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Abstract

This paper revisits the convergence of Stochas-
tic Mirror Descent (SMD) in the contemporary
nonconvex optimization setting. Existing re-
sults for batch-free nonconvex SMD restrict
the choice of the distance generating func-
tion (DGF) to be differentiable with Lipschitz
continuous gradients, thereby excluding im-
portant setups such as Shannon entropy. In
this work, we present a new convergence anal-
ysis of nonconvex SMD supporting general
DGF, that overcomes the above limitations
and relies solely on the standard assumptions.
Moreover, our convergence is established with
respect to the Bregman Forward-Backward
envelope, which is a stronger measure than
the commonly used squared norm of gradient
mapping. We further extend our results to
guarantee high probability convergence under
sub-Gaussian noise and global convergence un-
der the generalized Bregman Proximal Polyak-
 Lojasiewicz condition. Additionally, we illus-
trate the advantages of our improved SMD

theory in various nonconvex machine learning
tasks by harnessing nonsmooth DGFs. No-
tably, in the context of nonconvex differen-
tially private (DP) learning, our theory yields
a simple algorithm with a (nearly) dimension-
independent utility bound. For the problem
of training linear neural networks, we develop
provably convergent stochastic algorithms.

1 INTRODUCTION

We consider stochastic composite optimization

min
x∈X

E [f(x, ξ)] + r(x), (1)
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where F (x) := E [f(x, ξ)] is differentiable and (possi-
bly) nonconvex, r(·) is convex, proper and lower-semi-
continuous, X is a closed convex subset of Rd. The
random variable (r.v.) ξ is distributed according to an
unknown distribution P . We denote Φ := F + r and
let Φ∗ := infx∈X Φ(x) > −∞.

A popular algorithm for solving (1) is Stochastic Mirror
Descent (SMD), which has an update rule

xt+1 = arg min
x∈X

ηt(⟨∇f(xt, ξt), x⟩ + r(x)) +Dω(x, xt),

(2)
where Dω(x, y) is the Bregman divergence between
points x, y ∈ X induced by a distance generating
function (DGF) ω(·); see Section 2 for the definitions.

When r(·) = 0, X = Rd and ω(x) = 1
2 ∥x∥

2
2, we have

Dω(x, y) = 1
2 ∥x− y∥22, and SMD reduces to the stan-

dard Stochastic Gradient Descent (SGD). However, it is
often useful to consider more general (non-Euclidean)
DGFs.

SMD with general DGF was originally proposed in the
pioneering work of Nemirovskij and Yudin [1979, 1983],
and later found many fruitful applications [Ben-Tal
et al., 2001, Shalev-Shwartz, 2012, Arora et al., 2012]
leveraging nonsmooth instances of DGFs. In the last
few decades, SMD has been extensively analyzed in the
convex setting under various assumption, e.g., [Beck
and Teboulle, 2003, Lan, 2012, Allen-Zhu and Orecchia,
2014, Birnbaum et al., 2011], including relative smooth-
ness [Lu et al., 2018, Bauschke et al., 2017, Dragomir
et al., 2021, Hanzely et al., 2021] and stochastic op-
timization [Lu, 2019, Nazin et al., 2019, Zhou et al.,
2020b, Hanzely and Richtárik, 2021, Vural et al., 2022,
Liu et al., 2023, Nguyen et al., 2023]. However, despite
the vast theoretical progress, convergence analysis of
nonconvex SMD with general DGF still remains elusive.

1.1 Related Work

We now discuss the related work in the nonconvex
stochastic setting. In the unconstrained Euclidean
case, Ghadimi and Lan [2013] propose the first non-
asymptotic analysis of nonconvex SGD. Later, Ghadimi
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et al. [2016] consider the more general composite prob-
lem (1) with arbitrary convex r(·), X , and propose a
modified algorithm using large mini-batches. Unfor-
tunately, the use of large mini-batch appears to be
crucial in the proof proposed in [Ghadimi et al., 2016]
even in Euclidean setting. Later, Davis and Drusvy-
atskiy [2019] address this issue by proposing a different

analysis for Prox-SGD (method (2) with ω(x) = 1
2 ∥x∥

2
2).

Their elegant proof, using the notion of the so-called
Moreau envelope, allows them to remove the large batch
requirement in the Euclidean setting. However, their
analysis crucially relies on the use of Euclidean geome-
try and appears difficult to extend to the more general
nonsmooth DGFs of interest. In particular, the subse-
quent works [Zhang and He, 2018, Davis et al., 2018]
do consider more general DGF and derive convergence
rates for (2). However, both works assume a smooth
DGF to justify their proposed convergence measures,
see our Section 4.2 for a more detailed comparison.
Another line of work uses momentum or variance re-
duced estimators, e.g., [Zhang, 2021, Huang et al., 2022,
Fatkhullin et al., 2023c, Ding et al., 2023], but agian
their analysis is limited to the Euclidean geometry.

1.2 Contributions

• In this work, we develop a new convergence analy-
sis for SMD under the general assumptions of rela-
tive smoothness and bounded variance of stochas-
tic gradients. Importantly, unlike the prior work,
our analysis naturally accommodates general non-
smooth DGFs, including the important case of
Shannon entropy. Moreover, our analysis (i)
works for any batch size, (ii) does not require
the bounded gradients assumption, (iii) supports
any closed convex set X , and (iv) guarantees con-
vergence on a strong stationarity measure – the
Bregman Forward-Backward envelope.

• We further demonstrate the flexibility of our proof
technique by extending it in two directions. First,
we perform a high probability analysis under the
sub-Gaussian noise improving upon the previously
known rates under weaker assumptions. Next, we
establish the global convergence in the function
value for SMD under the generalized version of
the Proximal Polyak- Lojasiewicz condition. In
both cases, when specialized to the unconstrained
Euclidean setup, our rates can recover the state-
of-the-art bounds, up to small absolute constants.

• Finally, we demonstrate the importance of our gen-
eral theory in various machine learning contexts,
including differential privacy, policy optimization
in reinforcement learning, and training deep lin-
ear neural networks. For each of the considered

problems, our new SMD theory allows us to ei-
ther improve convergence rates or design provably
convergent stochastic algorithms. In all cases, we
leverage nonsmooth DGFs to attain the result.

Our Techniques. The key idea of our analysis is
the use of a new Lyapunov function in the form of a
weighted sum of the function value Φ(·) and its Breg-
man Moreau envelope Φ1/ρ(·):

λt := ηt−1ρ(Φ(xt) − Φ∗) + Φ1/ρ(xt) − Φ∗.

We recall that the classic analysis of (large batch) SMD

in [Ghadimi et al., 2016] uses the function value as
a Lyapunov function, i.e., λt,1 := Φ(xt) − Φ∗. While
this approach is very intuitive and matches with anal-
ysis in unconstrained case, it seems very difficult to
generalize to more general constrained problem (1)
even in the Euclidean setting. On the other hand, the
analysis pioneered in [Davis and Drusvyatskiy, 2019]
uses λt,2 := Φ1/ρ(xt) − Φ∗ as a Lyapunov function,
which does not seem straightforward to extend into
non-Euclidean setups, unless the smoothness of DGF
is additionally imposed. Our Lyapunov function con-
tains a weighted average of the above two quantities,
i.e., λt = ηt−1ρλt,1 + λt,2, where {ηt}t≥0 is the step-
size sequence (with η−1 = η0), ρ > 0. This modified
Lyapunov function allows to better utilize (relative)
smoothness of F (·) in the analysis. Namely, both upper
and lower bound inequalities in Assumption 3.1 will be
used in the proof.

2 PRELIMINARIES

We fix an arbitrary norm ∥·∥ defined on X ⊂ Rd,
and denote by ∥·∥∗ := supz:∥z∥≤1⟨·, z⟩ its dual. The
Euclidean norm is denoted by ∥·∥2. We denote by
δX the indicator function of a convex set X , i.e.,
δX (x) = 0 if x ∈ X and +∞ otherwise. For a
closed proper function Φ : Rd → R ∪ {+∞} with
dom Φ :=

{
x ∈ Rd | Φ(x) < +∞

}
, the Fréchet subd-

ifferential at a point x ∈ Rd is denoted by ∂Φ(x)
and is defined as a set of points g ∈ Rd such that
Φ(y) ≥ Φ(x) + ⟨g, y − x⟩ + o(∥y − x∥),∀y ∈ Rd if
x ∈ dom Φ. We set ∂Φ(x) = ∅ if x /∈ dom Φ [Davis and
Grimmer, 2019].1 We denote by cl(X ) and ri(X ) the
closure and the relative interior of X respectively.

Let S ⊂ Rd be an open set and ω : cl(S) → R be
continuously differentiable on S. Then we say that ω(·)
is a distance generating function (DGF) (with zone S)
if it is 1-strongly convex w.r.t. ∥·∥ on cl(S). We assume
throughout that S is chosen such that ri(X ) ⊂ S [Chen

1When Φ = δX , the function is convex and ∂δX (x) coin-
cides with the usual subdifferential in the convex analysis.
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and Teboulle, 1993].2 For simplicity, we let dom r = Rd.
The Bregman divergence [Bregman, 1967] induced by
ω(·) is

Dω(x, y) := ω(x)−ω(y)−⟨∇ω(y), x−y⟩ for x, y ∈ S.

We denote by Dsym
ω (x, y) := Dω(x, y) + Dω(y, x) a

symmetrized Bregman divergence.

For any Φ : Rd → R ∪ {+∞} and a real ρ > 0, the
Bregman Moreau envelope and the proximal operator
are defined respectively by

Φ1/ρ(x) := min
y∈X

[Φ(y) + ρDω(y, x)] ,

proxΦ/ρ(x) := arg min
y∈X

[Φ(y) + ρDω(y, x)] .

A point x ∈ X ∩ S is called a first-order stationary
point (FOSP) of (1) if 0 ∈ ∂(Φ + δX )(x) for Φ := F + r.

2.1 FOSP Measures

We define three different measures of first-order sta-
tionarity for a candidate solution x ∈ X ∩ S.

(i) Bregman Proximal Mapping (BPM)

∆ρ(x) := ρ2Dsym
ω (x̂, x), x̂ := proxΦ/ρ(x).

(ii) Bregman Gradient Mapping (BGM)

∆+
ρ (x) := ρ2Dsym

ω (x+, x),

x+ := arg min
y∈X

⟨∇F (x), y⟩ + r(y) + ρDω(y, x).

(iii) Bregman Forward-Backward Envelope (BFBE)

Dρ(x) := −2ρmin
y∈X

Qρ(x, y),

Qρ(x, y) := ⟨∇F (x), y − x⟩ + ρDω(y, x) + r(y) − r(x).

In unconstrained Euclidean case, i.e., X = Rd, r(·) = 0

and ω(x) = 1
2 ∥x∥

2
2, we have ∆+

ρ (x) = Dρ(x) =

∥∇F (x)∥22, which is the standard stationarity measure
in non-convex optimization.3 Note that all three quan-
tities presented above are measures of FOSP in the
sense that if one of them ∆ρ(x) , ∆+

ρ (x) or Dρ(x) is

2Following Chen and Teboulle [1993], we can verify that,

in the Euclidean setup (ω(x) = 1
2
∥x∥22), one can set S = Rd;

in the simplex setup (ω(x) =
∑d

i=1 x
(i) log x(i)), the choice

S =
{
x ∈ Rd | x(i) > 0 for all i ∈ [d]

}
is suitable.

3This is, however, not true for BPM, which reduces
to the gradient norm of a surrogate loss, i.e., ∆ρ(x) =∥∥∇F1/ρ(x)

∥∥2

2
for ρ > ℓ, where ℓ is a smoothness constant

of F (·).

zero for some x ∈ X ∩ S, then 0 ∈ ∂(Φ + δX )(x). How-
ever, it is more practical to understand what happens
if one of them is only ε-close to zero. In Section 4.1
we establish the connections between these quantities
for any x ∈ X ∩ S, and find that BFBE, Dρ(x), is the
strongest among the three. We should mention that
the use of BFBE is not new for the analysis of opti-
mization methods. In the Euclidean case, BFBE was
initially proposed in [Patrinos and Bemporad, 2013],
and its properties were later analyzed in [Stella et al.,
2017, Liu and Pong, 2017]. Later, Ahookhosh et al.
[2021] consider BFBE in general non-Euclidean setting.
However, to our knowledge it was not considered in
the context of stochastic even in the Euclidean setup.

3 ASSUMPTIONS

Throughout the paper we make the following basic
assumptions on F (·) and the stochastic gradients.

Assumption 3.1 (Relative smoothness [Bauschke
et al., 2017, Lu et al., 2018]). A differentiable function
F : X ∩ S → R is said to be ℓ-relatively smooth on
X ∩S with respect to (w.r.t.) ω(·) if for all x, y ∈ X ∩S

−ℓDω(x, y) ≤ F (x)−F (y)−⟨∇F (y), x−y⟩ ≤ ℓDω(x, y).

We denote such class of functions as (ℓ, ω)-smooth.

It is known that smoothness w.r.t. ∥·∥, i.e.,
∥∇F (x) −∇F (y)∥∗ ≤ ℓ ∥x− y∥ for all x, y ∈ X ∩ S,
implies Assumption 3.1 [Nesterov, 2018].

Assumption 3.2. We have access to a stochastic or-
acle that outputs a random vector ∇f(x, ξ) for any
given x ∈ X , such that E [∇f(x, ξ)] = ∇F (x),

E
[
∥∇f(x, ξ) −∇F (x)∥2∗

]
≤ σ2,

where the expectation is taken w.r.t. ξ ∼ P .

4 MAIN RESULTS

4.1 Connections between FOSP Measures

We start by establishing the connections between intro-
duced convergence measures. It turns out that BPM
and BGM are essentially equivalent, i.e., differ only by
a small (absolute) multiplicative constant.

Lemma 4.1 (BPM ≈ BGM). Let F (·) be (ℓ, ω)-smooth

and
√
Dsym

ω (x, y) be a metric. Then for any x ∈ X ∩S,
and ρ, s > 0 such that ρ > ℓ/s+ 2ℓ, it holds

∆ρ(x)

C(ℓ, ρ, s)
≤ ∆+

ρ (x) ≤ C(ℓ, ρ, s)∆ρ(x),
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where C(ℓ, ρ, s) := (1+s)(ρ−ℓ)+(1+s−1)ℓ
ρ−ℓ−(1+s−1)ℓ . In particular,

for s = 1, ρ = 4ℓ, we have C(ℓ, ρ, s) = 8, and

1

8
∆4ℓ(x) ≤ ∆+

4ℓ(x) ≤ 8∆4ℓ(x).

This result is in a similar spirit to Theorem 4.5 in
[Drusvyatskiy and Paquette, 2019]. However, their
proof only works in the Euclidean setting and does
not readily extend to other DGFs. Our proof is dif-
ferent and can accommodate a possibly nonsmooth
DGF.4 Next, we examine the relation between BGM
and BFBE.

Lemma 4.2 (BFBE > BGM). For any x ∈ X ∩ S

2Dρ/2(x) ≥ ∆+
ρ (x).

There is an instance of problem (1) with ℓ = 1, X =
[0, 1] and arg miny∈X Φ(x) = 0 such that for any ρ ∈
[1, 2], ρ1 ≥ 1 and x ∈ (0, 1] it holds

Dρ(x)

∆+
ρ1(x)

≥ 2

|x|
.

The above lemma implies that BFBE is a strictly
stronger convergence measure than previously consid-
ered BGM and BPM. Moreover, the difference between
BFBE and BGM can be arbitrarily large even when
x is close to the optimum! This effect is actually very
common and happens already in the Euclidean case
with classical regularizer r(x) = ∥x∥1. The explanation
for this phenomenon is simple. Notice that BGM is
defined in the primal terms, i.e., the squared distance
between x and x+, while BFBE is defined in the func-
tional terms (the minimum value of Qρ(x, y) over y).
Therefore, BFBE unlike BGM scales with the value of
r(x) = |x| rather than x2.

We conclude from Lemma 4.1 and 4.2 that Dρ(x) is the
strongest convergence measure among the three. In the
subsequent sections we aim to establish convergence
of SMD directly w.r.t. BFBE instead of using BGM or
BPM.

4.2 Convergence to FOSP in Expectation

We start with our key result, which establishes conver-
gence of SMD in expectation.

4Unfortunately, it is unclear if the above result holds for
arbitrary ω(·) that does not induce a metric. Note that, in
general, DGF might not induce a metric even for popular
choices of ω(·). For instance, the Shannon entropy induces√

Dsym
ω (x, y) that does not satisfy the triangle inequality,

see, e.g., Theorem 3 in [Acharyya et al., 2013] for details.

Theorem 4.3. Let Assumptions 3.1 and 3.2
hold. Let the sequence {ηt}t≥0 be non-increasing
with η0 ≤ 1/(2ℓ), and x̄T be randomly chosen
from the iterates x0, . . . , xT−1 with probabilities

pt = ηt/
∑T−1

t=0 ηt. Then

E [D3ℓ(x̄T )] ≤
3λ0 + 6ℓσ2

∑T−1
t=0 η2t∑T−1

t=0 ηt
, (3)

where λ0 := Φ1/ρ(x0) − Φ∗ + Φ(x0) − Φ∗. If we

set constant step-size ηt = min

{
1
2ℓ ,
√

λ0

σ2ℓT

}
,

then

E [D3ℓ(x̄T )] = O

(
ℓλ0
T

+

√
σ2ℓλ0
T

)
.

Proof sketch: We start with

Step I. Deterministic descent w.r.t. BFBE. We
show that for any ρ1 ≥ ρ+ ℓ

Φ1/ρ(x) ≤ Φ (x) − 1

2ρ1
Dρ1(x).

This inequality corresponds to deterministic descent
on Φ(·) of the Bregman Proximal Point Method. It
will be useful in the next step to derive a recursion on
Dρ1

(x).

Step II. One step progress on the Lyapunov
function. This step is the most technical one and
consists of showing a progress on a carefully chosen
Lyapunov function λt := Φ1/ρ(xt)−Φ∗+ηt−1ρ(Φ(xt)−
Φ∗), where η−1 = η0, ρ > 0:

λt+1 ≤ λt −
ηtρ

2(ρ+ ℓ)
Dρ+ℓ(xt) + ρηt⟨ψt, x̂t − xt⟩

+ ρ(ηt⟨ψt, xt − xt+1⟩ − (1 − ηtℓ)Dω(xt+1, xt)),

where ψt := ∇f(xt, ξt) −∇F (xt).

Step III. Dealing with stochastic terms. The goal
of this step is to control the stochastic terms in the
above inequality using Assumption 3.2.

It remains to telescope and set the step-sizes to derive
the final result.

When specialized to the unconstrained Euclidean set-
ting, the result of Theorem 4.3 recovers (up to a small
absolute constant) previously established convergence
bounds for SGD [Ghadimi and Lan, 2013] (since in this

case we have D3ℓ(x̄T ) = ∥∇F (x̄T )∥22), which is known
to be optimal [Arjevani et al., 2023, Drori and Shamir,
2020, Yang et al., 2023]. However, already in the com-
posite setting (when r(·) ̸= 0), our result is stronger
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than previously derived bounds for Prox-SGD [Davis
et al., 2018] because BFBE can be much larger than
BPM/BGM even in the Euclidean case as we have seen
in Lemma 4.2.

In the more general non-Euclidean case, compared to
Theorem 2 in [Ghadimi et al., 2016], our method does
not require using large batches, and our proof works for
any batch size. Moreover, [Ghadimi et al., 2016] relies
on the stronger assumptions: smoothness and bounded
variance in the primal norm. Furthermore, a much
weaker convergence measure is used in [Ghadimi et al.,
2016]: the squared norm of the difference between xt
and x+t .5

Davis et al. [2018] derive convergence of SMD w.r.t. the
Bregman divergence between x̂t and xt, i.e., Dω(x̂t, xt).
Such convergence measure is not satisfactory for two
reasons. First, for a general DGF of interest, the Breg-
man divergence is not symmetric, and it can happen
that Dω(x̂t, xt) vanishes, while Dω(xt, x̂t) does not (see,
e.g., Proposition 2 in [Bauschke et al., 2017]). Second,
to justify this measure the authors in [Davis et al.,
2018] assume ω(·) to be twice differentiable and no-

tice that 2ρ2Dω(x̂t, xt) ≥
∥∥(∇2ω(xt))

−1∇Φ1/ρ(xt)
∥∥2
∗,

where ∇Φ1/ρ(·) is the gradient of the Moreau envelope
of Φ(·). However, the latter measure also does not
seem to be sufficient either: even if we additionally as-
sume the uniform smoothness of ω(·), it is unclear how
∇Φ1/ρ(·) is connected to the standard convergence mea-
sures such as the gradient mapping in non-Euclidean
setting. In the concurrent work to [Davis et al., 2018],
Zhang and He [2018] derive convergence of SMD on
the BPM. They also notice that if ω(·) is differentiable
and smooth (i.e.,∇ω(·) is M -Lipschitz continuous) on
X , then dist2(0, ∂(Φ + δX )(x̂t)) ≤M∆ρ(xt). However,
we argue that such assumption is very strong since
commonly used DGFs such as Shannon entropy are
not smooth. Moreover, the analysis in [Zhang and
He, 2018] uses bounded gradients (BG) assumption,
which fails to hold even for a quadratic function if X
is unbounded.6

4.3 High Probability Convergence to FOSP
under Sub-Gaussian Noise

While convergence in expectation for a randomly se-
lected point x̄T is classical and widely accepted in
stochastic optimization, it does not necessarily guaran-
tee convergence for a single run of the method. In this
section, we extend our Theorem 4.3 to guarantee con-

5Notice that ρ2
∥∥x− x+

∥∥2 ≤ ∆+
ρ (x) ≤ 2Dρ/2(x), where

the first inequality holds by strong convexity of ω(·), and
the second is due to Lemma 4.2.

6Not saying about the general relatively smooth func-
tions, for which BG can fail even on a compact domain.

vergence for a single run of SMD with high probability.
To obtain high probability bounds, we replace our As-
sumption 3.2 with the following commonly used “light
tail” assumption on the stochastic noise distribution.

Assumption 4.4. We have access to a stochastic or-
acle that outputs a random vector ∇f(x, ξ) for any
given x ∈ X , such that E [∇f(x, ξ)] = ∇F (x), and

∥∇f(x, ξ) −∇F (x)∥∗ is σ-sub-Gaussian r.v. 7

Theorem 4.5. Let Assumptions 3.1 and 4.4
hold. Let the sequence {ηt}t≥0 be non-increasing
with η0 ≤ 1/(2ℓ). Then with probability at least
1 − β

1∑T−1
t=0 ηt

T−1∑
t=0

ηt D5ℓ(xt) ≤
5λ̃0 + 60σ2ℓ

∑T−1
t=0 η2t

2
∑T−1

t=0 ηt
,

where λ̃0 := 3 (Φ(x0) − Φ∗) + 8 η0σ
2 log (1/β) .

To our knowledge, the above theorem is the first high
probability bound for nonconvex SMD without use
of large batches. If we use large mini-batch,8 then

the above theorem implies O
(

1
ε2 + σ2

ε2 log (1/β) + σ2

ε4

)
sample complexity to ensure min0≤t≤T−1 D5ℓ(xt) ≤
ε2. Compared to the bound derived in [Ghadimi

et al., 2016], which is O
(

1
ε2 log (1/β) + σ2

ε4 log (1/β)
)
9,

our sample complexity is better by a factor of log (1/β).
Moreover, our Assumptions 3.1 and 4.4 are weaker
than in [Ghadimi et al., 2016]. When specialized to
the Euclidean setup and setting the specific step-size
sequences, our Theorem 4.5 can recover (up to an abso-
lute constant) recently derived high probability bounds
for nonconvex SGD [Liu et al., 2023]. However, unlike
[Liu et al., 2023], our theorem holds for any square
summable step-sizes and accommodates more general
(non-Euclidean) norm in Assumption 4.4. We will
demonstrate the crucial benefit of using non-Euclidean
setup later in Section 5.1.

4.4 Global Convergence under Generalized
Proximal P L condition

In this subsection, we are interested in global conver-
gence of SMD for structured nonconvex problems. We
first introduce the following generalization of Proximal
Polyak-Lojasiewicz (Prox-P L) condition [Polyak, 1963,
Lojasiewicz, 1963, Lezanski, 1963].

7A random variable X is called σ-sub-Gaussian if
E
[
exp(λ2X2)

]
≤ exp(λ2σ2) for all λ ∈ R with |λ| ≤ 1/σ.

8Which reduces σ2 to σ2/B for mini-batch of size B.
9Discarding the samples for post-proccesing step in equa-

tion (71) therin.
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Assumption 4.6 (α-Bregman Prox-P L). There exists
α ∈ [1, 2] and µ > 0 such that for some ρ ≥ 3ℓ and all
x ∈ X ∩ S

Dρ(x) ≥ 2µ(Φ(x) − Φ∗)
2/α. (4)

The above assumption generalizes Prox-P L condition
studied in [Karimi et al., 2016, J Reddi et al., 2016,
Li and Li, 2018] in two ways. First, we have Dρ(x)
defined w.r.t. an arbitrary non-Euclidean DGF. Sec-
ond, we consider α ∈ [1, 2] instead of fixing α = 2.
We will demonstrate later in Section 5.2 that both of
these generalizations are important in some nonconvex
problems and the flexibility of choosing ω(·) can reduce
the total sample complexity. We now state the global
convergence of SMD.

Theorem 4.7. Let Assumptions 3.1, 3.2 and
4.6 hold. For any ε > 0, there exists a choice
of step-sizes {ηt}t≥0 for method (2) such that

mint≤T E
[
Φ(x+t ) − Φ∗] ≤ ε after

T = O
(
ℓΛ0

µ

1

ε
2−α
α

log

(
ℓΛ0

µε

)
+
ℓΛ0σ

2

µ2

1

ε
4−α
α

)
.

The above result implies that after at most T iterations
SMD will find a point xt which is one Mirror Descent
step away from a point that is ε-close to Φ∗ in the
function value. In the unconstrained Euclidean setting,
the above sample complexity matches with that of SGD
[Fatkhullin et al., 2022].10 In the special case α = 2,
it implies the linear convergence rate in deterministic
case and O

(
ε−1
)

sample complexity in the stochastic

case. The linear convergence and O
(
ε−1
)

sample com-
plexity of SMD were previously shown under relative
smoothness and relative strong convexity, e.g., in [Lu
et al., 2018, Hanzely and Richtárik, 2021]. Our result
under Assumption 4.6 is more general since the rela-
tive strong convexity of F (·) implies (4) with α = 2,
see Lemma F.4. It is also known that such rates are
optimal for α = 2 in the Euclidean setting [Yue et al.,
2023, Agarwal et al., 2009].

5 NEW INSIGHTS FOR MACHINE
LEARNING

In this section, we dive into the context of several ma-
chine learning applications. We illustrate how each
of our Theorems 4.3, 4.5 and 4.7 can be applied to

10We use a different step-size sequence {ηt}t≥0 compared

to ηt = 1/tζ , ζ > 0 used in [Fatkhullin et al., 2022], see
Appendix D. This allows us to derive noise adaptive rates,
i.e., if σ = 0, then we recover the iteration complexity of
(deterministic) mirror descent.

specific problems; either yielding faster convergence
than existing algorithms or allowing us to design prov-
ably convergent schemes. Interestingly, the presented
problems are very diverse and allow us to demonstrate
different aspects of our assumptions. In all presented
examples, we crucially rely on the choice of nonsmooth
DGFs, which was not theoretically possible to handle
in the prior work on SMD.

5.1 DP Learning in ℓ2 and ℓ1 Settings

In differentially private (DP) stochastic nonconvex op-
timization, the goal is to design a private algorithm
to minimize the population loss of type (1) over a
subset of a d-dimensional space given n i.i.d. samples,
ξ1, . . . , ξn, drawn from a distribution P . Denote
by S :=

{
ξ1, . . . , ξn

}
, the sampled dataset, and by

∇F (x) :=
∑n

i=1 ∇f(x, ξi), the gradient of the empiri-
cal loss F (x) :=

∑n
i=1 f(x, ξi) based on dataset S. The

classical notion to quantify the privacy quality is

Definition 5.1 ((ϵ, δ)-DP [Dwork et al., 2006]). A
randomized algorithm M is (ϵ, δ)-differentially private
if for any pair of datasets S, S′ that differ in exactly
one data point and for any event Y ⊆ Range(M) in
the output range of M, we have

Pr (M(S) ∈ Y) ≤ eϵ Pr (M (S′) ∈ Y) + δ,

where the probability is w.r.t. the randomness of M.

There are several common techniques to ensure privacy,
which include output [Wu et al., 2017, Zhang et al.,
2017], objective function [Chaudhuri et al., 2011, Kifer
et al., 2012, Iyengar et al., 2019] or gradient perturba-
tions [Bassily et al., 2014, Wang et al., 2017]. Most
recent works on nonconvex DP learning focus on the
latter approach. The key idea of gradient perturbation
is to inject an artificial Gaussian noise bt ∼ N (0, σ2

GId)
into the evaluated gradient. The parameter σ2

G should
be carefully chosen to ensure privacy, which can be
guaranteed by the moments accountant

Lemma 5.2 (Theorem 1 in [Abadi et al., 2016]). As-
sume that ∥∇F (x)∥2 ≤ G for all x ∈ X . There exist
constants c1, c2 > 0 so that given the number of iter-
ations T ≥ 0, for any ϵ ≤ c1T , the gradient method
using ∇F (xt)+bt, bt ∼ N (0, σ2

GId) as the gradient esti-

mator is (ϵ, δ)-DP for any δ > 0 if σ2
G ≥ c2

G2T log(1/δ)
n2ϵ2 .

ℓ2 Setting. For instance, the DP-Prox-GD iterates

xt+1 = proxηtr(xt−ηt(∇F (xt)+bt)), bt ∼ N (0, σ2
GId),

where proxηtr(x) := arg miny∈X

(
r(y) + 1

2ηt
∥y − x∥22

)
.

Our Theorem 4.5 immediately implies the high proba-
bility utility bound for DP-Prox-GD:

1

T

T−1∑
t=0

E [D5ℓ(xt)] = O

(√
d log (1/δ) log(1/β)

nϵ

)
, (5)
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where β ∈ (0, 1) is the failure probability, see Corol-
lary E.1 for more details and the dependence on omitted
constants. To our knowledge, nonconvex utility bound
of DP-Prox-GD was previously studied only in the un-
constrained setting (r(·) = 0, X = Rd), e.g., [Wang
et al., 2017, 2019, Zhou et al., 2020a] or in expectation,
e.g., [Wang and Xu, 2019]. Our bound (5) generalizes
these works to non-trivial X and r(·).

ℓ1 Setting. One issue with the above utility bound
is the polynomial dimension dependence. In certain
cases, this dependence can be significantly improved,
e.g., when the optimization is defined on a unit simplex

X =
{
x ∈ Rd|

∑d
i=1 x

(i) ≤ 1, x(i) ≥ 0
}

. Notably, it

makes a big difference which norm we use to mea-
sure the variance of bt, e.g., E ∥bt∥22 = d σ2

G and

E ∥bt∥2∞ ≤ 2 log(d)σ2
G. Therefore, using ∥·∥∞ norm

is more favorable. Motivated by this difference, we con-
sider the differentially private mirror descent (DP-MD):

xt+1 = arg min
y∈X

ηt(⟨∇F (xt) + bt, y⟩+ r(y)) +Dω(y, xt),

where bt ∼ N (0, σ2
GId) and ω(x) =

∑d
i=1 x

(i) log x(i).11

Using our high probability guarantee Theorem 4.5, we
can derive

Corollary 5.3. Let F (·) be (ℓ, ω)-smooth for ω(·), X
defined above, and ∥∇F (x)∥2 ≤ G for all x ∈ X . Set

ηt = 1
2ℓ , T = nϵ

√
ℓ

G
√

log(d) log(1/δ) log(1/β)
, λ0 := Φ(x0) − Φ∗.

Then DP-MD is (ϵ, δ)-DP and with probability 1 − β
satisfies 12

1

T

T−1∑
t=0

D5ℓ(xt) = O

(
G
√
ℓλ0 log(d) log (1/δ) log (1/β)

nϵ

)
,

The above result establishes a (nearly) dimension inde-
pendent utility bound for DP-MD, and improves the one
of DP-Prox-GD in (5) by a factor of

√
d/log(d). Several

previous works in DP learning literature have shown the
improved dimension dependence in ℓ1 setting, e.g., [Asi
et al., 2021, Gopi et al., 2023, Bassily et al., 2021b,a,
Wang and Xu, 2019]. However, Asi et al. [2021], Gopi
et al. [2023], Bassily et al. [2021b] assume convex F (·),
and, therefore, are not directly comparable with our
result. Bassily et al. [2021a], and Wang and Xu [2019]
obtain nonconvex utility bounds in expectation, how-
ever, their techniques are different. Both above men-
tioned works rely on the linear minimization oracle and
derive convergence on the Frank-Wolfe (FW) gap.13

11It is known that such ω(·) is 1-strongly convex w.r.t. ∥·∥1
on a unit simplex [Beck and Teboulle, 2003].

12The result can be easily extended to the case when only
stochastic gradients ∇f(xt, ξ

i
t) are used instead of ∇F (xt).

13At least when restricted to Euclidean setting, FW gap is
a weaker convergence measure than BFBE, see Lemma 4.2
and F.5.

Moreover, Bassily et al. [2021a] use a complicated dou-
ble loop algorithm based on momentum-based variance
reduction technique.

5.2 Policy Optimization in Reinforcement
Learning (RL)

Consider a discounted Markov decision process
(DMDP) M = {S,A,P, R, γ, p}. Here S is a state
space with cardinality |S|; A is an action space with
cardinality |A|; P is a transition model, where P(s′|s, a)
is the transition probability to state s′ from a given
state s when action a is applied; R : S ×A → [0, 1] is a
reward function for a state-action pair (s, a); γ ∈ [0, 1)
is the discount factor; and p is the initial state dis-
tribution. Being at state sh ∈ S an RL agent takes
an action ah ∈ A and transitions to another state
sh+1 according to P and receives an immediate re-
ward rh ∼ R(sh, ah). A (stationary) policy π speci-
fies a (randomized) decision rule depending only on
the current state sh, i.e., for each s ∈ S, πs ∈ ∆(A)
determines the next action a ∼ πs, where ∆(A) :={
πs ∈ R|A||

∑
s∈S πsa = 1, πsa ≥ 0 for all a ∈ A

}
de-

notes the probability simplex supported on A. The
goal of RL agent is to maximize

V +
p (π) := E

[ ∞∑
h=0

γhrh

]
, π ∈ X := ∆(A)|S|, (6)

where expectation is w.r.t. the initial state distribution
s0 ∼ p, the transition model P and the policy π. We
define Vp(π) := −V +

p (π) and adopt the minimization
formulation of DMDP, i.e., minπ∈X Vp(π).

It is known that Vp(π) is smooth, but nonconvex in π.
Moreover, a property similar to Proximal P L (Assump-
tion 4.6) was recently established for (6) [Agarwal et al.,
2021, Xiao, 2022]. That is we have for any π, π′ ∈ X :

∥∇Vp(π) −∇Vp (π′)∥2,2 ≤ LF ∥π − π′∥2,2 ,

Vp(π) − V ⋆
p ≤ C max

π′∈X
⟨∇Vµ(π), π − π′⟩ , (7)

where LF := 2γ|A|
(1−γ)3 , C := 1

1−γ

∥∥∥dp(π
⋆)

µ

∥∥∥
∞

, ∥·∥2,2 de-

notes the Frobenius norm (Lemma 4 and 54 in [Agarwal
et al., 2021]).

Therefore, this problem serves well to demonstrate
the application of our theory to show convergence of
policy gradient (PG) methods. PG methods is the
promising class of algorithms that generate a sequence
of policies πt by evaluating the gradients ∇Vµ(πt) (or

their stochastic estimates ∇̂Vµ(πt)), where µ ∈ ∆(A)
is some distribution (not necessarily equal to p). One
of the most basic variants is the

Projected Stochastic Policy Gradient:

P-SPG: πt+1 = projX

(
πt − ηt∇̂Vµ(πt)

)
,
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where projX (·) denotes the Euclidean projection onto
X . Given that the variance of stochastic gradients
∇̂Vµ(πt) is bounded in the Euclidean norm by σ2

F ,14

our Theorems 4.3 and 4.7 imply the following

Corollary 5.4. For any ε > 0, P-SPG guarantees:

(i) min0≤t≤T−1 E [D3LF
(πt)] ≤ ε2 after

T = O
(

|A|
(1 − γ)3ε2

+
σ2
F |A|

(1 − γ)3ε4

)
,

(ii) mint≤T E
[
Vp(π+

t ) − V ∗
p

]
≤ ε after

T = Õ
(

|A||S|
(1 − γ)5ε

+
σ2
F |A|2|S|2

(1 − γ)7ε3

)
.

Convergence of P-SPG was studied (in deterministic
case) in [Agarwal et al., 2021] using the notion of
gradient mapping. Recently, an improved analysis
was provided in [Xiao, 2022] with iteration complex-

ity T = O
(

|A||S|
(1−γ)5ε

)
to achieve Vp(πT ) − V ∗

p ≤ ε. If

σF = 0, our iteration complexity in (ii) recovers the
one in [Xiao, 2022], albeit with a different proof.

Improving dependence on |A|. Notice that the
above sample complexity bounds depend on the cardi-
nality of the action space, which can be large in practice.
The key reason for this is that the analysis of P-SPG

(Prox-SGD) requires to measure the smoothness constant
LF of Vp(π) in the Euclidean (Frobenius) norm, which
inevitably depends on the cardinality of the action
space |A|. Let us instead consider (2, 1)-matrix norm

∥·∥2,1, i.e., ∥π∥22,1 =
∑

s∈S
(∑

a∈A |πsa|
)2

.15 Now, we
show that the dependence on |A| in the smoothness
constant can be completely removed if (2, 1)-norm is
used.

Proposition 5.5. For any π, π′ ∈ X , it holds that

∥∇Vp(π) −∇Vp (π′)∥2,∞ ≤ 2γ

(1 − γ)3
∥π − π′∥2,1 .

Consider Stochastic Mirror Policy Gradient
(SMPG), that is SMD with the matrix form of
Shannon entropy ω(π) :=

∑
s∈S

∑
a∈A πsa log πsa.16

The stochastic gradients in SMD are replaced by
∇̂Vµ(πt) := (∇̂1Vµ(πt), . . . , ∇̂|S|Vµ(πt)). Define Et :=

(E1
t , . . . , E

|S|
t ), then SMPG can be written in a closed

from. For all s ∈ S

πt+1 = πt ⊙ Et, Es
t :=

exp
(
−ηt∇̂sVµ(πt)

)
∑

a∈A exp
(
−ηt∇̂sVµ(πt)

) ,
14The variance of ∇̂Vµ(·) can be bounded under reason-

able assumptions or using appropriate exploration strategies,
e.g., ϵ-greedy or Boltzmann, see [Daskalakis et al., 2020,
Cesa-Bianchi et al., 2017, Xiao, 2022, Johnson et al., 2023].

15Its dual satisfies ∥π∥22,∞ =
∑

s∈S (maxa∈A |πsa|)2.
16It is 1-strongly convex w.r.t. ∥·∥2,1 norm.

where ⊙ denotes an element-wise multiplication of ma-
trices and exp(·) is an element-wise exponential. The
sample complexity can be derived from Theorem 4.7
using Proposition 5.5 under the bounded variance as-
sumption (in dual norm ∥·∥2,∞).

Corollary 5.6. For any ε > 0, SMPG guarantees that
min0≤t≤T−1 E [Dρ(πt)] ≤ ε2 with ρ := 6γ(1−γ)−3 after

T = O

(
1

(1 − γ)3ε2
+

σ2
2,∞

(1 − γ)3ε4

)
.

Notice that compared to the bound for P-SPG the above
sample complexity is better at least by a factor of |A|.
Moreover, σ2,∞ can be much smaller than σF .

It should be noted, however, that Dρ(πt) in Corollar-
ies 5.4 and 5.6 are induced by different ω(·) and thus
induce different FOSP measures. Also it remains un-
clear how to establish a global convergence of SMPG in
the function value. The technical difficulty arises be-
cause the condition (7) might not imply Assumption 4.6
under non-smooth DGF.

Remark 5.7. While this example serves well to illus-
trate the application of our general theory and potential
advantages of SMPG compared to P-SPG, it does not
mean that SMPG is the most suitable algorithm for solv-
ing (6). In fact, there are other specialized algorithms
in RL literature, which have better theoretical sample
complexities than shown above. For example, Natural
Policy Gradient (NPG) (also known as exponentiated
Q-descent or Policy Mirror Descent) [Kakade, 2001,
Agarwal et al., 2021, Lan, 2023, Xiao, 2022, Zhan et al.,
2023, Khodadadian et al., 2021] achieves faster conver-
gence in terms of ε. However, a notable difference of
SMPG compared to NPG is that the latter uses a Q-
function instead of the policy gradient ∇̂Vµ(π), see the
derivation of NPG in Section 4 in [Xiao, 2022]. Another
popular approach to problem (6) is the use of soft-max
policy parametrization instead of directly solving the
problem over X . In this direction, different variants
of PG method were developed and analyzed, see, e.g.,
[Zhang et al., 2020b, 2021, Barakat et al., 2023].

Remark 5.8. The special cases and variants of Prox-
P L condition were previously used to derive global
convergence of PG methods [Daskalakis et al., 2020,
Kumar et al., 2023] including continuous state action-
spaces in RL [Ding et al., 2022, Fatkhullin et al., 2023a]
and classical control tasks [Fazel et al., 2018, Fatkhullin
and Polyak, 2021, Zhao et al., 2022, Wu et al., 2023].
An alternative approach to global convergence of P-SPG,
based on hidden convexity of (6), was recently studied
in [Fatkhullin et al., 2023b].
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5.3 Training Autoencoder Model using SMD

In this section, we showcase how we can harness gen-
eral Bregman divergence in SMD to address modern
machine learning problems involving linear neural net-
works, where the objectives go beyond the smooth
regime considered in the existing theoretical analysis
[Kawaguchi, 2016].

More specifically, assume that the F (·) is twice differ-
entiable and its Hessian is bounded by the polynomial
of ∥x∥2, i.e., there exist r, L, Lr ≥ 0 such that∥∥∇2F (x)

∥∥
op

≤ L+ Lr ∥x∥r2 for all x ∈ Rd.17 (8)

The following result (initially appeared in [Lu et al.,
2018, Lu, 2019]) shows that for any r ≥ 0, the
above condition implies relative smoothness (Assump-
tion 3.1).

Proposition 5.9 (Proposition 2.1. in [Lu et al., 2018]).
Suppose F (·) is twice differentiable and satisfies (8).
Then F (·) is ℓ-smooth relative to ω(x) = 1

r+2∥x∥
r+2
2 +

1
2∥x∥

2
2 with ℓ := max {L,Lr}.

To design a provably convergent scheme for such prob-
lems, it remains to solve SMD subproblem with DGF
specified in the above proposition. Luckily, this is
possible

ct = (1 + ∥xt∥r2)xt − ηt∇f(xt, ξt), (9)

xt+1 = (1 + θr∗)−1 ct, (10)

where θ∗ ≥ 0 is the unique solution to θr+1 +θ = ∥ct∥2.

Convergence to a FOSP of the above method follows
immediately from our Theorem 4.3, see Appendix E.3
for more details. For r = 1, 2, the solution θ∗ can be
found in a closed form, while for larger values of r it
can be solved using a bisection method.

To illustrate the empirical performance of the above
scheme, we consider two layer autoencoder problem

min
W1 ∈ Rde×df

W2 ∈ Rdf×de

[
F (W ) :=

1

n

n∑
i=1

∥W2W1ai − ai∥22

]
, (11)

where ai ∈ Rdf are flattened representations of im-
ages, W = [W1,W2] are learned parameters of the
model.18 The above problem is nonconvex and globally
nonsmooth in W since its Hessian norm grows as a
polynomial in the norm of W . Therefore, SGD can
easily diverge if poorly initialized. However, condition

17Compare to (L0, L1)-smoothness condition studied in
[Zhang et al., 2020a].

18In previous notations, we have x = vec(W ) ∈ R2 de df .
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Figure 1: Sensitivity to step-size choice for SMDr1, SMDr2,
SGD and Clip SGD (with clipping radius 1). The plot shows
the function value F (xT ) after T = 104 iterations for each
step-size. The star markers correspond to the actual runs,
and the lines linearly interpolate between them.

(8) can be verified for some r0 ≥ 2 and the scheme (9),
(10) provably converges for any r ≥ r0.19

We focus on r = 1, 2 and call the corresponding meth-
ods SMDr1 and SMDr2. We compare these algorithms
to the standard SGD, which corresponds to r = 0. For
comparison, we also include a popular heuristic algo-
rithm, Clip SGD, which is known to mitigate the problem
of exploding gradients. We use constant step-sizes for
each method. Figure 1 reports the final training loss
for each step-size in the range

{
2−19, 2−18, . . . , 27

}
.

We observe from Figure 1 that SMDr1 and SMDr2 al-
low for much larger step-sizes than SGD. Moreover,
increasing r also increases the robustness to the step-
size choice, i.e., the lower part of the curve becomes
wider. At the same time, in the high accuracy regime,
Clip SGD still outperforms other algorithms on this task.
Note, however, that Clip SGD might not converge in
general in the stochastic setting for a constant clipping
parameter, see, e. g., [Koloskova et al., 2023].
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A Proofs of Lemma 4.1 and 4.2: Connections Between FOSP

BPM and BGM are equivalent up to a constant factor.

The following lemma establishes that if F (·) is (ℓ, ω)-smooth, then the distance between x̂ and x+ is small.

Lemma A.1. For any ρ > ℓ, we have for all x ∈ X ∩ S

ρ2Dsym
ω (x̂, x+) ≤ ℓ

ρ− ℓ

(
∆ρ(x) + ∆+

ρ (x)
)
.

Proof. Recall that x̂ := arg miny∈X F (y)+r(y)+ρDω(y, x), and x+ := arg miny∈X ⟨∇F (x), y⟩+r(y)+ρDω(y, x).
By the optimality conditions for x+ and x̂, there exist s+ ∈ ∂(r + δX )(x+) and ŝ ∈ ∂(r + δX )(x̂), such that

0 = ∇F (x̂) + ŝ+ ρ∇ω(x̂) − ρ∇ω(x),

0 = ∇F (x) + s+ + ρ∇ω(x+) − ρ∇ω(x),

Subtracting these equalities, we obtain ρ∇ω(x̂) − ρ∇ω(x+) = s+ − ŝ+ ∇F (x) −∇F (x̂).

By Lemma F.1-1 (three point identity) with x = z and using the above identity, we have

ρ(Dω(x̂, x+) +Dω(x+, x̂)) = ⟨ρ∇ω(x̂) − ρ∇ω(x+), x̂− x+⟩
= ⟨s+ − ŝ+ ∇F (x) −∇F (x̂), x̂− x+⟩
(i)

≤ ⟨∇F (x) −∇F (x̂), x̂− x+⟩ (12)

where in (i) we use convexity of (r + δX )(·). By relative smoothness of F (·), we have for any x, y, z ∈ X ∩ S

F (x) − F (y) − ⟨∇F (y), x− y⟩ ≤ ℓDω(x, y),

F (z) − F (x) − ⟨∇F (x), z − x⟩ ≤ ℓDω(z, x),

−ℓDω(z, y) ≤ F (z) − F (y) − ⟨∇F (y), z − y⟩.

Adding the above inequalities gives for any x, y, z ∈ X ∩ S

⟨∇F (x) −∇F (y), y − z⟩ ≤ ℓDω(x, y) + ℓDω(z, x) + ℓDω(z, y).

Applying the above inequality with x = x, y = x̂, z = x+, we further bound (12)

ρ(Dω(x̂, x+) +Dω(x+, x̂)) ≤ ℓDω(x, x̂) + ℓDω(x+, x) + ℓDω(x+, x̂)

≤ ℓDω(x, x̂) + ℓDω(x+, x) + ℓDω(x+, x̂) + ℓDω(x̂, x+).

Therefore, for any ρ > ℓ, we have

ρ2
(
Dω(x̂, x+) +Dω(x+, x̂)

)
≤ ℓρ2

ρ− ℓ
(Dω(x, x̂) +Dω(x+, x)) ≤ ℓ

ρ− ℓ

(
∆ρ(x) + ∆+

ρ (x)
)
.

Proof of Lemma 4.1. For any x, y, z ∈ X ∩ S and s > 0, we have

Dsym
ω (x, y) ≤

(√
Dsym

ω (x, z) +
√
Dsym

ω (y, z)

)2

≤ (1 + s)Dsym
ω (x, z) +

(
1 + s−1

)
Dsym

ω (y, z).

Applying Lemma A.1 together with the above inequality, we have

∆+
ρ (x) = ρ2Dsym

ω (x, x+) ≤ (1 + s)ρ2Dsym
ω (x, x̂) + (1 + s−1)ρ2Dsym

ω (x+, x̂)

≤ (1 + s)ρ2Dsym
ω (x, x̂) +

(1 + s−1)ℓ

ρ− ℓ

(
∆ρ(x) + ∆+

ρ (x)
)

≤
(

1 + s+
(1 + s−1)ℓ

ρ− ℓ

)
∆ρ(x) +

(1 + s−1)ℓ

ρ− ℓ
∆+

ρ (x).
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Rearranging, we obtain the upper bound on ∆+
ρ (x). For the lower bound, we act similarly and derive

∆ρ(x) = ρ2Dsym
ω (x, x̂) ≤ (1 + s)ρ2Dsym

ω (x, x+) + (1 + s−1)ρ2Dsym
ω (x̂, x+)

≤ (1 + s)ρ2Dsym
ω (x, x+) +

(1 + s−1)ℓ

ρ− ℓ

(
∆ρ(x) + ∆+

ρ (x)
)

≤
(

1 + s+
(1 + s−1)ℓ

ρ− ℓ

)
∆+

ρ (x) +
(1 + s−1)ℓ

ρ− ℓ
∆ρ(x).

Combining the above two inequalities, we have
∆ρ(x)

C(ℓ,ρ,s) ≤ ∆+
ρ (x) ≤ C(ℓ, ρ, s)∆ρ(x).

Remark A.2. Notice that our intermediate Lemma A.1 does not require ω(·) to induce a metric and shows that x̂
and x+ are close if ∆ρ(x) and ∆+

ρ (x) are small. However, the proof of Lemma 4.1 crucially relies on triangle
inequality. Therefore, it is unclear whether convergence of SMD in ∆ρ(x) (that was established in [Zhang and He,
2018] under BG assumption) implies convergence in ∆+

ρ (x). In our main Theorems 4.3, 4.5 and 4.7, we bypass
this issue and directly establish convergence on Dρ(x), that is a stronger measure than ∆+

ρ (x) (and stronger than

∆ρ(x) if
√
Dsym

ω (x, y) is a metric). Moreover, as we have seen in Section 2, Dρ(x) seems to be a more natural

FOSP measure since it reduces to ∥∇F (x)∥2 in unconstrained case.

BFBE is strictly larger than BGM.

Now we state the proof of Lemma 4.2, which consists of two parts.

Proof of Lemma 4.2. 1. BFBE is not smaller than BGM. Recall that x+ := arg miny∈X ⟨∇F (x), y⟩ + r(y) +
ρDω(y, x). By the optimality condition, there exists u+ ∈ ∂r(x+) such that

0 = ∇F (x) + ρ(∇ω(x+) −∇ω(x)) + u+.

Thus, by convexity of r(·)

r(x) ≥ r(x+) + ⟨u+, x− x+⟩ = r(x+) + ρ⟨∇ω(x) − ∇ω(x+), x− x+⟩ − ⟨∇F (x), x− x+⟩
= r(x+) + ρ(Dω(x, x+) +Dω(x+, x)) − ⟨∇F (x), x− x+⟩.

Using the above inequality and the definition of Dρ(x), we derive for any ρ, ρ1 > 0

1

2ρ1
Dρ1(x) := −min

y∈X
{⟨∇F (x), y − x⟩ + ρ1Dω(y, x) + r(y) − r(x)}

= ⟨∇F (x), x− x+⟩ − ρ1Dω(x+, x) + r(x) − r(x+)

≥ ρ(Dω(x, x+) +Dω(x+, x)) − ρ1Dω(x+, x)

≥ (ρ− ρ1)(Dω(x+, x) +Dω(x+, x)).

Recalling the definition of ∆+
ρ (x) and setting ρ1 = ρ/2, it remains to conclude that Dρ/2(x) ≥ 1

2∆+
ρ (x).

2. BFBE can be much larger than BGM.

The following example shows how large can be the ratio of BFBE and BGM. Consider minimizing Φ(x) =
F (x) + r(x) over X = [0, 1] ⊂ R1 with F (x) = 1

2x
2, r(x) = |x|. We can compute the proximal operator of the

absolute value as proxr/ρ(x) = sign(x) max
{

0, |x| − 1
ρ

}
, where sign(x) = 1, if x ≥ 0 and sign(x) = −1 otherwise.

For any x ∈ [0, 1] and ρ ≥ 1, we can compute x+ = proxr/ρ(x− ρ−1x) = 0. Therefore, we have

∆+
ρ (x) = x2,

Dρ(x) = −2ρ(⟨∇F (x), x+ − x⟩ +
ρ

2
(x+ − x)2 + |x+| − |x|) = 2ρ|x| + 2ρ

(
1 − ρ

2

)
x2.

In particular, taking arbitrary ρ = ρ1 ≥ 1 in the first equality and ρ ≤ 2 in the second equality, we have for any
x ∈ (0, 1]

Dρ(x)

∆+
ρ1(x)

≥ 2ρ|x|
x2

≥ 2

|x|
.
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We conclude that Dρ(x) can be arbitrary larger than ∆+
ρ1

(x) even when x is close to the optimum x∗ = 0. This
implies that the opposite inequality in Lemma 4.2 does not hold in general even when ρ and ρ1 are allowed to be
different. Therefore, BFBE is strictly stronger convergence measure than BGM.
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B Proof of Theorem 4.3: Convergence to FOSP in Expectation

Proof. Step I. Deterministic descent w.r.t. Forward-Backward Envelope.

Define x̂ := proxΦ/ρ(x). Notice that for any x ∈ X ∩ S, we have for any x+ ∈ X ∩ S

Φ1/ρ(x) = Φ(x̂) + ρDω(x̂, x) ≤ Φ(x+) + ρDω(x+, x).

We set x+ := arg miny∈X ⟨∇F (x), y⟩ + r(y) + ρ1Dω(y, x) with ρ1 ≥ ρ+ ℓ. Then by relative smoothness (upper
bound) of F (·)

Φ1/ρ(x) ≤ Φ
(
x+
)

+ ρDω(x+, x)

= F
(
x+
)

+ r
(
x+
)

+ ρDω(x+, x)

≤ F (x) +
〈
∇F (x) , x+ − x

〉
+ ℓDω(x+, x) + r

(
x+
)

+ ρDω(x+, x)

= Φ (x) +
〈
∇F (x) , x+ − x

〉
+ (ρ+ ℓ)Dω(x+, x) + r

(
x+
)
− r (x)

= Φ (x) − 1

2ρ1
Dρ1(x) + (ρ+ ℓ− ρ1)Dω(x+, x)

≤ Φ (x) − 1

2ρ1
Dρ1

(x). (13)

where the last equality holds by definitions of x+, Dρ(x) and the last step is due to condition ρ1 ≥ ρ+ ℓ.

Step II. One step progress on the Lyapunov function.

By the update rule of xt+1 and applying Lemma F.1, Item 2 with z = xt, z
+ = xt+1, x = x̂t, we have

ηt⟨∇f(xt, ξt), x̂t − xt+1⟩ + ηt(r(x̂t) − r(xt+1)) ≥ Dω(x̂t, xt+1) +Dω(xt+1, xt) −Dω(x̂t, xt). (14)

By the optimality of x̂t+1 and using the above inequality, we derive

Φ1/ρ (xt+1) = Φ
(
x̂t+1

)
+ ρDω(x̂t+1, xt+1)

≤ Φ
(
x̂t
)

+ ρDω(x̂t, xt+1)

(14)

≤ Φ
(
x̂t
)

+ ηtρ⟨∇f(xt, ξt), x̂t − xt+1⟩ + ρDω(x̂t, xt) − ρDω(xt+1, xt) + ηtρ(r(x̂t) − r(xt+1))

= Φ1/ρ (xt) + ηtρ(r(x̂t) − r(xt) + ⟨∇f(xt, ξt), x̂t − xt⟩) + ρηt⟨∇f(xt, ξt), xt − xt+1⟩
− ρDω(xt+1, xt) + ηtρ(r(xt) − r(xt+1)).

We define λt := Φ1/ρ (xt)−Φ∗ + ηt−1ρ(Φ(xt)−Φ∗), ψt := ∇f(xt, ξt)−∇F (xt) . Then using the above inequality

λt+1 := Φ1/ρ (xt+1) − Φ∗ + ηtρ(Φ(xt+1) − Φ∗)

≤ Φ1/ρ (xt) − Φ∗ + ηtρ(r(x̂t) − r(xt) + ⟨∇f(xt, ξt), x̂t − xt⟩)
+ρ(ηt⟨∇f(xt, ξt) −∇F (xt), xt − xt+1⟩ −Dω(xt+1, xt))

+ηtρ(r(xt) + F (xt+1) + ⟨∇F (xt), xt − xt+1⟩ − Φ∗)

(i)

≤ Φ1/ρ (xt) − Φ∗ + ηtρ(r(x̂t) − r(xt) + ⟨∇f(xt, ξt), x̂t − xt⟩)
+ρ(ηt⟨∇f(xt, ξt) −∇F (xt), xt − xt+1⟩ − (1 − ηtℓ)Dω(xt+1, xt))

+ηtρ(r(xt) + F (xt) − Φ∗)

= λt + (ηt − ηt−1)ρ(Φ(xt) − Φ∗) + ηtρ(r(x̂t) − r(xt) + ⟨∇F (xt), x̂t − xt⟩) + ρηt⟨ψt, x̂t − xt⟩
+ρ(ηt⟨ψt, xt − xt+1⟩ − (1 − ηtℓ)Dω(xt+1, xt))

(ii)

≤ λt + (ηt − ηt−1)ρ(Φ(xt) − Φ∗) − ηtρ

2(ρ+ ℓ)
Dρ+ℓ(xt) − ηtρ(ρ− ℓ)Dω(x̂t, xt) + ρηt⟨ψt, x̂t − xt⟩

+ρ(ηt⟨ψt, xt − xt+1⟩ − (1 − ηtℓ)Dω(xt+1, xt))

(iii)

≤ λt −
ηtρ

2(ρ+ ℓ)
Dρ+ℓ(xt) + ρηt⟨ψt, x̂t − xt⟩ + ρ(ηt⟨ψt, xt − xt+1⟩ − (1 − ηtℓ)Dω(xt+1, xt)) (15)

−ηtρ(ρ− ℓ)Dω(x̂t, xt),
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where (i) follows by relative smoothness (upper bound), i.e., F (xt+1) ≤ F (xt)−⟨∇F (xt), xt−xt+1⟩+ℓDω(xt+1, xt).
The inequality (ii) follows from relative smoothness (lower bound) of F (·) and (13) (with ρ1 = ρ+ ℓ) since

r(x̂t) − r(xt) + ⟨∇F (xt), x̂t − xt⟩ ≤ r(x̂t) − r(xt) + F (x̂t) − F (xt) + ℓDω(x̂t, xt)

= Φ1/ρ(xt) − Φ(xt) + (ℓ− ρ)Dω(x̂t, xt)

≤ Φ1/ρ(xt) − Φ(xt) + (ℓ− ρ)Dω(x̂t, xt)

≤ − 1

2(ρ+ ℓ)
Dρ+ℓ(xt) − (ρ− ℓ)Dω(x̂t, xt).

The inequality (iii) holds since the sequence {ηt}t≥0 is non-increasing.

Step III. Dealing with stochastic terms. Using Dω(xt+1, xt) ≥ 1
2 ∥xt+1 − xt∥2 and the bound on the variance

of stochastic gradients, we have

E
[
ηt⟨ψt, xt − xt+1⟩ − (1 − ηtℓ)Dω(xt+1, xt)

]
≤ E

[
ηt⟨ψt, xt − xt+1⟩ − (1 − ηtℓ)

1

2
∥xt+1 − xt∥2

]
≤ η2t

2(1 − ηtℓ)
E
[∥∥ψt

∥∥2
∗

]
≤ η2t σ

2

2(1 − ηtℓ)
. (16)

Define Λt := E [λt]. Then combining (15) with (16) and setting ρ = 2ℓ, ηt ≤ 1/(2ℓ), we derive for any
non-increasing step-sizes ηt

Λt+1 ≤ Λt −
ηtρ

2(ρ+ ℓ)
E [Dρ+ℓ(xt)] +

ρη2t σ
2

2(1 − ηtℓ)
≤ Λt −

ηt
3
E [D3ℓ(xt)] + 2ℓη2t σ

2. (17)

It remains to telescope and conclude the proof since

T−1∑
t=0

ηtE [D3ℓ(xt)] ≤ 3Λ0 + 6ℓσ2
T−1∑
t=0

η2t ,

where the Lyapunov function in the initial point can be bounded (setting η−1 = η0) as

Λ0 = λ0 = Φ1/ρ(x0) − Φ∗ + η−1ρ(Φ(x0) − Φ∗) ≤ Φ1/ρ(x0) − Φ∗ + Φ(x0) − Φ∗.

The proof for constant step-size follows immediately from (3).
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C Proof of Theorem 4.5: High Probability Convergence to FOSP under
Sub-Gaussian Noise

Proof. We recall the definitions of λt = Φ1/ρ (xt)−Φ∗ + ηt−1ρ(Φ(xt)−Φ∗), ψt = ∇f(xt, ξt)−∇F (xt), and invoke
(15) from the proof of Theorem 4.3

λt+1 = λt −
ηtρ

2(ρ+ ℓ)
Dρ+ℓ(xt) + ρηt⟨ψt, x̂t − xt⟩ + ρηt⟨ψt, xt − xt+1⟩ − ρ(1 − ηtℓ)Dω(xt+1, xt)

−ηtρ(ρ− ℓ)Dω(x̂t, xt)

≤ λt −
ηtρ

2(ρ+ ℓ)
Dρ+ℓ(xt) + ρηt⟨ψt, x̂t − xt⟩ +

ρη2t ∥ψt∥2∗
2(1 − ηtℓ)

− ηtρ(ρ− ℓ)Dω(x̂t, xt). (18)

Define a (normalization) scalar w := ρ−ℓ
6σ2ρη0

> 0, and a sequence St :=
∑T−1

τ=t Zτ , where

Zt := w

(
λt+1 − λt +

ηtρ

2(ρ+ ℓ)
Dρ+ℓ(xt)

)
.

Now we define the filtration Ft = {x0, ξ0, x1, . . . , ξt−1, xt} and compute the moment generating function (MGF)
of Zt for any 0 ≤ t ≤ T − 1

E [exp(Zt)|Ft] = E
[
exp

(
w

(
λt+1 − λt +

ηtρ

2(ρ+ ℓ)
Dρ+ℓ(xt)

))
|Ft

]
(18)

≤ E

[
exp

(
wρηt⟨ψt, x̂t − xt⟩ +

wρη2t ∥ψt∥2∗
2(1 − ηtℓ)

− wηtρ(ρ− ℓ)Dω(x̂t, xt)

)
|Ft

]

= exp (−wηtρ(ρ− ℓ)Dω(x̂t, xt))E

[
exp

(
wρηt⟨ψt, x̂t − xt⟩ +

wρη2t ∥ψt∥2∗
2(1 − ηtℓ)

)
|Ft

]
(i)

≤ exp (−wηtρ(ρ− ℓ)Dω(x̂t, xt)) exp

(
3σ2w2ρ2η2t ∥x̂t − xt∥2 +

3σ2wρη2t
2(1 − ηtℓ)

)
(ii)

≤ exp

(
3σ2wρη2t
2(1 − ηtℓ)

)
,

where in (i) we apply Lemma F.2, which uses that ∥ψt∥∗ is σ-sub-Gaussian. Inequality (ii) holds by the fact that

∥x̂t − xt∥2 ≤ 2Dω(x̂t, xt), and the choice of w, which guarantess that 6σ2w2ρ2η2t ≤ wηtρ(ρ − ℓ) for any t ≥ 0.
Now to compute the MGF of St we use derive

E [exp(St)|Ft] = E [E [exp(St+1 + Zt)|Ft+1] |Ft] = E [exp(Zt)E [exp(St+1)|Ft+1] |Ft] .

Thus, by induction we have

E [S0] ≤ exp

(
3σ2ρw

2

T−1∑
t=0

η2t
(1 − ηtℓ)

)
≤ exp

(
3σ2ρw

T−1∑
t=0

η2t

)
.

where the last inequality holds by the condition ηt ≤ 1/(2ℓ). Consequently, by Markov’s inequality,

Pr

(
S0 ≥ 3σ2ρ

T−1∑
t=0

wtη
2
t + log (1/β)

)
≤ β.

Then with probability at least 1 − β, we have

T−1∑
t=0

w

(
λt+1 − λt +

ηtρ

2(ρ+ ℓ)
Dρ+ℓ(xt)

)
≤ 3σ2wρ

T−1∑
t=0

η2t + log (1/β) .
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Telescoping the above inequality, setting ρ = 4ℓ, and dividing by the sum of step-sizes:

1∑T−1
t=0 ηt

T−1∑
t=0

ηt D5ℓ(xt) ≤
λ0 + 1

w log (1/β) + 12σ2ℓ
∑T−1

t=0 η2t
2
5

∑T−1
t=0 ηt

=
λ0 + 8 η0σ

2 log (1/β) + 12σ2ℓ
∑T−1

t=0 η2t
2
5

∑T−1
t=0 ηt

.

It remains to bound the Lyapunov function in the initial point setting η−1 = η0:

λ0 = Φ1/ρ(x0) − Φ∗ + η−1ρ(Φ(x0) − Φ∗) ≤ Φ1/ρ(x0) − Φ∗ + 2(Φ(x0) − Φ∗).
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D Proof of Theorem 4.7. Global Convergence under Generalized Proximal P L
Condition

Proof of Theorem 4.7. Invoking (17), and substituting the value of ρ = 2ℓ and using ηt ≤ 1
2ℓ , we derive under

Assumption 4.6

Λt+1 ≤ Λt −
ηt
3
E [D3ℓ(xt)] + 2ℓη2σ2 ≤ Λt −

2µηt
3

E
[
(Φ(xt) − Φ∗)

2/α
]

+ 2ℓη2σ2,

Notice that Φ(x) ≥ Φ1/ρ(x) for any x ∈ X , thus

E [Φ(xt) − Φ∗] ≥ 1

1 + ηt−1ρ
E
[
Φ1/ρ(xt) − Φ∗]+

ηt−1ρ

1 + ηt−1ρ
E [Φ(xt) − Φ∗] =

Λt

1 + ηt−1ρ
≥ 1

2
Λt.

By Jensen’s inequality for z → z2/α, we have E
[
(Φ(xt) − Φ∗)2/α

]
≥ (E [Φ(xt) − Φ∗])

2/α
. Combining the above

inequalities, we get E
[
(Φ(xt) − Φ∗)2/α

]
≥ 1

2Λ
2/α
t . Thus, we can derive a recursion

Λt+1 ≤ Λt −
ηtµ

3
Λ

2/α
t + 2ℓσ2η2t .

Assume that for τ = 0, . . . , t, we have Λτ ≥ ε (otherwise we have reached ε-accuracy). Then

Λt+1 ≤

(
1 − ηtµε

2−α
α

3

)
Λt + 2ℓσ2η2t ,

For any T ≥ 0, we select the step-size sequence ηt as follows:

ηt =


1
2ℓ if t < ⌈T/2⌉ and T ≤ 6ℓ

µ ε
2−α
α

,

6

µ ε
2−α
α

(
t+ 12ℓ

µ ε−
2−α
α −⌈T/2⌉

) otherwise.

By Lemma F.6, we have

ΛT+1 = O

(
ℓΛ0

µ ε
2−α
α

exp

(
−µ ε

2−α
α T

ℓ

)
+

ℓσ2

Tµ2ε
2(2−α)

α

)
.

Recalling the definition of Λt and using Lemma F.3, we bound ΛT+1 ≥ Φ1/ρ(xT+1) − Φ∗ ≥ Φ(x+T+1) − Φ∗, where

x+ := arg miny∈X ⟨∇F (x), y⟩ + r(y) + ℓDω(y, x). The sample complexity to reach Φ(x+T+1) − Φ∗ ≤ ε is

T = O
(
ℓΛ0

µ

1

ε
2−α
α

log

(
ℓΛ0

µε

)
+
ℓΛ0σ

2

µ2

1

ε
4−α
α

)
.
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E Proofs for Applications

E.1 Differentially Private Learning in ℓ2 and ℓ1 Settings

Proof of Corollary 5.3. Notice that by Lemma F.7 ∥bt∥∞ is σ-sub-Gaussian r.v. with σ2 = 2 log(2d)σ2
G.20 We

invoke the result of Theorem 4.5 with ηt = η0 = 1
2ℓ , and obtain

1

T

T−1∑
t=0

D5ℓ(xt) = O

 λ0
η0T

+ σ2η0ℓ+
σ2 log

(
1
β

)
T

 = O
(
ℓλ0
T

+ σ2 log

(
1

β

))

= O

(
ℓλ0
T

+
G2T log(d) log

(
1
δ

)
n2ϵ2

log

(
1

β

))

= O

G
√
ℓλ0 log(d) log

(
1
δ

)
log
(

1
β

)
nϵ

 ,

where the last equality follows by the choice of T . It remains to notice that λ0 = Φ1/ρ(x0)−Φ∗ + 2(Φ(x0)−Φ∗) ≤
3(Φ(x0) − Φ∗).

Corollary E.1. Let F (·) be differentiable on a convex set X with L-Lipschitz continuous gradient w.r.t. Euclidean

norm, and ∥∇F (x)∥2 ≤ G for all x ∈ X . Set ηt = 1
2L , T = nϵ

√
L

G
√

d log(1/δ) log(1/β)
, λ0 := Φ(x0) − Φ∗. Then

DP-Prox-GD is (ϵ, δ)-DP and with probability 1 − β satisfies

1

T

T−1∑
t=0

D5ℓ(xt) = O

(
G
√
ℓλ0d log (1/δ) log (1/β)

nϵ

)
,

Proof. The proof follows the same lines as the proof of Corollary 5.3. The only difference is that instead of the
infinity norm of the noise, we bound the Euclidean norm, i.e., ∥bt∥2 is σ-sub-Gaussian r.v. with σ2 = d σ2

G.

E.2 Policy Optimization in Reinforecement Learning

Prox-P L condition.

Now we will verify Assumption 4.6 with α = 1 holds for our RL problem. The result is similar to Lemma 5 in
[Xiao, 2022]. The only difference is that we have π instead of π+ on the left hand side of the inequality.

Lemma E.2. Let ω(π) = 1
2 ∥π∥

2
2,2. Then for any π ∈ X we have

Vp(π) − V ⋆
p ≤

2
√

2|S|
1 − γ

∥∥∥∥dp (π⋆)

µ

∥∥∥∥
∞

√
∆+

ρ (π)

if ρ ≥ GV,∥·∥2,2
/DX ,∥·∥2,2

, where GV,∥·∥2,2
:= maxπ∈Π

[
∥∇Vp(π)∥2,2

]
.

Proof. It was shown in Lemma 4 in [Agarwal et al., 2021] that the following (variational) gradient domination
condition holds.

Vp(π) − V ⋆
p ≤ 1

1 − γ

∥∥∥∥dp (π⋆)

µ

∥∥∥∥
∞

max
π′∈X

⟨∇Vµ(π), π − π′⟩ for any π ∈ X .

By Lemma F.5, we have

max
π′∈X

⟨∇Vµ(π), π − π′⟩ ≤
(
DX ,∥·∥2,2

+ ρ−1GV,∥·∥2,2

)√
∆+

ρ (π) ≤ 2DX ,∥·∥2,2

√
∆+

ρ (π)

20Here we used the fact that max1≤i≤d |ξi| = max {ξ1,−ξ1, . . . , ξd,−ξd} and applied Lemma F.7 with n = 2d.
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where the last inequality holds for ρ ≥ GV,∥·∥2,2
/DX ,∥·∥2,2

. It remains to notice that DX ,∥·∥2,2
≤
√

2|S|.

Smoothness in (2, 1)-norm. Proof of Proposition 5.5

For any π, π′ ∈ X , it holds that

∥∇Vp(π) −∇Vp (π′)∥2,∞ ≤ 2γ

(1 − γ)3
∥π − π′∥2,1 ,

The estimate of the smoothness constant follows directly from the proof of Lemma 54 in [Agarwal et al., 2021],
since using (2, 1) norm we have

∑
a∈A |ua,s| ≤ 1, and the perturbation ua,s belongs to the probability simplex

ua,s ∈ ∆(A).

E.3 Training Autoencoder Model using SMD

Derivation of SMDr1 and SMDr2. Recall the choice of DGF from subsection 5.3

ω(x) =
1

r + 2
∥x∥r+2

2 +
1

2
∥x∥22.

Notice that we have ∇ω(x) = ∥x∥r2 x+ x. The update rule of SMD with X = Rd, r(x) = 0 and the above choice
of DGF satisfies

ηt∇f(xt, ξt) + ∇ω(xt+1) −∇ω(xt) = 0.

Define ct := ∇ω(xt) − ηt∇f(xt, ξt) = xt − ηt∇f(xt, ξt) + ∥xt∥r2 xt. Thus, it remains to solve for xt+1

∇ω(xt+1) = (∥xt+1∥r2 + 1)xt+1 = ct, (19)

which is equivalent to solving the following simple univariate equation of θ ≥ 0:

θr+1 + θ = ∥ct∥2 . (20)

For r = 1, 2, it has an explicit form solution for any ∥ct∥2 . We have

θ∗ =
−1 +

√
1 + 4 ∥ct∥2
2

for r = 1.

and obtain the following method

ct = xt − ηt∇f(xt, ξt) + ∥xt∥2 xt,

xt+1 =
2ct

1 +
√

1 + 4 ∥ct∥2
.

For r = 2, an explicit form solution can be written using Cardano’s formula. We use Python Sympy library for
symbolic calculation to solve for θ in this case.

More generally, (19) implies for any r > 0, we have

ct = (1 + ∥x∥r2)xt − ηt∇f(xt, ξt),

xt+1 =
ct

1 + θr∗
,

where θ∗ is the solution to (20), which can be solved using a bisection method up to the machine accuracy.

Corollary E.3. Let F (·) : Rd → R be twice differentiable and satisfy (8). Let Assumption 3.2 hold with ∥·∥2.
Suppose the sequence {ηt}t≥0 be non-increasing with η0 ≤ 1/(2ℓ), and x̄T ∈ X be randomly chosen from the

iterates x0, . . . , xT−1 with probabilities pt = ηt/
∑T−1

t=0 ηt. Then for (9), (10), we have

E
[
∥∇F (x̄T )∥22

]
≤

6(F (x0) − F ∗) + 6ℓσ2
∑T−1

t=0 η2t∑T−1
t=0 ηt

,

where F ∗ := miny∈Rd F (y).
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Additional experimental details. We use Fashion-MNIST dataset [Xiao et al., 2017] for training with images
of dimensions df = 28 × 28 = 784. The encoding dimension is fixed to de = 64. The dataset is of size 50000
images. In all experiments, we use the mini-batch of size 100. We initialize the parameters W of the model with
a normal distribution with mean 1 and the standard deviation 0.01.

Remark E.4. A momentum variant of the scheme (9), (10) was recently explored in [Ding et al., 2023] with
promising empirical results on image classification and language modeling tasks. We hope that our simpler variant
without momentum can be also helpful in these tasks.

Additional discussion about (L0, L1)-smoothness. Recently, some works, e.g., [Zhang et al., 2020a, Faw
et al., 2023, Hübler et al., 2023], consider adaptive gradient methods such as gradient clipping, AdaGrad-Norm
and gradient normalization under (L0, L1)-smoothness, i.e., F (·) is twice differentiable and for some L0, L1 ≥ 0
satisfies ∥∇F (x)∥op ≤ L0 + L1 ∥∇F (x)∥2 for all x ∈ Rd. The authors in [Zhang et al., 2020a, Faw et al., 2023]
justify the theoretical benefits of the popular adaptive schemes by the fact that, unlike SGD, they provably work
under this weaker (L0, L1)-smoothness. Moreover, Zhang et al. [2020a] empirically verify that (L0, L1)-smoothness
condition holds on the optimization trajectory when training modern language and image classification models.
Our polynomial grow condition is weaker than (L0, L1)-smoothness as long as the gradient norm grows at most as
a polynomial in ∥x∥2. Unlike the approach taken in the above mentioned works, the convergence of our algorithm
with the choice of DGF as in Proposition 5.9 follows directly from Theorem 4.3 and does not require a separate
analysis.
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F Useful Lemma

The following lemma is standard [Lu et al., 2018] and the proof can be found, e.g., in [Chen and Teboulle, 1993].

Lemma F.1. 1. The Bregman divergence satisfies the three-point identity:

Dω(x, y) +Dω(y, z) = Dω(x, z) + ⟨∇ω(z) −∇ω(y), x− y⟩ for all y, z ∈ S and x ∈ cl(S).

2. Let ϕ(·) be a closed proper convex function on Rd, z ∈ S and z+ := arg minx∈X {ϕ(x) + ρDω(x, z)} for ρ > 0,
then

ϕ(x) + ρDω(x, z) ≥ ϕ(z+) + ρDω(z+, z) + ρDω(x, z+) for all x ∈ cl(S).

To establish high probability convergence, we use the technical lemma by Liu et al. [2023].

Lemma F.2 (Lemma 2.2. in [Liu et al., 2023]). Suppose X ∈ Rd such that E[X] = 0 and ∥X∥∗ is a σ-sub-Gaussian
random variable, then for any a ∈ Rd, 0 ≤ b ≤ 1

2σ ,

E
[
exp

(
⟨a,X⟩ + b2∥X∥2∗

)]
≤ exp

(
3
(
∥a∥2 + b2

)
σ2
)
.

The following lemma shows the connection between Φ1/ρ and Φ. Similar result in the Euclidean setting has
previously appeared, e.g., in [Stella et al., 2017].

Lemma F.3. Let F (·) be (ℓ, ω)-smooth. Then for any ρ ≥ 2ℓ and x ∈ X ∩ S we have Φ1/ρ(x) ≥ Φ(x+), where
x+ := arg miny∈X ⟨∇F (x), y⟩ + r(y) + (ρ− ℓ)Dω(y, x).

Proof. By Assumption 3.1 (lower bound), we have for any x, y ∈ X ∩ S

Φ(y) + ρDω(y, x) ≥ F (x) + ⟨∇F (x), y − x⟩ + r(y) + (ρ− ℓ)Dω(y, x).

Minimizing both sides over y ∈ X ∩ S, we have

Φ1/ρ(x) ≥ F (x) + ⟨∇F (x), x+ − x⟩ + r(x+) + (ρ− ℓ)Dω(x+, x)

≥ F (x+) + r(x+) + (ρ− 2ℓ)Dω(x+, x) ≥ Φ(x+),

where the first equality holds by the definitions of Φ1/ρ and x+. The second inequality uses Assumption 3.1
(upper bound).

The following lemma shows that our Assumption 4.6 is more general than relative strong convexity [Lu et al.,
2018]. In the Euclidean case, the same result was derived by Karimi et al. [2016].

Lemma F.4 (Relative strong convexity implies 2-Bregman Prox-P L). Let F (·) be µ-relatively strongly convex
w.r.t. ω(·), i.e., for all x, y ∈ X ∩ S

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩ + µDω(y, x). (21)

Then Assumption 4.6 holds wth α = 2 and any ρ ≥ µ, i.e., Dρ(x) ≥ 2µ (Φ(x) − Φ∗) .

Proof. Adding r(y) to both sides of (21), we have

Φ(y) ≥ Φ(x) + ⟨∇F (x), y − x⟩ + µDω(y, x) + r(y) − r(x) = Φ(x) +Qµ(x, y).

Minimizing both sides over y ∈ X ∩ S, we get

Φ∗ ≥ Φ(x) + min
y∈X

Qµ(x, y) = Φ(x) − 1

2µ
Dµ(x).

Rearranging and noticing that Dµ(x) ≤ Dρ(x) for any x ∈ X and ρ ≥ µ, we obtain the result.
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The following lemma connects the Frank-Wolfe gap with the norm of the gradient mapping in the Euclidean case.

Lemma F.5 (Lemma 2.2 in [Balasubramanian and Ghadimi, 2022]). Let ω(x) := 1
2 ∥x∥

2
2, X be a compact set

with diameter DX ,∥·∥2
:= maxx,y∈X ∥x− y∥2 and r(·) = 0. Then for any ρ > 0

max
y∈X

⟨∇F (x), x− y⟩ ≤
(
DX ,∥·∥2

+ ρ−1GF,∥·∥2

)√
∆+

ρ (x),

where GF,∥·∥2
:= maxx∈X ∥∇F (x)∥2.

We report the special case of Lemma 3 by Stich [2019].

Lemma F.6 (Lemma 3 in [Stich, 2019]). Let {rt}t≥0 and {ηt}t≥0 be two non-negative sequences with ηt ≤ 1
d

that satisfy the relation
rt+1 ≤ (1 − aηt) rt + c η2t ,

where a > 0, c ≥ 0. For any T ≥ 0, set

ηt =

{
1
d if t < ⌈T/2⌉ and T ≤ 2d

a ,
1

a( 2d
a +t−⌈T/2⌉)

otherwise.

Then we have

rt+1 ≤ 32 d r0
a

exp

(
−aT

2d

)
+

36 c

a2T
.

The next lemma is standard and the proof can be found, e.g., in [Van Handel, 2014].

Lemma F.7 (Maximal tail inequality, Lemma 5.1 and 5.2 in [Van Handel, 2014]). Let ξi be a σ-sub-Gaussian
random variable for every i = 1, . . . , n. Then(

E
[

max
1≤i≤n

ξi

])2

≤ E
[

max
1≤i≤n

ξ2i

]
≤ 2σ2 log(n),

Pr

(
max
1≤i≤n

ξi ≥
√

2σ2 log(n) + λ

)
≤ e−

λ2

2σ2 for all λ ≥ 0.
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