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Abstract

Deep neural networks (DNNs) have proven
to be highly effective in a variety of tasks,
making them the go-to method for problems
requiring high-level predictive power. Despite
this success, the inner workings of DNNs are
often not transparent, making them difficult
to interpret or understand. This lack of in-
terpretability has led to increased research
on inherently interpretable neural networks
in recent years. Models such as Neural Ad-
ditive Models (NAMs) achieve visual inter-
pretability through the combination of clas-
sical statistical methods with DNNs. How-
ever, these approaches only concentrate on
mean response predictions, leaving out other
properties of the response distribution of the
underlying data. We propose Neural Addi-
tive Models for Location Scale and Shape
(NAMLSS), a modelling framework that com-
bines the predictive power of classical deep
learning models with the inherent advantages
of distributional regression while maintain-
ing the interpretability of additive models.
The code is available at the following link:
https://github.com/AnFreTh/NAMpy

1 Introduction

Deep learning models have shown impressive perfor-
mances on a variety of predictive tasks. These models
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represent the forefront of technology for handling un-
structured data tasks, including but not limited to
image classification (Yu et al., 2022; Dosovitskiy et al.,
2020), text classification (Huang et al., 2021; Lin et al.,
2021), audio classification (Nagrani et al., 2021), time-
series forecasting (Zhou et al., 2022; Zeng et al., 2022)
and numerous other applications. However, the pre-
dictive performance comes not only at the price of
computational demands. The black-box nature of deep
neural networks poses hard challenges to interpretabil-
ity. To achieve sample-level interpretability, existing
methods resort to model-agnostic methods. Locally In-
terpretable Model Explanations (LIME) (Ribeiro et al.,
2016) or Shapley values (Shapley, 1953) and their ex-
tensions (Sundararajan and Najmi, 2020) try to explain
model predictions via local approximation and feature
importance. Sensitivity-based approaches (Horel and
Giesecke, 2020), exploiting significance statistics, can
only be applied to single-layer feed-forward neural net-
works and can hence not be used to model difficult
non-linear effects, requiring more complex model struc-
tures.

Subsequently, high-risk domains, such as medical appli-
cations often cannot exploit the advantages of complex
neural networks due to their lack of innate interpretabil-
ity. The creation of these innately interpretable models
hence remains an important challenge. Achieving the
interpretability from flexible statistical models as Gen-
eralized Linear Models (GLMs) (Nelder and Wedder-
burn, 1972) or Generalized Additive Models (GAMs)
(Hastie, 2017), in deep neural networks, however, is
inherently difficult. Recently, Agarwal et al. (2021)
introduced Neural Additive Models (NAMs), a frame-
work that models all features individually and thus
creates visual interpretability of the single features.
While this is an important step towards interpretable
deep neural networks, any insightfulness of aspects
beyond the mean is lost in the model structure. To
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counter that, we propose the neural counterpart to
Generalized Additive Models for Location, Scale and
Shape (GAMLSS) (Rigby and Stasinopoulos, 2005),
the Neural Additive Model for Location, Scale and
Shape (NAMLSS). NAMLSS adopts and iterates on
the model class of GAMLSS, in the same scope as
NAMs (Agarwal et al., 2021) on GAMs.

The GAMLSS framework relaxes the exponential family
assumption and replaces it with a general distribution
family. The systematic part of the model is expanded
to allow not only the mean (location) but all the param-
eters of the conditional distribution of the dependent
variable to be modelled as additive nonparametric func-
tions of the features, resulting in the following model
notation:

θ(k) = g(k)
−1

β(k) +

Jk∑
j=1

f
(k)
j (x

(k)
j )

 = ηθ(k) ,

with the superscript k = 1, . . . ,K denoting the k-th
parameter and j = 1, . . . , J denoting the features.

The model assumes that the underlying response ob-
servations yi for i = 1, 2, . . . , n are conditionally inde-
pendent given the covariates. The assumed conditional
density can depend on up to K different distributional
parameters1. Each of these distribution parameters
θ(k) can be modelled using its additive predictor ηθ(k)

for k = 1, . . . ,K, allowing for complex relationships
between the response and predictor variables, as well
as the flexibility to choose different distributions for
different parts of the response variable. An additional
important component of the GAMLSS model is the link
function g(k)(·), which allows each parameter of the
distribution vector to be conditional on different sets
of covariates. In the case that the distribution under
consideration features only one distribution parameter,
the model simplifies to an ordinary GAM model. There-
fore, GAMLSS is to be seen as a conceptual extension
of the GAM idea and is suitable for the extension and
generalisation of approaches such as NAMs which are
themselves built upon the GAM idea. For an overview
of the current state of regression models that focus on
the full response distribution approaches, see Kneib
et al. (2021).

While NAMs learn linear combinations of different in-
put features to learn arbitrary complex functions and at
the same time provide improved interpretability, these
models, like their statistical counterparts GAMs, focus
exclusively on modelling mean and dispersion. In con-

1In practice most application focus on up to four θi =(
θ
(1)
i , θ

(2)
i , θ

(3)
i , θ

(4)
i

)
.

trast, the GAMLSS, and later the proposed NAMLSS,
significantly broaden the scope by allowing all underly-
ing parameters of the response distribution to poten-
tially depend on the information in the covariates.

Contributions The contributions of the paper hence
can be summarized as follows:

• We present a novel architecture for Neural Additive
Models for Location, Scale and Shape.

• Compared to state-of-the-art GAM, GAMLSS and
DNNs our NAMLSS demonstrates superior perfor-
mance on benchmark datasets.

• We demonstrate that NAMLSS effectively captures
the information underlying the data. Especially
NAMLSS allows for prediction beyond point esti-
mates, for instance prediction intervals.

• Lastly, we show that the NAMLSS approach allows
to go beyond the mean prediction of the response
and to model the entire response distribution.

2 Literature Review

The idea of generating feature-level interpretability in
deep neural networks by translating GAMs into a neu-
ral framework was already introduced by Potts (1999)
and expanded by de Waal and du Toit (2007). While
the framework was remarkably parameter-sparse, it
did not use backpropagation and hence did not achieve
as good predictive results as GAMs, while remaining
less interpretable. More recently, Agarwal et al. (2021)
introduced NAMs, a more flexible approach than the
Generalized Additive Neural Networks (GANNs) intro-
duced by de Waal and du Toit (2007) that leverages
the recent advances in the field of Deep Learning.

NAMs are a class of flexible and powerful machine
learning models that combine the strengths of neural
networks and GAMs. These models can be used to
model complex, non-linear relationships between re-
sponse and predictor variables, and can be applied to
a wide range of tasks including regression, classifica-
tion, and time series forecasting. The basic structure
of a NAM consists of a sum of multiple components,
each representing a different aspect of the relationship
between the response and predictor variables. These
components can be linear, non-linear, or a combination
of both, and can be learned using a variety of optimiza-
tion algorithms. One of the key advantages of NAMs is
their inherent ability to learn the interactions between
different predictor variables and the response without
the need for manual feature engineering. This allows
NAMs to capture complex relationships in the data
that may not be easily apparent to the human eye.
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The general form of a NAM can be written as:

E(y) = h

β +

J∑
j=1

fj(xj)

 , (1)

where h(·) is the activation function used in the output
layer, x ∈ Rj are the input features, β is the global
intercept term, and fj : R → R represents the Multi-
Layer Perceptron (MLP) corresponding to the j-th
feature. The similarity to GAMs is apparent, as the
two frameworks mostly distinguish in the form the
individual features are modelled. h(·) is comparable to
the link function g(·).

Several extensions to the NAM framework have already
been introduced. It is possible to take into account
pairwise or higher order interaction effects (Yang et al.,
2021; Enouen and Liu, 2022; Wang et al., 2021; Dubey
et al., 2022). Chang et al. (2021) introduced NODE-
GAM, a differentiable model based on oblivious neural
decision trees developed for high-risk domains. All
these models follow the additive framework from GAMs
and learn the nonlinear additive features with separate
networks, one for each feature or feature interaction,
either leveraging MLPs (Potts, 1999; de Waal and
du Toit, 2007; Agarwal et al., 2021; Yang et al., 2021;
Radenovic et al., 2022), using decision trees (Chang
et al., 2021) or using Splines (Rügamer et al., 2020;
Seifert et al., 2022; Luber et al., 2023).

The applications of such models range from nowcasting
(Jo and Kim, 2022), financial applications (Chen and
Ye, 2022), to survival analysis (Peroni et al., 2022).
While the linear combination of neural subnetworks
provides a visual interpretation of the results, any in-
terpretability beyond the feature-level representation
of the model predictions is lost in their black-box sub-
networks.

3 Beyond the Mean

Obviously, the mean (or the arithmetic mean as its em-
pirical counterpart) provides only a rather incomplete
description of a probability distribution (the empiri-
cal distribution of corresponding observations, in case
of the arithmetic mean). While this fact is widely ac-
knowledged when it comes to exploratory data analysis,
it is also widely ignored in the context of prediction
models where the focus is typically on predicting ex-
pected outcomes. This narrow focus reflects an interest
in common or average observations, but is misleading
when phenomena such as risk, extremes, or uncertainty
are central to an analysis. With the GAMLSS-based
framework considered in this paper, we are able to
quantify effects of covariates not only on the mean, but

Figure 1: Johnson’s SU Distribution: Simulated
Johnson’s SU distribution and the fit of a simple
NAMLSS (see Figure 6) and a MLP. While the MLP
achieves an impressive fit concerning the quadratic loss,
it clearly cannot capture the underlying distribution
adequately.

on any parameter of a potentially complex distribution
assumed for the responses. As major advantage, the
resulting models can determine changes in all aspects
of the response distribution, such as variance, skewness
or tail probabilities. This also contributes to properly
disentangling aleatoric from epistemic uncertainty.

Changing the focus from regression models for the mean
to regression for distributions also requires changes in
the evaluation metric that is used to compare rivalling
model specifications. More precisely, the evaluation
metric should be proper (Gneiting and Raftery, 2007),
i.e. enforce the analyst to report their true beliefs in
terms of a predictive distribution. While the MSE
that is commonly employed in mean-based modelling is
proper for the mean, it is not for general distributions.
We therefore will rely on the negative log-likelihood
(also refereed to as the log-score) as a proper score
for comparing distributional regression models (see
Supplemental Material for details). Additionally to the
negative log-likelihood, we use the Continuous Ranked
Probability Score (Gneiting and Raftery, 2007) for
model evaluation, given by:

CRPS(F, x) = −
∫ ∞

−∞
(F (y)− 1y≥x)

2 dy.

Note that the CRPS is also defined for models not
specifically predicting all distributional parameters and
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thus allows a fair distributional comparison for all
tested models:

CRPS(p, x) =
1

2

(
Ep|X [|X −X| − Ep|X [|X − x|]

)
.

See Gneiting and Raftery (2007) for more details.

While predicting all parameters from a distribution may
not always improve predictive power, understanding
the underlying data distribution is crucial in high-risk
domains and can provide valuable insights about fea-
ture effects. As an example, Figure 1 illustrates the
fit of our approach on data following a Johnson’s SU

distribution, including 3 features, compared to the fit of
a MLP that minimizes the Mean Squared Error (MSE).
The MLP has a better predictive performance with an
MSE of 0.0002, however, NAMLSS is able to reflect
the underlying data distribution much more accurately
(as shown in Figure 1), even though it has an MSE of
0.0005.

The idea of focusing on more than the underlying mean
prediction is thus certainly relevant and has been an
important part, especially of the statistical literature
in recent years. There has been a strong focus on the
GAMLSS (Rigby and Stasinopoulos, 2005) framework,
conditional transformation models (Hothorn et al.,
2014), density regression (Wang et al., 1996) or quantile
and expectile regression frameworks. However, these
methods are inferior to machine and deep learning
techniques in terms of pure predictive power; the dis-
advantage of not being able to deal with unstructured
data forms such as images, text or audio files; or the
inherent problems of statistical models in dealing with
extremely large and complex data sets. One resulting
development to deal with these drawbacks is frame-
works that utilize statistical modelling methods and
combine them with machine learning techniques such
as boosting to create new types of distributional re-
gression models such as boosted generalized additive
model for location, scale and shape as presented by
Hofner et al. (2014). More recently, there has been an
increasing trend in incorporating distributional strate-
gies within black-box boosting frameworks, often by
modifying the model’s objective function (e.g. (Duan
et al., 2020; März and Kneib, 2022), through ensemble
methods (Malinin et al., 2020) or by leveraging normal-
izing flows (Wielopolski and Zieba, 2022). However,
the models leveraging boosting techniques, while suc-
cessfully modelling all distributional parameters, lack
the inherent interpretability from GAMLSS or even the
visual interpretability from NAMs. Consequently, the
benefits of analyzing individual feature contributions
to distributional parameters, such as the variance in a
normal distribution, may not be fully realized.

4 Methodology

While NAMs incorporate some feature-level inter-
pretability and hence entail easy interpretability of
the estimated regression effects, they are unable to
capture skewness, heteroskedasticity or kurtosis in the
underlying data distribution due to their focus on mean
prediction. Therefore, the presented method is the neu-
ral counterpart to GAMLSS, offering the flexibility and
predictive performance of neural networks while main-
taining feature-level interpretability and which allows
estimation of the underlying total response distribu-
tion.

Let D = {(x(i), y(i))}ni=1 be the training dataset of
size n. Each input x = (x1, x2, . . . , xJ) contains J
features. y denotes the target variable and can be
arbitrarily distributed. NAMLSS are trained by mini-
mizing the negative log-likelihood as the loss function,
− log (L(θ|y)) by optimally approximating the distri-
butional parameters, θ(k). Each parameter, θ(k), is
defined as:

θ(k) = h(k)

β(k) +

J∑
j=1

f
(k)
j (xj)

 , (2)

where h(k)(·) denotes the output layer activation func-
tions dependent on the underlying distributional pa-
rameter, β(k) denotes the parameter-specific intercept

and f
(k)
j : R → R represents the feature network for

parameter k for the j-th feature, subsequently called
the parameter-feature network.

Just as in GAMLSS, θ(k) can be derived from a subset
of the J features, however, due to the inherent flexibil-
ity of the neural networks, defining each θ(k) over all
J is sufficient, as the individual feature importance for
each parameter, θ(k), is learned automatically. Each

parameter-feature network, f
(k)
j , can be regularized em-

ploying regular dropout coefficients in conjunction with

feature dropout coefficients, λ
(k)
1j and λ

(k)
2j respectively,

as also implemented by Agarwal et al. (2021).

We propose two different network architectures that
can both flexibly model all distributional parameters.
The first model architecture, possible due to the flex-
ibility of neural networks is depicted in Figure 2 and
creates J subnetworks, with each subnetwork having
a K-dimensional output layer. This architecture thus
creates the same number of subnetworks as a common
GAM and differs from the classical GAMLSS archi-
tecture as it comprises less feature networks/shape
functions. Each distributional parameter, θ(k), is sub-
sequently obtained by summing over the k-th output
of the J subnetworks. Every dimension in the output
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Figure 2: The network structure of a NAMLSS model. Each input variable is handled by a different neural network

with k outputs for each distributional parameter. h(k) are different activation functions depending on the distributional
parameter that is modelled. E.g. a quadratic transformation for modelling the variance in a normally distributed variable
to ensure the non-negativity constraint. The presented structure demonstrates a NAMLSS modelling a distribution with
two parameters, e.g. a normal distribution.

layer can be activated using different activation func-
tions, according to parameter restrictions. This allows
the capture of interaction effects between the distribu-
tional parameters in each of the subnetworks. Equation
2 would only slightly be adjusted, to account for the
subnetwork fj now mapping to Rk, fj : R → Rk:

θ(k) = h(k)

β(k) +

J∑
j=1

fj(xj) [:, k]

 , (3)

with [:, k] denoting an index and representing the k−th
index of fj : R → Rk. Note, that the superscript (k) is
missing from the subnetwork fj , as only J subnetworks
are trained. For instance, consider a simple example of
a normal distribution: µ̂ = h(0) + β(0)

∑J
j=1 fj(xj)[:, 0]

(with Pythonic indexing where 0 is the first index),

and σ̂ = g
(
h(1) + β(1)

∑J
j=1 fj(xj)[:, 1]

)
, where g(·)

describes the softplus activation function, g(x) =
log(1 + ex) since σ ∈ R+. For µ, g(·) is simply the
linear activation and thus neglectable as µ ∈ R. These
predictions are directly utilized in the loss function and
thus serve as parameters for the negative log-likelihood,
which, for the normal distribution, is given by:

−1 · log
(
L(µ̂, σ̂2|y)

)
=

n

2
log(2πσ̂2)+

1

2σ̂2

n∑
i=1

(yi− µ̂)2.

The negative log-likelihood is then minimized using gra-
dient descent, similar to standard neural networks. The
additivity constraint serves two important purposes:
First, as an additional regulator against overfitting, and

second, to ensure interpretability. This constraint al-
lows to visualize all feature effects on all distributional
parameters. In terms of interpretability, accounting
for uncertainty can be highly beneficial, particularly
in domains such as healthcare and biology, where the
impact of feature variance on outcomes is critical.

The second proposed architecture is depicted in Figure
6 in the Supplemental Material and creates J subnet-
works for each of the K distributional parameters and
thus much more resembles the classical GAMLSS archi-
tecture2. Each distributional subnetwork is comprised

of the sum of the parameter-feature networks f
(k)
j .

Hence we create K × J parameter-feature networks as
denoted in equation 2. To account for distributional
restrictions, each distributional subnetwork is again
specified with possibly differing activation functions in
the output layer.

Figure 3 demonstrates the accurate parameter fit of
NAMLSS for a Johnson’s SU distribution. Each pa-
rameter is depicted in a different row. The black line
shows the data generating functions. The simulated
feature effects (columns) are accurately captured over
all of the 150 runs for all 4 distributional parameters.

2Note, that for distributions where only one parameter
is modelled, the two proposed NAMLSS structures are
identical.
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Figure 3: NAMLSS distributional parameter prediction for a Johnson’s SU Distribution over 150 runs. NAMLSS accurately

detects the feature effects of x1 and x2 on all distributional parameters, θ(1) the mean, θ(2) the standard deviation, θ(3)

the skewness and θ(4) the tailweight.

5 Benchmarking

To demonstrate the competitiveness of the presented
method, we perform several analyses. First, we com-
pare NAMLSS with the most common statistical distri-
butional regression approach GAMLSS (Stasinopoulos
et al., 2000).

Synthetic data comparison study The synthetic
data used for this task is generated from the same un-
derlying processes. Five features are included in each
application. The data-generating functions used to
generate the true underlying distributional parameters
can be found in the Supplemental Material 8.3.1. Each
of the five input vectors xj is sampled from a uniform
distribution U(0, 1), with a total of n = 3000 obser-
vations per data set. The remaining parameters are
generated based on the input vectors and the chosen
distribution. We selected distributions that are widely
used, popular in science, or relatively complex to reflect
a diverse range of scenarios. The results can be found
in Table 1.

We find that the presented NAMLSS outperforms
GAMLSS for all distributions except the Poisson dis-
tribution. This can be attributed to the fact that the
Poisson distribution only involves a single distributional
parameter.

Experiments with Real World Data We compare
the performance of NAMLSS with several state-of-the-
art models including neural as well as non-neural ap-

Table 1: Results for Synthetic data: We compare
NAMLSS with the baseline of additive distributional models,
GAMLSS.

Distribution GAMLSS NAMLSS

Neg Log-Likelihood ↓
Binomial 397 274
Poisson 800 802
Normal 600 589
Inv. Gaussian 385 377
Weibull 625 621
Johnson’s SU 370 326
Gamma 426 410
Logistic 731 682

proaches and orientate on the benchmarks performed
by Agarwal et al. (2021).

Additionally, we compare related methods of
distribution-focused data analysis approaches that over-
come the focus on relating the conditional mean of the
response to features and instead target the complete
conditional response distribution. Note, that we include
the mean-centric models as a method to demonstrate
the advantages of distributional approaches, partic-
ularly in terms of proper scoring metrics (negative
log-likelihood, CRPS). Where no closed-form solution
for the CRPS exists (Inverse Gamma distribution),
we report the Kullback-Leibler Divergence. We have
selected the following baselines for the comparisons:

The Multilayer Perceptron (MLP). Gradient Boosted
Trees (XGBoost), based on decision tree-based gradient
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Table 2: Average Rank table: The average rank over all
models over all real world datasets. Both NAMLSS architec-
tures outperform the mean reducing models by a large margin.
We find the second NAMLSS architecture that captures pa-
rameter interaction effects to outperform the vanilla additive
structure.

Model Avg. Rank LL Avg. Rank CRPS/KL

MLP 7.4 6.8
XGBoost 8.2 7.4
NAM 7.4 7.5
EBM 6.5 6.1
NodeGAM 7.8 7.5
DDNN 4.0 2.1
GAMLSS 4.5 6.0
gamboostLSS 4.2 5.3

NAMLSS1 1.9 3.1
NAMLSS2 1.6 1.9

1 With J ×K subnetworks
2 With J subnetworks

boosting using the implementation provided by (Chen
and Guestrin, 2016). Neural Additive Models (NAMs),
represented as a linear combination of DNNs as de-
scribed in equation (1) and presented by (Agarwal et al.,
2021). Explainable Boosting Machines (EBMs), which
are state-of-the-art Generalized Additive Models lever-
aging shallow boosted trees (Nori et al., 2019). Neural
Generalized Additive Model (NodeGAM), leveraging
Neural Oblivious Decision Trees (Chang et al., 2021).
The Deep Distributional Neural Network (DDNN), a
fully connected neural network trained to minimize
the negative log-likelihood of the specified distribution.
GAMLSS, employing standard GAMLSS models using
the R implementation from (Rigby and Stasinopoulos,
2005). gamboost for Location Scale and Shape (gam-
boostLSS), fitting GAMLSS by employing boosting
techniques as proposed by (Hofner et al., 2014).

These baseline models provide a diverse set of tech-
niques for our comparative analysis.

We preprocess all used datasets exactly as done by Agar-
wal et al. (2021). We perform 5-fold cross-validation
for all datasets and report the average performances
over all folds as well as the standard deviations. For
reproducability, we have only chosen publicly available
datasets. The datasets, as well as the preprocessing
and the seeds set for obtaining the folds, are described
in detail in the Supplemental Material, 8.3.1. We fit
all models without an intercept and explicitly do not
model feature interaction effects.

For datasets following a Gaussian distribution we
use the California Housing (CA Housing) dataset

(Pace and Barry, 1997) from sklearn (Pedregosa et al.,
2011), the Insurance dataset Lantz (2019), the Abalone
dataset (Dua and Graff, 2017) and standard normalize
the response variables. Thus, a normal distribution
N

(
µ, σ2I

)
of the underlying response variables is as-

sumed. This notably serves the objective of illustrat-
ing that, even in scenarios where mean-centric models
designed to minimize the MSE should theoretically
excel, they fall short in comparison to distributional
approaches3. For a (binary) classification benchmark
we use the FICO dataset (FICO, 2018), the Shrutime
dataset and the Telco dataset. A logistic distribu-
tion, LO (µ, s), of the underlying response variable was
assumed (see equation (8.2.1) for the log-likelihood).
Again, we use the true standard deviation of the un-
derlying data for the models only resulting in a mean
prediction. For the Melbourne and Munich datasets,
also analyzed by Rügamer et al. (2020), we assume
an Inverse Gamma distribution IG(α, β) as the under-
lying data distribution (see equation (8.2.1) for the
log-likelihood)4.

The NAMLSS approach achieves the lowest negative
log-likelihood and CRPS values for all of the datasets as
shown in table 2. The architecture that implicitly cap-
tures the distributional parameter interactions slightly
outperforms the architecture more closely related to
GAMLSS.

One of the strengths of the NAMLSS, in contrast to
the DNNs, is its interpretability at the feature level.
Similar to NAMs, we can plot and visually analyze
the results (see Figures 4 and 5). Additionally, we
are able to accurately depict shifts in variance in the
underlying data. It is, for example, clearly distinguish-
able, that with a larger median income, the house
prices tend to vary much stronger than with a smaller
median income (see Figure 4). A piece of informa-
tion, that is lost in the models focusing solely on mean
predictions Additionally, we are capable of accurately
representing sharp price jumps around the location of
San Francisco, depicted by the jumps in the graphs for
longitude and latitude (see Figure 5) as compared to
GAMLSS, NAMLSS are additionally capable of repre-
senting jagged shape functions.

3As the (negative) log-likelihood of a normal distribu-
tion (see equation (8.2.1)) is dependent on two parameters,
but models as an MLP or XGBoost only predict a single
parameter, we adjust the computation accordingly and use
the true standard deviation calculated from the underlying
data for XGBoost, EBM, NAM and MLP.

4See Supplemental Material for further details on acti-
vation functions.
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Table 3: Benchmark results: For models not explicitly modelling a shape parameter, the shape is approximated with a
constant as the true standard deviation of the dependent variable. Lower negative log-likelihoods (ℓ) are better. We report
results on 6 commonly used datasets (see Supplemental Material for further results). The California Housing dataset for
predicting house prices (Pace and Barry, 1997), an Insurance dataset for predicting billed medical expenses (Lantz, 2019),
the Abalone dataset for predicting number of rings in trees (Dua and Graff, 2017), two AirBnb datasets and the FICO
dataset for predicting Risk Performance.

Negative Log-Likelihood ℓ (↓)
Normal Inv. Gamma Logistic

Model CA Housing Insurance Abalone Munich Melbourne FICO

MLP 4191 ±(42) 266.8 ± (11) 966.2 ±(27) 6827 ± (178) 22999 ± (232) 1813 ±(6)
XGBoost 4219 ±(40) 266.8 ± (9) 982.0 ±(33) 5618 ± (152) 20471 ± (242) 1976 ±(13)
NAM 4251 ±(43) 474.7 ± (73) 956.8 ±(22) 5892 ± (37) 25375 ± (844) 1809 ± (8)
EBM 4202 ±(42) 263.8 ± (10) 965.1 ±(22) 5474 ± (56) 20361 ± (207) 1944 ±(21)
NodeGAM 4206 ±(89) 279.1 ± (11) 958.3 ±(23) 5984 ± (135) 21896 ± (261) 1942 ±(21)
DDNN 2681 ±(1279) 178.2 ± (30) 897.2 ±(159) 5555 ± (34) 20790 ± (29) 1230 ± (48)
GAMLSS 3512 ±(67) 175.5 ± (28) 870.8 ±(16) 5419 ± (61) 26353 ± (45) 1321 ± (30)
gamboostLSS 3812 ±(52) 173.0 ± (28) 815.1 ± (29) 5421 ± (33) 26436 ± (48) 1191 ± (30)

NAMLSS1 2667 ± (91) 172.7 ± (23) 869.8 ±(118) 5383 ± (24) 19517 ± (68) 1201 ± (41)
NAMLSS2 2329 ± (176) 172.6 ± (20) 802.3 ±(41) 5422 ± (22) 19675 ± (67) 1160 ± (49)

1 With J ×K subnetworks. See Table 6 for an exemplary network structure.
2 With J subnetworks and each subnetwork returning a parameter for the location and shape respectively. See
Table 2 for an exemplary network structure.

Figure 4: California Housing: Graphs for median income
and population respectively learned by the NAMLSS model.
We see an increase in housing prices with a larger median
income. Additionally, we find a larger variance in housing
prices in less densely populated areas.

Figure 5: California Housing: Graphs for longitude
and latitude respectively learned by the NAMLSS model.
NAMLSS captures changes in mean as well as variance.
Therefore, the plotted standard deviations change in de-
pendence of the longitude and latitude. The house price
jumps around the location of Los Angeles are depictable.
Additionally, we find a decrease in variance for areas further
away from the large cities.

6 Conclusion & Future Work

We have presented Neural Additive Models for Loca-
tion, Scale and Shape and their theoretical foundation
as the neural counterpart to GAMLSS. NAMLSS can
model an arbitrary number of parameters of the under-
lying data distribution while preserving the predictive
quality of NAMs. The visual intelligibility achieved by
NAMs is also maintained by NAMLSS, with the added
benefit of gaining further insights from knowledge of ad-
ditional distribution characteristics. Hence, NAMLSS
are a further step in the direction of fully interpretable
neural networks and already offer interpretability that
may make them suitable for high-risk domains.

The extensibility of NAMLSS offers many different fur-
ther applied and theoretical research directions. One
important point is the extension of the modelling of the
distribution of the response variable. Many empirical
works focus on modelling not just one, but several re-
sponses conditionally on covariates. One way to do this
is to use copula methods, which are a valuable extension
of our approach, hence including a copula-based ap-
proach for NAMLSS models would greatly improve the
overall general usefulness. Another possible extension
would be the adaptation to mixture density networks,
as e.g. done by Seifert et al. (2022). Another possible
focus is to switch our approach to a Bayesian-based
training approach. Bayesian approaches are particu-
larly well suited to deal with epistemic uncertainty and
to incorporate it into the modelling. Another advantage
is that Bayesian approaches are particularly suitable in
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cases where insufficiently small training datasets have
to be dealt with and have been shown to have better
prediction performance in these cases.

NAMLSS, akin to NAM, EBM and Node-GAM ini-
tially centers on tabular data. However, the model
seamlessly extends its capability to encompass multi-
modal data by incorporating components such as a
CNN for images as one of the feature networks. In this
context, each distributional parameter is modelled by:

θ(k) = g
(
h(k) + β(k)

∑J
j=1 fj(xj)[:, k] + fimg(Z)[:, k]

)
,

where Z represents an image input and fimg(Z) de-
notes e.g. a CNN. Further identifiability constraints
such a orthogonalization (Rügamer, 2023) could be
added to account for identifiability of the image effects.

7 Limitations

Although the presented method of NAMLSS takes ad-
vantage of the interpretation capabilities of the NAM
framework and thus offers a better and easier interpre-
tation of the results compared to pure deep learning
approaches, it is still beholden to classical statistical
models with their inherent interpretability and explain-
ability. A critical point in the application of our pro-
posed method, as well as comparable distributional
statistical methods, is the choice of the correct distribu-
tional assumptions. The choice of the assumed distribu-
tion can strongly influence the results of the model. Our
approach requires some basic mathematical-statistical
knowledge from the user. Also, the understanding that
the presented approach focuses on (log)-likelihood and
thus deviates from the classical approach of simply
minimising an error measure may require some users
to rethink their understanding of the model results.
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structured additive models and deep learning. arXiv
preprint arXiv:2002.05777.

Seifert, Q. E., Thielmann, A., Bergherr, E., Säfken, B.,
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8 Supplemental Material for NAMLSS

8.1 Network architecture

We propose two different network architectures that can both flexibly model all distributional parameters. One is
depicted in Figure 6 and creates J subnetworks for each distributional parameter. Each distributional subnetwork

is comprised of the sum of f
(k)
j . Hence we create K × J subnetworks. To account for distributional restrictions,

each distributional subnetwork is specified with possibly differing activation functions in the output layer.

The second model architecture is depicted in Figure 2. Here we only create J subnetworks and hence have the
same amount of subnetworks as a common NAM. Each subnetwork then has a k-dimensional output layer. Each
distributional Parameter, θ(k), is subsequently obtained by summing over the k-th output of the J subnetworks.
Each dimension in the output layer can be activated using different activation functions, adjusting to parameter
restrictions.

Figure 6: The network structure of a simple NAMLSS model. Each input variable as well as each distributional parameter
is handled by a different neural network. hk are different activation functions depending on the distributional parameter
that is modelled. E.g. a quadratic transformation for modelling the variance in a normally distributed variable to ensure
the non-negativity constraint.
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8.2 Scoring

We use negative-log likelihoods as well as the CRPS for evaluation metrics. All used log-likelihoods are given in
the following.

8.2.1 Log-Likelihoods

As the presented method minimizes negative log-likelihoods, we created a comprehensive list of all the log-
likelihoods of the distributions used in the paper. When we reference the results of NAMLSS these are the
log-likelihoods we used for fitting the models as well as evaluating them.

(Bernoulli) Logistic Distribution The log-likelihood function for a logistic distribution is given by:

log (L(µ, σ|y)) =
n∑

i=1

[
yi log(

1

1 + e−(
yi−µ

σ )
) + (1− yi) log(1−

1

1 + e−(
yi−µ

σ )
)

]
,

with n is as the number of observations and the parameters location µ ∈ R, scale σ ∈ R+ and x ∈ R.

Binomial Distribution The log-likelihood function for a binomial distribution is given by:

log (L(k|n, p)) = k log(p) + (n− k) log(1− p) + log

((
n

k

))
,

where n is the number of trials, the parameters success probability is given by p ∈ [0, 1] and the number of
successes is denoted as k ∈ N0.

Inverse Gamma Distribution The log-likelihood function of the inverse gamma distribution is defined as:

log (L(α, β|y)) = −n (α+ 1) log y − n log Γ(α) + nα log β −
n∑

i=1

βy−1
i .

with α > 0 and β > 0 and where the upper bar operand indicates the arithmetic mean

Normal Distribution The log-likelihood function for a normal distribution is given by:

log
(
L(µ, σ2|y)

)
= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − µ)2,

where n is the underlying number of observations and parameters y ∈ R, location µ ∈ R and scale σ ∈ R+.

Inverse Gaussian Distribution The log-likelihood function of the inverse Gaussian distribution is given by:

log (L(µ, σ|x)) = n

2
ln(σ)−

n∑
i=1

σ(xi − µ)2

2µ2xi
,

with n is as the number of observations and the parameters location µ ∈ R+, scale σ ∈ R+ and x ∈ R+.

Poisson Distribution The log-likelihood function for a Poisson distribution with parameter λ is given by:

log (L(λ|x)) =
n∑

i=1

[xi log(λ)− λ− log(xi!)]

where x = (x1, x2, ..., xn) is the sample, n is the number of observations and xi are non-negative integers.
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Johnson’s SU The log-likelihood function of the Johnson’s SU distribution is defined as:

log (L(β, ω, µ, σ|y)) = n log

[
β

ω
√
2π

]
− β2

2ω2

n∑
i=1

[
(yi − µ)2

σ2
+ ln

(
1 +

(yi − µ)2

ω2σ2

)]
,

with n is as the number of observations and the parameters location µ ∈ R, scale σ ∈ R+, shape ω ∈ R+, skewness
β ∈ R and y ∈ R.

Weibull The log-likelihood function of the Weibull distribution is defined as:

log (L(λ, β, |y)) = n lnβ − nβ lnλ−
n∑

i=1

(yi
λ

)β

+ (β − 1)

n∑
i=1

ln yi,

with n is the number of observations and with the location λ ∈ R+, the shape β ∈ R+ and y ∈ R+.

8.2.2 Deviance Measures

We use several deviance measures, to evaluate the model

Mean Squared Error The mean squared error is defined as :

MSE =
1

n

n∑
i=1

(yi − ŷi)
2.

Mean Gamma Deviance The mean gamma deviance used for the AirBnB dataset is defined as:

D =
2

n

n∑
i=1

log

(
ŷi
yi

)
.

Area Under the Curve We use the Riemannian formula for the AUC. Hence the area of rectangles is defined
as:

AR =
∑
i

= 1n−1f(xi)∆x,

and hence with larger n, the definite integral of f from a to b is defined as:

∫ b

a

f(x)dx = lim
n→∞

n−1∑
i=0

f(xi)∆x.
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8.3 Further Benchmark Results

All Benchmark results are given below. Additionally to the negative log-likelihood and the CRPS we include
the presented deviance measures. As expected, mean centric models such as NAM, EBM perform well for the
mean centric metrics. Additionally, similar to figure 3 we present the same simulation for a normal distribution:
Furthermore, we present that NAMLSS accurately captures the mean effects as well as the variance effects for
the same features as used in the original NAM paper (Agarwal et al., 2021). The single feature longitude and
latitude effect for the California Housing dataset are accurately captured.

Figure 7: NAMLSS distributional parameter prediction for
a Normal Distribution over 150 runs. NAMLSS accurately
detects the feature effects of x1 and x2 on all distributional
parameters.

Figure 8: California Housing: Graphs for longitude
and latitude respectively learned by the NAMLSS model.
NAMLSS captures changes in mean as well as variance.
Therefore, the plotted standard deviations change in depen-
dence of the longitude and latitude. The house price jumps
around the location of Los Angeles are depictable. Addition-
ally, we find a decrease in variance for areas further away
from the large cities.

All benchmark results are given below.
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Table 4: Benchmark results for the FICO and the Shrutime dataset. We report continuous ranked probability
score (CRPS) for the logistic distribution as there exists a close form solution as well as the AUC score.

Logistic
Model FICO Shru Time

LL ↓ AUC ↑ CRPS ↓ LL ↓ AUC ↑ CRPS ↓
MLP 1813 ± (6) 0.79 ± (0.007) 0.386 ± (0.014) 1240 ± (22) 0.73 ± (0.011) 0.296 ± (0.010)
XGBoost 1976 ± (13) 0.73 ± (0.010) 0.515 ± (0.013) 1314 ± (18) 0.79 ± (0.010) 0.227 ± (0.011)
NAM 1809 ± (8) 0.73 ± (0.010) 0.372 ± (0.014) 1247 ± (26) 0.81 ± (0.012) 0.231 ± (0.007)
EBM 1944 ± (21) 0.73 ± (0.010) 0.511 ± (0.013) 1290 ± (26) 0.83 ± (0.012) 0.201 ± (0.016)
NodeGAM 1942 ± (21) 0.72 ± (0.006) 0.513 ± (0.027) 1308 ± (29) 0.81 ± (0.012) 0.205 ± (0.015)
GAMLSS 1321 ± (30) 0.78 ± (0.009) 0.392 ± (0.005) 391 ± (126) 0.77 ± (0.014) 0.119 ± (0.006)
gamboostLSS 1191 ± (30) 0.79 ± (0.008) 0.370 ± (0.007) ∗ ∗ ∗

DDNN 1230 ± (48) 0.73 ± (0.002) 0.342 ± (0.012) -211 ± (364) 0.81 ± (0.011) 0.145 ± (0.012)
NAMLSS1 1201 ± (41) 0.73 ± (0.010) 0.347 ± (0.019) -220 ± (210) 0.85 ± (0.040) 0.111 ± (0.015)
NAMLSS2 1160 ± (49) 0.72 ± (0.008) 0.328 ± (0.013) -237 ± (219) 0.84 ± (0.020) 0.107 ± (0.003)

∗ gamboostLSS was not able to execute.

Table 5: Benchmark results for the California Housing and the Abalone dataset. We report continuous ranked
probability score (CRPS) as there exists a close form solution. For metrics detecting the accuracy of point
predictions, we find the models that specifically minimize the MSE to excel.

Model CA Housing Abalone
LL↓ MSE ↓ CRPS ↓ LL ↓ MSE ↓ CRPS ↓

MLP 4191 ± (42) 0.197 ± (0.005) 0.264 ± (0.004) 966.2 ± (27) 0.475 ± (0.044) 0.472 ± (0.013)
XGBoost 4219 ± (40) 0.211 ±(0.005) 0.271 ± (0.002) 982.0 ± (33) 0.515 ± (0.028) 0.504 ± (0.015)
NAM 4251 ± (43) 0.273 ±(0.037) 0.370 ± (0.045) 956.8 ± (22) 0.454 ± (0.024) 0.484 ± (0.015)
EBM 4202 ± (42) 0.203 ±(0.004) 0.297 ± (0.002) 965.1 ± (22) 0.474 ± (0.025) 0.491 ± (0.012)
NodeGAM 4206 ± (89) 0.242 ± (0.007) 0.350 ± (0.004) 958.3 ± (23) 0.461± (0.033) 0.486 ± (0.017)
GAMLSS 3512 ± (67) 0.398 ± (0.040) 0.315 ± (0.005) 870.8 ± (16) 0.497 ± (0.032) 0.353 ± (0.007)
gamboostLSS 3812 ± (52) 0.415 ± (0.024) 0.336 ± ( 0.004) 815.1 ± (29) 0.524 ± (0.039) 0.370 ± (0.011)
DDNN 2681 ± (1279) 0.197 ± (0.005) 0.193 ± (0.002) 897.2 ± (159) 0.444 ± (0.026) 0.338 ± (0.009)
NAMLSS1 2667 ± (91) 0.245 ± (0.004) 0.287 ± (0.019) 869.8 ± (118) 0.496 ± (0.042) 0.357 ± (0.013)
NAMLSS2 2329 ± (176) 0.265 ± (0.005) 0.264 ± (0.009) 802.3 ± (41) 0.486± (0.043) 0.353 ± (0.014)

8.3.1 Synthetic Benchmarks

The benchmark study for used real-world datasets was performed under similar conditions. All datasets are
publicly available and we describe every preprocessing step as well as all model specifications in detail in the
following.

Synthetic Data Generation For the simulation of the data, respectively their underlying distribution
parameters θ =

(
θ(1), θ(2), θ(3), θ(4)

)
, the following assumptions are made:

θ(1) =
30

13
x1

(
(3x2 + 1.5)− 2 sin

(x3

2

))−1

+
113

115
x4 + 0.1x5,

θ(2) = exp
(
−0.0035x1 + (x2 − 0.23)2 − 1.42x3

)
+ 0.0001x4,

θ(3) =
1

42
(4x1 − 90x2),

θ(4) = exp (0.0323 ∗ x2 + 0.0123− 0.0234 ∗ x4) ,

where each of the five input vectors xj is sampled from a uniform distribution U(0, 1), with a total of n = 3000
observations per data set.
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Table 6: Benchmark results for the Insurance dataset and munich dataset.

Inv. Gamma
Model Melbourne Munich

LL ↓ Gamma dev. ↓ KL-divergence ↓ LL ↓ Gamma dev. ↓ KL-divergence ↓
MLP 22999 ± (232) 1.090 ± (0.52) 5.23 ± (1.09) 6827 ± (178) 0.55 ± (0.04) 0.119 ± (0.034)
XGBoost 20471 ± (242) 1.088 ± (0.498) 5.23 ± (1.17) 5618 ± (152) 0.48 ± (0.09) 0.125 ± (0.015)
NAM 25375± (844) 0.871± (0.209) 4.70± (1.93) 5892 ± (37) 0.72 ± (0.10) 0.169 ± (0.048)
EBM 20361± (207) 1.206± (0.651) 5.59 ± (0.64) 5474 ± (56) 0.49 ± (0.09) 0.117 ± (0.021)
NodeGAM 20790± (29) 1.110 ± (0.466) 5.66± (0.59) 5984 ± (135) 0.57 ± (0.05) 0.112 ± (0.059)
GAMLSS 26353 ± (45) 0.737 ± (0.069) 4.30 ± (0.01) 5419 ± (61) 0.53 ± (0.06) 0.148 ± (0.056)
gamboostLSS 26436 ± (48) 0.761 ± (0.044) 4.29 ± (0.02) 5421± (33) 0.58 ± (0.10) 0.148 ± (0.056)
DDNN 26353± (45) 0.987± (0.304) 4.21± (2.02) 5555 ± (34) 0.69 ± (0.04) 0.011 ± (0.015)
NAMLSS1 19517± (68) 0.962± (0.272) 4.23± (2.09) 5383 ± (24) 0.59 ± (0.09) 0.014 ± (0.018)
NAMLSS2 19675± (67) 0.966± (0.285) 4.18± (2.06) 5422 ± (22) 0.59 ± (0.10) 0.011 ± (0.015)

Table 7: Benchmark results for the Telco and the -. We report continuous ranked probability score (CRPS) for
the logistic distribution as there exists a close form solution as well as the AUC score.

Logistic Normal
Model Telco Insurance

LL ↓ AUC ↑ CRPS ↓ LL ↓ MSE ↓ CRPS ↓
MLP 1027 ± (19) 0.69 ± (0.012) 0.307 ± (0.012) 266.8 ± (11) 0.17 ± (0.027) 0.276 ± (0.019)
XGBoost 1123 ± (22) 0.73 ± (0.005) 0.331 ± (0.014) 266.8 ± (9) 0.19 ±(0.024) 0.248 ± (0.012)
NAM 1023 ± (28) 0.76 ± (0.011) 0.279 ± (0.008) 474.4 ± (73) 0.26 ±(0.031) 0.381 ± (0.022)
EBM 1094 ± (22) 0.76 ± (0.007) 0.304 ± (0.012) 263.8 ± (10) 0.14 ±(0.018) 0.204 ± (0.009)
NodeGAM 1097 ± (27) 0.76 ± (0.020) 0.303 ± (0.019) 279.1 ± (11) 0.26 ± (0.031) 0.366 ± (0.026)
GAMLSS 85± (173) 0.83 ± (0.011) 3.38 ± (6.369) 175.5 ± (28) 0.241 ± (0.033) 0.263 ± (0.020)
gamboostLSS ∗ ∗ ∗ 173.0 ± (28) 0.268 ± (0.044) 0.248 ± (0.019)
DDNN 27 ± (314) 0.73 ± (0.015) 0.188 ± (0.015) 178.2 ± (30) 0.17 ± (0.028) 0.206 ± (0.016)
NAMLSS1 -22 ± (137) 0.64 ± (0.018) 0.133 ± (0.013) 172.7 ± (23) 0.27 ± (0.044) 0.257 ± (0.020)
NAMLSS2 -11 ± (114) 0.65 ± (0.017) 0.135 ± (0.008) 172.6 ± (20) 0.27 ± (0.049) 0.257 ± (0.022)

∗ gamboostLSS was not able to execute.
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8.4 Activation Functions

For DDNN and NAMLSS, independent of the implementation, we use a Softplus activation for the scale parameter
σ2 to ensure non-negativity and a linear activation for the mean µ.

For the AirBnB datasets, also analyzed by Rügamer et al. (2020), we assume an Inverse Gamma distribution
IG(α, β) as the underlying data distribution (see equation (8.2.1) for the log-likelihood). For NAMLSS as well as
DDNN we have to adjust the activation functions, as both models minimize the log-likelihood via the parameters
α and β. However, the mean prediction resulting from these parameters is defined via:

µ =
β

α− 1

and is hence only defined for α > 1. The activation functions thus need to ensure an α prediction that is larger
than 1 and a β prediction that is larger than 0. Hence we again use a Softplus activation for the β output layer 5.
For the α prediction, we use the following activation function element-wise:

h(x) =

{
log(1 + exp(x)), if log(1 + exp(x)) > 1,

1
log(1+exp(x)) , else.

(4)

To compute the log-likelihood for the models resulting in a mean prediction we compute the parameters α and β
as follows:

α =
µ2

σ2 + 2
,

β = µ
µ2

σ2 + 1
,

with σ2 denoting the variance of the mean predictions. For XGBoost and EBM we use a simple transformation
of the target variable to ensure that µ > 0. Hence we fit the model on log(y) and re-transform the predictions
accordingly with exp(ŷ).

For a (binary) classification benchmark we use the FICO dataset (FICO, 2018), the Shrutime dataset and the
Telco dataset. A logistic distribution, LO (µ, s), of the underlying response variable was assumed (see equation
(8.2.1) for the log-likelihood). Again, we use the true standard deviation of the underlying data for the models
only resulting in a mean prediction. The models resulting in a mean prediction use binary cross-entropy as the
loss function and hence a sigmoid activation function on the output layer.

8.4.1 Preprocessing

We implement the same preprocessing for all used datasets and only slightly adapt the preprocessing of the target
variable for the two regression problems, California Housing and Insurance. We closely follow Gorishniy et al.
(2021) in their preprocessing steps and use the preprocessing also implemented by Agarwal et al. (2021). Hence
all numerical variables are scaled between -1 and 1, all categorical features are one-hot encoded. In contrast to
Gorishniy et al. (2021) we do not implement quantile smoothing, as one of the biggest advantages of neural models
is the capability to model jagged shape functions. We use 5-fold cross-validation and report mean results as well
as the standard deviations over all datasets. For reproducibility, we use the sklearn (Pedregosa et al., 2011) Kfold
function with a random state of 101 and shuffle equal to true for all datasets. For the two regression datasets,
we implement a standard normal transformation of the target variable. This results in better performances in
terms of log-likelihood for all models only predicting a mean and is hence even disadvantageous for the presented
NAMLSS framework.

8.4.2 Datasets

5Interestingly, the NAM did not converge using the Softplus activation function as the MLP did. Using the Softplus
activation resulted in tremendously large mean gamma deviances and log-likelihoods, as the model kept predicting values
that were nearly zero. Hence, we were only able to achieve good results for the NAM using the activation function given
by formula (4).
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Table 8: Statistics of the benchmarking datasets.

Dataset No. Samples No. Features Distribution Task

California Housing 20640 8 Normal N (µ, σ) Regression
Insurance 1338 6 Normal N (µ, σ) Regression
Abalone 4177 10 Normal N (µ, σ) Regression
Munich 4568 9 Inverse Gamma IG(α, β) Regression
Melbourne 16868 11 Inverse Gamma IG(α, β) Regression
Fico 10459 23 Logistic LO(µ, s) Classification
Shrutime 10000 10 Logistic LO(µ, s) Classification
Telco 7032 19 Logistic LO(µ, s) Classification

California Housing The California Housing (CA Housing) dataset Pace and Barry (1997) is a popular publicly
available dataset and was obtained from sklearn Pedregosa et al. (2011). It is also used as a benchmark in Agarwal
et al. (2021) and Gorishniy et al. (2021) and we achieve similar results concerning the MSE for the models which
were used in both publications. The dataset contains the house prices for California homes from the U.S. census
in 1990. The dataset is comprised of 20640 observations and besides the logarithmic median house price of the
blockwise areas as the target variable contains eight predictors. As described above, we additionally standard
normalize the target variable. All other variables are preprocessed as described above.

Insurance The Insurance dataset is another regression type dataset for predicting billed medical expenses
(Lantz, 2019). The dataset is publicly available in the book Machine Learning with R by Lantz (2019). Addi-
tionally, the data is freely available on https://github.com/stedy/Machine-Learning-with-R-datasetsGithub and
https://www.kaggle.com/code/gloriousc/insurance-forecast-by-using-linear-regression/dataKaggle. It is a small
dataset with only 1338 observations. The target variable is charges, which represents the Individual medical
costs billed by health insurance. Similar to the California Housing regression we standard normalize the response.
Additionally, the dataset includes 6 feature variables. They are preprocessed as described above, which, due to
one-hot encoding leads to a feature matrix with 9 columns.

Abalone The Abalone dataset contains information for the prediction of the age of abalone, a type of sea snail,
based on their physical measurements. The data set is taken from the original publication (Nash et al., 1994) and
today is a part of https://archive.ics.uci.edu/ml/datasets/abaloneUCI Machine Learning Repository. A dataset
of 4177 observations, 10 features and one response variable is obtained after processing the data.

Munich For the AirBnB data, we orientate on Rügamer et al. (2020) and used the data for the city of Munich.
The dataset is also publicly available and was taken from http://insideairbnb.com/get-the-data/Inside AirBnB on
January 15, 2023. After excluding the variables ID, Name, Host ID, Host Name, Last Review and after removing
rows with missing values the dataset contains 4568 observations. Additionally, we drop the Neighbourhood variable
as firstly the predictive power of that variable is limited at best and secondly not to create too large feature
matrices for GAMLSS. Hence, in addition to the target variable, the dataset contains 9 variables. All preprocessing
steps are subsequently performed as described above and the target variable, Price, is not preprocessed at all.

Melbourne The dataset is also publicly available and was taken from http://insideairbnb.com/get-the-
data/Inside AirBnB. The second Airbnb dataset (Melbourne) originates from the same source as the Munich
Airbnb dataset. The data processing follows the same procedure as described in the Munich section. All
preprocessing steps are then performed as described above and the target variable Price is not preprocessed at all.

FICO Similar to Agarwal et al. (2021) we also use the FICO dataset for our benchmarking study. However, we
use it as described on the website and hence use the Risk Performance as the target variable. A detailed description
of the features and their meaning is available at the https://community.fico.com/s/explainable-machine-learning-
challengeExplainable Machine Learning Challenge. The dataset is comprised of 10459 observations. We did not
implement any preprocessing steps for the target variable.

Shrutime This dataset contains information on the customers of a bank and the target variable is a binary
variable reflecting whether the customer has left the bank (closed his account) or remains a customer. The
corresponding data set can be found at https://www.kaggle.com/datasets/shrutimechlearn/churn-modellingKaggle



NAMLSS

and is introduced by Kaggle (2019). After the processing described above, the set consists of 10000 observations,
each with 10 features.

Telco The Telco customer churn data contains information about a fictitious telco company that provided
home phone and internet services to 7043 customers. It details which customers left, stayed or signed up for their
service. Several key demographics are included for each customer, as well as a satisfaction score, a churn score
and a customer lifetime value (CLTV) index and was introduced by IBM (2019). After the processing described
above, the set consists of 7043 observations, each with 19 features.

8.4.3 Model Architectures & Hyperparameters

As we do not implement extensive hyperparameter tuning for the presented NAMLSS framework, we do not
perform hyperparameter tuning for the comparison models. We fit all models without an intercept. However, we
try to achieve the highest comparability by choosing similar modelling frameworks, network architectures and
hyperparameters where possible. All neural models are hence fit with identical learning rates, batch sizes, hidden
layer sizes, activation functions and regularization techniques. Through all neural models and all datasets, we
use the ADAM optimizer (Kingma and Ba, 2014) with a starting learning rate of 1e-04. For the larger datasets,
California Housing, Abalone, FICO, Telco and Shrutime we orient on Agarwal et al. (2021) and use larger batch
sizes of 1024. For the smaller dataset, Insurance, we use a smaller batch size of 256 and for the Munich and
Melbourne dataset we use a batch size of 512. For every dataset and for every neural model, the maximum
number of epochs is set to 2000. However, we implement early stopping with a patience of 150 epochs and no
model over no fold and no dataset ever trained for the full 2000 epochs. Additionally, we reduce the learning rate
with a factor of 0.95 with patience of 10 epochs for all models for all datasets. We use the Rectified Linear Unit
(ReLU) activation function for all hidden layers for all models:

h(x) =

{
0, x < 0

x, else.

We also experimented with the Exponential centred hidden Unit (ExU) activation function presented by Agarwal
et al. (2021) but found no improvement in model performance and even a slight deterioration for most models.

For the statistical models used from the GAMLSS and gamboostLSS frameworks, we do not optimize the model
hyperparameters, as with neural networks. We use the respective default settings unless otherwise stated in the
modelling descriptions included in the Appendix. We try to keep the model settings equal between all models, if
applicable. All GAMLSS models use the same RS solver proposed by Rigby and Stasinopoulos (2005), in cases
where this approach does not lead to convergence, the alternative CG solver presented by Cole and Green (1992)
is employed. To exclude possible numerical differences, the same distributions from the GAMLSS R package are
used for modelling the response distribution and calculating the log-likelihoods. gamboostLSS allows the use of
different boosting approaches. Here we use the implemented boosting methods based on GAMs and GLMs and
choose the model that performs better in terms of log-likelihood and the assumed loss.

Table 9: Hyperparameters for the neural models for the California Housing and the Abalone dataset

Hyperparameter NAMLSS1 NAMLSS2 DNN MLP NAM

Learning Rate 1e-04 1e-04 1e-04 1e-04 1e-04
Dropout 0.25 0.25 0.25 0.25 0.25

Hidden Layers
[1000, 500, [1000, 500, [1000, 500, [1000, 500, [1000, 500,
100, 50, 25] 100, 50, 25] 100, 50, 25] 100, 50, 25] 100, 50, 25]

LR Decay, Patience 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10
Activation ReLU ReLU ReLU ReLU ReLU
Output Activation Linear, Softplus Linear, Softplus Linear, Softplus Linear Linear

1 With 2 ×8 subnetworks. See Table 6 for an exemplary network structure.
2 With 8 subnetworks and each subnetwork returning a parameter for the location and shape respectively.
See Table 2 for an exemplary network structure.

California Housing and Abalone We orient again on Agarwal et al. (2021) and use the following hidden
layer sizes for all networks: [1000, 500, 100, 50, 25]. The second hidden layer is followed by a 0.25 dropout layer.
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While subsequently the NAM and NAMLSS have much more trainable parameters than the MLP and the DNN,
we find that the MLP and DNN outperform the NAM and NAMLSS in terms of mean prediction. Additionally,
we encountered severe overfitting when using the same number of parameters in an MLP as in the NAM and
NAMLSS implementation. For the mean predicting models, we use a one-dimensional output layer with a linear
activation. For the DNN and both NAMLSS implementations, we use a linear activation over the mean prediction
and a Softplus activation for the variance prediction with:

h(x) = log(1 + exp(x)).

For the NAMLSS implementation depicted in Figure 6 we use a smaller network structure for predicting the
variance with two hidden layers of sizes 50 and 25 without any form of regularization as Dürr et al. (2020) found
that using smaller networks for predicting the scale parameters is sufficient. For XGBoost we use the default
parameters from the Python implementation. For the Explainable Boosting machines, we increased the number
of maximum epochs to the default value of 5000 but set the early stopping patience considerably lower to 10,
as otherwise, the model reached far worse results compared to the other models. We additionally increased the
learning rate to 0.005 compared to the learning rate used in the neural approaches as a too small learning rate
resulted in bad results. Otherwise, we kept all other hyperparameters as the default values. The GAMLSS and
gamboostLSS models assume a normal distribution, with a location estimator µ employing an identity link and
a scale estimator σ with a log-link function. Due to numerical instabilities, we choose to use the GLM-based
boosting method instead of the default GAM-based version.

Table 10: Hyperparameters for the neural models for the Insurance dataset

Hyperparameter NAMLSS1 NAMLSS2 DNN MLP NAM

Learning Rate 1e-04 1e-04 1e-04 1e-04 1e-04
Dropout 0.5 0.5 0.5 0.5 0.5
Hidden Layers [250, 50, 25] [250, 50, 25] [250, 50, 25] [250, 50, 25] [250, 50, 25]
LR Decay, Patience 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10
Activation ReLU ReLU ReLU ReLU ReLU
Output Activation Linear, Softplus Linear, Softplus Linear, Softplus Linear Linear

1 With 2 ×9 subnetworks. See Table 6 for an exemplary network structure.
2 With 9 subnetworks and each subnetwork returning a parameter for the location and shape respectively.
See Table 2 for an exemplary network structure.

Insurance As the insurance dataset is considerably smaller than all other datasets we use slightly different
model structures, as the model structure used for the California Housing and Abalone datasets led to worse
results. Hence, for all neural models, we use hidden layers of sizes [250, 50, 25]. The first layer is followed by a 0.5
dropout layer. Again, we use a simple linear activation for the models only predicting the mean and a linear and
a Softplus activation for the models predicting the mean and the variance respectively. For the first NAMLSS
implementation (see Figure 6) we again use a smaller network for predicting the variance with just one hidden
layer with 50 neurons.

For XGBoost and EBM we use the same hyperparameter specifications as for the California Housing and Abalone
datasets.

The GAMLSS and gamboostLSS models assume a normal distribution, with a location estimator µ employing an
identity link and a scale estimator σ with a log-link function. The boosting for location, scale and shape method
employed uses the GLM based, instead of the GAM, based version.

FICO, Telco and Shrutime For the logistic datasets, we use the exact same model structure as for the
Insurance dataset, as the model structures implemented for the California Housing dataset resulted in worse
results. However, as it is a binary classification problem we use a Sigmoid activation for the MLP as well as the
NAM. For the DNN and both NAMLSS implementations, we use a Sigmoid activation for the location and a
Softplus activation for the scale. To generate the log-likelihoods for the models only predicting a mean, we again
use the true standard deviation of the underlying data.
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For XGBoost and EBM we had to adjust the hyperparameters in order to get results comparable to the MLP,
NAM or NAMLSS. Hence, for EBM we use 10 as the maximum number of leaves, 100 early stopping rounds and
again the same learning rate of 0.005.

For XGboost we use 500 estimators with a maximum depth of 15. η is set to 0.05.

For the GAMLSS and gamboost models we use a logistic distribution to model the response distribution, where µ
estimator uses identity and the σ estimator uses a log-link function.

Table 11: Hyperparameters for the neural models for the FICO, Telco and Shrutime datasets

Hyperparameter NAMLSS1 NAMLSS2 DNN MLP NAM

Learning Rate 1e-04 1e-04 1e-04 1e-04 1e-04
Dropout 0.5 0.5 0.5 0.5 0.5
Hidden Layers [250, 50, 25] [250, 50, 25] [250, 50, 25] [250, 50, 25] [250, 50, 25]
LR Decay, Patience 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10
Activation ReLU ReLU ReLU ReLU ReLU
Output Activation Sigmoid, Softplus Sigmoid, Softplus Sigmoid, Softplus Sigmoid Sigmoid

1 With 2 ×23 subnetworks. See Table 6 for an exemplary network structure.
2 With 23 subnetworks and each subnetwork returning a parameter for the location and shape respectively.
See Table 2 for an exemplary network structure.

Munich and Melbourne We fit the AirBnB datasets, with an Inverse Gamma distribution where applicable.
However, we train the models that only predict the mean with the squared error loss function. While one might
suspect worse performances due to that, we find that using the squared error actually leads to much smaller
gamma deviances compared to the models leveraging the Inverse Gamma distribution. Additionally, we use
slightly smaller model structures than for the California Housing dataset. For all neural models, we use hidden
layers of sizes [512, 256, 50]. The first hidden layer is followed by a 0.5 dropout layer. Throughout the hidden
layers, we use ReLU activation functions. However, we deviate from that for the output layer activation functions.
For the MLP we use a Softplus activation function for the output layer, ensuring that strictly positive values are
predicted. For NAMLSS as well as the DNN we have to adjust the activation functions, as both models minimize
the log-likelihood via the parameters α and β. However, the mean prediction resulting from these parameters is
defined via:

µ =
β

α− 1

and is hence only defined for α > 1. The activation functions thus need to ensure a α prediction that is larger
than 1 and a β prediction that is larger than 0. Hence we again use a Softplus activation for the β output layer.
For the α prediction, we use the following activation function element-wise:

h(x) =

{
log(1 + exp(x)), if log(1 + exp(x)) > 1

1
log(1+exp(x)) , else.

To compute the log-likelihood for the models resulting in a mean prediction we compute the parameters α and β
as follows:

α =
µ2

σ2 + 2
,

β = µ
µ2

σ2 + 1
,

with σ2 denoting the variance of the mean predictions.

For XGBoost and EBM we use a simple transformation of the target variable in order to ensure that µ > 0.
Hence we fit the model on log(y) and re-transform the predictions accordingly with exp(ŷ). Otherwise, we use
the same hyperparameters as for the California Housing dataset.

Interestingly, the NAM did not converge using the Softplus activation function as the MLP did. Using the
Softplus activation resulted in tremendously large mean gamma deviances and log-likelihoods, as the model kept
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predicting values that were nearly zero. Hence, we were only able to achieve good results for the NAM using the
activation function given by formula (4).

The presented GAMLSS and gamboostLSS models assume an Inverse Gamma distribution with both µ and σ
utilizing the log-link function. It should be noted that the RS algorithm does not converge with GAMLSS, which
is why CG is used.

Table 12: Hyperparameters for the neural models for the Munich and Melbourne datasets

Hyperparameter NAMLSS1 NAMLSS2 DNN MLP NAM

Learning Rate 1e-04 1e-04 1e-04 1e-04 1e-04
Dropout 0.5 0.5 0.5 0.5 0.5
Hidden Layers [512, 256, 50] [512, 256, 50] [512, 256, 50] [512, 256, 50] [512, 256, 50]
LR Decay, Patience 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10 0.95 - 10
Activation ReLU ReLU ReLU ReLU ReLU
Output Activation Gamma∗, Softplus Gamma∗, Softplus Gamma∗, Softplus Linear Linear

1 With 2 ×23 subnetworks. See Table 6 for an exemplary network structure.
2 With 23 subnetworks and each subnetwork returning a parameter for the location and shape respectively. See
Table 2 for an exemplary network structure.
∗ See formula (4) for the detailed element-wise activation function.


