
SIFU: Sequential Informed Federated Unlearning for

E�cient and Provable Client Unlearning in Federated Optimization

Yann Fraboni
*

Martin Van Waerebeke
*

Richard Vidal

Accenture Labs
INRIA Sophia-Antipolis

INRIA Paris
DIENS - PSL

Accenture Labs

Laetitia Kameni Kevin Scaman Marco Lorenzi

Accenture Labs INRIA Paris
DIENS - PSL

INRIA Sophia-Antipolis

Abstract

Machine Unlearning (MU) is an increasingly
important topic in machine learning safety,
aiming at removing the contribution of a
given data point from a training procedure.
Federated Unlearning (FU) consists in ex-
tending MU to unlearn a given client’s con-
tribution from a federated training routine.
While several FU methods have been pro-
posed, we currently lack a general approach
providing formal unlearning guarantees to
the FedAvg routine, while ensuring scala-
bility and generalization beyond the convex
assumption on the clients’ loss functions. We
aim at filling this gap by proposing SIFU
(Sequential Informed Federated Unlearning),
a new FU method applying to both convex
and non-convex optimization regimes. SIFU
naturally applies to FedAvg without addi-
tional computational cost for the clients and
provides formal guarantees on the quality of
the unlearning task. We provide a theoret-
ical analysis of the unlearning properties of
SIFU, and practically demonstrate its e↵ec-
tiveness as compared to a panel of unlearning
methods from the state-of-the-art.

1 Introduction

With the emergence of new data regulations, such as
the EU General Data Protection Regulation (GDPR)

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s). * Equal contribution.

(Voigt and Von dem Bussche, 2017) and the California
Consumer Privacy Act (CCPA) (Harding et al., 2019),
the storage and processing of sensitive personal data is
often the subject of strict constraints and restrictions.
In particular, the “right to be forgotten” states that
personal data must be erased upon request from the
concerned individuals, with subsequent potential im-
plications on machine learning models trained by using
this data. Machine Unlearning (MU) is an emerging
discipline that studies methods that aim at removing
the contribution of given data instances used to train a
machine learning model. Current MU approaches are
essentially based on routines that modify the model
weights in order to guarantee the “unlearning” of a
given data point, i.e. to obtain a model equivalent
to a hypothetical one trained without this data point
(Cao and Yang, 2015; Bourtoule et al., 2021).

Motivated by data governance and confidentiality con-
cerns, Federated Learning (FL) has gained popularity
in the last years to allow data owners to collabora-
tively learn a model without sharing their respective
data. Among the di↵erent FL approaches, federated
averaging (FedAvg) has emerged as the most popular
optimization scheme (McMahan et al., 2017). An op-
timization round of FedAvg requires data owners to
receive the current global model from the server, which
is updated by performing a fixed amount of Stochastic
Gradient Descent (SGD) steps before sending back the
resulting model. The new global model is then created
as the weighted average of the client updates. The FL
communication design ensures clients that their data
is solely used to compute their model update, while es-
tablished theory guarantees convergence of the model
to a stationary point of the clients’ joint optimization
problem (Wang et al., 2020; Li et al., 2020).

With the current deployments of FL in the real-world,

SIFU: E�cient and Provable Client Unlearning in Federated Optimization

it is of crucial importance to extend MU to Feder-
ated Unlearning (FU), for guaranteeing the unlearn-
ing of clients wishing to opt-out from a collaborative
training routine. This is not straightforward, since
most current MU schemes have been proposed in the
centralized learning setting, and cannot be seamlessly
applied to the federated one. Typical issues include
the need for exchanging high-order quantities related
to the model parameters, or additional and poten-
tially sensitive client information (Guo et al., 2020;
Izzo et al., 2021; Golatkar et al., 2020a,b, 2021). While
several Federated Unlearning (FU) methods have been
proposed, few are backed by theoretical guarantees on
the e↵ectiveness of unlearning (Liu et al., 2022; Jin
et al., 2023), or are compatible with typical FL as-
sumptions on data access or availability (Liu et al.,
2021).

To address these shortcomings, in this work we in-
troduce Sequential Informed Federated Unlearn-

ing (SIFU), a novel e�cient FU approach to remove
clients’ contributions from the federated model with
quantifiable unlearning guarantees. SIFU is compat-
ible with FedAvg-based training and requires mini-
mal additional computations from the server and none

from the clients. Specifically, at every round of FL
optimization, the server quantifies the norm of each
client’s contribution to the global model. Upon re-
ceiving an unlearning request from a client, the server
retrieves the iteration at which the client’s contribu-
tion exceeds a pre-defined unlearning budget from the
FL training history, and initializes the unlearning pro-
cedure from the associated intermediate global model.
Unlearning guarantees are provided by introducing a
novel randomized mechanism to perturb the selected
intermediate model with client-specific noise. We de-
velop a theory demonstrating the unlearning capabil-
ities of SIFU in both convex and non-convex FL op-
timization settings. We first introduce IFU (Informed
FU) to account for only one unlearning request, and
then generalize it to SIFU, which can handle an arbi-
trary number of sequential requests, as is done in Neel
et al. (2021); Gupta et al. (2021).

This manuscript is structured as follows. In Section
2, we provide formal definitions for MU, FL, and FU,
and introduce the state-of-the art of FU. In Section 3,
we introduce su�cient conditions for IFU to unlearn a
client from the FL routine (Theorem 2). In Section
4, we extend IFU to the sequential unlearning set-
ting with Sequential IFU (SIFU). Finally, in Section 5,
we experimentally demonstrate on di↵erent tasks and
datasets that SIFU leads to more e�cient unlearning
procedures as compared to basic re-training and state-
of-the-art FU approaches.

2 Background and Related Work

Sections 2.1 and 2.2 respectively introduce the basic
concepts of MU and FL. The state-of-the-art on FU is
discussed in 2.3.

2.1 Machine Unlearning

Let us consider a dataset D composed of two disjoint
datasets: Df , the cohort of data samples on which un-
learning must be applied after FL training, andDk, the
remaining data samples. Hence, we have D = Df tDk.
We also consider M(D), the ML model parameters re-
sulting from training with optimization scheme M on
dataset D. We introduce in this section the di↵er-
ent unlearning baselines and methods typically used
to unlearn Df from the trained model M(D).

MU through retraining. Within this setting, a new
training is performed from scratch with only Dk as
training data. Retraining from scratch is a typical MU
baseline as it provides unlearning by construction, al-
beit with a generally high computational cost.

MU through fine-tuning. Fine-tuning on the re-
maining data Dk has been proposed as a practical ap-
proach to unlearn the specificities of Df . This is a
common MU baseline (?), with however no unlearning
guarantees (Appendix A).

MU through model scrubbing. Another unlearn-
ing approach consists in applying a “scrubbing” trans-
formation h to the modelM(D) such that the resulting
model is as close as possible to the one that would be
trained with only Dk, i.e. h(M(D)) ⇡ M(Dk) (Gi-
nart et al., 2019). Existing work mostly relies on the
quadratic approximation of the loss function to define
the scrubbing method h as

hDk(✓) = ✓ �H
�1
Dk

(✓)rfDk(✓), (1)

where HDx(✓) is the Hessian of the loss function eval-
uated on the remaining data points Dk. With equa-
tion (1), h reduces to performing a Newton step, and
has been derived in previous MU works under di↵er-
ent theoretical assumptions that can be generalized by
considering a quadratic approximation of the loss func-
tion (Guo et al., 2020; Izzo et al., 2021; Golatkar et al.,
2020a,b, 2021; Mahadevan and Mathioudakis, 2021).
The main drawback behind the use of the scrubbing
function (1) is the estimation of the Hessian, which can
be both intractable for large models and prone to in-
formation leakage. Finally, the scrubbing function (1)
is often coupled with Gaussian noise perturbation on
the resulting weights, to compensate the quadratic ap-
proximation of the loss function, or the approximation
of the Hessian (Golatkar et al., 2020a,b, 2021).

Fraboni, Van Waerebeke, Vidal, Kameni, Scaman, Lorenzi

MU through noise perturbation. This unlearning
method consists in randomly perturbating the trained
modelM(D) to unlearn specificities from data samples
in Df (Neel et al., 2021; Gupta et al., 2021; ?). The
noise is set such that the guarantees of Definition 1 are
satisfied, where (✏, �) are parameters quantifying the
unlearning guarantees.

Definition 1. Let fm be a randomized mechanism tak-

ing model parameters as an input. (✏, �)-unlearning
trough fm of a data point {xm, ym} from a model

M(D) is achieved if, for any subset S of the model

parameters space and D�m := D \ {xm, ym}, we have

P(fm(M(D)) 2 S)  e
✏P(fm(M(D�m)) 2 S)+� (2)

and P(fm(M(D�m)) 2 S)  e
✏P(fm(M(D)) 2 S)+�.

(3)

(Guo et al., 2020) shows the relationship between Defi-
nition 1 and the randomized mechanism in Di↵erential
Privacy (Dwork and Roth, 2014; Chen et al., 2020).

2.2 Federated Optimization and FedAvg

In FL, we consider a learning setup with M clients,
and define I = {1, ...,M} as the set of indices of
the participating clients. Each client owns a dataset
Di composed of |Di| = ni data samples. We con-
sider a loss f(xi,l,yi,l,✓) assessed on each data sam-
ple (xi,l,yi,l) 2 Di, and define a client’s loss function
as fi(✓) := 1/ni

Pni

l=1 f(xi,l,yi,l,✓). We define for the
joint dataset DI := [i2IDi the federated loss function

fI(✓) :=
1

|DI |
X

i2I

|Di|fi(✓). (4)

FedAvg (McMahan et al., 2017) optimizes the loss
(4) with theoretical guarantees for FL convergence to
a stationary point (Wang et al., 2020; Li et al., 2020).
Following Algorithm 1, at each step n, the server sends
the current global model parameters ✓n to the clients.
Each client updates the model by minimizing its local
cost function fi(✓) with K SGD steps initialized with
✓n. Subsequently each client returns the updated lo-
cal parameters ✓n+1

i to the server. The global model
parameters ✓n+1 at iteration step n+ 1 are then esti-
mated by aggregating the clients’ contributions, i.e.

✓n+1 = ✓n + !(I,✓n), (5)

where !(I,✓n) = 1
|DI |

P
i2I |Di|

⇥
✓n+1
i � ✓n

⇤
.

In what follows, we consider FedAvg as reference FL
framework, due to the wide adoption of this scheme in
the literature, and the lower sensitivity to information
leakage as opposed to FedSGD (Geng et al., 2023).

Algorithm 1 FedAvg(I,N)

1: for n from 0 to N � 1 do

2: The server sends ✓n to every client in I.
3: Clients perform K SGDs to compute ✓n+1

i .
4: The server creates ✓n+1, equation (5).
5: end for

6: return the trained global model ✓N

2.3 Federated Unlearning

We first note that while MU through retraining and
fine-tuning naturally generalize to FU, this not the
case for most MU methods, because of typical data
access restrictions of FL. While a variety of FU meth-
ods have been recently proposed, only a few of them
o↵er theoretical proofs of their unlearning capabilities.
These include FU methods tailored to clustering tasks
(Pan et al., 2023), linear regressions (Li et al., 2021)
and class-unlearning (Wang et al., 2022). Concern-
ing the problem of FU compatible with the FedAvg
routine, some recent works develop theories for model
scrubbing (Liu et al., 2022; Jin et al., 2023). Nev-
ertheless, the working assumptions of these methods
may be too restrictive as they require the client-wise
computation and availability of the model’s Hessian,
or are based on the existence of independent data
available to the server. Other limitations of recent
FU methods concern the need for accessing the data
to be unlearned after the unlearning request (Halimi
et al., 2022). FedEraser (Liu et al., 2021) is a recent
method compatible with FedAvg based on adaptive
retraining. While this approach has been shown to
outperform the retraining baseline, it is not backed by
theoretical guarantees. The ensemble of working hy-
pothesis of these methods is summarized in Table 1.
As can be observed, there is a lack of a theoretically-
proven approaches working with FedAvg, especially
in the non-convex setting. With these limitations in
mind, in what follows we introduce our contribution.

3 Unlearning a single client with IFU

In this section, we develop our theory for the scenario
where a model is trained with FedAvg on the set of
clients I, after which a client c requests unlearning of
its data. In Section 3.1, we define the sensitivity of
the global model with respect to a client’s contribu-
tion, with an associated bound for both convex and
non-convex regimes. Using Theorem 1, we introduce
the perturbation procedure in Section 3.2 to unlearn
a client c from the model trained with FedAvg. Fi-
nally, using Theorem 2, we introduce Informed Feder-
ated Unlearning (IFU) (Algorithm 2).

SIFU: E�cient and Provable Client Unlearning in Federated Optimization

Table 1: Summary of FU methods from state-of-the-art, with related working assumptions.

FU does NOT require data fromFedAvg
compatible

Theoretical guarantees
convex non-convex the server the clients to unlearn

Liu et al. (2022) X X
Wang et al. (2023) X X
Gong et al. (2022) X X
Wu et al. (2022) X X

Halimi et al. (2022) X X
Liu et al. (2021) X X X
Jin et al. (2023) X X
SIFU (ours) X X X X X

3.1 Bounding the Model Sensitivity

In what follows, we define the joint dataset for a subset
of client Ix ⇢ I as DIx := [i2IxDi. Additionally, for
any given client c, we define I�c := I \ {c}.

We introduce the model sensitivity with respect to
client c after n aggregation rounds of FedAvg as

↵(n, c) := kFedAvg(I, n)� FedAvg(I�c, n)k2 , (6)

where FedAvg(I, n) it the global model obtained by
applying Algorithm 1 for n iterations over the data of
clients in I. While the model sensitivity is an ideal
measure of the impact of a given client on the feder-
ated optimization result at step n, the computation of
this quantity for each client is not feasible in a typ-
ical FL routine. We therefore introduce a proxy for
this quantity, to keep track at every FL round of each
client’s contribution to the aggregation (5):

�c(I,✓) := k!(I,✓)� !(I�c,✓)k (7)

In Theorem 1, we establish a bound for the model sen-

sitivity, relating this quantity to the history of updates
provided by the clients across FL rounds.

Theorem 1. For smooth client’s local loss functions

(i.e. with Lipschitz-continuous gradients), we have

↵(n, c)  (n, c), (8)

with the bounded sensitivity defined as:

 (n, c) =
n�1X

s=0

B(fI , ⌘)
�s,n ·�c(I,✓

s), (9)

where ⌘ is the learning rate, �s,n = (n � s � 1)K,

and B(fI , ⌘) < 1, B(fI , ⌘) = 1 or B(fI , ⌘) > 1 if

the clients’ loss functions are smooth and, respectively,

strongly convex, convex, or non-convex. The exact for-

mula for B(fI , ⌘) is given in Appendix B, equations

(26) to (28).

Proof. We prove Theorem 1 in Appendix B.

3.2 From model sensitivity to certified

unlearning

In this section, we introduce a randomized mechanism
to provide guarantees for the unlearning of a given
client c, where the magnitude of the perturbation pro-
cess (Dwork and Roth, 2014) is defined based on the
sensitivity of Theorem 1. In practice, we define a
Gaussian noise mechanism to perturb each parame-
ter of the global model ✓n such that we achieve (✏, �)-
unlearning of client c, according to Definition 1. We
give in Theorem 2 su�cient conditions for the noise
perturbation to satisfy Definition 1.

Theorem 2. Under smoothness assumptions, ap-

plying to the global model ✓n
a Gaussian noise

N(0,�(n, c)2I✓), with I✓ the identity matrix and

�(n, c) := [2 (ln(1.25)� ln(�))]1/2 ✏�1 (n, c), (10)

achieves (✏, �)-unlearning of client c according to Def-

inition 1.

Proof. While a formal proof is given in Appendix
C, this statement follows directly from Theorem 1
coupled with Theorem A.1 of (Dwork and Roth,
2014).

We note that, according to Theorem 2, (✏, �)-
unlearning a client from a given global model requires
to prescribe a client-specific standard deviation for the
noise, proportional to the bounded sensitivity. This is
not an issue, as the bounded sensitivity is a scalar
quantity that can be easily computed and stored from
the clients’ contribution.

In what follows, the unlearning procedure will be de-
fined with respect to the sensitivity threshold ⇤ re-
lated to the unlearning budget (✏, �) and standard de-
viation �:

 ⇤ := [2 (ln(1.25)� ln(�))]�1/2
✏�. (11)

3.3 Informed Federated Unlearning (IFU)

Fraboni, Van Waerebeke, Vidal, Kameni, Scaman, Lorenzi

Algorithm 2 Informed Federated Unlearning (IFU)

Learning with FedAvg

FedAvg(I,N) initialized on initial model ✓0.
for n from 0 to N � 1, and i from 1 to c do

Compute (n, i), equation (9).
end for

Unlearning

Require: c, ✏, �, �, amount of retraining steps Ñ .
1: Get ⇤ with equation (11).
2: Get T = argmaxn ((n, c)  ⇤).
3: The new global model is ✓̃ = ✓T +N(0,�2I✓).
4: Run FedAvg(I�c, Ñ) initialized on ✓̃.

Using the bounded sensitivity (9) and Theorem 2, we
introduce Informed Federated Unlearning (IFU) to un-
learn the contribution of client c 2 I from a FL train-
ing procedure based on FedAvg. Algorithm 2 pro-
vides the implementation of IFU on top of FedAvg.
We note that during the FL training, IFU requires
the server to compute the bounded sensitivity metric
 (n, i) from each client’s contribution ✓n+1

i and cur-
rent global model ✓n. These quantities are tracked
throughout FL iterations and are used to identify the
optimal unlearning strategy after request from a client
c. We note that since the IFU procedure of Algorithm
2 relies on FedAvg, the convergence guarantees are
the same as in (Wang et al., 2020; Li et al., 2020).

To unlearn client c, the server identifies the unlearning
index T associated to the history of bounded sensitiv-
ity metrics, i.e. the most recent global model index
such that a perturbation of size � satisfies Theorem 2:

T := max{n : (n, c)  ⇤} . (12)

The new global model is obtained after perturbation
✓̃ := ✓T + ⌫, where ⌫ ⇠ N(0,�2I✓). Our unlearn-
ing criterion 1 is therefore satisfied for ✓̃ (Theorem
2), and the server can perform Ñ new optimization
rounds with FedAvg initialized with ✓̃. Thanks to
the contribution of the remaining clients in ✓̃, the re-
training with IFU is generally faster than retraining
with a random initial model.

Since (n, i) increases with n, the server can stop com-
puting the bounded sensitivity (9) for client i when-
ever the condition (ni, i) > ⇤ is verified after ni

optimization rounds. At this point, the model ✓ni�1

will be selected for the unlearning request of client i,
as the models at subsequent iterations do not comply
with the desired unlearning budget ⇤. Thus, Eq 12
does not need the entire history of the global models
to be performed. Only one version of the global model
must be kept for each client potentially wishing to be
unlearned in latter stages. We also note that comput-
ing the bounded sensitivity (9) only requires to com-

Algorithm 3 Sequential IFU (SIFU)

Learning with FedAvg

1: FedAvg(I,N) initialized on initial model ✓0
0.

2: Compute 0(n, i), equation (15).

Unlearning the series of requests
{Wu}
Require: {Wu}Ru=1, ✏, �, �, and {Nu}Uu=1

1: Get ⇤ with equation (11).
2: for u from 1 to U do

3: Iu = Iu�1 \Wu.
4: Compute (⇣u, Tu) with H(u), eq. (17) and (18).
5: The new global model is ✓0

u = ✓Tu
⇣u

+N(0,�2I✓).

6: Perform FedAvg(Iu, Nu) initialized on ✓0
u.

7: Update H(u + 1) with ⇣u, Tu, and H(u), eq.
(19).

8: Compute u(n, Iu), eq. (16).
9: end for

pute the norm of sums of vectors already computed,
which can be done while the clients perform their lo-
cal updates. Hence, there is no added time required
to compute the bounded sensitivity.

If the clients wish to employ gradient masking tech-
niques to avoid revealing their full updates, each client
can compute �c(I,✓) for themselves. Indeed, Eq. 7
can be re-written as:

�c(I,✓
n) =

|Dc|
|DI |� |Dc|

��✓n+1 � ✓n+1
c

�� (13)

4 Sequential FU with SIFU

In this section, we extend IFU to the sequential un-
learning setting with Sequential IFU (SIFU). With Al-
gorithm 3, SIFU is designed to satisfy a series of U un-
learning requests expressed by set of indices Wu, cor-
responding to clients to unlearn at request 1  u  U .
SIFU generalizes IFU for which U = 1 and W1 = {c}.
We provide an illustration of SIFU in Figure 1.

The notations introduced thus far need to be gen-
eralized to account for series of unlearning requests
W1,W2, . . . ,WU . Global models are now referenced
by their coordinates (u, n), i.e. ✓n

u represents the
model after u unlearning requests followed by a re-
training made of n aggregation steps. Hence, ✓0

u is
the initialization of the model when starting to un-
learn the clients in Wu. Additionally, we define Nu

as the number of server aggregations on the remain-
ing clients required to reach the desired performance
threshold (i.e. perform successful retraining). There-
fore, by construction, ✓Nu

u is the model obtained af-
ter using SIFU to process the sequence of unlearn-
ing requests {Ws}us=1. Finally, we define Iu as the

SIFU: E�cient and Provable Client Unlearning in Federated Optimization

Training

Unlearning W1

Unlearning W2

Unlearning W3

Server aggregation

Noise perturbation

H(0) = (✓0
0, . . . ,✓

N0
0)

H(1) = (✓0
0, . . . ,✓

T1
0 ,✓0

1, . . . ,✓
N1
1) ⇣1 = 0

H(2) = (✓0
0, . . . ,✓

T1
0 ,✓0

1, . . . ,✓
T2
1 ,✓0

2, . . .✓
N2
2) ⇣2 = 1

H(3) = (✓0
0, . . . ,✓

T1
0 ,✓0

1, . . . ,✓
T3
1 ,✓0

3, . . .✓
N3
3) ⇣3 = 1

✓0
0 ✓1

0

✓T1
0 ✓N0

0

✓0
1

✓T3
1

✓T2
1

✓N1
1

✓0
2 ✓N2

2

✓0
3

✓N3
3

Figure 1: Illustration of SIFU (Algorithm 3) when the server receives U = 3 unlearning requests, through the
evolution of the global model parameters ✓n

u after server aggregation and noise perturbation. After standard
federated training via FedAvg(I,N0) the training history is H(0) = (✓0

0, . . . ,✓
N0
0). At request u = 1, the un-

learning index is T1, and the training history becomes H(1) = (✓0
0, . . . ,✓

T1
0 ,✓0

1, . . . ,✓
N1
1) with ⇣1 = 0. At request

u = 2, the unlearning index is T2 and the training history becomes H(2) = (✓0
0, . . . ,✓

T1
0 ,✓0

1, . . . ,✓
T2
1 ,✓0

2, . . .✓
N2
2)

with ⇣2 = 1. Finally, at request u = 3, the unlearning index is found at T3 < T2 in the branch of request u = 1.
The updated training history is now H(3) = (✓0

0, . . . ,✓
T1
0 ,✓0

1, . . . ,✓
T3
1 ,✓0

3, . . .✓
N3
3) with ⇣3 = 1.

set of remaining clients after unlearning request u, i.e.
Iu := I \ [u

s=1Ws = Iu�1 \Wu, with I0 = I.

In case of multiple unlearning requests, the bounded
sensitivity (9) for client i must be updated at each
unlearning index u to account for the new history of
global models resulting from retraining. With SIFU,
the selection of the unlearning index T for a request u
depends of the past history of unlearning requests. To
track of the evolution of the unlearning procedure, we
introduce the model history H(u), which keeps track
of each iteration of the global model across requests.
Please note that this object is here introduced solely
for illustration purposes, and is not actually stored
when running SIFU. With reference to Figure 1, we
start with the original sequence of global models ob-
tained at each FL round, i.e. H(0) = (✓0

0, . . . ,✓
N0
0).

Similarly to IFU, the first unlearning request requires
to identify the unlearning index T1 for which the cor-
responding global model ✓T1

0 must be perturbed to ob-
tain ✓0

1 and retrained until convergence, i.e. up to ✓N1
1 .

In this case, the bounded sensitivity is computed ac-
cording to equation (9).

After unlearning (i.e. Gaussian perturbation followed
by re-training), the current training history is now
H(1) = (✓0

0, . . . ,✓
T1
0 ,✓0

1, . . . ,✓
N1
1). More generally, we

define H(u) as the training history after u unlearning
requests and Nu FL iterations steps from ✓u

0 . We de-
fine the increment history of a given client c as the
sequence obtained by computing �c(Ik,✓s

k) on every

element of H, according to their order of appearance
in the training history:

⇤u
c = (�c(Ik,✓

s
k) for ✓

s
k 2 H(u)), (14)

The bounded sensitivity for client i should be updated
to account for this new history of global models. We
therefore generalize equation (9) to account for the
entire training history:

 u(n, c) :=
nX

s=1

B(fI , ⌘)
�s,n · ⇤u

c [s], (15)

where ⇤u
c [s] is the s-th element of the sequence ⇤u

c .
We extend this quantity to a set of clients S as

 u(n, S) := max
c2S

 u(n, c). (16)

For a given unlearning request u + 1, we evaluate
 u(n,Wu+1) along the clients’ history and we identify
the optimal parameters to initialize unlearning from:

✓Tu+1

⇣u+1
= H(u)[nu+1], (17)

where

nu+1 = max{n : u(n,Wu+1)  ⇤} . (18)

We proceed by perturbing the parameters ✓Tu+1

⇣u+1
with

Gaussian noise defined in Theorem 2 to obtain ✓0
u+1.

A new FL routine is then operated with the remaining

Fraboni, Van Waerebeke, Vidal, Kameni, Scaman, Lorenzi

clients to obtain parameters ✓Nu+1

u+1 , and to update the
training history as

H(u+ 1) = (✓0
0, . . . ,✓

Tu+1

⇣u+1
,✓0

u+1, . . . ,✓
Nu+1

u+1). (19)

As for IFU, performing SIFU requires the server to
store the sensitivity associated to each client at each
round, and one global model checkpoint per client.
The computational cost for this operation is negligible.
Theorem 3 shows that with SIFU we achieve unlearn-
ing guarantees for every client in a sequential unlearn-
ing request Fu.

Theorem 3. The model ✓Nu
u obtained with SIFU sat-

isfies (✏, �)-unlearning for every client in current and

previous unlearning requests, i.e. in Fu = [u
s=1Ws.

Proof. See Appendix D.

5 Experiments

In this section, we experimentally demonstrate the ef-
fectiveness of SIFU through a series of experiments
introduced in Section 5.1. In Section 5.2, we illustrate
and discuss our experimental results. Results and re-
lated code are publicly available at this GitHub URL.

5.1 Experimental Setup

Datasets. We report experiments on adapted ver-
sions of CIFAR-10 (Krizhevsky, 2009), CIFAR-100
(Krizhevsky, 2009), MNIST (LeCun et al., 1998),
FashionMNIST (Xiao et al., 2017), and CelebA (Liu
et al., 2015). For each dataset, we consider M = 100
clients, with 100 data points each. For MNIST and
FashionMNIST, each client has data samples from only
one class, so that each class is represented in 10 clients
only. For CIFAR10 and CIFAR100, each client has
data samples with ratio sampled from a Dirichlet dis-
tribution with parameter 0.1 (Harry Hsu et al., 2019).
Finally, in CelebA, clients own data samples represent-
ing the same celebrity as done in LEAF (Caldas et al.,
2018). With these five datasets, we consider di↵erent
levels of heterogeneity based on labels and features
distribution.

Models. For MNIST, we train a logistic regression
model to consider a convex classification problem. For
the other four datasets, we train a neural network with
convolutional layers followed by fully connected ones.
Further details are provided in Appendix E.

Unlearning schemes. We compare a variety of
state-of-the-art FU schemes. First, we consider our
method SIFU as described in Algorithm 3 and set
B = 1. The choice for B is experimentally justified
in Appendix F. In addition to SIFU, we consider the

following unlearning schemes from the state-of-the-art:
Scratch, where retraining of a new model is per-
formed from scratch on the remaining clients; Fine-
Tuning, where retraining is performed on the current
global model with the remaining clients; DP (Dwork
and Roth, 2014), where training with every client is
performed with Di↵erential Privacy, and both Fed-
Eraser and FedAccum (Liu et al., 2021), where un-
learning is performed by using the gradient history of
clients to remove their contribution. Finally, we con-
sider a freely adapted version of Neel et al. (2021)’s
perturbed gradient descent by noising the final model
with a standard deviation calculated from SIFU’s the-
oretical analysis, which boils down to performing SIFU
without the ”roll-back” step.

Experimental scenario.

Since unlearning is about e�ciency of information
deletion, we first study the unlearning capabilities of
every method under di↵erent time constraints. We
limit the unlearning time allowed for each method to
respectively 25%, 33% and 50% of the training time,
and display the accuracy results both on the unlearned
clients (forget set) and the remaining ones (retain set).
Secondly, to account for the sequential unlearning set-
ting and the adversarial case of watermarked data, we
study the scenario proposed by (Sommer et al., 2020)
in Section 5.3. Each unlearning method is applied with
the same hyperparameters, i.e. local learning rate ⌘,
amount of SGD steps K and optimizer (Appendix E).

Unlearning quantification. We verify the success of
a FU scheme by evaluating its running time and dif-
ference in accuracy with Scratch on the retain and
forget set. When studying methods under a time con-
straint (Section 5.2), we compute: (a) The accuracy
di↵erence on the forget set, thus evaluating unlearn-
ing quality, and (b) the accuracy di↵erence on the re-
tain set, thus evaluating retained utility. When study-
ing methods under a utility constraint (Section 5.3),
we compute (a) The accuracy di↵erence on the forget
set, and (b) the number of required iterations to reach
the fixed utility threshold. The di↵erences are com-
puted with respect to the performance of Scratch to
identify the method associated with similar unlearning
properties and reduced computation time.

5.2 Experimental Results

The results for the first experimental setting described
in Sec. 5.1 are available in Fig 2. SIFU outperforms
its competitors on 4 out of 5 datasets. In particular,
on every experiment involving FU of a neural network,
SIFU is the only method to achieve a good trade-o↵
between forgetting quality and accuracy on the retain
set, while other methods fail either by lack of forgetting

https://github.com/Accenture/Labs-Federated-Learning/tree/SIFU

SIFU: Efficient and Provable Client Unlearning in Federated Optimization

Figure 2: Difference in accuracy (absolute value) between Scratch and the considered unlearning methods, on
both retain and forget sets (lower is better).

quality (Fine-Tuning, FedAccum) or by low retain set
accuracy (FedEraser, Last).

It is interesting to notice that while Last performs
quite well on very simple datasets such as CelebA and
MNIST, the introduced noise becomes too large in
more complex datasets such as CIFAR10(0), render-
ing it infeasible for the model to converge after noising.
This motivates our method and underlines the impor-
tance of the ”roll-back” step in SIFU. While FedEraser
tends to be a good performer in terms of retain set ac-
curacy, the imposed unlearning time limit forbids it
from recovering satisfying utility on the retain set, as
compared to SIFU. Thus, one can wonder whether the
method would perform better if provided with more
time. We answer this question in Section 5.3. Finally,
we excluded some methods when their poor perfor-
mances would hinder the figure’s readability: DP was
removed from Figures 2 and 3, and Last from Figure
3. See Appendix E for DP performances.

5.3 Verifying Unlearning with Watermarking

The work of (Sommer et al., 2020) proposes an ad-
versarial approach to verify the unlearning efficiency
through watermarking. We follow this approach by ap-

plying watermarking to each client’s data by randomly
assigning the maximum possible value to 10 given pix-
els of each data sample. To ensure that clients’ het-
erogeneity is only due to the modification of the pixels
intensities, we define data partitioning across clients
by randomly assigning the data according to a Dirich-
let distribution with parameter α = 1.

We consider a sequential unlearning scenario in which
the server performs FL training and then receives
U = 3 sequential unlearning requests to unlearn 10
random clients per request. In the special case of
MNIST and FashionMNIST, the server must unlearn
10 clients owning the same class. The server performs
unlearning with each method, before fine-tuning the
obtained model on the remaining data until the global
model accuracy on the remaining clients exceeds a
fixed threshold specific to each dataset, namely: 93%
for MNIST, 99.9% for CelebA, and 90% for Fashion-
MNIST, CIFAR10 and CIFAR100. We impose a min-
imum of 50 FL aggregation rounds, and a maximum
of 10000 rounds when the stopping accuracy threshold
is not reached.

Figure 3 shows our results for this experimental sce-
nario. On every dataset where a CNN is used, SIFU

Fraboni, Van Waerebeke, Vidal, Kameni, Scaman, Lorenzi

��� ��	 ��
 ��� ��� ��

�

��

���

���

���

	���

�-!
+�
-%*

)�
�*

.)
-��
0
�

�����	�

��� ��	 ��
 ��� ��� ��

	��

��

���

���

��

���

���

�����	��

���� ���
 ���� ���� ���� ��	� ��	

�*+#!-��!-��0�

�

��

	���

	
��

���

��

����
�����

����� ���

 ���
� ����
 ��	�� ��	

�*+#!-��!-��0�

�

��

���

���

���

	���

	
��

	���

�-!
+�
-%*

)�
�*

.)
-��
0
�

��,$%*)�����

����� ���

 ���
� ����
 ��	�� ��	

 ��	
�
�*+#!-��!-��0�

�

	��

	
�

��

�

���

�
�

���
�!'!��

��+&!+��*'*.+,�
����
"%)!�-.)%)#
�! ���.(
�! �+�,!+
,�+�-�$
77777777777
�)'!�+)%)#��) !/!,�
	

�

Figure 3: Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients (2nd row) for
the unlearning of watermarked data from MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower
the better).

outperforms every other method, confirming the con-
clusions drawn from Figure 2. Indeed, it o↵ers a
unique trade-o↵ between e�ciency and unlearning,
while FedEraser provides satisfying unlearning but is
even more costly than Scratch in terms of iteration
count, thus rendering the method of limited interest
in our experimental scenario.

5.4 Verifying the consistency of SIFU.

We provide additional experiments in Appendix E as-
sessing the unlearning results depending on varying
training conditions, including the choice of the clients
to be unlearnt, and the amplitude of the model per-
turbation. Our findings are consistent in showing that
SIFU is the best performing method in terms of com-
putational e�ciency and unlearning capabilities. In
particular, we note that when unlearning with low
(resp. high) values of �, SIFU has identical behavior
to Scratch (resp. Last), as the unlearning is applied
to the initial model ✓0

0 (resp. final ✓Nu
u). Moreover,

independently from the chosen batch of clients to be
unlearnt, Supplementary Figure 6 shows that SIFU
consistently leads to e↵ective unlearning with lower

computational cost as compared to Scratch.

6 Conclusions

In this work, we introduce SIFU, a general FU scheme
allowing unlearning of clients contributions from a
model trained with FedAvg. Upon receiving an un-
learning request from a given client, SIFU identifies
the optimal FL iteration from which to re-initialise
the optimisation. We prove that SIFU accounts for
sequences of requests while satisfying the unlearning
guarantees. SIFU is scalable with respect to model size
and FL iterations, and generalizes beyond the convex
assumption on the local loss functions, thus relaxing
the strong assumptions typically adopted in the MU
literature.

A further contribution of this work consists in a new
theory for bounding the clients contribution in FL,
which can be computed by the server without major
overhead, and no additional communication nor com-
putation on the client side.

SIFU: E�cient and Provable Client Unlearning in Federated Optimization

7 Acknowledgements

This work was supported by the French government
managed by the Agence Nationale de la Recherche
(ANR) through France 2030 program with the ref-
erence ANR-23-PEIA-005 (REDEEM project), and
through the Franco-German research program with
reference ANR-22-FAI1-0003 (TRAIN project). It was
also funded in part by the Groupe La Poste, sponsor
of the Inria Foundation, in the framework of the Fed-
Malin Inria Challenge.

References

Bourtoule, L., Chandrasekaran, V., Choquette-Choo,
C. A., Jia, H., Travers, A., Zhang, B., Lie, D., and
Papernot, N. (2021). Machine unlearning. In 2021

IEEE Symposium on Security and Privacy (SP),
pages 141–159. IEEE.

Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečný,
J., McMahan, H. B., Smith, V., and Talwalkar, A.
(2018). LEAF: A Benchmark for Federated Settings.
NeurIPS.

Cao, Y. and Yang, J. (2015). Towards making systems
forget with machine unlearning. 2015 IEEE Sympo-

sium on Security and Privacy, pages 463–480.

Chen, X., Wu, S. Z., and Hong, M. (2020). Under-
standing gradient clipping in private sgd: A geo-
metric perspective. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H., editors, Ad-
vances in Neural Information Processing Systems,
volume 33, pages 13773–13782. Curran Associates,
Inc.

Dwork, C. and Roth, A. (2014). The algorithmic foun-
dations of di↵erential privacy. Found. Trends Theor.
Comput. Sci., 9(3–4):211–407.

Geng, J., Mou, Y., Li, Q., Li, F., Beyan, O., Decker, S.,
and Rong, C. (2023). Improved gradient inversion
attacks and defenses in federated learning. IEEE

Transactions on Big Data.

Ginart, A., Guan, M., Valiant, G., and Zou, J. Y.
(2019). Making ai forget you: Data deletion in
machine learning. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Gar-
nett, R., editors, Advances in Neural Information

Processing Systems, volume 32. Curran Associates,
Inc.

Golatkar, A., Achille, A., Ravichandran, A., Polito,
M., and Soatto, S. (2021). Mixed-privacy forgetting
in deep networks. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 792–801.

Golatkar, A., Achille, A., and Soatto, S. (2020a). Eter-
nal sunshine of the spotless net: Selective forgetting

in deep networks. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recog-

nition (CVPR).

Golatkar, A., Achille, A., and Soatto, S. (2020b). For-
getting outside the box: Scrubbing deep networks
of information accessible from input-output obser-
vations.

Gong, J., Kang, J., Simeone, O., and Kassab, R.
(2022). Forget-svgd: Particle-based bayesian fed-
erated unlearning. In 2022 IEEE Data Science and

Learning Workshop (DSLW), pages 1–6. IEEE.

Guo, C., Goldstein, T., Hannun, A., and Van
Der Maaten, L. (2020). Certified data removal from
machine learning models. In III, H. D. and Singh,
A., editors, Proceedings of the 37th International

Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages
3832–3842. PMLR.

Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-
Malvajerdi, S., and Waites, C. (2021). Adaptive
machine unlearning. In Ranzato, M., Beygelzimer,
A., Nguyen, K., Liang, P. S., Vaughan, J. W., and
Dauphin, Y., editors, Advances in Neural Informa-

tion Processing Systems, volume 34, pages 16319–
16330. Curran Associates, Inc.

Halimi, A., Kadhe, S., Rawat, A., and Baracaldo,
N. (2022). Federated unlearning: How to ef-
ficiently erase a client in fl? arXiv preprint

arXiv:2207.05521.

Harding, E. L., Vanto, J. J., Clark, R., Hannah Ji,
L., and Ainsworth, S. C. (2019). Understanding the
scope and impact of the california consumer privacy
act of 2018. Journal of Data Protection & Privacy,
2(3):234–253.

Hardt, M., Recht, B., and Singer, Y. (2016). Train
faster, generalize better: Stability of stochastic gra-
dient descent. In International conference on ma-

chine learning, pages 1225–1234. PMLR.

Harry Hsu, T. M., Qi, H., and Brown, M. (2019). Mea-
suring the e↵ects of non-identical data distribution
for federated visual classification. arXiv preprint

arXiv:1909.06335.

Izzo, Z., Anne Smart, M., Chaudhuri, K., and Zou,
J. (2021). Approximate data deletion from machine
learning models. In Banerjee, A. and Fukumizu,
K., editors, Proceedings of The 24th International

Conference on Artificial Intelligence and Statistics,
volume 130 of Proceedings of Machine Learning Re-

search, pages 2008–2016. PMLR.

Jin, R., Chen, M., Zhang, Q., and Li, X. (2023). For-
gettable federated linear learning with certified data
removal. arXiv preprint arXiv:2306.02216.

Fraboni, Van Waerebeke, Vidal, Kameni, Scaman, Lorenzi

Krizhevsky, A. (2009). Learning multiple layers of fea-
tures from tiny images.

LeCun, Y., Bottou, L., Bengio, Y., and Ha, P. (1998).
LeNet. Proceedings of the IEEE.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang,
Z. (2020). On the convergence of fedavg on non-
iid data. In International Conference on Learning

Representations.

Li, Y., Wang, C., and Cheng, G. (2021). Online forget-
ting process for linear regression models. In Baner-
jee, A. and Fukumizu, K., editors, The 24th Inter-

national Conference on Artificial Intelligence and

Statistics, AISTATS 2021, April 13-15, 2021, Vir-

tual Event, volume 130 of Proceedings of Machine

Learning Research, pages 217–225. PMLR.

Liu, G., Ma, X., Yang, Y., Wang, C., and Liu, J.
(2021). Federaser: Enabling e�cient client-level
data removal from federated learning models. In
2021 IEEE/ACM 29th International Symposium on

Quality of Service (IWQOS), pages 1–10.

Liu, Y., Xu, L., Yuan, X., Wang, C., and Li, B. (2022).
The right to be forgotten in federated learning: An
e�cient realization with rapid retraining. Proceed-

ings - IEEE INFOCOM, 2022-May:1749–1758.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015).
Deep learning face attributes in the wild. In Pro-

ceedings of International Conference on Computer

Vision (ICCV).

Mahadevan, A. and Mathioudakis, M. (2021). Certi-
fiable machine unlearning for linear models. arXiv

preprint arXiv:2106.15093.

McMahan, B., Moore, E., Ramage, D., Hampson,
S., and y Arcas, B. A. (2017). Communication-
E�cient Learning of Deep Networks from Decen-
tralized Data. In Singh, A. and Zhu, J., editors,
Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics, volume 54 of
Proceedings of Machine Learning Research, pages
1273–1282, Fort Lauderdale, FL, USA. PMLR.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. (2021).
Descent-to-delete: Gradient-based methods for ma-
chine unlearning. In Feldman, V., Ligett, K., and
Sabato, S., editors, Proceedings of the 32nd Interna-

tional Conference on Algorithmic Learning Theory,
volume 132 of Proceedings of Machine Learning Re-

search, pages 931–962. PMLR.

Pan, C., Sima, J., Prakash, S., Rana, V., and
Milenkovic, O. (2023). Machine unlearning of fed-
erated clusters. In The Eleventh International Con-

ference on Learning Representations, ICLR 2023,

Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Sommer, D. M., Song, L., Wagh, S., and Mittal, P.
(2020). Towards probabilistic verification of ma-
chine unlearning. arXiv preprint arXiv:2003.04247,
abs/2003.04247.

Voigt, P. and Von dem Bussche, A. (2017). The eu
general data protection regulation (gdpr). A Prac-

tical Guide, 1st Ed., Cham: Springer International

Publishing, 10(3152676):10–5555.

Wang, J., Guo, S., Xie, X., and Qi, H. (2022). Feder-
ated unlearning via class-discriminative pruning.

Wang, J., Liu, Q., Liang, H., Joshi, G., and Poor,
H. V. (2020). Tackling the objective inconsistency
problem in heterogeneous federated optimization.
In Larochelle, H., Ranzato, M., Hadsell, R., Bal-
can, M., and Lin, H., editors, Advances in Neural

Information Processing Systems 33: Annual Con-

ference on Neural Information Processing Systems

2020, NeurIPS 2020, December 6-12, 2020, virtual.

Wang, W., Tian, Z., Zhang, C., Liu, A., and Yu, S.
(2023). Bfu: Bayesian federated unlearning with
parameter self-sharing. In Proceedings of the 2023

ACM Asia Conference on Computer and Commu-

nications Security, ASIA CCS ’23, page 567–578,
New York, NY, USA. Association for Computing
Machinery.

Wu, C., Zhu, S., and Mitra, P. (2022). Federated un-
learning with knowledge distillation. arXiv preprint

arXiv:2201.09441.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint

arXiv:1708.07747, abs/1708.07747.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

SIFU: E�cient and Provable Client Unlearning in Federated Optimization

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Fraboni, Van Waerebeke, Vidal, Kameni, Scaman, Lorenzi

A When fine tuning does not

guarantee unlearning: example on

linear regression

Let us consider a linear regression optimization, with
feature matrix X and predictions y such that the loss
function f is defined as

f(X,y,✓) =
1

2
[y �X✓]T [y �X✓] . (20)

In this example, we assume there are more features
than data samples, which makes XTX a singular ma-
trix. While f is convex, f has more than one global
optimum. Any model with parameter ✓⇤ such that

XTX✓⇤ = XTy (21)

is a global optimum. When XTX is non-singular,
we retrieve the unique optimum in close-form ✓⇤ =�
XTX

��1
XTy. We show with this simple example

that, upon unlearning a data sample, no amount of
fine-tuning on the model ✓⇤ can lead to the same model
obtained when retraining from a random initial model.
We di↵erentiate between (X,y) and (X�1,y�1) our
data with and without a given data point.

Optimizing f , as defined in equation (20), withN steps
of gradient descent, learning rate ⌘, and initial model
✓0 gives model parameters ✓N defined as

✓N =
⇥
I � ⌘XTX

⇤N
| {z }

A(X,N)

✓0 + ⌘

N�1X

n=0

⇥
I � ⌘XTX

⇤n
XTy

| {z }
B(X,y,N)

.

(22)

We first note that we retrieve the standard form
for the global optimum of linear regression when
XTX is non-singular as limn!1 A(X, n) = 0 and

limn!1 B(X,y, n) =
�
XTX

��1
XTy. In the gen-

eral form accounting for the singular case, at least one
eigenvalue ofA(X, N) is equal to 1 independently from
the amount of gradient descent steps N . Hence, the
parameters of the model obtained with gradient de-
scent optimization always depend from the ones of the
initial model ✓0. Hence, when unlearning our data
sample from ✓N , the resulting trained model still de-
pends of that data samples. Indeed, if we compare the
model ✓Ñ

�1 trained on the data samples (X�1,y�1),

to the model �Ñ
�1 obtained after fine-tuning the model

✓N with Ñ server aggregations, we have

�
Ñ
�1�✓Ñ

�1 = A(X�1, Ñ)A(X, N)✓0+A(X�1, Ñ)B(X,y, N).
(23)

B Forgetting a Single Client with

IFU, Theorem 1

In this section, we provide the proof of Theorem 1 and
derive 3 di↵erent results when considering 3 di↵erent
sets of assumptions: f is smooth, f is smooth and
convex, and f is smooth and strongly-convex.

B.1 Definitions

We define by ✓N = FedAvg(I,N) and �N =
FedAvg(I�c, N) the models trained with FedAvg
initialized at ✓0 with respectively all the clients, i.e.
I, and all the clients but client c, i.e. I�c, performing
K GD steps.

When clients perform K = 1 GD steps, two consecu-
tive global models can be related, when training with
clients in I as a simple GD step, i.e.

✓n+1 = ✓n � ⌘rfI(✓
n). (24)

Let us define the gradient step operator for function f

at learning rate ⌘:

G(f, ⌘,✓) = ✓ � ⌘rf(✓)

B.2 General case

B.2.1 Main observation

The following results use Lemma 3.7 of (Hardt et al.,
2016) under its 3 possible hypothesis. Let us first no-
tice that, with K = 1 and without any hypothesis on
f besides its di↵erentiability, we have:

�
n+1 � ✓

n+1 = �
n � ✓

n � ⌘[rfI\{c}(�
n)

�rfI\{c}(✓
n) +rfI\{c}(✓

n)�rfI(✓
n)]

= G(fI\{c}, ⌘,�
n)�G(fI\{c}, ⌘, ✓

n)

+ ⌘(rfI\{c}(✓
n)�rfI(✓

n))

Then, depending on the assumptions made on f , we
get 3 di↵erent results, all taking the same form:

k�n+1 � ✓
n+1k  B(f, ⌘)k�n � ✓

nk
+ ⌘krfI\{c}(✓

n)�rfI(✓
n)k

(25)

Where we consider 3 distinct cases, each with their
respective assumptions and definition of B:

1. If fi is �-smooth for every i 2 I, then

B(fI , ⌘) = 1 + ⌘.� (26)

2. If fi is �-smooth and convex for every i 2 I and
⌘  2/�, then

B(f, ⌘) = 1 (27)

SIFU: E�cient and Provable Client Unlearning in Federated Optimization

3. If fi is �-smooth and µ-strongly-convex for every
i 2 I and ⌘  2

�+µ , then

B(f, ⌘) = 1� ⌘�µ

� + µ
(28)

B.2.2 Generic proof

Let us prove the desired results with a generic function
B. The specific results in the 3 di↵erent cases will then
be derived directly by specifying B depending on the
hypothesis.

Let pi =
Ni
NI

and qi =
pi

1�pc
· (1� c(i)). Then,

k�n+1 � ✓
n+1k =

���
MX

i=1

qi�
n+1
i �

MX

i=1

pi✓
n+1
i

���

=
���

MX

i=1

qi(�
n+1
i � ✓

n+1
i)

+
MX

i=1

qi(✓
n+1
i � ✓

n)�
MX

i=1

pi(✓
n+1
i � ✓

n)

| {z }
�c(I,✓n)


MX

i=1

qik�n+1
i � ✓

n+1
i k+�c(I, ✓

n)

 max
i2I

k�n+1
i � ✓

n+1
i k+�c(I, ✓

n)

where the last inequality follows from the fact thatP
qi = 1.

Now, for any i 2 I, let us give an upper bound for
k�n+1

i � ✓
n+1
i k:

k�n,k+1
i � ✓

n,k+1
i k = kG(f{i}, ⌘,�

n,k
i)�G(f{i}, ⌘, ✓

n,k
i)k

 B(f, ⌘) · k�n,k
i � ✓

n,k
i k

(29)
where the last inequality follows from the contractivity
of one step of gradient descent (see Lemma 3.7 of Hardt
et al. (2016) for all 3 cases). By applying this equation
recursively K times, we get

k�n+1
i � ✓

n+1
i k  B(f, ⌘)K · k�n

i � ✓
n
i k (30)

From Eq. (29) and Eq. (30), we get:

k�n+1�✓
n+1k  B(f, ⌘)K ·k�n�✓

nk+�c(I, ✓
n) (31)

Now, let us prove via recurrence that:

k�n � ✓
nk 

n�1X

p=0

B(f, ⌘)(n�p�1)K ·�c(I, ✓
p) (32)

The initialization is trivial since �
0 = ✓

0.

We provide the proof of the recurring property in equa-
tion (33), thus verifying equation (32) and proving
Theorem 1.

k�n+1 � ✓
n+1k  B(f, ⌘)K ·

"
n�1X

p=0

B(f, ⌘)(n�p�1)K�c(I, ✓
p)

#

+�c(I, ✓
n)


(n+1)�1X

p=0

B(f, ⌘)(n+1�p�1)K ·�c(I, ✓
p)

(33)

Let us now give the specific formulations for each set
of assumptions.

B.3 Case f smooth, not necessarily convex

Let f be �-smooth. In this case, the result from
Eq. (32) applies with B as described in Eq. (26).
Therefore:

k�n � ✓
nk 

n�1X

p=0

(1 + ⌘�)(n�p�1)K ·�c(I, ✓
p) (34)

B.4 Case f smooth & convex

Let f be convex and �-smooth, let ⌘  2
� . In this case,

the result from Eq. (32) applies with B as described
in Eq. (27). Therefore:

k�n � ✓
nk 

n�1X

p=0

�c(I, ✓
p) (35)

B.5 Case f smooth & strongly convex

Let f be µ-strongly convex and �-smooth, let ⌘  2
�+µ .

In this case, the result from Eq. (32) applies with B

as described in Eq. (28). Therefore:

k�n � ✓
nk 

n�1X

p=0

(1� ⌘�µ

� + µ
)(n�p�1)K ·�c(I, ✓

p) (36)

C Unlearning certification, Proof of

Theorem 2

Proof. According to theorem A.1 of (Dwork and Roth,
2014), the Gaussian mechanism with sensitivity ↵, is
(✏, �)-Di↵erentially Private if its noise parameter � ver-
ifies :

� > [2 (ln(1.25)� ln(�))]1/2 ✏�1
↵. (37)

Fraboni, Van Waerebeke, Vidal, Kameni, Scaman, Lorenzi

In our case, the sensitivity with respect to any client
c at step n is ↵(n, c) by construction. Additionally,
Theorem 1 provides us with the bound

↵(n, c)  (n, c). (38)

Thus, picking any noise �(n, c) such that

�(n, c) > [2 (ln(1.25)� ln(�))]1/2 ✏�1 (n, c) (39)

ensures the di↵erential privacy of our forgetting mech-
anism with respect to the unlearned clients. This con-
cludes the proof.

D Convergence of SIFU, Theorem 3

D.1 Proof of Theorem 3

Proof. We prove by induction that ✓0
u+1 (✏, �)-unlearns

every client in Fu+1 = [u+1
s=1Ws = Fu [Wu+1. The

initialization (u = 1) directly follows from IFU, Algo-
rithm 2, with Theorem 2. With reference to equation
(17), we now assume that for every unlearning request
u  u, the perturbed model ✓0

u (✏, �)-unlearns every
client in Fu, and prove that ✓0

u+1 (✏, �)-unlearns every
client in Fu+1.

• Case 1: 8u  u, nu  nu+1. The model

✓Tu+1

⇣u+1
= H(u)[nu+1] appears later in the training

history than models ✓Tu
⇣u

and, thanks to the induc-
tion property, provides (✏, �)-unlearning of every
client in Fu. Thus, the model ✓0

u+1 guarantees the
unlearning of every client in Fu+1.

• Case 2: 9 unlearning request u⇤ 
u such that nu+1 < nu⇤. By construction of the
training history, the sequence H(u⇤) contains the

model ✓Tu+1

⇣u+1
= H(u⇤)[nu+1] = H(u)[nu+1], which

appears earlier than model ✓Tu⇤
⇣u⇤ = H(u⇤)[nu⇤].

Perturbing the model ✓Tu+1

⇣u+1
with noise N(0,�I✓),

guarantees (✏, �)-unlearning of the clients in Wu⇤ ,
since

 u⇤(nu+1, c
⇤)  u⇤(nu⇤ , c

⇤)  ⇤
,

for every client c
⇤ in Wu⇤. By extending this

reasoning to all learning requests u such that
nu+1 < nu, and by the induction property for
the remaining ones, the model ✓0

u+1 guarantees
the unlearning of every client in Fu+1.

E Experiments

For every benchmark, we consider the number of SGD
steps K, batch size B, number of clients M , the num-
ber of sampled clients m, the standard deviation �

of the noise perturbation, and the local learning rate
⌘ given in Table 2. Also, for our unlearning scheme
SIFU, DP, and Last, we consider an unlearning bud-
get of ✏ = 10 and � = 0.01. The unlearning budget
plays the important role of identifying in the train-
ing history the global model to perturb. Theorem 2
shows that ✏ and � are linearly related. Hence, to un-
learn a client c from a global model c, a smaller � can
be considered, but at the cost of a higher unlearning
budget (✏, �), Definition 1. Also, for fair comparison
of DP with other FU schemes, we select the best clip-
ping value C, in a range from 0.001 to 1, for which
the global model reaches the target accuracy in the
smallest amount of aggregation rounds. Finally, for
FashionMNIST, CIFAR10, CIFAR100, and CelebA,
we consider model architectures composed of three
convolutional layers followed by two fully connected
layers, with implementation at this GitHub url.

Table 2: Hyperparameters used for our di↵erent un-
learning benchmarks described in Section 5.1.

Dataset K B M m � ⌘ C

CIFAR10 5 20 100 5 0.05 0.01 0.2
CIFAR100 5 20 100 5 0.05 0.02 0.2
MNIST 10 100 100 10 0.05 0.01 0.5
FMNIST 5 20 100 10 0.1 0.02 0.5
CelebA 10 20 100 20 0.1 0.01 0.5

The training and retraining depends on the initial
model ✓0

0 and the clients’ batches of data used at every
aggregation to compute their local SGDs. Hence, we
replicate each unlearning scenario on 10 di↵erent seeds
and plot in Figure 4 to 6 their averaged results. For the
unlearning benchmarks described in Section 5.1 and
used in Figure 4, to 6, the stopping accuracies con-
sidered are 93% for MNIST, 90% for FashionMNIST,
CIFAR10, and CIFAR100, and 99.9% for CelebA.

We provide several figures to further the experimental
evaluation of our method.

We define the set of clients requesting unlearning as:

Fu = [u
s=1Ws. (40)

In our experimental scenario, we have |F0| = 0 during
training, and |F1| = 10, |F2| = 20, and |F3| = 30 after
each unlearning request. We consider this setting both
within an usual and an adversarial scenario with back-
doored data (as proposed in (Sommer et al., 2020)). In

https://github.com/Accenture/Labs-Federated-Learning/tree/SIFU

SIFU: E�cient and Provable Client Unlearning in Federated Optimization

���� ���
 ��	� ��	
 ��
� ��

�

��

	���

	
��

���

�/#
-�
/',

+�
�,

0+
/��
2
�

�����	�

��� ��	 ��
 ��� ��� ��

�

��

	���

	
��

���

��

����

�
��

�����	��

��� ��	 ��
 ��� ��� ��

�,-%#/��#/��2�

�

��

���

���

���

	���

	
��
�����

��� ��	 ��
 ��� ��� ��

�,-%#/��#/��2�

	��

��

���

���

��

���

���

���

�/#
-�
/',

+�
�,

0+
/��
2
�

��.&',+�����

����� ���

 ���
� ����
 ��	�� ��	

 ��	
�
�,-%#/��#/��2�

�

	��

	
�

��

�

���

�
�

���

�
�
�#)# �

��-(#-��,),0-.�
����
$'+#�/0+'+%
�#"�!!0*
�#"�-�.#-
.!-�/!&
��
99999999999
�+)#�-+'+%��+"#1#.�
	

�

Figure 4: Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients (2nd row) for
MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the better). The server runs a federated
routine with M = 100 clients, and unlearns 10 of them at each unlearning request (U = 3). Results are reported
with variability estimated on 10 seeds.

Figure 3 and 4, we compare the performances of SIFU
with other methods from the literature. Rather than
operating within a limited time budget, we fine-tune
after the unlearning until a certain accuracy threshold
is reached. Thus, all compared methods have equiva-
lent performances on the retain set and the evaluated
quantities are now forget set accuracy and unlearning
(+ fine-tuning) budge, as described in Sec 5.1. Figure
4 illustrates the computational cost (1st row), and un-
learning capabilities (2ns row) of the tested FU meth-
ods across dataset. We note that SIFU requires a sen-
sibly lower number of iterations than Scratch (52%
faster on average) to achieve similar unlearning per-
formances. FedEraser also provides comparable un-
learning capabilities, while however requiring a higher
number of iterations than Scratch (12% on average).
The other approaches are generally associated with
poor unlearning results, independently from the re-
quired computational cost. We notice that the model
accuracy of SIFU is slightly higher than the one of
Scratch, with overlap only for FashionMNIST. This
behavior is natural and can be explained by the pri-
vacy budget (✏, �) trading unlearning capabilities for

retraining cost. With the highest unlearning budget,
i.e. ✏ = 1 and � = 0, SIFU would require to retrain
from the initial model ✓0

0, thus reducing to Scratch.

The poor unlearning performance of DP can be ex-
plained by the fact that it provides privacy guarantees
with respect to every client, while FU only aims at
removing the contribution of a few specific clients.

As observed previously, only SIFU and FedEraser
provide satisfactory unlearning, but SIFU is signifi-
cantly faster than its counterpart: FedEraser is even
slower than Scratch and is thus not a relevant un-
learning method in our experimental scenario.

Finally, when unlearning with Last, we observed that
the model always converged to a local optimum with
accuracy inferior to our target. This behavior is likely
due to the magnitude of the noise being added to guar-
antee unlearning. Hence, we decided to exclude Last
from Figure 4.

Experiments were performed using a 1080TI GPU
from Nvidia.

Fraboni, Van Waerebeke, Vidal, Kameni, Scaman, Lorenzi

��*	 ��*�

��	

��

�
��

#'
"�

%
�������

��*	 ��*�

��	

��

��������

��*	 ��*�

��	

��

�����

��*	 ��*�

��	

��

��%� #"�����

��*	 ��*�
���

�) ���

) ���

) ���

��!���

��*	 ��*�
�# %��%&���

��

�

��

��
�'

$�
�(

�#
"�
�

�

��*	 ��*�
�# %��%&���

��

	�

�

��*	 ��*�
�# %��%&���

�

�

��

��

��*	 ��*�
�# %��%&���

*����

����

����

��*	 ��*�
�# %��%&���

�

��

��

��$�&�� ����

Figure 5: Impact of the noise standard deviation � when unlearning with SIFU for the unlearning budget
(✏, �) = (10, 0.01). Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients (2nd

row) for MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the better). Speed-ups at optimal
sigma are between two-fold and five-fold.

F Bound from theorem 1

To investigate whether it is legitimate to pick
B(f, ⌘) = 1 for our experiments, we empirically mea-
sure ↵ and for all our datasets with a large set of
hyper-parameter choices, ranging from the ones used
in the experiments to less adapted ones, even included
some that do not allow convergence. The bound from
Theorem 1 holds for every experimental scenario we
tried. The results are displayed in figure 7.

SIFU: E�cient and Provable Client Unlearning in Federated Optimization

�

�

��

����

�
��

�
��
&*
%�
(

�������

�

�
�

��

�
�

��������

�

���

	��

���
�����

�

�
�

��

�
�

��(!"&%�����

�

���

	��

��#���

�

��

�

��
�*
'�
�+
�&
%�
�

�

�

	�

��

�

�

�

��

	�

��

�

�

�

���

�

��

�

���

��'�)�! ���� �"%���*%"% ������*$ ����'�(�' ��

Figure 6: Total amount of aggregation rounds (1st row) and model accuracy of unlearned clients (2nd row) for
MNIST, FashionMNIST, CIFAR10, CIFAR100, and CelebA (the lower the better). This figure displays the
unlearning capabilities of the unlearning benchmarks introduced in Section 5.1 after training on clients in I and
unlearning |W1| = 10 clients. For each integer on the x-axis, a di↵erent set of clients to unlearn is considered.
Each unlearning request is composed of 10 random clients for CIFAR10, CIFAR100, and CelebA. For MNIST
and FashionMNIST, each unlearning request |W1| has 10 clients of the same class such that the x-axis is the class
forgotten. The integers on the x-axis corresponds to the class of the clients to unlearn. We retrieve the same
conclusions made in 4: SIFU is the only unlearning method o↵ering an unlearning speed-up while maintaining
an accuracy close to Scratch on unlearned clients. DP seems very fast since the displayed number of rounds
does not include the initial training.

Fraboni, Van Waerebeke, Vidal, Kameni, Scaman, Lorenzi

10−2 10−1 100 101 102 103 104
α

10−2

10−1

100

101

102

103

104

105

Ψ

Dataset
CIFAR10
CIFAR100
FashionMNIST
MNIST-shard
celeba

0

20

40

60

80

100
Acc

Figure 7: Comparison between Ψ and α for B = 1 for all datasets and various hyper-parameters. We observe
that the bound demonstrated in Theorem 1 holds for all the considered experimental scenarios, even when setting
B = 1 in neural networks.

	aa48cc73cd69e5813ef2edb1f14762cced7928476ebb794db6a8fdb40f8eb160.pdf
	Introduction
	Background and Related Work
	Machine Unlearning
	Federated Optimization and FedAvg
	Federated Unlearning

	Unlearning a single client with IFU
	Bounding the Model Sensitivity
	From model sensitivity to certified unlearning
	Informed Federated Unlearning (IFU)

	Sequential FU with SIFU
	Experiments
	Verifying the consistency of SIFU.

	Conclusions
	Acknowledgements
	When fine tuning does not guarantee unlearning: example on linear regression
	Forgetting a Single Client with IFU, Theorem 1
	Definitions
	General case
	Main observation
	Generic proof

	Case f smooth, not necessarily convex
	Case f smooth "3026 convex
	Case f smooth "3026 strongly convex

	Unlearning certification, Proof of Theorem 2
	Convergence of SIFU, Theorem 3
	Proof of Theorem 3

	Experiments
	Bound from theorem 1

	f26dee459a0abc381614f885e5f5de464d22583c6731b62240441cb4cf0ce6e3.pdf
	f965f66b6d669aafa03f82d485481cb4e209fee306fc1e9eed77a1d15fb2b67c.pdf
	Experiments
	Verifying Unlearning with Watermarking

	aa48cc73cd69e5813ef2edb1f14762cced7928476ebb794db6a8fdb40f8eb160.pdf
	f26dee459a0abc381614f885e5f5de464d22583c6731b62240441cb4cf0ce6e3.pdf
	f965f66b6d669aafa03f82d485481cb4e209fee306fc1e9eed77a1d15fb2b67c.pdf

