pattern that we also used for our coreset construction. In the case of clustering problems, first an initial (and
rough) bi-criteria approximation is computed. Then, subsampling is performed proportionally to the squared
Euclidean distance of input points to their closest center from this approximation. This coreset construction
consistently outperformed all competitors in (Schwiegelshohn and Sheikh-Omar, 2022), even the relatively new
group sampling technique that achieves optimal theoretical bounds (Cohen-Addad et al., 2021).

Thus, we compare our coresets to the winning ‘distance sampling’ in terms of their approximation quality when
applied to IRT models. The results are given in Tables 11 to 13.

For all data sets, our coresets outperform the distance sampling coresets in terms of their approximation quality,
for both, mean absolute deviation (MAD) and the relative error. The MAD obtained from distance sampling
coresets is at least twice as large as the MAD on our coresets. The relative error of the distance sampling
coresets is at least 20 % larger than using our coresets, sometimes as much as two or three times larger, or even
worse on the real-world data sets. Indeed, on the real-world SHARE data set (Borsch-Supan, 2022), which is
very sparse, the distance sampling coresets cannot approximate the loss function well enough (the relative error
remains € > 0.30), even if we allow 72% of the input (100000 examinees) to be selected into the coresets. In
comparison, our coresets approximate the loss function up to relative error € < 0.03 by taking a coreset that
comprises only 6 % of the input set (8000 examinees). Our construction seems much more robust to this sparse
data setting.

We conclude that the distance sampling coresets can in some settings provide good approximations that are
competitive to our coresets, but their performance deteriorates in the presence of sparse data. Only coresets
that are specifically tailored for IRT models provide an approximation of guaranteed quality.
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Table 11: 2PL experiments on synthetic data for distance sampling coresets, based on sensitivity sampling, vs.
IRT coresets. Comparison of the best solutions found taken across 10 repetitions (each running 50 iterations
of the main loop) per data set for different configurations of the data dimensions: the number of items m, the
number of examinees n, and the distance sample/coreset size k. Let frun, faist(j) and feore(j) be the optimal
values of the loss function on the input, on the distance sample for the j-th repetition, and on the coreset for
the j-th repetition, respectively. Let fuisc = min; fyist(j), and feore = ming feore(j)- Comparison made w.r.t.
Relative errors: r.err. Egist= |faist — frunl/ frull, T-€rre Ecore= | feore — frun|/faun (cf. Lemma A.26), and Mean
Absolute Deviations (MAD): madcee() = %E(|afu|| — Geore| + |bfull — beore|); Madeore(6) = i > 1O — Ocorel-
madgist (@) = £ 3 (Jagun — adist| + [brun — baist|); madaist(0) = L 3 |Ogun — Oaist -

Distance sampling coresets IRT coresets

n m k \ madgst (o) madgst(0) r.err. Egiet \ madere(®) madeyre(f) r.€rr. e
50000 100 100 1.146 0.058 0.15496 1.108 0.045 0.13452
50000 200 500 0.659 0.013 0.08284 0.508 0.011 0.05214
50000 500 500 0.609 0.013 0.08582 0.525 0.008 0.04803
100000 100 100 1.149 0.027 0.14136 0.970 0.040 0.14776
100000 200 1000 0.760 0.009 0.05923 0.379 0.008 0.03404
100000 500 1000 0.448 0.011 0.07641 0.345 0.005 0.03140
200000 100 1000 0.543 0.022 0.06787 0.374 0.008 0.04400
200000 200 2000 0.343 0.005 0.04916 0.248 0.003 0.02375
200000 500 2000 0.354 0.005 0.04667 0.268 0.002 0.03013
500000 100 5000 0.252 0.013 0.03292 0.142 0.002 0.01399
500000 200 5000 0.295 0.005 0.03394 0.180 0.002 0.01689
500000 500 5000 0.259 0.003 0.03424 0.171 0.001 0.01445

Table 12:  2PL experiments on real-world SHARE data for distance sampling coresets, based on sensitivity
sampling, vs. IRT coresets. Comparison of the best solutions found taken across 10 repetitions (each running
50 iterations of the main loop) per data set for different configurations of the data dimensions: the number of
items m, the number of examinees n, and the distance sample/coreset size k. Let frun, faist(j) and feore(j) be
the optimal values of the loss function on the input, on the distance sample for the j-th repetition, and on the
coreset for the j-th repetition, respectively. Let fqist = min; fyist(j), and feore = min; feore(j). Comparison made
w.r.t. Relative errors: r.err. Zgis= |fdist — frunl/faun, r-€rr. Ecore= |feore — frunl/ frun (cf. Lemma A.26), and
Mean Absolute Deviations (MAD): madcere(r) = % > (|asul — acore| + |bsul — beore|); madeore(0) = % > 10sun — Ocore -
madgist (@) = £ 3 (Jagun — adist| + [brun — baist|); madaist(0) = L 3 |Ogun — Oaist -

Distance sampling coresets IRT coresets

n m k \ madgist (@)  madgist(6) r.err. Egist \ madeore()  madcre(d) € core
138997 10 500 3.581 0.329 0.3843766731629 0.770 0.090 0.11347
138997 10 1000 3.580 0.328 0.3843766731630 0.307 0.040 0.06193
138997 10 2000 3.586 0.330 0.3843766731634 0.129 0.015 0.04263
138997 10 4000 3.579 0.328 0.3843766731618 0.108 0.013 0.02791
138997 10 6000 3.581 0.328 0.3843766731613 0.095 0.007 0.03546
138997 10 8000 3.580 0.328 0.3843766731606 0.061 0.007 0.01935
138997 10 10000 3.581 0.328 0.3843766731605 0.092 0.014 0.02713
138997 10 20000 3.580 0.328 0.3843766731608 0.045 0.003 0.01415
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Table 13:

2PL experiments on real-world NEPS data for distance sampling coresets, based on sensitivity
sampling, vs. IRT coresets. Comparison of the best solutions found taken across 10 repetitions (each running
50 iterations of the main loop) per data set for different configurations of the data dimensions: the number of
items m, the number of examinees n, and the distance sample/coreset size k. Let fru, faist(j) and feore(j) be
the optimal values of the loss function on the input, on the distance sample for the j-th repetition, and on the
coreset for the j-th repetition, respectively. Let faist = min; fyise(j), and feore = min; feore(j). Comparison made
w.r.t. Relative errors: r.err. Egst= |faist —
Mean Absolute Deviations (MAD): madcore(r) = % > (Jasui — acore| + [brun — beore| ); madeore (0)

ffull‘/ffullv r.err. Z:fcore: |fcore -

madgist (@) = = > (Jagun — adise| + [brun — baist|); madaist(0) = L= > |Ogun — Oaist -

Distance sampling coresets

IRT coresets

feanl/ fran (cf. Lemma A.26), and
L Z |9fu|| *acore|~

n m k \ madgist (@) madgi(6) r.err. Egis \ madeore(@) madeye() r.err. Ecgre
11532 88 100 2.244 0.433 0.12674 1.477 0.171 0.09335
11532 88 200 1.818 0.198 0.11617 0.930 0.142 0.07134
11532 88 500 0.959 0.138 0.07654 0.499 0.075 0.03795
11532 88 750 0.432 0.103 0.07988 0.432 0.062 0.02675
11532 88 1000 0.654 0.101 0.06035 0.320 0.045 0.02007
11532 88 2000 0.490 0.068 0.06295 0.182 0.026 0.00506
11532 88 5000 0.101 0.043 0.04319 0.101 0.015 0.00147
11532 88 10000 0.301 0.031 0.04802 0.071 0.012 0.00094
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E COMPARISON TO ¢/, LEVERAGE SCORES AND /; LEWIS WEIGHTS

Further baselines for subsampling the input that are used in the literature to approximate the objective functions
related to logistic regression, are sampling proportional to ¢;-leverage scores (Munteanu et al., 2022), resp. to
01-Lewis weights (Mai et al., 2021).

We compared our coresets to the ¢i-leverage scores, resp. f;1-Lewis weights, in terms of their approximation
quality, their mean absolute deviation (MAD) and their relative error.

Our IRT coresets show very similar, and often slightly better performance compared to both alternative sub-
sampling techniques, when applied to the synthetic, and the real-world data instances for the 2PL IRT model.

See Tables 14 to 16 below for the comparison of our coresets to sampling based on /;-leverage scores. Also, see
Tables 17 to 19 below for the comparison of our coresets to sampling based on ¢;-Lewis weights.

E.1 /;-Leverage Score Sampling

Table 14: 2PL experiments on synthetic data for ¢;-leverage score sampling coresets, vs. IRT coresets. Com-
parison of the best solutions found taken across 10 repetitions (each running 50 iterations of the main loop)
per data set for different configurations of the data dimensions: the number of items m, the number of ex-
aminees n, and the /;-leverage score sample/coreset size k. Let frun, fLis(j) and feore(j) be the optimal values
of the loss function on the input, on the distance sample for the j-th repetition, and on the coreset for the
J-th repetition, respectively. Let fiis = miny fiisj), and feore = min feore(j). Comparison made w.r.t. Rel-
ative errors: r.err. £p1s= |fiis — frnl/Srun, rve€rr.  Ecore= |feore — frunl/frun (cf. Lemma A.26), and Mean
Absolute Deviations (MAD): madeee() = %Zﬂafu” — Geore| + |bfull — beore|); Madeore(6) = i >0 — Ocorel-
madi1s(@) = £ 3 (lagun — atis| + |brun — bris|); madis(6) = = 37 |frun — Ouis|.

{1-score sampling coresets IRT coresets

n m k \ mad, s(a) mad;5(0) r.err. £y \ madeore(@) madeye(d) r.err. £core
50000 100 100 1.150 0.045 0.12357 1.108 0.045 0.13452
50000 200 500 0.466 0.009 0.04835 0.508 0.011 0.05214
50000 500 500 0.494 0.005 0.04893 0.525 0.008 0.04803
100000 100 100 1.149 0.036 0.10821 0.970 0.040 0.14776
100000 200 1000 0.377 0.009 0.03051 0.379 0.008 0.03404
100000 500 1000 0.353 0.005 0.03865 0.345 0.005 0.03140
200000 100 1000 0.323 0.006 0.03437 0.374 0.008 0.04400
200000 200 2000 0.290 0.003 0.02033 0.248 0.003 0.02375
200000 500 2000 0.252 0.002 0.02683 0.268 0.002 0.03013
500000 100 5000 0.183 0.002 0.01142 0.142 0.002 0.01399
500000 200 5000 0.169 0.002 0.01371 0.180 0.002 0.01689
500000 500 5000 0.166 0.001 0.01265 0.171 0.001 0.01445
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Table 15: 2PL experiments on real-world SHARE data for ¢;-leverage score sampling coresets, vs. IRT coresets.
Comparison of the best solutions found taken across 10 repetitions (each running 50 iterations of the main
loop) per data set for different configurations of the data dimensions: the number of items m, the number
of examinees n, and the /;-leverage score sample/coreset size k. Let fun, fris(j) and feore(j) be the optimal
values of the loss function on the input, on the distance sample for the j-th repetition, and on the coreset
for the j-th repetition, respectively. Let fii1s = ming fii(j), and feore = ming feore(j)- Comparison made w.r.t.
Relative errors: r.err. & 1s= |fiis — fanl/frun, re€rr. Ecore= |feore — frun|/frun (cf. Lemma A.26), and Mean
Absolute Deviations (MAD): madcee(e) = %Z(Mfu” — Geore| F |bfull — Deore|); madeore(0) = % > 10full — Ocore-
mad;15(e) = L Y (|agun — avis| + |brun — bris|); madis(6) = L 37 |0 — Ouis|.

{1-score sampling coresets IRT coresets

n m k \ mad, ;s(a) mad|5(0) r.err. £y \ madeyre(@) madeye(d) r.err. Ecore
138997 10 500 0.875 0.107 0.13267 0.770 0.090 0.11347
138997 10 1000 0.320 0.030 0.09216 0.307 0.040 0.06193
138997 10 2000 0.172 0.023 0.04204 0.129 0.015 0.04263
138997 10 4000 0.179 0.027 0.02958 0.108 0.013 0.02791
138997 10 6000 0.083 0.010 0.02851 0.095 0.007 0.03546
138997 10 8000 0.080 0.005 0.01958 0.061 0.007 0.01935
138997 10 10000 0.070 0.008 0.01386 0.092 0.014 0.02713
138997 10 20000 0.044 0.004 0.01200 0.045 0.003 0.01415

Table 16: 2PL experiments on real-world NEPS data for ¢;-leverage score sampling coresets, vs. IRT coresets.
Comparison of the best solutions found taken across 10 repetitions (each running 50 iterations of the main
loop) per data set for different configurations of the data dimensions: the number of items m, the number
of examinees n, and the /;-leverage score sample/coreset size k. Let frn, frisj) and feore(j) be the optimal
values of the loss function on the input, on the distance sample for the j-th repetition, and on the coreset
for the j-th repetition, respectively. Let fiis = min; fii(j), and feore = ming feore(j)- Comparison made w.r.t.
Relative errors: r.err. & 1s= |fiis — frnl/frun, r-€rre Ecore= |feore — frun|/ frun (cf. Lemma A.26), and Mean
Absolute Deviations (MAD): madcee(c) = %Z(Mfu” — Geore| F |bfull — Deore]); madeore(0) = % > 10sull — Ocore-
mad;15(e) = L Y (|lagun — avis| + |brun — bris|); madiis(6) = L 37 |0 — Ouis|.

{1-score sampling coresets IRT coresets

n m k \ mad, (o) mad|15(f) r.err. & s \ madeore(@) madeye(f) r.€rr. Ecgre
11532 88 100 1.388 0.191 0.06670 1.477 0.171 0.09335
11532 88 200 1.040 0.132 0.05428 0.930 0.142 0.07134
11532 88 500 0.559 0.082 0.02556 0.499 0.075 0.03795
11532 88 750 0.503 0.061 0.01956 0.432 0.062 0.02675
11532 88 1000 0.316 0.040 0.02133 0.320 0.045 0.02007
11532 88 2000 0.207 0.023 0.00468 0.182 0.026 0.00506
11532 88 5000 0.097 0.006 0.00162 0.101 0.015 0.00147
11532 88 10000 0.077 0.010 0.00194 0.071 0.012 0.00094
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E.2 /;-Lewis Weight Sampling

Table 17: 2PL experiments on synthetic data for Lewis weights sampling coresets, vs. IRT coresets. Comparison
of the best solutions found taken across 10 repetitions (each running 50 iterations of the main loop) per data
set for different configurations of the data dimensions: the number of items m, the number of examinees n,
and the Lewis weights sample/coreset size k. Let frun, fiewisj) and feore(;) be the optimal values of the loss
function on the input, on the distance sample for the j-th repetition, and on the coreset for the j-th repetition,
respectively. Let fiewis = Min; fiewis(j), and feore = min; feore(j). Comparison made w.r.t. Relative errors: r.err.
Elewis= | flewis — Srun|/ frunl, To€rT. Ecore= | feore — frun|/ frun (cf. Lemma A.26), and Mean Absolute Deviations (MAD):
Inadcore(a) = % Z(|afull - acore| + |bfu|| - bcore|); madcore(a) = % Z ‘gfull - 9core‘~ madlewis(a) = % Z(|afull - alewis| +
|bfuil — iewis|); madiewis(0) = L 3= |Ofun — Grewis| -

Lewis weights sampling coresets IRT coresets

n m k \ madiewis(@) madiewis(f) r.err. Eepis \ madeore(@) madeye(d) r.err. Ecore
50000 100 100 1.011 0.038 0.10458 1.108 0.045 0.13452
50000 200 500 0.515 0.011 0.05234 0.508 0.011 0.05214
50000 500 500 0.481 0.008 0.05444 0.525 0.008 0.04803
100000 100 100 1.149 0.043 0.09635 0.970 0.040 0.14776
100000 200 1000 0.342 0.008 0.02718 0.379 0.008 0.03404
100000 500 1000 0.338 0.005 0.03687 0.345 0.005 0.03140
200000 100 1000 0.378 0.007 0.03894 0.374 0.008 0.04400
200000 200 2000 0.311 0.003 0.02077 0.248 0.003 0.02375
200000 500 2000 0.257 0.003 0.02620 0.268 0.002 0.03013
500000 100 5000 0.169 0.002 0.01121 0.142 0.002 0.01399
500000 200 5000 0.164 0.002 0.01438 0.180 0.002 0.01689
500000 500 5000 0.165 0.001 0.01518 0.171 0.001 0.01445

Table 18: 2PL experiments on real-world SHARE data for Lewis weights sampling coresets, vs. IRT coresets.
Comparison of the best solutions found taken across 10 repetitions (each running 50 iterations of the main
loop) per data set for different configurations of the data dimensions: the number of items m, the number
of examinees n, and the Lewis weights sample/coreset size k. Let fui, fiewisj) and feore(jy be the optimal
values of the loss function on the input, on the distance sample for the j-th repetition, and on the coreset for
the j-th repetition, respectively. Let fiewis = min; fiewis(j), and feore = min; feore(j). Comparison made w.r.t.
Relative errors: r.err. Eiewis= |flewis — Srun|/ S, r-€rr. Ecore= |feore — faun|/frun (cf. Lemma A.26), and Mean
Absolute Deviations (MAD): madcee(a) = %Z(|afu|| — Geore| F |bfull — Deore|); madeore(0) = % > 10sull — Ocore-
madiewis(t) = £ 3 (|asun — Qlewis| + [bruil — brewis|); madiewis(0) = = 3 [6run — Grewis|.

Lewis weights sampling coresets IRT coresets

n m k \ madiewis(@) madiewis(f) r.err. Eepis \ madeore(@) madeye(d) r.err. Ecore
138997 10 500 0.400 0.057 0.07814 0.770 0.090 0.11347
138997 10 1000 0.277 0.019 0.10915 0.307 0.040 0.06193
138997 10 2000 0.467 0.053 0.03697 0.129 0.015 0.04263
138997 10 4000 0.147 0.015 0.02871 0.108 0.013 0.02791
138997 10 6000 0.119 0.011 0.02210 0.095 0.007 0.03546
138997 10 8000 0.086 0.011 0.01785 0.061 0.007 0.01935
138997 10 10000 0.053 0.005 0.01543 0.092 0.014 0.02713
138997 10 20000 0.045 0.007 0.01398 0.045 0.003 0.01415
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Table 19: 2PL experiments on real-world NEPS data for Lewis weights sampling coresets, vs. IRT coresets.
Comparison of the best solutions found taken across 10 repetitions (each running 50 iterations of the main
loop) per data set for different configurations of the data dimensions: the number of items m, the number
of examinees n, and the Lewis weights sample/coreset size k. Let fri, fiewis(j) and feore(jy be the optimal
values of the loss function on the input, on the distance sample for the j-th repetition, and on the coreset for
the j-th repetition, respectively. Let fiewis = min; fiewis(j), and feore = min; feore(j). Comparison made w.r.t.
Relative errors: r.err. Eiewis= |flewis — Srun|/ funl, r-€rr. Ecore= |feore — faun|/frun (cf. Lemma A.26), and Mean
Absolute Deviations (MAD): madeore(®) = £ S (|asull — Geore] + [Dful — beore|); Madeore(d) = % > 10sull — Ocore-

n

madiewis (@) = = 3 (|asu — Glewis| + [bfuil — Diewis|); madiewis(0) = = >~ |Ogun — Grewis-

Lewis weights sampling coresets IRT coresets

n m k \ madienis(@) madienis(f) r.€rr. Eiewis \ madeore(@) madeye(f) r.€rr. Ecgre
11532 88 100 1.276 0.165 0.09161 1.477 0.171 0.09335
11532 88 200 0.916 0.163 0.05222 0.930 0.142 0.07134
11532 88 500 0.563 0.082 0.02108 0.499 0.075 0.03795
11532 88 750 0.465 0.070 0.02639 0.432 0.062 0.02675
11532 88 1000 0.323 0.051 0.01581 0.320 0.045 0.02007
11532 88 2000 0.213 0.025 0.00563 0.182 0.026 0.00506
11532 83 5000 0.105 0.008 0.00011 0.101 0.015 0.00147
11532 88 10000 0.063 0.013 0.00174 0.071 0.012 0.00094
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F ON THE p-COMPLEXITY OF THE INPUT

In the theoretical part of this paper, we assumed the u-complexity parameter to be a constant. An interested
reader could ask: how large is this constant in reality, i.e., in the data sets we used to perform our experiments?

In (Munteanu et al., 2018) the value of yy was approximated up to a factor poly(d), in time polynomial in n and
d using linear programming, where d is the dimension of the parameter space. Recently, Dexter et al. (2023)
showed how to compute p; exactly using linear programming in polynomial time.

In this work, we have d = 2 for both, 2PL and 3PL models, and the definition of i is extended to be the
maximum of ug and p; across a wide sequence of iterations (cf. Section 2). Calculating 1 would thus require to
solve a huge number of LPs, which is not viable in our setting.

A good and fast approximation for p can be obtained by evaluating it on the optimal solutions which need to
be calculated anyway for the sake of comparison. Intuitively, this works since logistic regression is tending to
minimize the positive part (which corresponds to misclassifications), and to maximize the negative part (which
corresponds to correct classifications). This heuristic approach is useful and in practice but it gives only a lower
bound for p which can in principle be far from the actual value.

Since we use coresets only to reduce the number of examinees in our experiments (cf. Equation (6) for the 2PL
model, resp. optimizing f(w;,¢; | B) in the 3PL model, cf. Corollary A.24), we report only the values of 1o and
w1 for this case. That is, when X in the definition of u depends on the labels Y and the ability parameters B
of the complete input, while the supremum is taken over the item parameter vectors in A.

We present in Table 20 our estimates on p: the median, the mean and the maximum over all possible items.
On average the values of pg and pp are small constants ranging between 2 and 30. Only in rare cases p takes
large maximum values for some label vectors. We checked the corresponding labels, and found that the large
values occur only in degenerate cases, in which the maximum likelihood estimator of the model is undefined, for
example when an item is solved by all or none of the students.

Table 20: The approximated values of the parameters po and p1: the mean, median and maximum values over
all items ¢ € [m], where the abilities of n examinees and the respective labels are used as the input and for each
i the supremum is taken over item parameters a; € R2.

Mean Median Maximum
Experiment n m || o p | o fi1 | f4o f41
2PL-Synt 50000 100 7.85 25.65 5.80 18.09 48.21 165.28
2PL-Synt 50000 200 9.56  29.87 6.03 17.57 134.50 377.11
2PL-Synt 50000 500 || 10.41 31.31 5.95 17.20 305.75 703.92
2PL-Synt 100 000 100 7.86  25.79 5.85 18.16 48.48 164.74
2PL-Synt 100000 200 9.41 28.57 5.79 16.90 124.16 329.13
2PL-Synt 100 000 500 9.65 29.99 590 17.12 119.34 296.16

2PL-Synt 200000 100 7.84 2570 | 5.75 17.72 48.75 164.23
2PL-Synt 200000 200 || 10.05  29.10 | 5.95 17.50 372.83 715.77
2PL-Synt 200000 500 898 2738 | 5.84 16.95 282.29 557.48
2PL-Synt 500000 100 7.83  25.67 | 5.76 17.82 47.79 161.16
2PL-Synt 500000 200 9.66 2994 | 6.02 17.60 140.80 383.50
2PL-Synt 500000 500 8.90  27.61 5.82 16.76 148.79 427.87
2PL-Synt 500000 5000 || 11.22  34.18 | 6.29 19.10 | 1765.78 2503.41

2PL-SHARE 138997 10 || 12.87 121.51 | 11.86 63.58 33.21 382.89
2PL-NEPS 11532 88 7.05 14.02 | 3.02 5.16 58.14 153.18

3PL-Synt 50 000 100 3.39 3.36 | 2.00 2.01 38.00 37.03
3PL-Synt 50 000 200 5.23 5.19 | 215 215 120.95 118.47
3PL-Synt 100 000 100 3.38 3.35 | 2.00 2.00 37.99 36.90
3PL-Synt 100 000 200 5.30 5.25 | 219 219 136.93 133.64

3PL-Synt 200000 100 3.40 3.37 | 2.01 201 38.38 37.24
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