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Abstract

SDU learning, a weakly supervised learning
problem with only pairwise similarities, dis-
similarities data points and unlabeled data
available, has many practical applications.
However, it is still lacking in defense against
adversarial samples, and its learning process
can be expensive. To address this gap, we
propose a novel adversarial training frame-
work for SDU learning. Our approach refor-
mulates the conventional minimax problem
as an equivalent minimization problem based
on the kernel perspective, departing from
traditional confrontational training methods.
Additionally, we employ the random gradi-
ent method and random features to acceler-
ate the training process. Theoretical analy-
sis shows that our method can converge to
a stationary point at a rate of O(1/T 1/4).
Our experimental results show that our algo-
rithm is superior to other adversarial training
methods in terms of generalization, efficiency
and scalability against various adversarial at-
tacks.

1 INTRODUCTION

In supervised classification, the requirement for a
large amount of labeled training data to train clas-
sifiers poses challenges. The challenge of acquiring la-
bels arises from various factors, such as the substan-
tial costs associated with labeling processes (Chapelle
et al., 2010), apprehensions about privacy (Warner,
1965), potential social biases (Nederhof, 1985), and
the inherent complexity involved in labeling datasets.
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Consequently, real-world classification problems often
involve scenarios where collecting pairwise similarities
(i.e., pairs of samples belonging to the same class) and
dissimilarities (i.e., pairs of samples belonging to dif-
ferent classes) may be easier compared to obtaining
fully labeled data. For instance, in tasks like pro-
tein function prediction (Klein et al., 2002), knowl-
edge about similarities and dissimilarities can be ob-
tained as additional supervision through experimen-
tal means. To address the utilization of such pair-
wise information, the concept of Similar-Dissimilar-
Unlabeled (SDU) learning has been proposed (Shi-
mada et al., 2021). The practical value of SDU learn-
ing has garnered significant attention within the data
mining and machine learning communities.

SDU learning (Shimada et al., 2021) introduces
two classification types: Dissimilar-Unlabeled (DU)
classification and Similar-Dissimilar (SD) classifica-
tion. It combines the risks associated with different
types of classifications, similar to the approach used
in Positive-Negative-Unlabeled classification (Sakai
et al., 2017). SDU learning employs the double hinge
loss ℓDH = max(−tz,max(0, 1

2 −
1
2 tz)) (Du Plessis

et al., 2015), and the optimization problem is tackled
using quadratic programming. In recent years, there
has been a growing interest in SDU learning. Notable
studies in this field include the application of Multiple-
Instance Learning to SDU bags (Feng et al., 2023) and
the exploration of the relationship between similarity
learning and binary classification (Bao et al., 2022). In
addition to considering SD, DU classification simulta-
neously, some studies only focus on a certain part of
them. For instance, Bao et al. (2018) centers around
similar data and unlabeled data. Wu et al. (2022) in-
troduces noisy data for robustness. Wu et al. (2020) is
designed for multi-class classification with noisy simi-
larity labels. Cao et al. (2021) aims for improved ac-
curacy using similarity confidence. Maheshwara and
Manwani (2023) proposes robust classifiers with noisy
pairwise data, and Dan et al. (2021) addresses pairwise
supervision with noisy SD data. These studies con-
tribute to the broader understanding of SDU learning
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Table 1: Comparative Analysis of Robustness Factors for Various Algorithms in Kernel Perspective. (S. denotes
Samples; C. Rate denotes Convergence Rate; Com. denotes Complexity; n denotes the number of training
dataset; T denotes the number of iterations; d denotes the dimension of data; m denotes the number of random
features.)

Algorithm
Noisy
S.

Adversarial Samples
Unlabel

S.
C.

Rate
Time
Com.

Space Com. Convexity

SU-SL (Bao et al., 2018) × ✕ ✓ - O(n3) O(n2) convex
SDU-DH (Shimada et al., 2021) × ✕ ✓ - O(n3) O((d+ 2n)2) convex
nSU (Wu et al., 2022) ✓ ✕ ✓ - O(Tn3) O(n2) convex
Sconf (Cao et al., 2021) ✓ ✕ ✓ - O(Tn2) O(n2) non-convex
S-D (Dan et al., 2021) ✓ ✕ × - O(Tn2) O(n2) convex

QSG-ATSDU (Ours) ✓ ! ✓ O(1/T 1/4) O(T 2) O(Tm) non-convex

by exploring different subsets of the available informa-
tion and proposing novel techniques to tackle specific
challenges within the SDU framework.

While the above methods mainly address the difficulty
of noise, it is essential to acknowledge that adversarial
noise is common in real-world situations. Adversarial
samples are generated by making small perturbations
to the input to increase the loss incurred by a machine
learning model (Szegedy et al., 2014; Shafahi et al.,
2019; Wong et al., 2020). These samples have the
ability to misguide models into making confidently in-
correct predictions, revealing the sensitivity of model
outputs to their inputs and indicating a lack of de-
sired generalization. Detecting and defending against
adversarial samples is crucial for ensuring the robust-
ness of machine learning models in real-world appli-
cations. SDU learning introduces a fresh weakly su-
pervised classification issue. This makes it especially
susceptible to adversarial samples due to its reliance
on limited supervision. Incomplete labeling obstructs
the model’s capacity to effectively distinguish between
regular examples and adversarial instances. Thus, it is
imperative to investigate the resilience of SDU learn-
ing to adversarial samples and develop techniques that
enhance the model’s robustness against such attacks.

However, existing SDU learning mainly focuses on con-
sidering the samples with noise and lack of ability to
deal with the adversarial samples as shown in Table
1. Specifically, Bao et al. (2018) and Shimada et al.
(2021) considered training a model on clean data, and
naturally the model can be easily attacked by adver-
sarial examples. Wu et al. (2022); Cao et al. (2021);
Dan et al. (2021) considered training a robust model
with noisy data. However, they just use some samples
with incorrect labels. As mentioned above, the ad-
versarial samples are carefully designed for fooling the
model. Even if the model can deal with some simple
noisy data, it is still impossible to classify the adversar-
ial samples. What’s worse, from a kernel-focused view-
point, these algorithms exhibit high time complexity

and storing the kernel matrix worsens this, needing
at least O(n2) space. Among them, Bao et al. (2018);
Wu et al. (2022) demand matrix inversion, resulting in
time complexity up to O(n3). This means even if we
use the minimax method with these methods, which
is widely used in traditional adversarial training, it is
still very time-consuming. Therefore, it is still an open
challenge to design an adversarial training method in
SDU learning on the kernel method.

To address the challenge, we propose a new adver-
sarial training framework for SDU learning. Specifi-
cally, we formulate the adversarial training problem of
SDU learning as a minimax problem. Then, instead
of using K-steps protection gradient descent (PGD)
(Madry et al., 2017) to train the adversarial sam-
ples, we reformulate the minimax problem of adver-
sarial training as a minimization problem by using the
kernel method. However, the kernel method usually
has high computational complexity. To overcome this
problem, we propose a quardruple stochastic gradient
based on random Fourier features. Theoretically, we
prove our method can converge to a stationary point at
the rate of O(1/T 1/4). Extensive experimental results
revealing superior generalization performance against
a range of adversarial attacks. Moreover, they demon-
strate efficiency and scalability when compared to al-
ternative methods. The main contributions of this pa-
per are summarized as follows:

1. We propose an innovative objective function for
adversarial training of SDU learning based on the
kernel method, where we do not need to K-steps
PGD to train the adversarial samples.

2. We propose an efficient algorithm for solving the
adversarial training of the SDU learning problem
based on random Fourier features. We prove our
method can converge to a stationary point at the
rate of O(1/T 1/4) for the non-convex condition.

3. Our experimental results show that our algo-
rithms not only achieve better generalization per-
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formance against various adversarial attacks but
also enjoy efficiency and scalability compared with
other methods.

2 PRELIMINARY

In this section, we introduce our new SDU learning
formulation and SDU adversarial training.

2.1 Problem Setting of SDU Learning

Let X ⊆ Rd and Y = {+1,−1} be a d -dimensional ex-
ample space and binary label space, respectively. Sup-
pose that each labeled example (x, y) ∈ X ×Y is gen-
erated from the joint probability with density p(x, y)
independently. For simplicity, let π+ and π− be class
priors p(y = +1) and p(y = −1), which satisfy the
condition π+ + π− = 1, p+(x), and p−(x) be class
conditional densities p(x|y = +1) and p(x|y = −1).

The standard goal of supervised binary classifica-
tion is to obtain a classifier f : X → R which
minimizes the classification risk defined by R(f) =
E(x,y)∼p(x,y)[ℓ(f(x), y)], where E(x,y)∼p(x,y)[·] denotes
the expected value over joint density p(x, y) and ℓ :
R× Y → R+ is a loss function.

However, the acquisition of labeled data of this nature
often proves to be prohibitively expensive. In real-
life scenarios, individuals tend to exhibit hesitation
when providing explicit answers and instead prefer re-
sponding to indirect questions that capture pairwise
similarities and dissimilarities, such as “Which person
shares your beliefs?” Recognizing the potential inher-
ent in this type of pairwise information, SDU learning
(Shimada et al., 2021) as an innovative approach to
solve such problems has been proposed. SDU learning
tackles binary classification task by utilizing unlabeled
data in conjunction with pairs of samples. These pairs
consist of similar instances (i.e., y = ŷ), indicating
that they belong to the same class, and are labeled
with s = +1. Conversely, dissimilar instances (i.e.,
y ̸= ŷ) are used to denote pairs belonging to differ-
ent classes, and are labeled with s = −1. In this
context, (x, y) and (x̂, ŷ) represents one single sam-
ple respectively. In addition, the concept of point-
wise densities (Shimada et al., 2021) has been innova-
tively introduced to effectively capture the distinguish-
ing characteristics of both similar and dissimilar data.
The pointwise densities, labeled as p̃S(x) and p̃D(x),
are derived through marginalizing the pairwise den-

sities pS(x, x̂) =
π2
+

πS
p+(x)p+(x̂) +

π2
−

πS
p−(x)p−(x̂) and

pD(x, x̂) = 1
2p+(x)p−(x̂) +

1
2p−(x)p+(x̂) with respect

to the variable x̂, where πS represents the class priors
p(y = +1)p(ŷ = +1)+p(y = −1)p(ŷ = −1) = π2

++π2
−.

The definitions of p̃S(x) and p̃D(x) are as follows:

p̃S(x) =
∫
pS(x, x̂)dx̂ =

π2
+

π2
++π2

−
p+(x) +

π2
−

π2
++π2

−
p−(x),

p̃D(x) =
∫
pD(x, x̂)dx̂ = 1

2p+(x) +
1
2p−(x).

Let us define D̃S as the set of pointwise samples de-
rived from similar pairs DS ∼ pS , and D̃D as the set
of pointwise samples obtained from dissimilar pairs
DD ∼ pD. DU denotes unlabeled dataset. nS , nD,
and nU represent the respective sizes of DS , DD, and
DU . More precisely, we express these sets as follows:

D̃S := {x̃S,i}2nS
i=1 =

⋃
{xS , x̂S | (xS , x̂S) ∈ DS}

∼ p̃S(x),

D̃D := {x̃D,i}2nD
i=1 =

⋃
{xD, x̂D | (xD, x̂D) ∈ DD}

∼ p̃D(x),

DU := {xU,i}nU
i=1 ∼ pU (x) = π+p+(x) + π−p−(x).

2.2 Objective of SDU Learning

SDU classification (Shimada et al., 2021) represents
a novel approach that combines DU and SD classifi-
cation. Its classification risk is specifically defined as
follows:

Rγ(f) = (1− γ)RS̃D(f) + γRD̃U (f), (1)

where γ ∈ [0, 1] is the balance parameter.

The classification risk, denoted as RS̃D(f) and
RD̃U (f), can be estimated based on similar and dissim-
ilar pairs (SD), or dissimilar pairs and unlabeled data
(DU). The definitions of these risks are as follows:

RS̃D =πSEx̃S
[ℓ̂(f(x),+1)] + πDEx̃D

[ℓ̂(f(x),−1)],

RD̃U =πDEx̃S
[−ℓ̃(f(x))] + ExU

[ℓ̂(f(x),+1)],

where ℓ̂(z, t) = π+

π+−π−
ℓ(z, t) − π−

π+−π−
ℓ(z,−t), ℓ̃(z) =

1
π+−π−

ℓ(z,+1) − 1
π+−π−

ℓ(z,−1), and πD = p(y =

+1)p(ŷ = −1) + p(y = −1)p(ŷ = +1) = 2π+π−.

Then, the expected objective function Eq. (1) reduces
to the following:

Rγ(f) =
πD

πc
Ex̃D

[γ1ℓ(f(x̃D),−1)− γ2ℓ(f(x̃D),+1)]

+
πS(1− γ)

πc
Ex̃S

[π+ℓ(f(x̃S),+1)− π−ℓ(f(x̃S),−1)]

+
γ

πc
ExU

[π+ℓ(f(xU ),+1)− π−ℓ(f(xU ),−1)] (2)

where πc = π+−π−, γ1 = π++π−γ, and γ2 = π+γ+
π−.

3 PROPOSED METHOD

Standard adversarial training using the minimax for-
mulation is widely recognized for its slow convergence
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Figure 1: Conceptual illustration of perturbations in the linear and kernel spaces. (Note that one unlabeled
sample has two adversarial samples.)

due to the computational expense involved in generat-
ing adversarial samples through the K-step PGD at-
tack. Consequently, its practicality is limited when
dealing with large-scale problems. To address this
challenge, we introduce a novel SDU adversarial strat-
egy for nonlinear model from a kernel perspective.
This approach allows us to convert the original min-
imax problem into a kernel-based minimization prob-
lem, thereby enhancing computational efficiency.

3.1 Adversarial Training for SDU Learning

Existing adversarial training methods commonly em-
ploy the minimax strategy (Goodfellow et al., 2014).
Utilizing Eq. (2), we can readily derive following opti-
mizaton problem for adversarial training in SDU learn-
ing as follows:

min
f
L(f) def

=
πD

πc
Ex̃D

[M1] +
πS(1− γ)

πc
Ex̃S

[M2]

+
γ

πc
ExU

[M3]

s.t. ∥x̃′
S − x̃S∥p ≤ ϵ; ∥x̃′

D − x̃D∥p ≤ ϵ; ∥x′
U − xU∥p ≤ ϵ.

(3)

where ϵ > 0 denotes the perturbation on data points,
M1,M2, and M3 are defined as follows: M1 =
γ1 maxx̃′

D
[ℓ(f(x̃′

D),−1)] − γ2 maxx̃′
D
[ℓ(f(x̃′

D),+1)],
M2 = π+ maxx̃′

S
[ℓ(f(x̃′

S),+1)] −
π− maxx̃′

S
[ℓ(f(x̃′

S),−1)], M3 =
π+ maxx′

U
[ℓ(f(x′

U ),+1)]− π− maxx′
U
[ℓ(f(x′

U ),−1)].

The inner maximization problem actually follows the
principle of adversarial attack. Its objective is to am-
plify loss function maximization, thereby crafting the
most potent adversarial samples. In essence, this in-
volves seeking a model, denoted as f , that effectively
minimizes the value of L(f).

3.2 Primary Results from the Kernel
Perspective

In this subsetion, we first build some primary results
for the adversarial training from the kernel perspec-
tive. Considering a kernel k(x, x′) and its associated
Reproducing Kernel Hilbert Space (RKHS) H, our ob-
jective is to identify a function f∗ ∈ H that resolves
the ensuing minimization problem:

min
f∈H

λ

2
∥f∥2H + L(f) (4)

where λ > 0 is the regularization parameter and ∥ · ∥H
denotes the norm on RKHS. In Figure 1 (a) and Fig-
ure 1 (b), we illustrate the perturbation δ added to
the data samples in the linear space. We can see that
a more complicated decision boundary is needed to
separate them even if the dataset is linearly separa-
ble. Moreover, when the adversarial samples x+ δ are
mapped into the kernel space with the kernel mapping
ϕ(·), ϕ(x+ δ) will become unpredictable like Figure 1,
which significantly increases the difficulty of data pro-
cessing and computation. Fortunately, a significant
breakthrough was achieved by Xu et al. (2009), who
established a theorem establishing the relationship be-
tween perturbations in the linear and the kernel space.
The theorem can be expressed as follows:

Theorem 1. Xu et al. (2009) Suppose the kernel
function has the form k(x, x′) = h(∥x − x′∥2), with
h : R+ → R, a decreasing function. Denote by H the
RKHS space of k(·, ·) and ϕ(·) the corresponding fea-
ture mapping. Then we have for any x ∈ Rd, ω ∈ H,
ϵ > 0, and h1(·) =

√
2h(0)− 2h(·),

sup
∥δ∥2≤ϵ

⟨ω, ϕ(x+ δ)⟩H ≤ sup
∥δϕ∥2≤h1(ϵ)

⟨ω, ϕ(x) + δϕ⟩H. (5)
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Since we can use a l2-norm ball to wrap a lp-norm
ball, e.g., {∥δ∥∞ ≤ c} ⊆ {∥δ∥2 ≤

√
2c}, Theorem 1 is

applicable to other norms as well as follows:

sup
∥δ∥1≤c

⟨ω, ϕ(x+ δ)⟩ ≤ sup
∥δϕ∥2≤h1(c)

⟨ω, ϕ(x) + δϕ⟩, (6)

sup
∥δ∥∞≤c

⟨ω, ϕ(x+ δ)⟩ ≤ sup
∥δϕ∥2≤h1(

√
2c)

⟨ω, ϕ(x) + δϕ⟩.

(7)

The perturbation range of ϕ(x) + δϕ closely matches
ϕ(x + δ), as Figure 1 (d) in the appendix shows. We
use ϕ(x)+δϕ for subsequent computations, simplifying
perturbation handling in kernel space. The objective
function (4) is reformulated accordingly.

min
f∈H

λ

2
∥f∥2H +

πD

πc
Ex̃D

[γ1mℓΦ2(x̃D)− γ2mℓΦ1(x̃D)]

+
πS(1− γ)

πc
Ex̃S

[E(x̃S)] +
γ

πc
ExU

[E(xU )]

s.t. ∥S(x̃S)∥2 ≤ ϵ′, ∥S(x̃D)∥2 ≤ ϵ′, ∥S(xU )∥2 ≤ ϵ′.
(8)

where mℓΦ1(·) = maxΦ(·)[ℓ(⟨f,Φ(·)⟩H,+1)],
mℓΦ2(·) = maxΦ(·)[ℓ(⟨f,Φ(·)⟩H,−1)], Φ(x̃S) =
ϕ(x̃S) + δSΦ, Φ(x̃D) = ϕ(x̃D) + δDΦ , Φ(xU ) = ϕ(xU ) +
δUΦ , E(·) = π+mℓΦ1

(·) − π−mℓΦ2
(·),S(·) = Φ(·) − ϕ(·)

, and ϵ′ is
√

2h(0)− 2h(ϵ).
However, Eq. (8) is still a minimax problem that is
hard to be solved. To efficiently solve this problem,
we further relax the objective function by Theorem 2.
The theorem is defined as follows:

Theorem 2. If f is a function in an
RKHS H, the inner maximization problem
maxΦ(x̃S) ℓ(⟨f,Φ(x̃S)⟩H,+1) is equivalent to the
regularized loss function ℓ(f(x̃S)− ϵ′∥f∥H,+1).

Detailed proof can be found in our appendix. Based
on this theorem, the minimax problem is equivalent to
the following minimization problem:

min
f∈H

λ

2
∥f∥2H +

πD

πc
Ex̃D

[γ1ℓ2 (x̃D)− γ2ℓ1(x̃D)]

+
πS(1− γ)

πc
Ex̃S

[E(x̃S)] +
γ

πc
ExU

[E(xU )] (9)

where ℓ1(·) = ℓ(f(·) − ϵ′∥f∥H,+1) , and ℓ2(·) =
ℓ(f(·) − ϵ′∥f∥H,−1), E(·) = π+ℓ1(·) − π−ℓ2(·). Ob-
viously, solving problem (9) does not need the K-step
PGD attack for generating adversarial samples which
will naturally reduce the training time.

3.3 Quadruply Stochastic Gradient
Algorithm

In this subsection, we discuss our method to solve the
problem (9). Using the kernel method will highly in-
crease the computational complexity. To solve this

problem, we propose our quadruply stochastic gradient
method based on Random Fourier features (Rahimi
and Recht, 2007).
A natural method to solve the problem is using the
following full gradient to update the function f :

∇Rγ(f) = λf + πS(1− γ)ecI1

[
k(x̃S , ·)−

ϵ′f(·)
∥f∥H

]
− πDecI2

[
k(x̃D, ·)− ϵ′f(·)

∥f∥H

]
+ γecI3

[
k(xU , ·)−

ϵ′f(·)
∥f∥H

]
, (10)

where ec = 1
π+−π−

= 1
πc
, I1 =

π+ℓ
′ (z) |z=f(x̃S)−ϵ′∥f∥H + π−ℓ

′ (z) |z=−f(x̃S)+ϵ′∥f∥H ,
I2 = γ1ℓ

′ (z) |z=−f(x̃D)+ϵ′∥f∥H +
γ2ℓ

′ (z) |f(x̃D)−ϵ′∥f∥H , I3 = π+ℓ
′(z)|z=f(xU )−ϵ′∥f∥H +

π−ℓ
′(z)|z=−f(xU )+ϵ′∥f∥H .

However, using the full gradient method is not prac-
tical for the large-scale problem. To solve this prob-
lem, a natural method is to use the stochastic gradient
method. Specifically, we randomly sample one point
x̃S from similar dataset D̃S , one point x̃D from dis-
similar dataset D̃D, and another point xU from DU

in each iteration. Then the stochastic functional gra-
dient with these three data points can be achieved as
follows: ξ(·) = ec[πS(1− γ)I1k(x̃S , ·)−πDI2k(x̃D, ·)+
γI3k(xU , ·)].

Algorithm 1 {αi}ti=1 = QSG-ATSDU(x̃S , x̃D, xU , ω)

Input: p(ω), ϕω(x̃S), ϕω(x̃D), ϕω(xU ), λ, πS , πD, e, γ, η, I1,
I2, I3.
Output: {αi}ti=1.

1: for i= 1,· · · , t do
2: Sample (x̃S) from D̃S , Sample (x̃D) from D̃D, Sam-

ple xU from DU .
3: Sample ωi ∼ p(ω) with seed i.
4: f(xi) =Predict(xi, {αi}i−1

j=1).

5: αi = −ηiec[πS(1 − γ)I1ϕωi(x̃S) − πDI2ϕωi(x̃D) +
γI3ϕωi(xU )].

6: C = λ− ϵ′ec
∥f∥H

[πS (1− γ) I1 − πDI2 + γI3].

7: αj = αj(1− ηjC) for j = 1, · · · , i− 1.
8: end for

Algorithm 2 f(x) = Predict (x, {αi}ti=1)

Input: p(ω), ϕω(x).
Output: f(x).

1: Set f(x) = 0.
2: for i = 1, · · · , t do
3: Sample ωi ∼ p(ω) with seed i.
4: f(x) = f(x) + αiϕωi(x).
5: end for
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3.3.1 Random Feature Approximation

Since using kernel functions directly is costly, we use
the random feature approximation method Rahimi
and Recht (2007) to approximate the kernels. Assume
that there exists a continuous, real-valued, symmet-
ric, and shift-invariant kernel function k(x, x′). Ac-
cording to Bochner Theorem (Rudin, 2017), for any
shift-invariant kernel k(x, x′) = k(x − x′), we have

k(x, x′) =
∫
p(ω)ejω

⊤(x−x′)dω, where p(ω) is a den-
sity function associated with kernel k(x, x′) and it can
be regarded as the distribution density of ω. Since
the distribution density p(ω) and k(x− x′) is real, the

integrand ejω
⊤(x−x′) can be replaced with cosω(x −

x′). Then we can obtain a real-valued feature map
ϕωi

(x) = [cosω⊤
i x, sinω

⊤
i x]

⊤, where ωi is randomly
sampled according to the distribution density p(ω).
This leads us to acquire the feature map encompassing
m random features from a real-valued kernel: ϕω(x) =√

1
m [cosω⊤

1 x, · · · , cosω⊤
mx, sinω⊤

1 x, · · · , sinω⊤
mx]⊤.

Obviously, ϕ⊤
ω (x)ϕω(x

′) is an unbiased estimate of
k(x, x′). Subsequently, We can approximate ξ(·)
as follows: ζ(·) = ec[πS(1 − γ)I1ϕω(x̃S , ·)ϕω(·) −
πDI2ϕω(x̃D, ·)ϕω(·)+γI3ϕω(xU , ·)ϕω(·)]. Note that we
have ξ(·) = E[ζ(·)], which means ζ(·) is the unbiased
estimation of ξ(·). As we randomly sample four vari-
ables, i.e., x̃S , x̃D, xU , ω, we can call our functional
gradient ζ(·) as the quadruply stochastic functional
gradient.

3.3.2 Updating Rules

For convenience, the function value is expressed as
h(x) if updated by using the exact kernel function
and is expressed as f(x) if updated by using random
Fourier features. We abbreviate the full gradient of the
objective function by using ξ(·) and ζ(·) as follows:

∇Rγ(h) = ESEDEU [ξ(·)] + Ch(·), (11)

∇Rγ(f) = ESEDEU [Eω[ζ(·)]] + Cf(·), (12)

where C = λ− ϵ′ec
∥f∥H

[πS (1− γ) I1 − πDI2 + γI3].

Let h1(·) = f1(·) = 0. Subsequently, we present
the update rules using the true stochastic functional
gradient ξ(·) at t-th iteration as follows: ht+1(·) =
ht(·) − ηt(ξ(·) + Cht(·)) =

∑t
i=1 a

i
tξi(·), where ηt is

the stepsize in the t-th iteration, the initial value
f1(·) = 0, the value of ait can be inferred as ait =
−ηi

∏t
j=i+1 {1− ηjC}.

Since ζ(·) is an unbiased etimation of ξ(·), the up-
date rule by using ζ(·) is similar to that by using
ξ(·). So the update rule at t-th iteration by using ζ(·)
is ft+1(·) = ft(·) − ηt(ζ(·) + Cft(·)) =

∑t
i=1 a

i
tζi(·).

In order to implement the update rules in the com-

puter program, we rewrite the update rule as the itera-
tive update rules with constantly-changing coefficients
{αi}ti=1, ft(x) =

∑t
i=1 αiϕω(x), αi = −ηiec[πS(1 −

γ)I1ϕωi
(x̃S) − πDI2ϕωi

(x̃D) + γI3ϕωi
(xU )], and for

j = 1, · · · , i− 1, αj = [1− ηjC]αj .

3.4 Algorithm

Following the update rules, we present the training
and prediction algorithms of SDU adversarial train-
ing on kernel SVM in Algorithms 1 and 2. Since
our method contains four random sources, i.e., simi-
lar dataset, dissimilar dataset, unlabeled dataset and
random features, we call our method the Quadruply
Stochastic Gradient Method for Adversarial Training
of SDU learning (QSG-ATSDU).

4 CONVERGENCE ANALYSIS

In this section, we first give some reasonable assump-
tions for later inferences and then show the conver-
gence rate of SDU adversarial training for estimating
the optimal function in the RKHS H. Detailed proof
can be found in our appendix.

Assumption 1. (Bound of kernel function) There ex-
ists κ > 0, such that k(x, x′) ≤ κ.

Assumption 2. (Bound of random feature norm)
There exists ϕ > 0, such that |ϕω(x)ϕω(x

′)| ≤ ϕ.

Assumption 3. (Bound of derivation) The derivative
of ℓ w.r.t the first term u is bounded: |ℓ′(u, v)| < M .

Assumption 4. (Lipschitz continuous) ℓ is L-
Lipschiz continuous.

Assumption 5. (Lipschitz gradient) The gradient
function ∇Rγ(f) is Lipschitz continuous such that

∥∇Rγ(f)−∇Rγ(g)∥H ≤ L̃∥f − g∥H,∀f, g ∈ H.
Assumption 6. The spectral radius ρ(f) of a func-
tion f(·) has a lower bound that ρ(f) ≥ ϵ′ ≥ 0,
where a spectral radius is the maximum moudulus of
eigenvalues Mason and Shorten (2007), i.e., ρ(f) =
max1≤i≤∞{

√
|λi|}.

Assumption 7. The objective function Rγ(ht) is
bounded below by a scalar Rγ

inf .

These assumptions, crucial for convergence analysis,
are referenced in (Mason and Shorten, 2007; Shi et al.,
2019, 2021). Due to possible non-convexity in the
objective function, we aim to bound E[∥∇Rγ(ft)∥2H].
However, with ft approximating ht via random Fourier
features, it may not reside in RKHS H. Thus, we
initially constrain E[∥∇Rγ(ht)∥2H] < ϵ1 (a small con-
stant) using the exact kernel, then show ft’s proximity
to ht at stationary points. Relevant lemmas for this
analysis are detailed in the appendix, and these, along
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with our assumptions, underpin the convergence rate
theorem we propose.

Theorem 3. (Convergence in expectation) For a fixed
step size ηt = η = θ

T 3/4 and 0 < θ ≤ 1, we have that

E

[
1

T

T∑
t=1

∥∇Rγ(ht)∥2H

]
≤

Rγ(h1)−Rγ
inf

θT 1/4
+

L̃θ

2T 3/4
G1

+
θ

T 1/4
G2 (13)

where G1 = (1 + C)2G2ec
2M2κ , G2 = (1 +

C)G3|ec|3M2Lκ(
√
κ +

√
ϕ), and G = [πS(1 − γ) +

πD(1 + γ) + γ].

Remark 1. Even when considering four sources of
randomness, this theorem suggests that our approach
can achieve convergence to the stationary point at a
rate of O(1/T 1/4) for any given data x.

5 EXPERIMENT

In this section, we conduct experiment to verify the
robustness and efficiency of SDU adversarial training.

5.1 Experimental Setup

5.1.1 Datasets

The experiments on binary classification are conducted
on six datasets come from UCI (Asuncion and New-
man, 2007) and LIBSVM (Chang and Lin, 2011).
Since we focus on binary classification, we select two
similar classes to construct the binary classification
dataset, like MNIST and CIFAR. We summarize the
dataset used in our experiments in Table 2.

Table 2: Datasets used in the experiments.
Dataset Features Sizes

a9a 123 48,842
CIFAR10 automobile vs. truck 3,072 20,000

MNIST 6 vs. 8 780 20,000
Acoustic 50 98,528
Combined 100 98,528
Covertype 54 581,012

5.1.2 Compared Methods

In this section, we assess the robustness and training
time of the state-of-the-art robust similarity learning
algorithms. The summarized methods under consider-
ation are as follows:

1. SU-SL: The method introduced in Bao et al.
(2018), learn a classifier from similar and unla-
beled data. This method employs squared loss,
defined as ℓ(u, v) = 1

4 (uv − 1)2.

2. SDU-DH : Proposed in Shimada et al. (2021),
this method utilizes double hinge loss, given by
ℓ(u, v) = max{−uv,max{0, 1

2 −
1
2uv}}.

3. nSU : Presented in Wu et al. (2022), this method
focuses on learning from noisy similar (nS) data
and unlabeled (U) data.

4. SGD-SDU (Ours): Our algorithm, employing
Stochastic Gradient Descent (SGD) Wei and Li
(2018) and kernel methods, is specifically designed
for our robust SDU classification, i.e., objective
function (9). Refer to the appendix for details on
the specific algorithm.

5. QSG-ATSDU (Ours): Our proposed algo-
rithm involves kernelized adversarial training for
SDU learning based on a doubly stochastic gradi-
ent framework Dai et al. (2014).

5.1.3 Implementation

In addition, SU-SL, SDU-DH, nSU, SGD-SDU, and
QSG-ATSDU, we use Gaussian RBF kernel, k(x, x′) =
exp(−σ∥x − x′∥2) to build the nonlinear model. We
implement all method in Python. We run all the meth-
ods for T = 100 iterations and ϵ = 0.3. The batch size
for similar data is determined as nS

T , while the batch
size for dissimilar data is computed as nD

T . Corre-
spondingly, the batch size for unlabeled data is eval-
uated as nU

T . The value for hyper-parameters (λ, γ,
and σ) are selected over γ ∈ {0.1, 0.2, · · · , 1.0}, σ ∈
{2−10, 2−9, · · · , 210}, λ ∈ {2−10, 2−9, · · · , 210}, via 5-
fold cross-validation. Precisely, the similar dataset,
dissimilar dataset, and unlabeled dataset were each
evenly divided into five segments. Subsequently, one
segment was designated as the test set, while the re-
maining four segments were combined to create the
training set. For generating similar and dissimilar
pairs from labeled data, we first establish the pos-
itive prior π+. The positive class prior π+, set at
0.7, reflects the class distribution in the entire train-
ing dataset, and estimation methods like Lee and Liu
(2003); Blanchard et al. (2010); du Plessis et al. (2015)
can be used. Then we randomly extract pairwise sim-
ilar and dissimilar data, ensuring a ratio as defined by
πS and πD, respectively. These ratios are calculated
based on π+.

Notice that all experiments were run on a PC with 36
2.2 GHz cores and 80GB RAM. All the experiments
were run at 10 times and all the results are the average
values.

5.2 Results and Discussions

We evaluate the test accuracy of different methods
against various attacks, including FGSM (Goodfellow
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Table 3: Accuracy on MNIST and CIFAR10 test with various attacks and perturbations constrained by l2-norm.
(- denotes out of memory; † denotes our algorithm. )

MNIST 6 vs. 8 CIFAR10 automobile vs. truck
clean FGSM PGD CW clean FGSM PGD CW

SU-SL 93.94 50.7 48.65 43.31 72.64 59.37 54.77 51.17
SDU-DH 83.45 63.4 59.4 52.1 70.34 56.21 52.38 47.81

nSU 79.08 69.2 70 53.8 71.14 58.36 56.2 55.01
SGD-SDU† 94.73 91.88 72.44 65.13 72.5 68.2 67.9 70.24

QSG-ATSDU† 94.07 93.27 75.37 69.81 70.68 69.95 69.51 70.38

Table 4: Accuracy on a9a and Acoustic test with various attacks and perturbations constrained by l2-norm. (-
denotes out of memory; † denotes our algorithm. )

a9a Acoustic
clean FGSM PGD CW clean FGSM PGD CW

SU-SL 83.09 61.62 60 53.36 72.07 59.58 58.25 48.31
SDU-DH 71.23 52.03 51.19 49.87 - - - -

nSU 72.2 64.07 56.9 56.78 70.24 65.6 61.07 55.1
SGD-SDU† 75 74.02 72.55 63.66 71.8 67.87 65.93 63.79

QSG-ATSDU† 78.45 77.33 77.19 69.99 73.35 71.08 70.72 69.97
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Figure 2: The training time against the different number of unlabeled samples. (The line of SDU-DH is incomplete
because its training time is more than 2000 seconds.)



Yajing Fan, Wanli Shi, Yi Chang, Bin Gu*

Table 5: Accuracy on Combined and Covtype test with various attacks and perturbations constrained by l2-
norm. (- denotes out of memory; † denotes our algorithm. )

Combined Covtype
clean FGSM PGD CW clean FGSM PGD CW

SU-SL 77.31 66.03 63.05 58.48 - - - -
SDU-DH - - - - - - - -

nSU 76 67.1 64.27 59.06 - - - -
SGD-SDU† 76.07 75.93 75.34 74.29 - - - -

QSG-ATSDU† 80.59 78.36 76.78 74.52 73.68 71.02 70.6 67.86

et al., 2014), 10-step PGD, and C&W (Chen et al.,
2017), all under l2-norm constrained perturbations.
The summarized outcomes are presented in Tables 3,
4, 5, and Figure 2. Our approach offers several notable
advantages over the results.

Firstly, our approach demonstrates superior defense
performance against these attacks. It consistently
maintains high accuracy in the presence of different at-
tack methods, all of which yield higher accuracy than
other comparative algorithms. Notably, it’s important
to mention that the kernel map calculation in SDU-
DH requires additional memory, which leads to poten-
tial memory overflow for certain datasets. Similarly,
memory constraints become apparent for SU-SL, nSU,
and SGD-SDU when the training dataset size exceeds
400,000.

Additionally, QSG-ATSDU showcases significantly
faster execution times in comparison to the adversarial
training method SGD-SDU and the noisy SU learn-
ing method nSU, as illustrated in Figure 2. QSG-
ATSDU’s utilization of the quadruply stochastic algo-
rithm accelerates processing by solely requiring a ran-
dom seed for generating random features, unlike SU-
SL, which necessitates kernel map calculations for each
sampled data point. We’ve reformulated the adver-
sarial training minimax problem into a minimization
problem, enabling direct resolution through stochastic
gradient descent. This eliminates the need for addi-
tional perturbation discovery steps in each iteration,
a requirement of traditional adversarial training ap-
proaches. Our method’s efficiency is further enhanced
by surpassing SGD-SDU, which demands O(bn) com-
plexity for calculating the kernel map for a batch of
size b, with n representing the entire training set size.
In contrast, our method requires only O(Tm) com-
plexity for feature map calculation (m < n), where m
is the number of random features.

Finally, a comprehensive analysis of QSG-ATSDU un-
der various parameter configurations is available in the
appendix.

6 CONCLUSION

In this paper, an effcient and scalable adversarial train-
ing method for SDU learning is proposed. We propose
a new minimization objective for adversarial training
of SDU learning based on the kernel method, which
can naturally ignore the multiple steps of PGD to
update the perturbation. We also propose an eff-
cient algorithm using the random Fourier features and
stochastic gradient method to solve our new algo-
rithms. We prove that QSG-ATSDU has a conver-
gence rate of O(1/T 1/4). The experimental results
on various datasets demonstrate the superiority of our
proposed algorithms over exiting SDU learning algo-
rithms.
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Supplementary of “Fast and Adversarial Robust Kernelized SDU
Learning”

The appendix contains several additional results that were excluded from the main body of the paper due to
space constraints, along with the proof process of the lemma and solutions. The organization of the appendix is
as follows:

Part A RELATED WORK:

Explores the landscape of adversarial training and similarity learning, emphasizing significant progress and its
implications.

Part B Class Prior Estimation: This section provides methods for class prior mation.

Part C PROOF OF ThEOREM 2:

This section provides a detailed proof procedure for Theroem 2.

Part D CONVERGENCE ANALYSIS:

Detailed procedures for demonstrating convergence within the proposed models.

Part E THE SPECIFIC ALGORITHM FOR THE SGD-SDU EXPERIMENT:

Details specific algorithmic procedures for SGD-SDU experiments, enhancing the main text with practical in-
sights.

Part F ADDITIONAL EXPERIMETNS:

Extends the discourse with further experimental insights into adversarial training for SDU Learning, comple-
mented by results from ablation studies, enriching the narrative with empirical evidence and analytical depth.

A RELATE WORK

A.1 Adversarial Training

Adversarial training (AT) is a technique aimed at enhancing the robustness of machine learning models by
exposing them to adversarial samples during the training process Goodfellow et al. (2014). This approach has
been extensively explored in various supervised classification tasks, including object detection Song et al. (2018);
Xie et al. (2017), object segmentation Arnab et al. (2018); Xie et al. (2017) and image classification Goodfellow
et al. (2014); Su et al. (2019). Several important methods have been proposed to improve adversarial training.

One notable method introduced by Goodfellow et al. (2014); Su et al. (2019) is the Fast Gradient Sign Method
(FGSM), which generates adversarial samples using a single step. This technique perturbs the inputs before
updating the models. Building upon FGSM, Goodfellow et al. (2014); Su et al. (2019) enhanced it by adding a
randomization step known as R+FGSM. Another improvement came from Kurakin et al. (2018), who proposed
the Basic Iterative Method. This method refines FGSM by taking multiple smaller FGSM steps, thereby ren-
dering the earlier FGSM-based adversarial training methods ineffective. Currently, these methods are widely
regarded as adversarial training against a projected gradient descent adversary.

Moreover, the PGD attack and its corresponding adversarial training defense have been further augmented with
various techniques. Dong et al. (2018) introduced the momentum-based optimization method to enhance the
adversary. Additionally, combinations with other heuristic defenses Yang et al. (2019); Mosbach et al. (2018)
and generalization to multiple types of adversarial attacks Tramer and Boneh (2019) have been explored to
strengthen the PGD attack and improve its corresponding adversarial training defense.
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A.2 Similarity Learning

In the context of similarity learning, several algorithms have been proposed. Bao et al. (2018) introduced the SU
classification method, which involves using only pairs of similar (S) data points where both examples belong to
the same class, along with unlabeled (U) data points, instead of relying on fully labeled data. By utilizing this
limited information, the algorithm aims to develop an effective learning approach. To tackle the issue of false
information within SU classification, the nSU approach Wu et al. (2022) has been proposed. nSU classification
pertains to the creation of a robust and consistent classifier from pairs of noisy similar (nS) data and unlabeled
(U) data. This approach effectively enhances the data’s resilience against random noise.

Moving forward, Wu et al. (2020) proposed the Multi-class Noisy Similarity (MNS) deep learning system for
multi-class classification, addressing the challenge of learning from data labeled with noisy similarity annotations.
Notably, MNS not only exhibits a strong ability to generalize to unseen data but also delves into multi-class
classification problems, a domain often overshadowed by studies predominantly focusing on binary classification
issues.

On the other hand, Cao et al. (2021) introduced a novel Sconf learning framework that incorporates empirical risk
minimization (ERM). This framework constructs an unbiased estimator of classification risk by solely utilizing
unlabeled data pairs with similarity confidence. The Sconf algorithm employs similarity confidence rather than
traditional labels. It provides an unbiased estimator of classification risk and integrates an empirical risk cor-
rection scheme to enhance learning performance. Importantly, this approach doesn’t make implicit assumptions
about models, loss functions, or optimizers in its analysis, rendering it adaptable to both convex and non-convex
loss functions, as well as deep and linear models.

Additionally, Maheshwara and Manwani (2023) introduced the RoLNiP approach for learning robust classifiers
from noisy pairwise similar-dissimilar data. Unlike altering the loss function, RoLNiP is founded on the principle
of robust loss functions.

Furthermore, Dan et al. (2021) addressed the challenge of learning from pairwise supervision, specifically dealing
with pairs of similar (S) and dissimilar (D) data, which were provided instead of standard labeled data.

B Class Prior Estimation

Although we have to know the class prior π+ before training for calculation of empirical risks R̂SD and R̂DU ,
π+ can be estimated from the number of similar pairs nS and the number of dissimilar pairs nD. First, π+ and
πS has following relationship.

π+ =

{
1+

√
2πS−1
2 (π+ ≥ 0.5),

1−
√
2πS−1
2 (π+ < 0.5),

(14)

The above equality is obtained from 2πS−1 = πS−πD = (π+−π−) = (2π+−1)2. Note that π̂S = nS/(nS+nD)
is an unbiased estimator of πS . Thus, π+ can be estimated by plugging π̂S into Eq. (14).

C PROOF OF THEOREM 2

Proof. Since Φ(x) = ϕ(x) + δϕ, the constraint can also be written as ∥δϕ∥2 ≤ ϵ′, let τ = {δϕ | ∥δϕ∥2 ≤ ϵ′}. We
define ν = l(f(x̃S)− ϵ′∥f∥H,+1), and g(x, t) = max(0, tx) is the hinge loss. To prove the theorem, we first prove
ν ≤ max l(⟨f,Φ(x̃S)⟩H,+1), and then prove ν ≥ max l(⟨f,Φ(x̃S)⟩H,+1). In the following, we give the details
to prove these two sub-conclusions.

Step 1: We first prove ν ≤ max l(⟨f,Φ(x̃S)⟩H,+1).
Since, τ = {δϕ∥δϕ∥2 ≤ ϵ′}, we define two susbsets of τ as τ ′1 = {−ϵ′ f

∥f∥H
}. Hence,

max
δSϕ∈τ ′

1

l(⟨f, ϕ(x̃S) + δSϕ ⟩H,+1)

= max
δSϕ∈τ ′

1

l(⟨f, ϕ(x̃S)⟩H + ⟨f, δSϕ ⟩H,+1)

= l(f(x̃S)− ϵ′∥f∥H,+1). (15)
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Since τ ′1 ⊆ τ , the first sub-conclusion can be proved.

Step 2: Next we prove ν ≥ max l(⟨f,Φ(x̃S)⟩H,+1).

max
δSϕ∈τ

l(⟨f, ϕ(x̃S) + δSϕ ⟩H,+1) ≤ ν

= max
δSϕ∈τ

g(−⟨f, ϕ(x̃S)⟩H − ⟨f, δSϕ ⟩H,+1)

= g(max
δSϕ∈τ

−⟨f, ϕ(x̃S)⟩H − ⟨f, δSϕ ⟩H,+1)

≤ g(max
δSϕ∈τ

−⟨f, ϕ(x̃S)⟩H + ∥f∥H∥δSϕ∥2,+1)

= l(f(x̃S)− ϵ′∥f∥H,+1) (16)

The first inequality also uses the Cauchy-Schwarz inequality.

Step 3: Combing these two steps, we have :

max
∥Φ(x̃S)−ϕ(x̃S)∥2≤ϵ′

l(⟨f,Φ(x̃S)⟩H,+1) = l(f(x̃S)− ϵ′∥f∥H,+1). (17)

D CONVERGENCE ANALYSIS

To proof Therom 3, we first give several lemmas and their respective proof useful in our convergence analysis.

Lemma 1. For all x, for a fixed step size ηt = η = θ
T 3/4 , 0 < θ ≤ 1, we have that

Ex̃S ,x̃D,xU ,ω[|fT+1 − hT+1|2] ≤ B2
1,T+1,

where B2
1,T+1 = [πS(1 − γ) + πD(1 + γ) + γ]2e2cM

2(
√
ϕ +
√
κ)2

θ2

T 1/2
and Ex̃S ,x̃D,xU ,ω[·] denotes the expectation

over the similar dataset, dissimilar dataset, unlabeled dataset and the random features.

Remark 2. In this leamma, we can find that after T iterations, the function value f will converge to the real
function value h.
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D.1 Proof of Lemma 1

Proof. We denote Ai(x) = Ai(x; x̃S , x̃D, xU , ωi) = ait(ζi(x) − ξi(x)) for the t-th iteration. According to the
assumption in section (convergence analysis), Ai(x) have a bound:

|Ai(x)| ≤ |ait|(|ζi(x)|+ |ξi(x)|)

= |ait|
(
| − πS (1− γ) ecI1ϕω(x̃

S
i , x)ϕω(x) + πDecI2ϕω(x̃

D
i , x)ϕω(x)− γecI3ϕω(x

U
i , x)ϕω(x)|

+ | − πS(1− γ)ecI1k(x̃
S
i , x) + πDecI2k(x̃

D
i , x)− γecI3k(x

U
i , x)|

)
≤ |ait|

[
|πS (1− γ) ecI1ϕω(x̃

S
i , x)ϕω(x)|+ πDecI2ϕω(x̃

D
i , x)ϕω(x)|+ |γecI3ϕω(x

U
i , x)ϕω(x)|

+ |πS (1− γ) ecI1k(x̃
S
i , x)|+ |πDecI2k(x̃

D
i , x)|+ |γecI3k(xU

i , x)|
]

≤ |ait|
[
πS (1− γ) |ec|M

√
ϕ+ πD|ec|(1 + γ)M

√
ϕ+ γ|ec|M

√
ϕ+ πS (1− γ) |ec|M

√
κ

+ πD|ec|(1 + γ)M
√
κ+ γ|ec|M

√
κ

]
= [πS(1− γ) + πD(1 + γ) + γ]|ec|M(

√
ϕ+
√
κ)|ait| (18)

Then, based on the definition of att and a fix step size ηt = η, we have att ≤ η. Then according to Assumption
6 and the theorem that ρ(f) is the lower bound of any matrix norm of f(·) that ∥f∥ ≥ ρ(f), we can get that
∥f∥ ≥ ϵ′. In addition, for any i we have

|ait| ≤ ηi

t∏
j=i+1

{
1− ηj

[
λ+

ϵ′ec
∥f∥H

(πS (1− γ) I1 − πDI2 + γI3)
]}
≤ tη2.

Then, for the t-th iteration, we have

Ex̃S ,x̃D,xU ,ω[|ft+1(x)− ht+1(x)|2] ≤ [πS(1− γ) + πD(1 + γ) + γ]2e2cM
2(
√
ϕ+
√
κ)2tη2. (19)

Taking the step size η = θ
T 3/4 , we have

B2
1,T+1 : = [πS(1− γ) + πD(1 + γ) + γ]2e2cM

2(
√

ϕ+
√
κ)2t

θ2

T 3/2

≤ [πS(1− γ) + πD(1 + γ) + γ]2e2cM
2(
√
ϕ+
√
κ)2T

θ2

T 3/2

≤ [πS(1− γ) + πD(1 + γ) + γ]2e2cM
2(
√
ϕ+
√
κ)2

θ2

T 1/2
(20)

Thus, for the T th iteration, we have

Ex̃S ,x̃D,xU ,ω[|fT+1 − hT+1|2] ≤ B2
1,T+1,

That completes the proof.

Lemma 2. Let us denote Ht =
√
∥∇Rγ(ht)∥2H, Mt = ∥gt∥2H, Nt = ⟨∇Rγ(ht),∇Rγ(ht) − ĝt⟩ and Rt =

⟨∇Rγ(ht), ĝt − gt⟩. Ht,Mt,Nt and Rt are bounded as follows:

Mt ≤ (1 + 2C)2[πS(1− γ) + πD(1 + γ) + γ]2e2cM
2κ,

E2[Ht] ≤ (1 + C)2[πS(1− γ) + πD(1 + γ) + γ]2e2cM
2κ,

E[Nt] = 0,

E[Rt] ≤ (1 + C)[πS(1− γ) + πD(1 + γ) + γ]2e2cMLκB1,T+1,

where C = λ+ ϵ′ec
∥f∥H

[πS (1− γ) I1 − πDI2 + γI3].
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D.2 Proof of Lemma 2

To establish Lemma 2, it is essential to derive bounds forMt, Ht, Nt and Rt individually. The comprehensive
proof is as follows:

D.2.1 Bound of Mt:

Proof. First, we give the bound ofMt.

Mt = ∥gt∥2H = ∥ξt + Cht∥2H ≤ (∥ξt∥H + C∥ht∥H)2 (21)

If we can give the bound of ∥ξt∥H and ∥ht∥H, then we can obtain the bound ofMt.

∥ξt∥H =
∥∥− πS(1− γ)eck(x̃

S
t , ·)

[
π+ℓ

′(f(x̃S
t )− ϵ′∥f∥H,+1) + π−ℓ

′(f(x̃S
t )− ϵ′∥f∥H,−1)

]
+ πDeck(x̃

D
t , ·)

[
(π+ + π−γ)ℓ

′(f(x̃D
t )− ϵ′∥f∥H,−1) + (π+γ + π−)ℓ

′(f(x̃D
t )− ϵ′∥f∥H,+1)

]
− γeck(x

U
t , ·)

[
π+ℓ

′(f(xU
t )− ϵ′∥f∥H,+1) + π−ℓ

′(f(xU
t )− ϵ′∥f∥H,−1)

] ∥∥
H

≤
∥∥πS(1− γ)eck(x̃

S
t , ·)π+ℓ

′(f(x̃S
t )− ϵ′∥f∥H,+1)

∥∥
H +

∥∥πS(1− γ)eck(x̃
S
t , ·)π−ℓ

′(f(x̃S
t )− ϵ′∥f∥H,−1)

∥∥
H

+ ∥πDeck(x̃
D
t , ·)(π+ + π−γ)ℓ

′(f(x̃D
t )− ϵ′∥f∥H,−1)∥H

+ ∥πDeck(x̃
D
t , ·)(π+γ + π−)ℓ

′(f(x̃D
t )− ϵ′∥f∥H,+1)∥H (22)

+ ∥γeck(xU
t , ·)π+ℓ

′(f(xU
t )− ϵ′∥f∥H,+1)∥H + ∥γeck(xU

t , ·)π−ℓ
′(f(xU

t )− ϵ′∥f∥H,−1)∥H
≤ πSπ+(1− γ)|ec|Mκ

1
2 + πSπ−(1− γ)|ec|Mκ

1
2 + πD(π+ + π−γ)|ec|Mκ

1
2

+ πD(π+γ + π−)|ec|Mκ
1
2 + π+γ|ec|Mκ

1
2 + π−γ|ec|Mκ

1
2

= [πS(1− γ) + πD(1 + γ) + γ]|ec|Mκ
1
2 (23)

For t = 1, according to the definition of ht,we have h1 = 0 and ∥h1∥H = 0. In add assume that ∥ht∥H ≤
[πS(1− γ) + πD(1 + γ) + γ]|ec|Mκ

1
2 for any t = 1, · · · , T − 1, we have

∥ht+1∥H = ∥ht(1− Cηt)− ηtξt(·)∥H
≤ (1− Cηt)∥ht∥H + ηt∥ξt(·)∥H
≤ (1− Cηt) [πS(1− γ) + πD(1 + γ) + γ] |ec|Mκ

1
2 + ηt

[
πS(1− γ) + πD(1 + γ) + γ

]
|ec|Mκ

1
2

≤ (1 + ηt)[πS(1− γ) + πD(1 + γ) + γ]|ec|Mκ
1
2

≤ 2[πS(1− γ) + πD(1 + γ) + γ]|ec|Mκ
1
2 (24)

Thus, based on the above two inequalities, we have

Mt ≤ (1 + 2C)2[πS(1− γ) + πD(1 + γ) + γ]e2cM
2κ (25)

D.2.2 Bound of Ht:

Proof. Then, we prove the bound of Ht.

E2[Ht] = E2
x̃S
t ,x̃D

t ,xU
t ,ω[Ht]

= E2
x̃S
t ,x̃D

t ,xU
t ,ω[∥R

γ(ht)∥2H]

= ∥E2
x̃S
t ,x̃D

t ,xU
t ,ω[ξ̂t + Cht]∥2H

≤ (∥E2
x̃S
t ,x̃D

t ,xU
t ,ω[ξ̂t]∥H + C∥ht∥H)2 (26)

According to the above results, we have

∥E2
x̃S
t ,x̃D

t ,xU
t ,ω[ξ̂t]∥H ≤ [πS(1− γ) + πD(1 + γ) + γ]|ec|Mκ

1
2 (27)
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and

∥ht∥H ≤ [πS(1− γ) + πD(1 + γ) + γ]|ec|Mκ
1
2 . (28)

Therefore, we have

E2[Ht] ≤ (1 + C)2[πS(1− γ) + πD(1 + γ) + γ]2e2cM
2κ (29)

D.2.3 Bound of Nt :

Proof. Here, we give the bound of Nt.

E[Nt] = Ex̃S
t ,x̃D

t ,xU
t ,ω[Nt]

= Ex̃S
t ,x̃D

t ,xU
t ,ω

[
Ex̃S

t ,x̃D
t ,xU

t

[
⟨∇Rγ(ht),∇Rγ(ht)− ĝt⟩|x̃S

t , x̃
D
t , xU

t , ω
]]

= Ex̃S
t ,x̃D

t ,xU
t ,ω

[
⟨∇Rγ(ht),Ex̃S

t ,x̃D
t ,xU

t

[
∇Rγ(ht)− ĝt⟩|x̃S

t , x̃
D
t , xU

t , ω
]]

= 0 (30)

D.2.4 Bound of Rt:

Proof. Finally, we bound Rt.
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E[Rt] = Ex̃S
t ,x̃D

t ,xU
t ,ω[Rt]

= Ex̃S
t ,x̃D

t ,xU
t ,ω[⟨∇Rγ(ht), ĝt − gt⟩]

= Ex̃S
t ,x̃D

t ,xU
t ,ω

[
⟨∇Rγ(ht),−πS(1− γ)eck(x̃

S
t , ·)

[
π+ℓ

′(ht(x̃
S
t )− ϵ′∥f∥H,+1) + π−ℓ

′(ht(x̃
S
t )− ϵ′∥f∥H,−1)

]
+ πDeck(x̃

D
t , ·)

[
(π+ + π−γ)ℓ

′(ht(x̃
D
t )− ϵ′∥f∥H,−1) + (π+γ + π−)ℓ

′(ht(x̃
D
t )− ϵ′∥f∥H,+1)

]
− γeck(x

U
t , ·)

[
π+ℓ

′(ht(x
U
t )− ϵ′∥f∥H,+1) + π−ℓ

′(ht(x
U
t )− ϵ′∥f∥H,−1)

]
+ Cht

+ πS(1− γ)eck(x̃
S
t , ·)

[
π+ℓ

′(ft(x̃
S
t )− ϵ′∥f∥H,+1) + π−ℓ

′(ft(x̃
S
t )− ϵ′∥f∥H,−1)

]
− πDeck(x̃

D
t , ·)

[
(π+ + π−γ)ℓ

′(ft(x̃
D
t )− ϵ′∥f∥H,−1) + (π+γ + π−)ℓ

′(ft(x̃
D
t )− ϵ′∥f∥H,+1)

]
+ γeck(x

U
t , ·)

[
π+ℓ

′(ft(x
U
t )− ϵ′∥f∥H,+1) + π−ℓ

′(ft(x
U
t )− ϵ′∥f∥H,−1)

]
− Cht⟩

]
≤ Ex̃S

t ,x̃D
t ,xU

t ,ω

[
∥∇Rγ(ht)∥H · ∥πSπ+(1− γ)eck(x̃

S
t , ·)[ℓ′(ft(x̃S

t )− ϵ′∥f∥H,+1)

− ℓ′(ht(x̃
S
t )− ϵ′∥f∥H,+1)]∥H

]
+ Ex̃S

t ,x̃D
t ,xU

t ,ω

[
∥∇Rγ(ht)∥H · ∥πSπ−(1− γ)eck(x̃

S
t , ·)[ℓ′(ft(x̃S

t )− ϵ′∥f∥H,−1)

− ℓ′(ht(x̃
S
t )− ϵ′∥f∥H,−1)]∥H

]
+ Ex̃S

t ,x̃D
t ,xU

t ,ω

[
∥∇Rγ(ht)∥H · ∥πD(π+ + π−γ)eck(x̃

D
t , ·)[ℓ′(ft(x̃D

t )− ϵ′∥f∥H,−1)

− ℓ′(ht(x̃
D
t )− ϵ′∥f∥H,−1)]∥H

]
+ Ex̃S

t ,x̃D
t ,xU

t ,ω

[
∥∇Rγ(ht)∥H · ∥πD(π+γ + π−)eck(x̃

D
t , ·)[ℓ′(ft(x̃D

t )− ϵ′∥f∥H,+1)

− ℓ′(ht(x̃
D
t )− ϵ′∥f∥H,+1)]∥H

]
+ Ex̃S

t ,x̃D
t ,xU

t ,ω

[
∥∇Rγ(ht)∥H · ∥π+γeck(x

U
t , ·)[ℓ′(ft(xU

t )− ϵ′∥f∥H,+1)− ℓ′(ht(x
U
t )− ϵ′∥f∥H,+1)]∥H

]
+ Ex̃S

t ,x̃D
t ,xU

t ,ω

[
∥∇Rγ(ht)∥H · ∥π−γeck(x

U
t , ·)[ℓ′(ft(xU

t )− ϵ′∥f∥H,−1)− ℓ′(ht(x
U
t )− ϵ′∥f∥H,−1)]∥H

]

≤ πS(1− γ)|ec|κ
1
2LEx̃S

t ,x̃D
t ,xU

t ,ω

[
∥∇Rγ(ht)∥H · |ft(x̃S

t )− ht(x̃
S
t )|

]
+ πD(1 + γ)|ec|κ

1
2LEx̃S

t ,x̃D
t ,xU

t ,ω

[
∥∇Rγ(ht)∥H · |ft(x̃D

t )− ht(x̃
D
t )|

]
+ γ|ec|κ

1
2LEx̃S

t ,x̃D
t ,xU

t ,ω

[
∥∇Rγ(ht)∥H · |ft(xU

t )− ht(x
U
t )|

]
≤ πS(1− γ)|ec|κ

1
2L

√
Ex̃S

t ,x̃D
t ,xU

t ,ω∥∇Rγ(ht)∥2H ·
√

Ex̃S
t ,x̃D

t ,xU
t ,ω[|ft(x̃S

t )− ht(x̃S
t )|2]

+ πD(1 + γ)|ec|κ
1
2L

√
Ex̃S

t ,x̃D
t ,xU

t ,ω∥∇Rγ(ht)∥2H ·
√
Ex̃D

t ,x̃D
t ,xU

t ,ω[|ft(x̃D
t )− ht(x̃D

t )|2]

+ γ|ec|κ
1
2L

√
Ex̃S

t ,x̃D
t ,xU

t ,ω∥∇Rγ(ht)∥2H ·
√

Ex̃S
t ,x̃D

t ,xU
t ,ω[|ft(xU

t )− ht(xU
t )|2]

≤ (1 + C)[πS(1− γ) + πD(1 + γ) + γ]2e2cMLκB1,T+1 (31)

The second inequality is due to Assumption 4. That completes the proof.
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D.3 Proof of Theorem 3

Based on the lemmas and assumptions mentioned earlier, we can readily obtain Theorem 3.

Proof. For Convenience, we denote the following three different gradient terms,

gt = ξt + Cht

= −πS(1− γ)eck(x̃
S
t , ·)[π+ℓ

′(ft(x̃
S
t )− ϵ′∥f∥H,+1) + π−ℓ

′(ft(x̃
S
t )− ϵ′∥f∥H,−1)]

+ γeck(x
U
t , ·)[π+ℓ

′(ft(x
U
t )− ϵ′∥f∥H,+1) + π−ℓ

′(ft(x
U
t )− ϵ′∥f∥H,−1)]

+ πDeck(x̃
D
t , ·)[(π+ + π−γ)ℓ

′(ft(x̃
D
t )− ϵ′∥f∥H,−1) + (π+γ + π−)ℓ

′(ft(x̃
D
t )− ϵ′∥f∥H,+1)] (32)

ĝt = ĝt + Cht

= −πS(1− γ)eck(x̃
S
t , ·)[π+ℓ

′(ht(x̃
S
t )− ϵ′∥f∥H,+1) + π−ℓ

′(ht(x̃
S
t )− ϵ′∥f∥H,−1)]

+ γeck(x
U
t , ·)[π+ℓ

′(ht(x
U
t )− ϵ′∥f∥H,+1) + π−ℓ

′(ht(x
U
t )− ϵ′∥f∥H,−1)]

+ πDeck(x̃
D
t , ·)[(π+ + π−γ)ℓ

′(ht(x̃
D
t )− ϵ′∥f∥H,−1) + (π+γ + π−)ℓ

′(ht(x̃
D
t )− ϵ′∥f∥H,+1)] (33)

∇R(ht) = Ex̃S
t
Ex̃D

t
ExU

t
[ĝt]

= Cht + Ex̃S
t
Ex̃D

t
ExU

t

[
− πS(1− γ)eck(x̃

S
t , ·)

[
π+ℓ

′(ht(x̃
S
t )− ϵ′∥f∥H,+1) + π−ℓ

′(ht(x̃
S
t )− ϵ′∥f∥H,−1)

]
+ πDeck(x̃

D
t , ·)

[
(π+ + π−γ)ℓ

′(ht(x̃
D
t )− ϵ′∥f∥H,−1) + (π+γ + π−)ℓ

′(ht(x̃
D
t )− ϵ′∥f∥H,+1)

]
+ γeck(x

U
t , ·)

[
π+ℓ

′(ht(x
U
t )− ϵ′∥f∥H,+1) + π−ℓ

′(ht(x
U
t )− ϵ′∥f∥H,−1)

]]
(34)

0From our previous definition, we have ht+1 = ht − ηtgt,∀t = 1, · · · , T , we have

Rγ(ht+1) ≤ Rγ(ht) + ⟨∇Rγ(ht), ht+1 − ht⟩+
L̃

2
∥ht+1 − ht∥2H

= Rγ(ht)− ηt⟨∇Rγ(ht), gt⟩+
L̃η2t
2
∥gt∥2H

= Rγ(ht)− ηt⟨∇Rγ(ht), gt − ĝt + ĝt −∇Rγ(ht) +∇Rγ(ht)⟩+
L̃η2t
2
∥gt∥2H

= Rγ(ht)− ηt∥∇Rγ(ht)∥2H + ηt⟨∇Rγ(ht), ĝt − gt⟩+ ηt⟨∇Rγ(ht),∇Rγ(ht)− ĝt⟩+
L̃η2t
2
∥gt∥2H (35)

Taking expectations on both sides, we can obtain

ηtE[∥∇Rγ(ht)∥2H]

≤ E[Rγ(ht)]− E[Rγ(ht+1)] + ηtE[⟨∇Rγ(ht), ĝt − gt⟩] + ηtE[⟨∇Rγ(ht),∇Rγ(ht)− ĝt⟩] +
L̃η2t
2

E[∥gt∥2H] (36)

where R∗ denotes the optimal value of Rγ(h) and E[·] = Ex̃S
t ,x̃D

t ,xU
t ,ω[·]. Let us denote Ht =√

∥∇Rγ(ht)∥2H, Mt = ∥gt∥2H, Nt = ⟨∇Rγ(ht),∇Rγ(ht) − ĝt⟩ and Rt = ⟨∇Rγ(ht), ĝt − gt⟩. For the fixed
stepsize ηt = η = θ

T 3/4 , based on Lemma 2, we have

ηE[∥∇Rγ(ht)∥2H]

≤ E[Rγ(ht)]− E[Rγ(ht+1)] + η(1 + C)[πS(1− γ) + πD(1 + γ) + γ]2e2cMLκB1,T+1

+
L̃η2

2
(1 + C)2[πS(1− γ) + πD(1 + γ) + γ]2e2cM

2κ

≤ E[Rγ(ht)]− E[Rγ(ht+1)] + η(1 + C)[πS(1− γ) + πD(1 + γ) + γ]3|ec|3M2Lκ(
√
κ+

√
ϕ)

θ

T 1/4

+
L̃η2

2
(1 + C)2[πS(1− γ) + πD(1 + γ) + γ]2e2cM

2κ (37)



Yajing Fan, Wanli Shi, Yi Chang, Bin Gu*

Summing both side of the inequality for t ∈ {1, · · · ,T} and recall the Assumption, we have

ηE[
T∑

t=1

∥∇Rγ(ht)∥2H]

≤ Rγ(h1)−Rγ
inf + (1 + C)[πS(1− γ) + πD(1 + γ) + γ]3|ec|3M2Lκ(

√
κ+

√
ϕ)

θ

T 1/4
T

+
L̃η2

2
(1 + C)2[πS(1− γ) + πD(1 + γ) + γ]2e2cM

2κT (38)

Rearranging the above inequality and dividing by η̄T, we have

E[
1

T

T∑
t=1

∥∇Rγ(ht)∥2H]

≤
Rγ(h1)−Rγ

inf

ηT
+ (1 + C)[πS(1− γ) + πD(1 + γ) + γ]3|ec|3M2Lκ(

√
κ+

√
ϕ)

θ

T 1/4

+
L̃η

2
(1 + C)2[πS(1− γ) + πD(1 + γ) + γ]2e2cM

2κ

≤
Rγ(h1)−Rγ

inf

θT 1/4
+ (1 + C)[πS(1− γ) + πD(1 + γ) + γ]3|ec|3M2Lκ(

√
κ+

√
ϕ)

θ

T 1/4

+
L̃θ

2T 3/4
(1 + C)2[πS(1− γ) + πD(1 + γ) + γ]2e2cM

2κ (39)

E THE SPECIFIC ALGORITHM FOR THE SGD-SDU EXPERIMENT

Algorithm 3 Stochastic Gradient Descent for our adversarial SDU classification (SGD-SDU)

1: Input: Learning rate η, Number of iterations T .
2: Initialize function f in the RKHS H.
3: for t = 1 to T do
4: Sample (x̃S) from D̃S , Sample (x̃D) from D̃D, Sample xU from DU .
5: Compute gradients:

∇fR
γ
S =

πS(1− γ)

πc
[π+∇ℓ1(x̃S)− π−∇ℓ2(x̃S)]

∇fR
γ
D =

πD

πc
[γ1∇ℓ2(x̃D)− γ2∇ℓ1(x̃D)]

∇fR
γ
U =

γ

πc
[π+∇ℓ1(xU )− π−∇ℓ2(xU )]

6: Update function parameters: f ← f − η (λf +∇fR
γ
S +∇fR

γ
D +∇fR

γ
U )

7: end for

F ADDITIONAL EXPERIMENTS

The adversarial techniques employed in the experiments conducted in this paper are detailed below: FGSM with
a perturbation parameter of ϵ = 0.3, 10-step PGD with ϵ = 0.016, and C&W attack implemented using the code
available at https://github.com/Trusted-AI/adversarial-robustness-toolbox.

F.1 Adversarial Training for SDU Learning

It should be noted that there is no reference for the adversarial training on SDU Learning as far as our knowledge.
To solve this concern, we’ve proposed the corresponding adversarial training algorithm based on the objective
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function of this paper, called Adversarial Training for SDU learning (AT-SDUall). Additionally, we also extended
the adversarial training to specifically target similar, dissimilar, and unlabeled data, called AT-SDUS , AT-SDUD,
and AT-SDUU , respectively. The results of these methods can be found in Table 6. (Time is the result of the
PGD test.) Our algorithm stands out significantly in terms of efficiency and speed, being 20 times faster than
AT-SDU, although it may be slightly behind AT-SDU in accuracy. This is acceptable compared to the boost in
speed. Because we use random features to approximate kernel and minimization to approximate the minimax
problem, the complexity of the problem is reduced.

Table 6: Accuracy on MNIST and Combined test with various attacks and perturbations constrained by l2-norm.
Dataset MNIST

Time(s)
Combined

Time(s)
Method clean FGSM PGD CW clean FGSM PGD CW

AT-SDU all 92.84 94.01 77.12 69.88 6580 77.02 78.72 76.93 74.76 26442
AT-SDU S 95.18 86.4 70.69 64.62 2535 79.21 71.94 75.19 71.95 11714
AT-SDU D 97.08 93.93 76.02 68.86 2738 81.4 75.38 76.57 73.63 11840
AT-SDU U 92.98 89.47 70.03 63.96 2441 78.81 70.03 74.84 70.48 11696

QSG-ATSDU 94.07 93.27 75.37 69.81 413 80.59 78.36 76.78 74.52 664

F.2 Ablation Studies

F.2.1 Impact of Constraint on ϵ, σ, λ, and γ

In this series of experiments, we investigate the impact of different parameter settings on the performance of our
method. We focus on four hyper-parameters: ϵ, σ, λ, and γ, each of which plays a critical role in shaping the
behavior and outcomes of our method. The description of these parameters are as follows:

1. ϵ: Serving as the perturbation radius, ϵ influences the scope of the model’s robustness to input variations.

2. σ: The σ parameter, embodying the kernel parameter, plays a fundamental role in shaping the influence of
data points within the model. With values ranging from 2−10 to 210, our study uncovers the impact of σ on
the learned function’s smoothness and sensitivity to input variations.

3. λ: λ assumes the role of the regularization parameter, driving the trade-off between data fitting and the
regularization term in the model’s optimization process. Our exploration across the range of 2−10 to 210

reveals how λ governs the model’s capacity to generalize beyond the training data.

4. γ: γ serves as the equilibrium factor between the SD (Source Domain) and DU (Target Domain) classifica-
tions in our method. By exploring the spectrum from 0.1 to 1.0 with increments of 0.1, we scrutinize how
γ influences the decision boundary balance between the two domains.

Each experiment involved fixing three parameters while exploring different values for the remaining one. This
meticulous approach enabled us to thoroughly evaluate the performance and behavior of our method under
diverse scenarios. The results are presented in Figure 3 and 4. The experimental findings clearly demonstrate
that our method achieves consistently high test accuracy across different ϵ, λ values, with fluctuations remaining
within a certain range. These results indicate the robustness and stability of our approach in handling varying
conditions of ϵ, σ, σ and γ.

F.2.2 Impact of the Ratio of nSD and nU

In order to delve into the potential repercussions of different ratios between the number of similar and dissimilar
dataset (nSD) and the number of unlabeled dataset (nU ) on the efficacy of our methodology, QSG-ATSDU, a
meticulous series of experiments was meticulously carried out. These experiments were executed with varying
configurations of nSD and nU . Through a systematic evaluation of our proposed technique under these diverse
ratio settings, the outcomes have been succinctly depicted in Figure 5. It is of significance to note that the
empirical insights garnered from these experiments unveil a noteworthy trend. While there is a discernible
exception with the extreme case of the 1 : 5 ratio, the performance outcomes for the other evaluated ratios
exhibit subtle fluctuations. Within a confined range, the behavior of our method seems to exhibit a certain
degree of resilience across these varying ratios.
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Figure 3: The test accuracy of different ϵ, γ by fixed the others parameters.
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Figure 4: The test accuracy of different σ, λ by fixed the others parameters.
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Figure 5: The test accuracy of different ratio of nSD : nU .


