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Abstract

Performance monitoring of machine learning
(ML)-based risk prediction models in health-
care is complicated by the issue of performa-
tivity: when an algorithm predicts a patient
to be at high risk for an adverse event, clini-
cians are more likely to administer prophylac-
tic treatment and alter the very target that
the algorithm aims to predict. A simple ap-
proach is to ignore performativity and mon-
itor only the untreated patients, whose out-
comes remain unaltered. In general, ignoring
performativity may inflate Type I error be-
cause (i) untreated patients disproportionally
represent those with low predicted risk, and
(ii) changes in the clinician’s trust in the ML
algorithm and the algorithm itself can induce
complex dependencies that violate standard
assumptions. Nevertheless, we show that
valid inference is still possible when moni-
toring conditional rather than marginal per-
formance measures under either the assump-
tion of conditional exchangeability or time-
constant selection bias. Finally, performativ-
ity can vary over time and induce nonstation-
arity in the data, which presents challenges
for monitoring. To this end, we introduce a
new score-based cumulative sum (CUSUM)
monitoring procedure with dynamic control
limits. Through extensive simulation stud-
ies, we study applications of the score-based
CUSUM and how it is affected by various
factors, including the efficiency of model up-
dating procedures and the level of clinician
trust. Finally, we apply the procedure to de-
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tect calibration decay of a risk model during
the COVID-19 pandemic.

1 INTRODUCTION

After a machine learning (ML)-based system is de-
ployed in clinical practice, real-world monitoring of
the algorithm for potential performance degradation
is necessary for mitigating risk and is an important
aspect of good machine learning practice (GMLP)
(Breck et al., 2017; U.S. Food and Drug Adminis-
tration and Health Canada, 2021). Locked ML al-
gorithms may gradually become outdated and output
misleading risk predictions; continual learning proce-
dures are exposed to the additional risk of incorpo-
rating deleterious model updates (Klaise et al., 2020;
Feng et al., 2020). Various methods for performance
monitoring are available, which can generally be cate-
gorized into those based on statistical process control
(Kahn et al., 1996; Gama et al., 2014; Feng et al., 2022)
and sliding window comparisons (Bifet and Gavaldà,
2007; Nishida and Yamauchi, 2007). All these proce-
dures assume an ideal data setting in which the pre-
diction target is observed. However, the data available
for monitoring an ML-based risk prediction algorithm
are often subject to performativity, where predictions
from the algorithm can alter the very outcome that
it aims to predict (Paxton et al., 2013; Lenert et al.,
2019; Perdomo et al., 2020; Liley et al., 2021).

As an example, consider the Targeted Real-time Early
Warning System (TREWS) sepsis risk prediction al-
gorithm (Adams et al., 2022), which estimates the
probability of a patient developing septic shock if they
only receive standard of care (SOC) and no additional
interventions. This algorithm was recently shown to
reduce in-hospital mortality by increasing the likeli-
hood that high-risk patients receive antibiotics (Henry
et al., 2022). Clinicians’ likelihood to interact with the
TREWS system depended on their previous interac-
tions, and the authors hypothesize that clinician trust,
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and thus the impact of performativity, will evolve with
increased exposure to ML-based systems. Monitoring
TREWS is especially important because it depends on
electronic health record (EHR) data, which is prone
to distribution shifts. A simple monitoring solution is
to compare the predicted risk to the actual outcome
only among patients who received SOC, as counterfac-
tual outcomes for patients receiving antibiotics are un-
known. However, in the likely scenario where patients
predicted to be at high risk are preferentially selected
to receive an intervention, procedures that ignore per-
formativity can be biased because the ML algorithm it-
self is a major source of confounding. As demonstrated
in the Appendix, näıvely monitoring marginal perfor-
mance measures such as misclassification rate without
adjusting for treatment propensities can significantly
delay detection.

In the offline setting, one can address the mismatch be-
tween the “SOC-only” and general target population
by weighting the data by the inverse of their treatment
propensities. Prior works have suggested combining
inverse weights with sequential monitoring procedures
to adjust for the similar problem of censoring (Steiner
and MacKay, 2001; Sun et al., 2014). However, proper
error rate control is contingent on knowing the exact
weights, which is unlikely to hold in our setting. More-
over, it is difficult to anticipate how clinician trust in
the ML algorithm varies over time, so it may not even
be possible to estimate propensity weights accurately
when performativity varies over time. Finally, treat-
ment propensities are more extreme (close to one or
zero) the better an ML algorithm is, which reduces
power as shown in our empirical analyses.

Given the difficulties of monitoring marginal perfor-
mance measures, we propose monitoring conditional
performance measures. The intuition is that we can ig-
nore biases induced by performativity by conditioning
on variables likely to experience shifts. For binary-
valued classifiers, we monitor conditional measures
such as positive and negative predictive values. For
risk prediction models, we monitor (stratified) cali-
bration curves, as calibration is a popular measure of
model reliability and one of the most common mea-
sures to decay in real-world settings (Hickey et al.,
2013; Davis et al., 2017). Formally, we establish two
conditions for ignorability: the first is a variant of the
conditional exchangeability assumption (Rubin, 1976),
and the second is time-constant selection bias. Under
either condition, we show one can directly apply pro-
cedures intended for settings where there is no per-
formativity to settings where there is. Thus one can
analyze SOC-only data and avoid estimating treat-
ment propensities altogether. This provides monitor-
ing teams with a simple first step toward addressing

performativity.

In addition, we address two general challenges that
arise when monitoring ML-based risk prediction mod-
els. First, performativity can change over time as
the ML algorithm and clinician trust in the algorithm
evolve. So the population receiving SOC changes
over time, and the predictor sequence is nonstation-
ary. Second, the exact performance characteristics
of the ML algorithm may not be known upfront and
must be estimated. However, many monitoring algo-
rithms assume the exact pre-change data distribution
is known (Tartakovsky et al., 2014). Although there
exist procedures that partially address these chal-
lenges (Dette and Gösmann, 2020; Zeileis and Hornik,
2007; Gombay, 2017), we are unaware of a frequen-
tist monitoring procedure that adequately addresses
both. To this end, we introduce a new nonanticipating
score-based CUSUM chart statistic (Page, 1954) and
a computationally efficient procedure for generating
dynamic control limits (DCLs) (Zhang and Woodall,
2015; Driscoll et al., 2021). (Although Bayesian ap-
proaches naturally address these challenges (Fearn-
head and Liu, 2007; Adams and MacKay, 2007), ex-
act posterior inference is computationally challeng-
ing/expensive for the setting with binary outcomes
and the more complex forms of performance decay
considered in this work (Shiryaev, 1963; West, 1986;
Bhattacharya, 1994).)

The main contributions of this work are: we (i) formal-
ize the problem of monitoring conditional performance
in the presence of performativity as a hypothesis test
within a causal framework, (ii) prove conditions un-
der which performativity is ignorable, (iii) propose a
new score-based CUSUM procedure, and (iv) investi-
gate operating characteristics of the proposed proce-
dure in extensive simulation studies and a real-world
dataset spanning the COVID-19 pandemic. We show
that by wrapping evolving black-box ML algorithms
within a monitoring framework, they may continue
learning and improving in model discrimination (e.g.,
AUC), as long as they remain well-calibrated. Finally,
while performativity is the primary motivation for this
work, all of the results apply to the more general prob-
lem of performance monitoring in the presence of dif-
ferential treatment propensities, which can occur even
when no ML algorithm is deployed. Code for repro-
ducing the paper is available at https://github.com/
jjfeng/monitoring_ML_performativity.

2 RELATED WORKS

Causal inference in sequential settings: Prior
works have highlighted how performativity can be de-
fined formally using causal inference (Bottou et al.,
2013; Chaney et al., 2018; Liley et al., 2021; Mendler-
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Dünner et al., 2022). There is now a growing litera-
ture on sequential inference for causal quantities us-
ing observational data (Li et al., 2011; Cook et al.,
2015; Waudby-Smith et al., 2021). Nearly all exist-
ing works target a time-constant estimand and require
the positivity assumption (propensities bounded away
from zero), which is likely to be practically violated
in our setting. The only work we are aware of that
specifically considers the connection between causal
inference and performance monitoring is the review
in Feng et al. (2023) of the tradeoffs between different
design choices for a monitoring system. Beyond this,
the closest methods are those that address the related
problem of censoring (Steiner and MacKay, 2001; Sun
et al., 2014).

Online changepoint/concept drift detection:
We refer the reader to prior reviews of changepoint
detection methods (Tartakovsky et al., 2014; Gama
et al., 2014). Methods vary in which aspects of a
data distribution they monitor, including marginal
versus conditional components. The two ignorabil-
ity conditions established in this work are widely ap-
plicable: Under either condition, we can directly ap-
ply likelihood-based methods for detecting conditional
shifts in non-performative settings to performative set-
tings. Nevertheless, monitoring ML-based risk predic-
tion algorithms also requires one to account for un-
known pre-change parameters and nonstationary pre-
dictors. These issues have only been addressed in-
dividually in prior works, including the score-based
CUSUM in (Gombay, 2017). We extend the score-
based CUSUM as its structure lends itself nicely to
theoretical analyses and efficient computation. Score-
based detection methods have been used in other con-
texts (Gombay, 2003; Liu et al., 2021; Wu et al., 2023).

3 TWO MONITORING PROBLEMS

To formalize the monitoring problem in the presence of
performativity, we begin with defining the monitoring
problem in the “standard” setting, in which outcomes
are unaffected by treatment decisions. If there is a
monitoring procedure for addressing the “standard”
hypothesis test, can we directly apply it to the set-
ting with performativity to analyze SOC-only data,
ignoring treatment propensities entirely? It’s not im-
mediately clear what hypothesis we are trying to test
through such an approach. This section shows how
defining the hypothesis test in the presence of perfor-
mativity requires being mathematically precise about
the causal quantities being monitored.

We focus on testing a single changepoint, because the
current clinical ML workflow is to deploy model moni-
toring, analyze the root cause when an alarm is raised,
take corrective actions (e.g., update the model and/or
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Figure 1: Example Single World Intervention Graphs
(SWIGs) (Richardson and Robins, 2013) that imply

ignorability of the propensity model. For time t, f̂t
is the ML algorithm, Xt is subject covariates, At is
the assigned treatment, and Yt(a) is the potential out-
come under treatment a. The top SWIG satisfies con-
ditional exchangeability, in that Yt(0) and At are con-
ditionally independent given the risk prediction and
observed data before time t. The bottom SWIG sat-
isfies time-constant selection bias per the assumptions
listed in Example 1 of the Appendix, where gray vari-
ables indicate unobserved variables. Ut is an unob-
served confounder, and A′

t is a tentative treatment de-
cision based solely on Ut which affects At through a
determinative causation structure, as indicated by the
dotted circle.

data pre-processing), and reset the monitoring proce-
dure to begin the cycle again. Table 1 in the Appendix
summarizes notation used in this paper.

3.1 The standard monitoring problem

Here we describe the standard hypothesis test for a
locked ML algorithm f̂ mapping patient variables from
domain X ⊆ Rp to Q = [0, 1]. Suppose a new patient
is observed at each time t with covariates Xt (index
t corresponds to different patients, not repeated ob-
servations). The clinician observes the patient’s pre-

dicted risk f̂(Xt) and their true outcome Yt there-
after. Patients are distinct in this setup, so we sup-
pose patient outcomes are conditionally independent,
i.e., Yt ⊥ Yt′ |Xt for all t

′ < t.

Following the framework in Chu et al. (1996), we
monitor for changes in the conditional distribution
Yt|f̂(Xt) or, equivalently, changes in the calibration

curve E[Yt|f̂(Xt) = q] over q ∈ [0, 1]. We suppose
that performance drift is unlikely to occur initially, so
data from time t = 1 to m is considered “noncontam-
inated.” We monitor from time t = m+ 1 to mK for
some fixed integer K > 1. The conditional distribu-
tion Yt|f̂(Xt) is assumed to follow some model g with
parameters (θ, δ1{t > κ}), where parameter θ ∈ Rp

describes the pre-change distribution and δ ∈ Rd de-
scribes the shift after changepoint κ = ⌊mκrel⌋ for
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some κrel ∈ [1,K]. So κrel = K and/or δ = 0 means
there is no shift. Thus, the hypothesis test in the stan-
dard setting can be formalized as

H0 : Yi|f̂(Xi) = q ∼ gθ,0(q) ∀i = 1, · · · ,mK

H1 : ∃δ, κ s.t. Yi|f̂(Xi) = q ∼ gθ,δ1{i>κ}(q)

∀i = 1, · · · ,mK.
(1)

We discuss example choices for g in the Appendix.

A sequential monitoring procedure is defined by its
chart statistic Cm(t) and dynamic control limit (DCL)
hm(t) at times t. A procedure fires an alarm when the
chart statistic first exceeds the control limit, i.e., T̂m =
inf {t : Cm(t) > hm(t)} . In this work, we characterize
procedures by their Type I error rate—defined as the
probability of firing an alarm before the changepoint,

Pr
(
T̂m < κ

)
—and asymptotic consistency—whether

limm→∞ Pr
(
T̂m ≤ mK

)
equals one under H1.

3.2 The problem of performativity

We now formalize the hypothesis test in the setting
with performative predictions, with the additional
complication that the ML algorithm may evolve over
time. We focus on algorithms that only predict the
outcome under SOC, such as TREWS. Such algo-
rithms are common in practice because it is simpler
to model outcomes under SOC than that under ev-
ery possible treatment option. Nevertheless, results
in this work can be extended to monitor algorithms
that predict treatment-specific outcomes; we provide
a discussion of this in Section B.5 of the Appendix.

Data is now generated as follows. After observing
the risk prediction f̂t(Xt) of a new patient at time
t, the clinician takes into account various factors—
such as the prediction, patient covariates, and prior
experience with the algorithm—to decide treatment
At, where At = 0 indicates SOC and At = 1 indicates
additional intervention. Following the potential out-
comes framework, let Yt(a) indicate the patient out-
come if treatment a is administered. Under usual con-
sistency assumptions, we denote the observed patient
outcome as Yt = Yt(At). Let filtration Ft denote the
sigma-algebra generated by all data prior to time t,
i.e., (f̂1, A1, X1, Y1, · · · , f̂t−1, At−1, Xt−1, Yt−1, f̂t). So
(Yt(a), Xt, At) is adapted to filtration Ft. Let τi be the
timepoint of the ith patient receiving SOC, which can
be viewed as a random stopping time. Thus SOC-only
data is defined as {τi : i = 1, · · · ,mK}.

When we monitor the performance of an ML algorithm
using SOC-only data, we must be careful in delineating
the causal hypothesis. It can be tempting to replace
index i in (1) with the random stopping time τi and

the observed outcome with the potential outcome, so
that the monitoring target is Yτi(0)|f̂τi(Xτi). How-
ever, this is no different from monitoring the observed
distribution because Yτi(0) = Yτi .

To monitor the causal quantity of interest, let
(X̃t, Ỹt(a)) represent independent observations from
the target population at time t. These observations
are solely a mathematical construct (a counterfactual
in some sense) and are never observed. In the presence
of performativity, the causal analog of (1) is instead

H0 : Ỹτi(0)|f̂τi(X̃τi) = q,Fτi ∼ gθ,0(q)

H1 : ∃δ, κ s.t. Ỹτi(0)|f̂τi(X̃τi) = q,Fτi ∼ gθ,δ1{i>κ}(q)

∀i = 1, · · · ,mK.
(2)

A number of mathematical subtleties in (2) are worth
discussing. First, after introducing the independent
observations, our monitoring target Ỹτi(0)|f̂t(X̃τi),Fτi

now correctly corresponds to the causal quantity of in-
terest. We also condition on the filtration Fτi so that
the monitoring target is the calibration curve of the
realized ML algorithm with respect to the realized pop-
ulation. Without the filtration, we would be monitor-
ing a random ML algorithm for a random population,
which is not of practical interest and mathematically
more difficult to analyze. Next, when we apply a stan-
dard monitoring procedure to the SOC-only data, the
absolute time of the changepoint is technically ran-
dom. This may seem odd mathematically but still
plausible in practice. Finally, the decision to define
the distribution shift using i > κ rather than i ≥ κ
is critical in the causal setting, as the latter contra-
dicts assumptions such as conditional exchangeability
(Section 4.1). Thus, distribution shifts can only oc-
cur before treatment is assigned, not immediately after
treatment assignment (but before the outcome).

Finally, an important extension is to monitor for
changes in the more detailed conditional distribution
by conditioning on some variable subset Xt,S for S ⊆
{1, · · · , p}:
H0 : Ỹτi(0)|f̂τi(X̃τi) = q, X̃τi,S = xS,Fτi ∼ gθ,0(q, xS)

H1 : ∃δ, κ s.t.

Ỹτi(0)|f̂τi(X̃τi) = q, X̃τi,S = xS,Fτi ∼ gθ,δ1{i>κ}(q, xS)

∀i = 1, · · · ,mK.
(3)

For risk prediction models, this corresponds to moni-
toring stratified calibration curves—a stricter notion
of calibration (Van Calster et al., 2016)—as well
as stronger notions of algorithmic fairness (Hebert-
Johnson et al., 2018). Testing this hypothesis is also
more feasible in certain settings, as discussed in the
following section.
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4 IGNORABILITY ASSUMPTIONS

Under what conditions can we ignore performativity
and directly apply a standard monitoring procedure
to analyze SOC-only data? To establish operating
characteristics of a monitoring procedure in the non-
performative setting, the standard approach is to fac-

torize Pr
(
f̂(X1), Y1, · · · , f̂(Xt), Yt

)
into

t∏
i=1

Pr
(
Yi | f̂(Xi); θ, δ1{i > κ}

) t∏
i=1

Pr
(
f̂(Xi) | Fi; η

)
(4)

for some nuisance parameter η and analyze the large
sample behavior of the (log) first product using the
martingale central limit theorem (Zeileis, 2005). So
if we prove that the observed data distribution in the
presence of performativity admits the same factoriza-
tion but with the causal quantities of interest, operat-
ing characteristics transfer from the standard setting
to that with performativity. Although (4) follows di-
rectly from conditional independencies that hold in the
standard setting, it is less clear when a similar factor-
ization would hold in the presence of performativity.

We present two options under which performativity is
ignorable: either conditional exchangeability or time-
constant selection bias. Throughout, we make the
assumption that distinct patients (Xt, At, Yt(a)) and
(X̃t, Ãt, Ỹt(a)) from the same target population are
IID, conditional on Ft (IID+SUTVA). Proofs for all
theoretical results are in the Appendix.

4.1 Conditional exchangeability

The conditional exchangeability assumption states
that treatment assignment is conditionally indepen-
dent of the potential outcome at each time t. The
simplest version only conditions on the risk prediction:

Yt(0) ⊥ At | f̂t(Xt),Ft ∀t = 1, 2, · · · (5)

More complex conditions are discussed Section 4.3.
Condition (5) holds, for instance, if treatment deci-
sions only depend on the risk prediction. A more
complex example is shown in Figure 1, where both
treatment propensities and ML algorithm evolve. Es-
tablishing ignorability requires careful reasoning about
random stopping times (e.g., when can we replace t
with τi?). In particular, we prove the following.

Theorem 1. Assuming IID+SUTVA, consistency,
and (5), we have for all t that

Pr
(
Yτ1 , f̂τt(Xτ1), · · · , Yτt , f̂τt(Xτt)

)
∝

t∏
i=1

Pr
(
Ỹτi(0)|f̂τi(X̃τi),Fτi ; θ, δ1{i > κ}

)
.

4.2 Time-constant selection bias

When unmeasured confounders Ut exist, conditional
exchangeability no longer holds and conditioning on
At = 0 results in selection bias. Nevertheless, perfor-
mativity is ignorable if selection bias remains constant
over time. That is, suppose there exists some function
h : Q 7→ R such that for all t and q, we have

E
[
Yt(0)|f̂t(Xt) = q,Ft

]
− E

[
Yt|f̂t(Xt) = q,At = 0,Ft

]
= h (q) .

(6)

The idea is that we can recover shifts in the
conditional risk in the target population us-
ing SOC-only data because this bias cancels
out, i.e., E[Yt|f̂t(Xt)=q,At=0,Ft]−E[Y1|f̂1(X1)=q,A1=0,F1]=
E[Yt(0)|f̂t(Xt)=q,Ft]−E[Y1(0)|f̂1(X1)=q,F1]. Note that time-
constant selection bias can hold even if treatment
propensities vary over time. Example 1 (Figure 1 bot-
tom) provides one such set of conditions, in which
treatment decisions follow a determinative causation
structure (Hernán et al., 2004; VanderWeele and
Robins, 2007, 2009). Under this assumption and again
through careful reasoning of random stopping times,
we can establish ignorability.

Theorem 2. Suppose model class g is defined such
that for any two parameter sets (θ, δ) and (θ′, δ′), we
have that δ = δ′ as long as the absolute shift in the
conditional risk is the same for all q ∈ Q. Assuming
IID+SUTVA and (6), we have for all t that

Pr
(
Yτ1 , f̂τ1(Xτ1), · · · , Yτt , f̂τt(Xτt)

)
∝

t∏
i=1

Pr
(
Ỹτi |f̂τi(X̃τi),Fτi ; θ

′, δ1{i > κ}
)
.

(7)

Unlike Theorem 1, the factorization in (7) is now with
respect to θ′, which may not coincide with θ. Nev-
ertheless, θ is a nuisance parameter and the actual
monitoring targets—the causal shift parameter δ and
changepoint κ—remain unbiased.

4.3 Conditioning on additional confounders

In practice, treatment decisions may not only rely on
the risk prediction but also other patient factors Xt,S.
In this case, we can extend the conditional exchange-
ability assumption by further conditioning onXt,S, i.e.,

Yt(0) ⊥ At | f̂t(Xt), Xt,S,Ft ∀t = 1, 2, · · · . (8)
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Following the same arguments as those for Theorem 1,
we have

Pr
(
Xτ1,S, Yτ1 , f̂τ1(Xτ1), · · · , Xτt,S, Yτt , f̂τt(Xτt)

)
∝

t∏
i=1

Pr
(
Ỹτi(0)|f̂τi(X̃τi), X̃τi,S; θ, δ1{i > κ}

)
.

and ignorability holds when testing the extended hy-
pothesis (3). Similarly, we can extend the time-
constant selection bias assumption in (6) as well as
the results in Theorem 2 by additionally conditioning
on Xt,S, which let us directly test (3) using a standard
monitoring procedure.

5 THE SCORE-BASED CUSUM

Having established ignorability, there are two other is-
sues we must account for when monitoring ML-based
risk prediction algorithms: (i) predictor sequences can
be nonstationary due to changes in performativity over
time, and (ii) the algorithm’s performance prior to the
changepoint is typically estimated, which is an addi-
tional source of variability. To address these two is-
sues, we introduce a new score-based CUSUM proce-
dure with DCLs. To motivate the approach, we begin
with the setting where the pre-change parameter θ is
known and then extend it to the setting where θ is un-
known. The former setting may occur when the model
is deployed on the very population it was trained on.
However, the pre-change parameter will likely be un-
known when a model is deployed at a different site
from what it was trained on.

To simplify notation, we will describe the CUSUM
procedures for the standard setting, using Zt to rep-
resent variables to the right of the conditioning bar,
e.g., Zt = f̂t(Xt) or Zt = (f̂t(Xt), Xt,S). We can di-
rectly apply these to SOC-only data in the presence of
performativity as long as either of the aforementioned
ignorability conditions holds.

5.1 Pre- and post-change model class

Before presenting the monitoring methods, we discuss
model classes g that can be used to test for shifts in
the conditional distribution of the outcome over time.
For the conditional exchangeability assumption, any
model class can be used, as long as it is differentiable
with respect to θ and δ. For the time-constant se-
lection bias assumption, the functional form of g is
restricted to those that satisfy the constancy assump-
tion.

For concreteness, we present the following two models
used in empirical analyses of this paper. The first de-
scribes the pre-change distribution and the structural

change on the log odds scale using logistic regression,
i.e.,

Pr (Yt = 1 | Zt; θ, δ1{t > κ})

=
1

1 + exp (−(θ + δ1{t > κ})⊤Zt)
.

(m.1)

The second describes the pre-change distribution on
the log odds scale but the structural change on the
risk scale using

Pr (Yt = 1 | Zt; θ, δ1{t > κ})

=

[
1

1 + exp (−θ⊤Zt)
+ (δ1{t > κ})⊤Zt

]
[0,1]

,
(m.2)

where [x][0,1] = min(1,max(0, x)). We use either (m.1)
or (m.2) in examples where conditional exchangeabil-
ity holds, and (m.2) in examples where time-constant
selection bias holds.

5.2 Known pre-change parameter

Suppose the true value of θ, denoted θ0, is known.
For observation (Zt, Yt), the score (i.e., gradient of
the log likelihood) with respect to δ at δ0 = 0 is
∇δ log p (Yt | Zt; θ0, δ0). Because the conditional mean
of the score is zero prior to the changepoint and
nonzero after, we monitor for shifts in the average score
using a score-based CUSUM. In particular, for candi-
date changepoint t′, the cumulative score up to time

t is ψ
(known)
m (t′, t) =

∑t
i=t′ ∇δ log p (Yi | Zi; θ0, δ0).

Since the true changepoint time is unknown, the score-
based CUSUM with respect to norm ∥ · ∥ is defined as

C(known)
m (t) = max

t′=m+1,··· ,t

∥∥∥ψ(known)
m (t′, t)

∥∥∥ . (9)

In our empirical analyses, we use ∥·∥1, though one can
consider other norms. For instance, ∥ · ∥2 is similar to
using Rao’s score statistic.

A major benefit of the score-based CUSUM is the
computational ease for constructing DCLs. Here
we define DCLs hm(t) recursively using an alpha
spending approach. Let αrel : [1,K] 7→ [0, 1]
be the alpha-spending function, where αrel is con-
tinuous and monotonically non-decreasing. Then
hm(t) is the minimal threshold at which the con-
ditional false alarm rate up to time t matches
the prespecified alpha-spending rate under the null,
i.e., Pr(∃t′∈{m+1,··· ,t} s.t. C(known)

m (t′)>hm(t′)|Z1,··· ,Zt) ≤
αrel(t/m). Because the pre-change parameter is
known, we can calculate the distribution of the chart
statistic under the null by resampling outcomes Y ∗

t

given Zt. By constructing sufficiently many sequences

{(Zt, Y
∗(b)
t ) : t = m+1, · · · ,mK} for b = 1, · · · , B and

computing their corresponding chart statistics, we can
construct DCLs with exact Type I error control. Of
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note, Type I error control holds without assuming pos-
itivity. Under the alternative, this procedure is consis-
tent as long as the average score after the changepoint
is bounded away from zero (see Appendix).

5.3 Unknown pre-change parameter

When the pre-change parameter θ is unknown, we need
to estimate its value and adjust the DCLs to reflect this
additional source of uncertainty. The key idea is to use
a nonanticipative chart statistic, in that the score for
the i-th observation is calculated with respect to an
estimate of θ using only historical data (Lorden and
Pollak, 2005). This preserves the martingale structure
of the chart statistic even when θ for the pre-change
distribution is continually re-estimated.

To this end, let our estimate θ̂m,t of θ at
time t be the solution to the estimating equation∑t

i=1 ∇θ log p (Yi | Zi; θ, δ0) = 0. We define the score-
based CUSUM chart statistic

C(plugin)
m (t) = max

t′=m+1,··· ,t

∥∥∥ψ(plugin)
m (t′, t)

∥∥∥ (10)

where

ψ(plugin)
m (t′, t) =

t∑
i=t′

∇δ log p
(
Yi | Zi; θ̂m,i−1, δ0

)
. (11)

The score for observation (Zi, Yi) uses θ̂m,i−1 rather

than θ̂m,i, so (11) is nonanticipative.

To determine the operating characteristics of C
(plugin)
m

under the null, we require the following assumptions,
in addition to Assumptions 5 and 6 in the Appendix.

Assumption 1. Under the null, there is a zero-mean
(p + d)-dimensional non-degenerate gaussian process
U = (Uθ, Uδ) such that

max
m+1≤i≤mK

∥∥∥ 1√
m

∑i
j=1 ∇θ,δ log p(Yj |Zj ;θ0,δ0)−U(i/m)

∥∥∥=op(1).

Assumption 2. Under the null, θ̂m,i is asymptotically
linear with a remainder term that converges uniformly
to zero, i.e.,

max
m<i≤mK

√
m∥θ̂m,i−θ0−Λ−1

m (i)
∑i

j=1 ∇θ log p(Yj |Zj ;θ0,δ0)∥=op(1)

where Λm(i) = E
[
−
∑i

j=1 ∇2
θ log p (Yj | Zj ; θ0, δ0)

]
.

These assumptions hold, for instance, under piecewise
local stationarity (Wu and Zhou, 2018; Horváth
et al., 2021). We can then prove that under

the null, ψ
(plugin)
m (t1, t2) is well-approximated

by ϕm(t1, t2) =
∑t2

i=t1
∇δ log p (Yi | Zi; θ0, δ0) +∑t2

i=t1
V̄0
(

i
m

)
Λ−1
0

(
i−1
m

)∑i−1
j=1 ∇θ log p (Yj | Zj ; θ0, δ0)

for V̄0 and Λ0 defined in the Appendix, and converges
to a Gaussian process, giving us the following result.

Shift magnitude

Clinician trust

Continually retrained ML algorithms

Figure 2: Simulation results, plotting alarm rate at
each time point. Dashed vertical line indicates time of
calibration decay. Left plot in “Clinician trust” shows
how different trust levels sample subgroups with vary-
ing amounts of calibration decay at different rates.

Theorem 3. Suppose the null hypothesis is true and
that Assumptions 3, 4, 5 and 6. Then

max
m<t1,t2≤mK

1√
m

∥∥∥ψ(plugin)
m (t1, t2)− ϕm(t1, t2)

∥∥∥ = op(1).

and
{
(ν1, ν2) 7→ 1√

m
ψ
(plugin)
m (⌊mν1⌋, ⌊mν2⌋)

}
(ν1,ν2)∈∆

⇒{
(ν1,ν2) 7→Uδ(ν2)−Uδ(ν1)+

∫ ν2
ν1

V̄0(v)Λ
−1
0 (v)Uθ(v)dv

}
(ν1,ν2)∈∆

where ∆ = {(ν1, ν2) : ν1 < ν2, ν1 ∈ [1,K], ν2 ∈ [1,K]}.

In addition, Theorem 4 in the Appendix proves that
the procedure is consistent if analogous assumptions
hold under the alternative.

Given Theorem 3, we can approximate the distribu-
tion of the chart statistic under the null by calcu-

lating C
(approx)
m (t) = maxt′=m+1,··· ,t ∥ϕm(t′, t)∥ for re-

sampled sequences {(Zt, Y
∗(b)
t )}. One caveat is that

this technically requires sampling from the true θ, but
we only have an estimate for its value. As such, we per-
form the parametric bootstrap and resample outcomes
using the most recent estimate. See the Appendix for
pseudocode and additional implementation details.
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6 SIMULATION STUDIES

We now explore various applications of the score-
based CUSUM and the impact of various factors on
its operating characteristics through a series of simu-
lation studies. The following sections investigate how
the magnitude of performance decay, clinician trust,
and continual model retraining affect alarm rates.
All data in the main manuscript is simulated under
the conditional exchangeability assumption. The Ap-
pendix presents several other experiments, including
simulations where the data is generated under the
time-constant selection bias assumption, verification
of Type I error control under the null, gradual as op-
posed to sudden decay in model calibration, sensitivity
analysis to assumptions, and a comparison to proce-
dures that inappropriately ignore performativity. The
Appendix also describes simulation settings in more
detail, including how the data and clinician trust were
simulated. The nominal false alarm rate for the score-
based CUSUM is set to α = 0.1 in all simulations.

To compare against methods that monitor marginal
performance measures, we implement the CUSUM
based on (Steiner and MacKay, 2001; Sun et al., 2014)
to monitor the Brier score, a marginal measure of
model calibration (IPW CUSUM). Nevertheless, this pro-
cedure requires knowing the true propensities, which
we plugin; thus, one should consider this an oracle pro-
cedure. Because monitoring marginal performance is
unsuitable in certain settings, we exclude it from par-
ticular simulations. As previously mentioned, there
are few methods for monitoring conditional perfor-
mance measures that adequately control false alarm
rates in our setting. The closest comparator to this
work is Bayesian monitoring (Bayesian) (Adams and
MacKay, 2007), which we implement using Stan (Car-
penter et al., 2017). To make the procedure compara-
ble, we have tuned its control limits to match the fre-
quentist false alarm rate. We note that Bayesian mon-
itoring has some practical limitations: posterior infer-
ence is much more computationally expensive than the
CUSUM, posterior inference is challenging for complex
forms of distribution shift, and the procedure is sensi-
tive to the choice of the prior.

6.1 Shift magnitude

We first assess how the magnitude of calibration de-
cay affects detection delay. We generated the outcome
using a logistic regression (LR) model and simulated
big versus little shifts in its conditional distribution by
shifting the coefficients of the oracle LR model. The
fitted model was a LR model as well. In both cases,
the score-based CUSUM had the highest power. Un-
surprisingly, statistical power for detecting calibration

decay is higher for larger shifts (Fig 2 top).

Next, we continually retrained the ML model using
an exponentially weighted average forecaster (EWAF)
that adapts to adversarial data shifts (Cesa-Bianchi
and Lugosi, 2006; Feng, 2021). Model retraining gener-
ally increases the time to an alarm, though it depends
on the reaction time of the retraining procedure. Af-
ter a small shift, the EWAF recalibrated the model
quickly and significantly extended the total lifetime of
the ML algorithm. After a big shift, the EWAF was
slow to recalibrate and did not significantly delay de-
tection by the monitoring procedure. In summary, the
interaction between a model monitoring and updating
procedure can be viewed as a competition.

6.2 Clinician trust

We now investigate how clinician trust can interfere
with our ability to detect performance decay. We
simulate three levels of clinician trust (low, medium,
and high) by defining treatment propensities using LR,
with the predicted logit as its sole input variable and
coefficients 0.01, 1, and 6, respectively. The simulated
shift in the true conditional risk is largest among pa-
tients with the highest predicted risk.

The score-based CUSUM had substantially higher
power than the other methods in all but the high
trust setting, in which it had similar performance as
Bayesian monitoring (Fig 2 middle). The IPW-based
CUSUM did poorly, with zero power in the high trust
setting due to near-violations of the positivity assump-
tion. In general, increasing clinician trust increases
detection delay, which supports recent suggestions to
educate healthcare providers on the appropriate use of
ML and warn against over-reliance (Finlayson et al.,
2021; Harris et al., 2022). Nevertheless, clinician trust
does not always interfere with model monitoring, as
illustrated in the Appendix.

6.3 Retraining in stationary settings

Ideally, continual retraining of an ML algorithm will
steadily improve model discrimination and maintain
calibration. Although we generally expect this behav-
ior in IID data settings, there are no such guaran-
tees for black-box algorithms. To this end, we test if
one can continually retrain ridge-penalized logistic re-
gression (LR) and gradient-boosted tree (GBT) mod-
els while keeping their alarm rates close to the nomi-
nal rate. Because a basic GBT model can be poorly
calibrated, we recalibrated model updates using Platt
scaling (Platt, 1999). We also considered monitoring
on the logit versus risk scale by defining the data model
using (m.1) versus (m.2), respectively.

For both ML algorithms, alarm rates of the monitoring
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Monitoring a locked model

Monitoring a continually updated model

Figure 3: Control charts for monitoring a locked
(top) and continually updated (bottom) ML-based
risk prediction model for PONV using the score-based
CUSUM (left) and Bayesian inference (right).

procedures did not exceed 20% (Fig 2 bottom). The
score-based CUSUM achieved the nominal rate of 10%
when monitoring on the risk scale, and was more sensi-
tive when monitoring on the logit scale. The Appendix
shows how this behavior can be explained by plotting
calibration curves on the logit versus risk scale. As
such, we suggest using the risk scale in practice, which
is typically more relevant to end-users of the model.

7 MONITORING A PONV RISK
CALCULATOR

Postoperative nausea and vomiting (PONV) is a com-
mon side effect of anesthesia, which has prompted the
development of risk calculators to guide the use of
antiemetic medications (Apfel et al., 2012). Here, we
simulate monitoring an ML-based PONV risk model
using data from the UCSF MPOG registry (n = 2434).

Using data from January 2018 to May 2019, we trained
a random forest (RF) to predict the risk of PONV
based on preoperative variables. We locked the model,
used the first 200 patients as noncontamination data,
and started monitoring in mid-December 2019. We
supposed conditional exchangeability (5) holds. Con-
trol limits were set so α = 0.2. We did not run the
IPW-based CUSUM as treatment propensities were
unknown. The score-based CUSUM and Bayesian
monitoring fired alarms in late 2020 (Fig 3). The de-
tection of calibration decay is not unexpected and may
be explained by many causes: (i) the anesthesia de-
partment had implemented changes in antiemetic med-
ication administration; (ii) there was a shift in the type
of patients who received surgery during the COVID-19
pandemic; and (iii) exposure to the SARS-Cov2 virus
affected the overall health of many patients.

When we instead continually retrained the RF and
started monitoring in October 2020, no calibration de-
cay was detected by either procedure and the AUC of
the continually retrained RF increased from 0.54 to
0.59 (See Fig 11 in the Appendix). This real-world ex-
ample illustrates how wrapping online learning meth-
ods within a monitoring framework can ensure model
reliability while allowing steady improvement in model
discrimination.

8 DISCUSSION

Although performativity can complicate monitoring of
ML algorithms, we have shown that performativity
is ignorable when monitoring conditional performance
measures under either the assumption of conditional
exchangeability or time-constant selection bias. Be-
cause performativity may evolve over time, we intro-
duced a new score-based CUSUM procedure. Future
work includes integrating ideas in this work with other
types of monitoring procedures including those for
open-end settings (e.g., conformal inference (Volkhon-
skiy et al., 2017) and anytime inference (Shekhar and
Ramdas, 2023)); increasing robustness to model mis-
specification and violations to assumptions; and in-
corporating other data sources to reduce the impact
of clinician trust on our ability to monitor.
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A Ignorability conditions

A.1 Conditional exchangeability

Proof of Theorem 1. By chain rule, we have

Pr
(
Yτ1 = y1, f̂τt(Xτ1) = q1, · · · , Yτt = yt, f̂τt(Xτt) = qt

)
=

t∏
i=1

Pr
(
Yτi = yi|f̂τi(Xτi) = qi,Fτi

)
Pr
(
f̂τi(Xτi) = qi|Fτi , η

)
.

(12)

So it is sufficient to prove that

Pr
(
Yτi = yi|f̂τi(Xτi) = qi,Fτi

)
= Pr

(
Ỹτi(0) = yi|f̂τi(X̃τi) = qi,Fτi ; θ, δ1{i > κ}

)
, (13)

in that the conditional distribution on the right hand side is distributed per model g with parameters (θ, δ1{i >
κ}). To see this, we have

Pr
(
Yτi = yi|f̂τi(Xτi) = qi,Fτi

)
(14)

=

∞∑
t′=τi−1

Pr
(
Yτi = yi|f̂τi(Xτi) = qi, τi = t′,Fτi

)
Pr
(
τi = t′|f̂τi(X̃τi) = qi,Fτi

)
(15)

=

∞∑
t′=τi−1

Pr
(
Yτi(0) = yi|f̂τi(Xτi) = qi, τi = t′,Fτi

)
Pr
(
τi = t′|f̂τi(X̃τi) = qi,Fτi

)
(16)

=

∞∑
t′=τi−1

Pr
(
Ỹτi(0) = yi|Ãτi = 0, f̂τi(X̃τi) = qi, τi = t′,Fτi

)
Pr
(
τi = t′|f̂τi(X̃τi) = qi,Fτi

)
(17)

=

∞∑
t′=τi−1

Pr
(
Ỹτi(0) = yi|τi = t′, f̂τi(X̃τi) = qi,Fτi

)
Pr
(
τi = t′|f̂τi(X̃τi) = qi,Fτi

)
, (18)

where (16) follows by consistency, (17) follows by the IID+SUTVA assumption, and (18) follows by (5). Finally,

Pr(Ỹτi(0) = yi|τi = t′, f̂τi(X̃τi) = qi,Fτi) is distributed per model g with parameters (θ, δ1{i > κ}) for all t′,
giving us our desired result.

A.2 Time-constant selection bias

Proof of Theorem 2. Under SUTVA and assumption (6), the pre-change distribution of the observational SOC-
only data is described by

E
[
Ỹτi | f̂τi(X̃τi) = q, Ãτi = 0,Fτi

]
= E

[
Ỹτi(0) | f̂τi(X̃τi) = q,Fτi

]
+ h(q). (19)

Thus the pre-change distribution of the observational SOC-only data is also constant prior to the changepoint.
Assuming a sufficiently large model class g, there exists some θ′ such that

Ỹτi | f̂τi(X̃τi) = q, Ãτi = 0,Fτi ∼ gθ′,0(q) ∀i < κ. (20)

Moreover, under assumption (6), the shift in the conditional risk for the observed data distribution

E
[
Ỹt | f̂t(X̃t) = q, Ãt = 0,Ft

]
− E

[
Ỹ1 | f̂1(X̃1) = q, Ã1 = 0,F1

]
(21)

is equal to the shift in the conditional risk for the causal data distribution

E
[
Ỹt(0) | f̂t(X̃t) = q,Ft

]
− E

[
Ỹ1(0) | f̂1(X̃1) = q,F1

]
(22)



Feng, Gossmann, Pennello, Petrick, Sahiner, Pirracchio

for all q ∈ Q. So we have that

Ỹτi | f̂τi(X̃τi) = q, Ãτi = 0,Fτi ∼ gθ′,δ1{i>κ}(q) ∀i = 1, · · · ,mK, (23)

where δ and κ are the same parameters as those for the causal distribution Ỹτi(0) | f̂τi(X̃τi) = q,Fτi . Thus

Pr
(
Yτ1 = y1, f̂τt(Xτ1) = q1, · · · , Yτt = yt, f̂τt(Xτt) = qt

)
(24)

∝
t∏

i=1

Pr
(
Yτi = yi|f̂τi(Xτi) = qi,Fτi

)
(25)

∝
t∏

i=1

Pr
(
Ỹτi = yi|f̂τi(X̃τi) = qi,Fτi ; θ

′, δ1{i > κ}
)

(26)

where (26) follows the IID+SUTVA assumption and (23).

A.3 Example satisfying the time-constant selection bias assumption

Example 1. Consider the bottom single world intervention graph (SWIG) in Figure 1, where Ut is an unmeasured
confounder. Suppose a determinative cause structure, where A′

t = 1 implies that At = 1. Suppose the distribution
(Ut, A

′
t) is constant over time; as such, we will drop the time indices when denoting their marginal and conditional

distributions. For the conditional risk model, assume there is no-additive interaction with respect to time and
Ut, i.e.

E [Yt(0) | Xt = x, Ut = u,Ft] = g0(x, u; θ0) + g1(x; δ)1{t > κ}.

First, we note that by d-separation, the assumption that (Xt, At, Yt(a)) and (X̃t, Ãt, Ỹt(a)) are IID conditional
on Ft holds. Under the determinative cause assumption, we have that At = 0 implies At′ = 0, so Ut ⊥ Xt |
ft(Xt) = q, At = 0. Then for all times t and q ∈ Q, we have that

E
[
Yt(0) | f̂t(Xt) = q,Ft

]
− E

[
Yt | f̂t(Xt) = q,At = 0,Ft

]
(27)

=

∫
(g0(xt, u; θ0) + g1(xt; δ1)1{t > κ}) p(xt | f̂t(xt) = q,Ft) [p(u)− p(u | a′ = 0)] dxtdu (28)

=

∫
g0(xt, u; θ0)p(xt | f̂t(xt) = q,Ft) [p(u)− p(u | a′ = 0)] dxtdu. (29)

There are various conditions under which (29) is time-constant. One option is that g0(x, u; θ0) is additive, in that

g0(x, u; θ0) = g0,0(x; θ0) + g0,1(u; θ0). Alternatively, time-constancy holds if the ML algorithm is locked (f̂t = f̂
for all t) and the distribution of Xt does not vary over time. Crucially, note that the propensity model is still
allowed to vary over time.

B The Score-based CUSUM

B.1 Example models for the conditional distribution

For the theoretical analyses, we suppose the parametric model for Yt|Zt is correctly specified. Here we provide
some example models, which we use in the empirical analyses. The first model describes both the pre-change
distribution and the structural change on the log odds scale using logistic regression, i.e.

Pr (Yt = 1 | Zt; θ, δ1{t > κ}) = 1

1 + exp (−(θ + δ1{t > κ})⊤Zt)
. (m.1)

The second model describes the pre-change distribution on the log odds scale but the structural change on the
risk scale using

Pr (Yt = 1 | Zt; θ, δ1{t > κ}) =
[

1

1 + exp (−θ⊤Zt)
+ (δ1{t > κ})⊤Zt

]
[0,1]

, (m.2)

where [x][0,1] = min(1,max(0, x)). When conditional exchangeability holds, we can monitor for structural change
on any scale and use either (m.1) or (m.2). If only time-constant selection bias holds, we use (m.2) to model
shifts on the risk scale.
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B.2 Known pre-change parameter

Consistency of the monitoring procedure holds when there is some c > 0 and K ′ ∈ (κrel,K] such that

lim
m→∞

∥∥∥∥∥∥ 1

m

⌊mK′⌋∑
t=⌊mκrel⌋

E [∇δ log p (Yt|Zt; θ0, δ)|δ=0]

∥∥∥∥∥∥ ≥ c, (30)

and the martingale

⌊mK′⌋∑
t=⌊mκrel⌋

∇δ log p (Yt|Zt; θ0, δ)|δ=0 − E [∇δ log p (Y
∗
t |Zt; θ0, δ)|δ=0 | Zt] (31)

satisfies the martingale central limit theorem.

B.3 Unknown pre-change parameter: Assumptions and proofs

Let Z and Y be the domains for the predictors and outcomes. Let (θ0, δ0) and (θ0, δ1) parameterize the pre-
change and post-change distribution, where δ0 = 0 and δ1 ̸= 0. We assume that p(y|z; θ, δ) is 3-times continuously
differentiable with respect to (θ, δ). For convenience, denote

Λm(i) = E

− i∑
j=1

∇2
θ log p (Yj | Zj ; θ0, δ0)


Vm(i) = E [∇θ∇δ log p (Yi | Zi; θ0, δ0)|Zi] .

We use the symbol ⇒ to mean weak convergence in the space under consideration. Throughout, we will use c
(sometimes with subscripts) to denote constants, which may vary across contexts. When we write Zm ≤p c, this
means that asymptotically as m→ ∞, the random variable Zm is bounded by some constant c with probability
1.

B.3.1 Asymptotics under the null

Here we prove asymptotic convergence of the chart statistic under the null. We restate the assumptions from
the main manuscript for clarity.

Assumption 3. Under the null, there is a zero-mean (p + d)-dimensional non-degenerate gaussian process U
such that

max
m+1≤i≤mK

∥∥∥∥∥∥
 1√

m

i∑
j=1

(
∇θ log p (Yj | Zj ; θ0, δ0)
∇δ log p (Yj | Zj ; θ0, δ0)

)−
(
Uθ(i/m)
Uδ(i/m)

)∥∥∥∥∥∥ = op (1) .

where Uθ and Uδ are p- and d-dimensional, respectively.

Assumption 4. Under the null, θ̂m,i is asymptotically linear with a remainder term that converges uniformly
to zero, i.e.

max
m<i≤mK

√
m

∥∥∥∥∥∥∥
(
θ̂m,i − θ0

)
− E

− i∑
j=1

∇2
θ log p (Yj | Zj ; θ0, δ0)

−1
i∑

j=1

∇θ log p (Yj | Zj ; θ0, δ0)

∥∥∥∥∥∥∥ = op (1) .

In addition, we require the following assumptions.

Assumption 5. Under the null, there exist functions Λ0 : [1,K] 7→ Rp×p and V̄0 : [1,K] 7→ Rd×p such that

max
m<i≤mK

∥∥∥∥∥∥∥Λ−1
0

(
i

m

)
−mE

− i∑
j=1

∇2
θ log p (Yj | Zj ; θ0, δ0)

−1
∥∥∥∥∥∥∥ = op(1)

V̄0(t) = E
[
∇θ∇δ log p

(
Y⌊mt⌋ | Z⌊mt⌋; θ0, δ0

)]
∀t ∈ [1,K].
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Assumption 6. There exist constants c1, c2 > 0 and some neighborhood B(θ0, r) centered at θ0 with radius
r > 0 such that

sup
θ̃∈B(θ0,r)

sup
y∈Y,z∈Z

∥∥∥∇2
θ∇δ log p

(
y | z; θ̃, δ0

)∥∥∥
∞

≤ c1 (32)

sup
y∈Y,z∈Z

∥∇θ∇δ log p (y | z; θ0, δ0)∥∞ ≤p c2. (33)

To prove Theorem 3, we first prove the following lemma.

Lemma 1. Suppose Assumptions 3, 4, 5, and 6 hold. Define

ϕ̃m(t1, t2) =

t2∑
i=t1

∇δ log p (Yi | Zi; θ0, δ0) +

t2∑
i=t1

Vm(i)Λ−1
m (i− 1)

i−1∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0) .

Under the null, we have

max
m<t1,t2≤mK

1√
m

∥∥∥ψ(plugin)
m (t1, t2)− ϕ̃m(t1, t2)

∥∥∥
2
= op(1).

Proof. Consider the decomposition

1√
m

(
ψ(plugin)
m (t1, t2)− ϕ̃m(t1, t2)

)
=R(1)

m (t1, t2) +R(2)
m (t1, t2) +R(3)

m (t1, t2)

where

R(1)
m (t1, t2) =

1√
m

t2∑
i=t1

[
∇δ log p

(
Yi | Zi; θ̂m,i−1, δ0

)
−∇δ log p (Yi | Zi; θ0, δ0)

−∇θ∇δ log p (Yi | Zi; θ0, δ0)
(
θ̂m,i−1 − θ0

)]

R(2)
m (t1, t2) =

1√
m

t2∑
i=t1

Vm(i)

θ̂m,i−1 − θ0 − Λ−1
m (i− 1)

i−1∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0)


R(3)

m (t1, t2) =
1√
m

t2∑
i=t1

[∇θ∇δ log p (Yi | Zi; θ0, δ0)− Vm(i)]
(
θ̂m,i−1 − θ0

)
.

We will prove that each term in this decomposition is negligible, i.e.

max
m<t1<t2≤mK

∥∥∥R(j)
m (t1, t2)

∥∥∥
2
= op(1) ∀j = 1, 2, 3. (34)

First remainder term. For any ϵ > 0, we have that

Pr

(
max

m<t1<t2≤mK

∥∥∥R(1)
m (t1, t2)

∥∥∥
2
> ϵ

)
≤Pr

(
max

m<i≤mK

∥∥∥θ̂m,i − θ0

∥∥∥
2
> c

logm√
m

)
+ Pr

(
max

m<t1<t2≤mK

∥∥∥R(1)
m (t1, t2)

∥∥∥
2
> ϵ, max

m<i≤mK

∥∥∥θ̂m,i − θ0

∥∥∥
2
≤ c

logm√
m

)
.

(35)

The first summand on the RHS of (35) goes to zero because Assumptions 3, 4, and 5 imply

max
m<i≤mK

∥∥∥θ̂m,i − θ0

∥∥∥
2
= op

(
logm√
m

)
. (36)
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To bound the second summand, we have by Taylor’s theorem and Assumption 6 that for sufficiently large m

∥∥∥R(1)
m (t1, t2)

∥∥∥
2
≤ 1

2
√
m

t2∑
i=t1

(
max

θ̃∈B(θ0,r)
max

z∈Z,y∈Y

∥∥∥∇2
θ∇δ log p

(
y | z; θ̃, δ0

)∥∥∥
∞

)∥∥∥θ̂m,i−1 − θ0

∥∥∥2
2

≤ c1
2
√
m

t2∑
i=t1

∥∥∥θ̂m,i−1 − θ0

∥∥∥2
2

≤ c1
2

√
m (K − 1) max

m<i≤mK

∥∥∥θ̂m,i − θ0

∥∥∥2
2

= op

(
(K − 1) (logm)

2
/
√
m
)

for all (t1, t2) where m < t1 ≤ t2 ≤ mK. So (34) holds for j = 1.

Second remainder term. By Assumption 6 and the Cauchy-Schwarz inequality, we have that

∥∥∥R(2)
m (t1, t2)

∥∥∥
2
≤ c2√

m

t2∑
i=t1

max
m<i≤mK

∥∥∥∥∥∥θ̂m,i−1 − θ0 − Λ−1
m (i− 1)

i−1∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0)

∥∥∥∥∥∥
2

≤ c (K − 1)
√
m max

m<i≤mK

∥∥∥∥∥∥θ̂m,i − θ0 − Λ−1
m (i)

i∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0)

∥∥∥∥∥∥
2

.

Then by Assumption 4, this term is op (1). So (34) holds for j = 2.

Third remainder term. For any ϵ > 0, we have that

Pr

max
t1,t2

∥∥∥∥∥
t2∑

i=t1

(∇θ∇δ log p (Yi | Zi; θ0, δ0)− Vm(i))
(
θ̂m,i−1 − θ0

)∥∥∥∥∥
2

≥ ϵ
√
m


≤Pr

(
max

m<i≤mK

∥∥∥θ̂m,i − θ0

∥∥∥
2
> c

logm√
m

)

+ Pr

max
t1,t2

∥∥∥∥∥
t2∑

i=t1

(∇θ∇δ log p (Yi | Zi; θ0, δ0)− Vm(i))
(
θ̂m,i−1 − θ0

)∥∥∥∥∥
2

≥ ϵ
√
m, max

m<i≤mK

∥∥∥θ̂m,i − θ0

∥∥∥
2
≤ c

logm√
m

 .

(37)

Per (36), the first summand on the RHS of (37) goes to zero. The second summand is bounded by

Pr

max
t1,t2

∥∥∥∥∥
t2∑

i=t1

(∇θ∇δ log p (Yi | Zi; θ0, δ0)− Vm(i))
(
θ̂m,i−1 − θ0

)
1

{
∥θ̂m,i−1 − θ0∥2 ≤ c

logm√
m

}∥∥∥∥∥
2

≥ ϵ
√
m

 .

(38)
Because the outcome Yi is conditionally independent of past data given Zi, the elements in this summation form
a martingale difference sequence, i.e.

E
[
Gm(i)

(
θ̂m,i−1 − θ0

)
1

{∥∥∥θ̂m,i−1 − θ0

∥∥∥
2
≤ c

logm√
m

}∣∣∣∣Fi

]
= 0

where we use the notational shorthand

Gm(i) = ∇θ∇δ log p (Yi | Zi; θ0, δ0)− Vm(i)

and

Fi = (Z1, Y1, · · · , Zi−1, Yi−1, Zi) .
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Moreover, by Assumption 6, Gm(i) is sub-Gaussian. That is, there is some σ2 > 0 such that for all λ > 0, we
have for all unit vectors u, v that

E
[
exp

(
λv⊤Gm(i)u

)∣∣Fi−1

]
≤ E

[
exp

(
λ2σ2λmax (Gm(i))

)∣∣Fi−1

]
.

By the law of total expectations, we then have for any unit vector v that

E

[
exp

(
λv⊤

t2∑
i=t1

Gm(i)
(
θ̂m,i−1 − θ0

)
1

{∥∥∥θ̂m,i−1 − θ0

∥∥∥
2
≤ c

logm√
m

})]

=E

[
E
[
exp

(
λv⊤Gm(t2)

(
θ̂m,t2−1 − θ0

)
1

{∥∥∥θ̂m,t2−1 − θ0

∥∥∥
2
≤ c

logm√
m

})∣∣∣∣Ft2−1

]

× exp

(
λv⊤

t2−1∑
i=t1

Gm(i)
(
θ̂m,i−1 − θ0

)
1

{∥∥∥θ̂m,i−1 − θ0

∥∥∥
2
≤ c

logm√
m

})]

≤ exp

(
λ2c2σ2 (logm)

2

m

)
E

[
exp

(
λv⊤

t2−1∑
i=t1

Gm(i)
(
θ̂m,i−1 − θ0

)
1

{∥∥∥θ̂m,i−1 − θ0

∥∥∥
2
≤ c

logm√
m

})]
≤ exp

(
λ2c2σ2 (K − 1) (logm)

2
)
.

Using the Chernoff bound, we have that (38) is bounded by

∑
m<t1≤t2≤mK

Pr

∥∥∥∥∥
t2∑

i=t1

(∇θ∇δ log p (Yi | Zi; θ0, δ0)− Vm(i))
(
θ̂m,i−1 − θ0

)
1

{∥∥∥θ̂m,i−1 − θ0

∥∥∥
2
≤ c

logm√
m

}∥∥∥∥∥
2

≥ ϵ
√
m


≤m2 (K − 1)

2
exp

(
λ2c2σ2 (K − 1) (logm)

2 − ϵ2m
)
.

This converges to zero as m→ ∞, so (34) holds for j = 3.

Using Lemma 1 above, we are now ready to prove Theorem 3.

Proof of Theorem 3. Consider the decomposition

ϕ̃m(t1, t2) = ϕm(t1, t2) +R(1)
m (t1, t2) +R(2)

m (t1, t2) (39)

with remainder terms defined as

R(1)
m (t1, t2) =

1√
m

t2∑
i=t1

(
Vm(i)− V̄0 (i/m)

)
Λ−1
m (i− 1)

i−1∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0)

R(2)
m (t1, t2) =

1√
m

t2∑
i=t1

V̄0 (i/m)

(
Λ−1
m (i− 1)− 1

m
Λ−1
0

(
i− 1

m

)) i−1∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0) .

We first show the two remainder terms are negligible, i.e.

max
m<t1<t2≤mK

∥R(j)
m (t1, t2)∥ = op(1) ∀j = 1, 2. (40)

First remainder term. To bound the first remainder, note that the partial sums form a martingale due to
Assumption 5, i.e.

E

(Vm(i)− V̄0 (i/m)
)
Λ−1
m (i− 1)

i−1∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0)

∣∣∣∣∣∣Fi

 = 0.
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Moreover,
(
Vm(i)− V̄0(i/m)

)
Λ−1
m (i) is sub-Gaussian and

max
m<i≤mK

∥∥∥∥∥∥
i−1∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0)

∥∥∥∥∥∥
2

= op

(
logm√
m

)

per Assumptions 3 and 5. As such, we can use a similar martingale argument as the previous lemma to prove
that (40) is satisfied for j = 1.

Second remainder term. By the Cauchy-Schwarz inequality, we have that

1√
m

t2∑
i=t1

V̄0 (i/m)

(
Λ−1
m (i− 1)− 1

m
Λ−1
0

(
i− 1

m

)) i−1∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0)

≤ c

t2∑
i=t1

∥∥∥∥Λ−1
m (i)− 1

m
Λ−1
0 (i/m)

∥∥∥∥
2

∥∥∥∥∥∥ 1√
m

i−1∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0)

∥∥∥∥∥∥
2

≤ c (K − 1)

(
max

i=m+1,··· ,mK

∥∥mΛ−1
m (i)− Λ−1

0 (i/m)
∥∥
2

) max
m<i≤mK

∥∥∥∥∥∥ 1√
m

i−1∑
j=1

∇θ log p (Yj | Zj ; θ0, δ0)

∥∥∥∥∥∥
2


By Assumptions 3 and 5, it follows that (40) for j = 2.

In addition, by Assumption 3, we have thatν 7→ 1√
m

⌊mν⌋∑
j=1

(
∇θ log p (Yj | Zj ; θ0, δ0)

V̄0(ν)Λ
−1
0 (ν)∇δ log p (Yj | Zj ; θ0, δ0)

)⇒
{
ν 7→

(
Uθ(i/m)

V̄0(ν)Λ
−1
0 (ν)Uδ(i/m)

)}
.

So by Slutsky’s theorem and the continuous mapping theorem, we have weak convergence of the process ϕm with
respect to the space of bounded functions f : ∆ 7→ Rd as follows

{(ν1, ν2) 7→ ϕm(ν1, ν2)}(ν1,ν2)∈∆ ⇒
{
(ν1, ν2) 7→ Uδ(ν2)− Uδ(ν1) +

∫ ν2

ν1

V̄0(v)Λ
−1
0 (v)Uθ(v)dv

}
(ν1,ν2)∈∆

. (41)

Combining this result with Lemma 1 and (40), the process ψ
(plugin)
m converges weakly to the same limit as ϕm.

B.3.2 Asymptotics under the alternative

Suppose there is some K ′ ∈ (κ,K] that satisfies the following assumptions. Assumptions 7, 8, and 9 can be
viewed as analogous but simplified versions of the assumptions in Section B.3.1. Assumption 10 assumes the
cumulative score process is characterized by some non-zero drift under the alternative for some time period, even
when we continually update the plugin estimator θ̂m,i. For example, this is likely to hold for values of K ′ that are
slightly larger than κ, since the plugin estimators up to time ⌊mK ′⌋ will not have strayed too far from its actual

value of θ0 prior to the changepoint. For v ∈ [1,K], define the limit of the MLEs as
¯̂
θ(v) = limm→∞ θ̂m,⌊mv⌋(v).

Assumption 7. Under the alternative, suppose that

1√
m

⌊mK′⌋∑
j=⌊mκ⌋

∇δ log p

(
Yj | Zj ;

¯̂
θ

(
j − 1

m

)
, δ0

)
− Eθ0,δ11{i≥mκ}

[
∇δ log p

(
Yj | Zj ;

¯̂
θ

(
j − 1

m

)
, δ0

)∣∣∣∣Zj

]
= OP (1).

Assumption 8. Under the alternative, suppose that

max
i=⌊mκ⌋,··· ,⌊mK′⌋

∥∥∥√m(θ̂m,i − ¯̂
θ(i/m)

)∥∥∥
2
= Op(1).
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Assumption 9. There is some c > 0 and neighborhood B that includes the set
{
¯̂
θ (v) : v ∈ [τ,K ′]

}
with nonzero

radius such that
sup
θ∈B

sup
y∈Y,z∈Z

∥∇θ∇δ log p (y | z; θ, δ0)∥∞ ≤p c.

Assumption 10. There is some c > 0 such that

lim
m→∞

∥∥∥∥∥∥ 1

m

⌊mK′⌋∑
j=⌊mκ⌋

Eθ0,δ1

[
∇δ log p

(
Yj | Zj ;

¯̂
θ(t), δ0

)]∥∥∥∥∥∥
2

≥ c.

Theorem 4. Suppose Assumptions 7 to 10 hold. Then under the alternative hypothesis, we have

lim
m→∞

Pr
(
∃t ∈ {m+ 1, · · · ,mK} such that C(plugin)

m (t) > hm(t)
)
= 1.

Proof. By the definition of C
(plugin)
m (t), suffices to prove that

1√
m
ψ(plugin)
m (⌊mκ⌋, ⌊mK ′⌋) = 1√

m

⌊mK′⌋∑
i=⌊mκ⌋

∇δ log p
(
Yi | Zi; θ̂m,i−1, δ0

)
goes to infinity. Consider the following decomposition

1√
m
ψ(plugin)
m (⌊mκ⌋, ⌊mK ′⌋)

=
1√
m

⌊mK′⌋∑
i=⌊mκ⌋

Eθ0,δ1

[
∇δ log p

(
Yi | Zi;

¯̂
θ

(
i− 1

m

)
, δ0

)]

+
1√
m

⌊mK⌋∑
i=⌊mκ⌋

{
∇δ log p

(
Yi | Zi;

¯̂
θ

(
i− 1

m

)
, δ0

)
− Eθ0,δ1

[
∇δ log p

(
Yi | Zi;

¯̂
θ

(
i− 1

m

)
, δ0

)]}
+Rm

(42)

The first term on the right hand side must diverge to infinity by Assumption 10. Per Assumption 7, the second
term is Op(1). Per Assumption 8 and Taylor’s theorem, the remainder Rm satisfies

lim
m→∞

∥Rm∥2 ≤ lim
m→∞

c1√
m

sup
{θ̃m,i−1:i=⌊mκ⌋,···⌊mK′⌋}∈B

∥∥∥∥∥∥
⌊mK′⌋∑
i=⌊mκ⌋

∇θ∇δ log p
(
Yi | Zi; θ̃m,i−1, δ0

)(
θ̂m,i−1 − ¯̂

θ

(
i− 1

m

))∥∥∥∥∥∥
2

.

(43)

Combined with Assumption 9, we have that

lim
m→∞

∥Rm∥2 ≤ lim
m→∞

c2
√
m max

i=⌊mκ⌋,··· ,⌊mK′⌋

∥∥∥∥θ̂m,i−1 − ¯̂
θ

(
i− 1

m

)∥∥∥∥
2

= Op(1). (44)

As such, the right hand side of (42) diverges to infinity, which means its left hand side must also diverge to
infinity. Thus we have our desired result.

B.4 Implementation details

There are a number of implementation decisions to make. First, the number of sequences B should be set
to a value large enough such that the estimated DCLs converge. In our simulations, we chose B so that the
chart statistic for five or more bootstrapped sequences exceeded the DCL at each time step. Next, one can
maximize statistical power by tuning the shape of the alpha-spending function. Here we simply use a linear
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alpha-spending function, but future work may explore nonlinear functions instead. Finally, our theoretical
results allow for monitoring in a fully sequential manner or in batches of observations. We found that batching
had a negligible impact on detection delay and improved both computational efficiency and convergence to the
asymptotic distribution. As such, we recommend setting the batch size so a significant change is unlikely to
occur within a batch. In our experiments, the batch size is set to 10.

B.5 Extension to monitor treatment-specific outcomes

It is straightforward to extend results in this work to test for shifts in the conditional distribution of treatment-
specific outcomes, i.e.,

H0 : Ỹi(a)|f̂i(X̃i) = q,Fi ∼ gθ,0(q, a) ∀i ∈ {1, · · · ,mK}, q ∈ [0, 1], a ∈ {0, 1}

H1 : ∃δ, κ s.t. Ỹi(a)|f̂i(X̃i) = q,Fi ∼ gθ,δ1{i>κ}(q, a) ∀i ∈ {1, · · · ,mK}, q ∈ [0, 1], a ∈ {0, 1}.
(45)

One can again establish ignorability under either an extension of the assumption of conditional exchangeability
or time-constant selection bias to both treatment options, e.g.,

(Yt(0), Yt(1)) ⊥ At|f̂t(Xt),Ft∀t = 1, 2, · · · (46)

Under ignorability, one can directly apply the score-based CUSUM described in Section 5 to all monitoring data
(not just SOC-only data).

C Simulation details and additional results

For each simulation, we generate a p-random vector Xt and random variable Ut. All these variables are drawn
independently from the uniform distribution from -1 to 1. The outcome Yt(0) was generated using either (m.1) or
(m.2) with Zt = (Xt, Ut, 1). Treatments were assigned using one of two models. The first is a logistic regression

model with (f̂t(Xt), Xt, Ut) with coefficients and intercept denoted by γLR. The second sets treatment to At =

max(A
(1)
t , A

(2)
t ), where A

(1)
t and A

(2)
t are generated using logistic regression models with inputs (f̂t(Xt), Xt, Ut),

with coefficients and intercept denoted by γ(1) and γ(2), respectively. The model parameters used to generate
outcomes and treatment assignments are given in Table 2.

C.1 Comparator: Bayesian changepoint monitoring

We implemented the Bayesian monitoring procedure as follows. The chart statistic in Bayesian monitoring is
the posterior probability of there having been a change, i.e. Ĉbayes(t) = Pr (κ ≤ t | Y1, · · · , Yt, Z1, · · · , Zt). We
used a static control limit of 1−α. Given the minimax optimality of the Shiryaev-Roberts procedure (Shiryaev,
1963), we define a modified geometric prior over κ, in which

π(κ = t) ∝ p(1− p)t−1 ∀t = m+ 1, · · · ,mK (47)

with p = 1/mK and the probability of there being no changepoint is set to 0.5. We assume a normal prior
for θ with the mean and covariance matrix set to the results from maximum likelihood estimation on the non-
contaminated data. We also place a normal prior for δ with mean zero and a diagonal covariance matrix. In the
simulations, we set the diagonal matrix so that the mean norm of δ in the prior is close to that of the actual
shift. In practice, such information is not known and one must rely on prior knowledge.

C.2 Additional simulation: Näıve monitoring of the misclassification rate

Here we present an additional simulation that compares the false alarm rate of score-based monitoring with a
näıve CUSUM procedure that monitors the overall misclassification rate to our proposed score-based CUSUM
procedure that monitors the conditional distribution of Yt(0)|f̂t(Xt). We assume conditional exchangeability

with respect to f̂t(Xt). The outcome is generated per (m.1) with Zt = Xt and δ = (2, 1, 1, 1, 0⃗4, 0). Treatment

is assigned using a logistic regression model with input as f̂t(Xt) with parameter γLR = (1,−0.5) up to time
t = 200 and γLR = (5,−2.5) thereafter. Rather than fitting a risk prediction model, we fit a locked binary
classifier for simplicity and classify any observation to be positive if the predicted risk exceeds 0.7.
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Figure 4: Comparison of näıve CUSUM procedure that monitors the unadjusted overall misclassification rate
versus score-based CUSUM monitoring of the conditional distribution Yt(0)|f̂t(Xt)

As shown in Figure 4, the näıve CUSUM has a substantially inflated false alarm rate because the overall mis-
classification rate, without further adjustment, is sensitive to shifts in clinician trust. On the other hand, the
proposed score-based CUSUM procedure controls the false alarm rate at the desired level.

C.3 Additional simulation: Verifying false alarm rate control

We evaluate false alarm rate control of score-based CUSUM monitoring in finite samples. The data are simulated
under the null and satisfy either the assumption of conditional exchangeability or time-constant selection bias.
A shift in the treatment propensities is introduced halfway through the monitoring period.

Here we consider a locked ML algorithm. In the Conditional Exchangeability simulation, the treatment
propensities are generated according to a logistic regression model with only f̂(Xt) and X̃t as inputs; the outcome
is generated according to (m.1). In the Time-constant selection bias simulation, the treatment propensities
and outcome are generated per Example 1 of the Appendix. We consider two versions of both assumptions: one
that only conditions on f̂(Xt) and another that conditions on (f̂(Xt), X̃t). The former leads us to test (2) and
the latter leads us to test (3).

We vary the size of the noncontamination dataset size m and monitor for mK time points, with K set to 4. As
shown in Figure 5, Type I error is inflated for small values of m, but converges to the nominal rate once m is
sufficiently large.

C.4 Additional details: Shift magnitude (Section 6.1)

For the evolving ML algorithm, we trained an Exponentially Weighted Averaging Forecaster (EWAF) that was
an ensemble of three ML algorithms: one continually retrained on all prior data, one continually retrained on the
most recent 200 observations, and one continually retrained on the most recent 400 observations. The models
were retrained after every 10 observations. Calibration curves of the locked versus evolving models are shown in
Figure 6.

C.5 Additional simulation: Clinician trust (Section 6.2)

Not all types of clinician trust will substantially delay detection of performance decay. In particular, consider a
setting where the calibration decay is highest among patients who have the highest and lowest predicted risks
(we refer to this simulation as “symmetric” calibration decay). Patients with the lowest predicted risks are
very likely to receive SOC. As such, even in settings with high clinician trust (strong performativity), patients
experiencing calibration decay are frequently sampled by the monitoring procedure and time to detection does
not significantly vary across different levels of clinician trust (Figure 7).

C.6 Addition details: Retraining in stationary settings (Section 6.3)

For this experiment, we simulated higher-dimensional data with X ∈ R50. For computational speed, batch size
for continual retraining was 10.

Performance characteristics of the model updates are shown in Figure 8. Note that the calibration curves plotted
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Conditional exchangeability

Time-constant selection bias

Figure 5: Cumulative distribution of alarm times for score-based CUSUM monitoring of a locked model f̂ under
the null. The assumption of conditional exchangeability and time-constant selection bias are satisfied in the top
and bottom rows, respectively. In the left column, the assumptions hold when conditioning on f̂(Xt); in the

right column, the assumptions hold when conditioning on (f̂(Xt), X̃t). The target false alarm rate is 0.1, which
is achieved as the size of the non-contaminated dataset m increases.

Big Shift

Small Shift

Figure 6: Calibration curves of the locked and continually retrained models (first and second columns, respec-
tively) in the presence of big and small distribution shifts (top and bottom rows, respectively). Calibration
curves are plotted over time, including before and after the distribution shift.
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Figure 7: The left column shows how shifts in the conditional risk vary with respect to the probability of a
patient being assigned SOC, and thus their probability of being sampled for monitoring. The middle and right
columns show the cumulative distribution of alarm times using score-based CUSUM and Bayesian monitoring,
respectively.

Ridge-penalized logistic regression

Gradient boosted trees with Platt scaling

Figure 8: Calibration curves of continually retrained models, where the data stream is stationary. Calibration
curves are plotted on the risk and logit scales in the first two columns. Average AUCs of the model updates are
shown in the right column.

on the logit scale are farther away from the ideal diagonal line, compared to calibration curves plotted on the
risk scale.

C.7 Additional simulation: Gradual decay of model calibration

The simulation setup is the same as Section 6.1 except that the structural change is gradual. Results are shown
in Figure 9. Compared to the results in Section 6.1 for a sudden shift, the median time to detection is longer for
all the methods. Nevertheless, the relative ranking of the monitoring procedures in terms of their median time
to detection is the same.

C.8 Additional simulation: Sensitivity analysis of the time-constant selection bias assumption

We explore how violations of the time-constant selection bias assumption can impact detection delay of a struc-
tural change. We first simulate data that satisfies this time-constancy assumption based on Example 1. Then
we introduce violations of this assumption by adding an edge from the unmeasured confounder Ut to the final
treatment decision At in the DAG and setting a non-zero edge weight at times t = 100 or 300. Such shifts in
the propensity model could occur if, say, a clinician suspects performance of the ML algorithm has decayed and
decides to place more weight in the unmeasured risk factor Ut.
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Figure 9: Monitoring structural change starting with the same setup as Section 6.1 but with gradual structural
change. Compared to the results for a sudden shift, there is a longer time to detection. Nevertheless, the relative
ranking of the methods in terms of their median time to alarm is the same.

Figure 10: Monitoring a structural change at time t = 100 (dashed vertical line) when the assumption of
time-constant selection bias is violated. We introduce a shift in the treatment propensities that violates the
time-constant selection bias assumption at times t = 100 and t = 300. We also simulate no violation of the
time-constant selection bias by never introducing this shift in the treatment propensities. For different risk
prediction values, we plot the conditional risks among the SOC-only population over time, which are biased for
those among the general population. We also plot the oracle conditional risk for comparison. The middle and
right columns show the cumulative distribution of alarm times for score-based CUSUM monitoring and Bayesian
monitoring, respectively.

Because the simulated violation is designed to dampen the shift observed in the data, we find that detection
delay increases as the violation occurs earlier in time (Figure 10). In the worst case scenario, the structural
change and the shift in the treatment propensities occurs at the same time (t = 100) and power drops by 30%.
Nevertheless, such a scenario is unlikely to happen in practice since it assumes clinicians know exactly when
performance decays.

In this simulation, we find that the power of Bayesian monitoring is much lower than that for the score-based
CUSUM. This is likely due to the sensitivity of Bayesian inference to model misspecification: the monitoring
model assumes a single changepoint, whereas the observed data distribution shifts at two time points. Con-
sequently, its power drops by over 40%. In fact, even without violations of the time-constancy assumption,
the power of the Bayesian procedure is much lower than that of the score-based CUSUM. This may be due to
difficulties in performing posterior inference for (m.2), which is only partially differentiable.

D Monitoring a PONV risk calculator

Data was obtained from UCSF MPOG data repository, under the MPOG data sharing agreement. Input to
features to the ML algorithm included preoperative variables, including biological sex, smoking status, age, ASA
score, and blood test results. A patient is defined as receiving additional care if they received at least two
antiemetics. The list of antiemetics that counted towards intervention were: Propofol infusion, Metoclopramide,
Aprepitant, Scopolamine patch, and Haloperidol.
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Figure 11: ROC and calibration curves of the evolving ML-based risk prediction model for PONV.

Symbol Meaning

Xt Patient covariates that go into the ML algorithm
Yt Patient outcome
At Treatment assignment

τ1, τ2, · · · Indices for the subsequence of times at which the patient
was assigned standard-of-care (SOC)

Zt Predictors in the standard monitoring setting

f̂t The ML algorithm at time t
κrel ∈ (1,K) Position of changepoint in relative time

κ Changepoint in absolute time, equal to ⌊mκrel⌋
θ Parameter indexing the pre-change distribution
δ Parameter indexing the structural change
m Size of dataset needed for initialization of monitoring pro-

cedures (also known as non-contaminated data)
m+ 1, · · · ,mK The time period for monitoring structural change

Cm(t) The chart statistic of a monitoring procedure at time t
hm(t) The control limit of a monitoring procedure at time t

T̂m Alarm time of a monitoring procedure, i.e. when the chart
statistic first exceeds the control limit

Table 1: Mathematical symbols

Locked model The random forest (RF) was trained using data from January 2018 to May 2019. The first 200
patients were used to initialize monitoring procedures and monitoring began mid-December 2019. Conditional
exchangeability was assumed to hold with respect to f̂t(Xt) and the data was modeled using (m.1).

Retrained model The RF was retrained every 10 observations. The monitoring procedures were initialized
using observations from 200 patients starting July 2019 and began monitoring October 2020. Performance
characteristics of the continually retrained model are shown in Figure 11. AUC of the retrained model is
calculated by weighting the monitoring data by the estimated inverse propensity weights.
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Algorithm 1 Pseudocode for score-based CUSUM procedure with dynamic control limits

Select time factor K, alpha spending function αrel, and number of bootstrap sequences B.
Let Bm = {1, ..., B} represent the bootstrap sequences that have not been rejected at time m.
Observe non-contaminated data {(Zt, Yt) : t = 1, · · · ,m}.
Calculate MLE θ̂m,m

for b = 1, ..., B do

Resample outcome Y
∗(b)
t given Zt for t = 1, · · · ,m, with θ = θ̂m,m and δ = 0.

end for
for t = m+ 1, ...,mK do

Observe (Zt, Yt).

Calculate chart statistic C
(plugin)
m (t) and MLE θ̂m,t.

for b ∈ Bt−1 do

Resample outcome Y
∗(b)
t given Zt with θ = θ̂m,t−1 and δ = 0.

Compute ϕm(t′, t) for t′ = m+ 1, · · · , t− 1 for the b-th bootstrap sequence.

Calculate C
∗,(b)
m (t) = maxt′∈{m+1,··· ,t} ϕm(t′, t).

end for
Set hm(t) such that the proportion of bootstrap chart statistics exceeding the DCL is∣∣∣{b : b ∈ Bt−1, C

∗,(b)
m (t) > hm(t)

}∣∣∣ /B = αrel (t/m)− αrel ((t− 1)/m) .

Define Bt = {b : b ∈ Bt−1, C
∗,(b)
m (t) ≤ hm(t)}.

if C
(plugin)
m (t) > hm(t) then
Fire an alarm. Break.

end if
end for
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