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Abstract

Decentralized and asynchronous communica-
tions are two popular techniques to speedup
communication complexity of distributed
machine learning, by respectively removing
the dependency over a central orchestrator
and the need for synchronization. Yet, com-
bining these two techniques together still re-
mains a challenge. In this paper, we take
a step in this direction and introduce Asyn-
chronous SGD on Graphs (AGRAF SGD) —
a general algorithmic framework that cov-
ers asynchronous versions of many popu-
lar algorithms including SGD, Decentralized
SGD, Local SGD, FedBuff, thanks to its re-
laxed communication and computation as-
sumptions. We provide rates of convergence
under much milder assumptions than previ-
ous decentralized asynchronous works, while
still recovering or even improving over the
best know results for all the algorithms cov-
ered.

1 Introduction

We consider solving stochastic optimization problems
that are distributed amongst n agents (indexed by a
set V) who can compute stochastic gradients in par-
allel. This includes classical federated setups, such as
distributed and federated learning. Depending on the
application, agents have access to either same shared
data distribution or a different agent-specific distri-
butions. In recent years, such stochastic optimiza-
tion problems have continued to grow rapidly in size,
both in terms of the dimension d of the optimization
variable—i.e., the number of model parameters in ma-
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chine learning—and in terms of the quantity of data—
i.e., the number of data samples m being used over all
agents. With d and m regularly reaching the hundreds
or thousands of billions [Chowdhery et al., 2022, Tou-
vron et al., 2023], it is increasingly necessary to use
parallel optimization algorithms to handle the large
scale.

With communication cost being one of the major
bottlenecks of parallel optimization algorithms, there
are several directions aimed to improve communica-
tion efficiency. Amongst the others (such as local
update steps [Stich, 2019, Woodworth et al., 2020]
and communication compression [Alistarh et al., 2017,
Koloskova et al., 2019]), decentralization and asyn-
chrony are the two popular techniques for reducing
the communication time. Decentralization [Koloskova
et al., 2020, Lian et al., 2017a] eliminates the depen-
dency on the central server—frequently a major bot-
tleneck in distributed learning—while naturally ampli-
fying privacy guarantees [Cyffers et al., 2022]. Asyn-
chrony Recht et al. [2011], Baudet [1978], Tsitsik-
lis et al. [1986] shortens the time per computation
rounds and allows more updates to be made during
the same period of time. It aims to overcome several
possible sources of delays: nodes may have heteroge-
neous hardware with different computational through-
puts [Kairouz et al., 2019, Horváth et al., 2021], net-
work latency can slow the communication of gradients,
and nodes may even just drop out [Ryabinin et al.,
2021]. Moreover, slower “straggler” compute nodes
can arise in many natural parallel settings, including
training ML models using multiple GPUs [Chen et al.,
2016] or in the cloud; sensitivity to these stragglers
poses a serious problem for synchronous algorithms,
that depend on the slowest agent. In decentralized
synchronous optimization where communication times
between pairs of nodes may be heterogeneous, the al-
gorithm can even be further slowed down by straggling
communication links.

Combining both decentralization and asynchrony is a
challenging problem, and it is only recently that this
question has risen a surge of interest [Assran and Rab-
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bat, 2021, Bornstein et al., 2023, Luo et al., 2020, Liu
et al., 2022, Nadiradze et al., 2021, Even et al., 2021c,
Zhang and You, 2021]. These works are however re-
stricted to a given communication protocol and static
topologies [Assran and Rabbat, 2021, Lian et al., 2015,
Bornstein et al., 2023, Nadiradze et al., 2021, Even
et al., 2021c], no communication delays [Lian et al.,
2015, Bornstein et al., 2023, Nadiradze et al., 2021], or
their analyses rely on an upper-bound on the maximal
computation delay [Assran and Rabbat, 2021, Lian
et al., 2017b, Bornstein et al., 2023, Luo et al., 2020,
Liu et al., 2022, Nadiradze et al., 2021, Zhang and You,
2021, Wu et al., 2023]. In this work we aim to circum-
vent these shortcomings. We study an asynchronous
version of decentralized SGD in a unified framework
that relaxes overly strong communication assumptions
imposed by prior works. Our framework covers time-
varying topologies, arbitrary computation orders and
local update steps. We prove an improved rates of con-
vergence under such a weaker communication assump-
tions, covering and improving asynchronous versions of
many common distributed and federated algorithms.

1.1 Contributions

(i) We introduce AGRAF SGD (Asynchronous SGD
on graphs), a unified formulation of an asynchronous
version of the synchronous Decentralized SGD as for-
mulated by Koloskova et al. [2020]. One of the
strengths of AGRAF SGD is that it formally takes the
form of a simple sequence (Equation (3)), allowing for
an effective theoretical analysis, while covering asyn-
chronous versions of many distributed algorithms such
as Asynchronous SGD, Decentralized SGD, FedAvg or
FedBuff.

(ii)We analyze the AGRAF SGD sequence under vari-
ous combinations of convexity, non-convexity, smooth-
ness and Lispchitzness assumptions. We use a re-
laxed communication assumption that only imposes
that the different topologies mix in a given window of
time, while our computation assumption depends on
whether the local functions are homogeneous or het-
erogeneous. In special cases, our rates recover best
known rates of Minibatch SGD, Asynchronous SGD
or Decentralized SGD, while for Asynchronous Decen-
tralized SGD, our rates improve the previous works by
up to factors of order n2, under relaxed assumptions
(as summarized in Table 1).

(iii) Finally, we show that AGRAF SGD allows to
efficiently handle communication delays in decentral-
ized optimization, by introducing Decentralized SGD
on Loss Networks. We show that the assumptions re-
quired in our analysis are satisfied by this algorithm,
giving explicit rates of convergence that depend on
the underlying graph topology, pairwise communica-

tion delays, and each device computation time.

1.2 Related works

Asynchronous optimization. Asynchronous opti-
mization has a long history. In the 1970s, Baudet
[1978] considered shared-memory asynchronous fixed-
point iterations, and an early convergence result for
Asynchronous SGD was established by Tsitsiklis et al.
[1986]. Recent analysis typically relies on bounded de-
lays [Agarwal and Duchi, 2011, Recht et al., 2011, Lian
et al., 2015, Stich and Karimireddy, 2020], while some
algorithms try to adapt to the delays [Sra et al., 2016,
Zheng et al., 2017, Mishchenko et al., 2018, Koloskova
et al., 2022, Mishchenko et al., 2022, Feyzmahdavian
and Johansson, 2021], in order to depend only on an
average delay. For more examples of stochastic asyn-
chronous algorithms, we refer readers to the surveys
by Ben-Nun and Hoefler [2019], Assran et al. [2020].
More closely related to our analysis techniques, Ma-
nia et al. [2017] proposed and utilized the analysis
tool of virtual iterates for Asynchronous SGD un-
der bounded delays, extended by Koloskova et al.
[2020], Mishchenko et al. [2022] who proved that Asyn-
chronous SGD performs well under arbitrary delays.
We adapt this proof approach to decentralized opti-
mization in order to obtain some robustness towards
large delays and introduce a different virtual sequence
for the averaged model over all the nodes.

Decentralized SGD and asynchrony. Decentral-
ized SGD [Koloskova et al., 2022, e.g.] consists in it-
erations where at every time step, all nodes perform
local SGD steps, and communicate their local model
with their neighbors in a graph (that may vary with
time, but that needs to mix in an ergodic way). The
closest works to ours Lian et al. [2017b], Bornstein
et al. [2023] proposed asynchronous versions of de-
centralized SGD where at each iteration, one node
vk is sampled independently from the past (with fixed
probabilities), and this node performs a local stochas-
tic gradient step and an averaging operation with its
neighbors. We extend their sequence and results to a
more general (due to relaxed communication and com-
putation assumptions) asynchronous version of decen-
tralized SGD, that keeps the “unified” point of view
of the work of Koloskova et al. [2020]. Assran and
Rabbat [2021] considers asymmetric communications
(push sum) and all the agents performing computa-
tions at every iterations in a synchronous way, Nadi-
radze et al. [2021] considers quantized pairwise com-
munications as in the historical gossip algorithm [Boyd
et al., 2006], but no communication nor computation
delays, while Luo et al. [2020], Agarwal et al. [2009]
do not provide convergence guarantees. Orthogonally,
Even et al. [2021c] consider both communication and
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computation delays in a continuized framework [Even
et al., 2021a], allowing more degrees of freedom for the
algorithm and the analysis, but their work does not ap-
ply to modern ML tasks; still, our Loss Network sec-
tion relates to this line of work due to the introduction
of continuous-time physical delays. Nabli et al. [2023]
considers a similar continuized framework for commu-
nication acceleration on time-varying topologies with
local stochastic gradient steps: while their work seems
communication efficient, they do not consider compu-
tation or communication delays.

2 AGRAF Algorithmic Framework

In this section we present AGRAF SGD—our algorith-
mic framework for asynchronous decentralized SGD—
and give examples of existing popular algorithms that
it can cover.

2.1 Asychronous SGD on graphs

We consider a connected undirected graph G = (V, E)1
on a set of nodes V = {1, . . . , n}. Let the function
fv : Rd → R of agent v ∈ V be defined as

fv(x) := E [Fv(x, ξv)] ξv ∼ Dv , x ∈ Rd , (1)

where Dv is some local distribution. Let the global
objective function f : Rd → R be defined as follows,
and consider the optimization problem

min
x∈Rd

{
f(x) :=

∑
v∈V

qvfv(x)

}
, (2)

for some non-negative weights (qv) that sum to 1. We
classically assume that node v in the graph has ac-
cess to unbiased stochastic gradients of fv (of the form
Fv(x, ξv)). The standard goal of decentralized opti-
mization is to minimize f using only local computa-
tions and communications (only neighboring nodes in
the graph can communicate).

Notations. Standard small letters (x, g, y, z, etc) are
for vectors in Rd. Capital letters (mostly W ) are for
matrices in RV×V . Bold letters x,g, . . . are for concate-
nated vectors in RV×d, that we write as x = (xv)v∈V .
For some vector x ∈ Rd, we denote x ∈ RV×d the
concatenated vector such that xv = x for all v ∈ V.
1 ∈ RV is the vector with all entries equal to 1. For
x ∈ RV×d, we denote x̄ = 1

n11
⊤x.

In this paper we study a general scheme for asy-
chronous SGD on graphs (AGRAF) which is
summarized in Algorithm 1: workers asynchronously
perform local SGD steps (lines 3-4), while an under-
lying linear communication algorithm is running

1Since we consider varying topologies, this graph should
be thought as the union of graphs considered over time.

Algorithm 1 Asynchronous SGD on graph G
(AGRAF SGD)

1: Input: x̄0 ∈ Rd, xv = x̄0 for v ∈ V initialized
local variables, stepsize γ > 0

2: for v ∈ V, do
3: Upon finishing computation of a stochastic gra-

dient ∇F (x̃v, ξ̃v) at some previous local current
state x̃v,

xv ←− xv − γ∇Fv(x̃v, ξ̃v) .

4: Compute ∇Fv(xv, ξv) for ξv ∼ Dv indepen-
dently from the past, at current state xv.

5: end for
6: while procedure still running do
7: Run any linear communication algorithm

on graph G incurring no communication delay.
8: end while

without incurring communication delays (line 7). A
linear communication algorithm on graph G implies
that any communication update can be formulated as
x+ = Wx− where x+,x− ∈ RV×d are respectively the
global state after and before the communication up-
date, and W ∈ RV×V is a communication matrix
with Wv,w being zero for disconnected nodes v, w, i.e.
Wv,w ̸= 0 iff {v, w} ∈ E .

Since every agent asynchronously works at their own
speed and communicates in a decentralized way, there
is no global state. Keeping track of a global ordering of
the iterates involving both computation and commu-
nication updates is thus a challenge. In the next sub-
section we address this challenge and propose a way
to effectively cast Algorithm 1 into equations with or-
dered updates. This reformulation is a key novelty of
our work. It allows for an improved theoretical analy-
sis with better rates together with relaxed communica-
tion and computations assumptions, allowing AGRAF
SGD to cover asynchronous versions of many popular
distributed and federated algorithms.

2.2 The sequence studied

We denote by T0 = 0 the initialization time of the algo-
rithm and by {0 < T1 < T2 < . . .} the times at which
the local computation updates are made. Note that
these are physical (continuous) times, and that several
agents may possibly finish their local computations at
the same time Tk. We also assume that computational
updates are atomic. For some time T , we denote as
T− the left limit (limt→T,t<T ) and T+ the right limit
(limt→T,t>T ). For time t ∈ R+ (physical time), let
xv(t) ∈ Rd denote the state of the local variable at
time t, and let x(t) = (xv(t))v∈V . For k ⩾ 0 and v ∈ V,
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let xk
v denote the state of the local variable at node v

at time Tk+ i.e., xk
v = xv(Tk+) = limt→Tk,t>Tk

xv(t)
and let xk = (xk

v)v∈V .

Communication updates. For k ⩾ 0, none to
plenty of communication updates may have happened
between the computational update times Tk and Tk+1.
We encode these communication updates by a single
matrix Wk: Wk is thus the product of all communi-
cation matrices corresponding to communication up-
dates between times Tk and Tk+1. Hence, we can write:

x(Tk+1−) = Wkx(Tk+) .

If no communication happened between two gradients
computed, we have Wk = Id. If there are r communi-
cations between times Tk+ and Tk+1− that happened
at times Tk < Tk,1 < . . . < Tk,r < Tk+1, denot-
ing by Wk,r the communication matrix correspond-
ing to communication updates at time Tk,r, we have
Wk = Wk,r · . . . ·Wk,2 ·Wk,1. Note that for r = 0 this
product is taken equal to Id.

Computation updates. For k ⩾ 1, let Ik ⊂ V be the
set of nodes that finish computing stochastic gradients
∇Fv(x̃

k
v , ξ̃

k
v ) for v ∈ Ik at time Tk−. The computation

updates, that are assumed to be atomic, then read:

xv(Tk+) = xv(Tk−)− γ∇F (x̃k
v , ξ̃

k
v ) , v ∈ Ik ,

where x̃k
v = x

k−1−τ(k,v)
v and ξ̃kvk = ξ

k−1−τ(k,v)
vk , for

τ(k, v) ⩾ 0 the delay of this update that corresponds
to the number of computation updates performed
by other nodes during the computation of the local
stochastic gradient.

The sequence studied. Combining communication
and computation updates, the sequence generated by
Algorithm 1 follows the following recursion:

xk+1 = Wkx
k − γgk , (3)

where gkw = 0 for v /∈ Ik, and gkv =

∇Fv(x
k−τ(k,v)
v , ξ

k−τ(k,v)
v ).

What is important to keep in mind is that the iter-
ates xk+1 are taken at the time just after computation
updates (time Tk+) so that k denotes the number of
computation updates. Ik is the set of nodes that per-
form computation updates at iteration k, it can be any
subset of V, and

∑
k<K |Ik| denotes the total number

of stochastic gradients computed up to iteration K by
all the agents. The matrix Wk encodes all communi-
cations that happened between the k-th and (k+1)-th
computation updates (there can be any number such
communications, the more there are the more (Wk)
will mix).

2.3 AGRAF SGD is the right formulation of
Asynchronous Decentralized SGD

Recall that the Decentralized SGD algorithm
[Koloskova et al., 2022, e.g.] consists in iterations of
the form:

xk+1
v =

∑
w∼v

W
(k)
{v,w}x

k
w−γ∇Fv(x

k
v , ξ

k
v ) , ∀v ∈ V , (4)

for communication matrices (W (k))k satisfying As-
sumption 2. The question thus arises: how can De-
centralized SGD be turned into an asynchronous algo-
rithm? Previous works [Lian et al., 2017b, Bornstein
et al., 2023] proposed and analyzed schemes that take
the following form: at each iteration, one node vk is
sampled independently from the past (with fixed or
lower bounded probability), and this node performs a
local stochastic gradient step together with an aver-
aging operation with its neighbors in the graph. This
results in updates of the form of AGRAF SGD, for
Ik = {vk} and Wk a matrix that depends on vk and
that mixes (in mean) independently from the past
(E [Wk|W0, . . . ,Wk−1] mixes well).

Leaving the analyses aside, this prior approach is too
restrictive: (i) communication assumptions do not al-
low varying topologies that may mix but only in the
long run, which may particularly be the case for asyn-
chronous algorithms, and (ii) computation assump-
tions do not allow for more than one worker to up-
date their value at the same time; having a sampling
assumption restricts the type of delays that the algo-
rithm can handle; and nodes that compute should not
necessarily be correlated to communicating edges since
this forbids the use of several local SGD steps.

AGRAF SGD thus appears as a natural way to
make Decentralized SGD asynchronous: nodes are not
forced to all perform computations at the same time
as in eq. (4), and having the relaxed communication
assumption (Assumption 2) allows any communication
order, especially when one considers Wk as a concate-
nation of all communications that may happen be-
tween two consecutive computations.

2.4 Some examples covered by AGRAF

We now give a few examples of algorithms (i.e. com-
munication and computation schedules) that can be
cast as AGRAF SGD. The three first are degenerate
cases.

Minibatch SGD and Asynchronous SGD are ob-
tained by setting Wk = 1

n11
⊤, and Ik = V and

Ik = {vk} for some node vk respectively.

Decentralized (local) SGD. Set Ik = V and (Wk)k
a sequence of gossip matrices to obtain Decentralized
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SGD [Ram et al., 2010]. Note that in that case there
are no computation delays, since this algorithm is in-
herently synchronous and all nodes perform updates at
the same time. As done in Koloskova et al. [2020], peri-
odic communications are possible, allowing to recover
algorithms with several local gradient steps between
each communication round, such as Local (Decen-
tralized) SGD [Stich, 2019] or FedAvg [McMahan
et al., 2017].

Asynchronous Decentralized SGD. As explained
in Section 2.3, AGRAF SGD covers Asynchronous
Decentralized SGD beyond particular instances pre-
viously studied [Lian et al., 2017b, Bornstein et al.,
2023]. Furthermore, since we make relaxed communi-
cation/computation assumptions, we cover more gen-
eral decentralized algorithms that allow local gradi-
ent steps between communications, varying topolo-
gies, and arbitrary computations. As such, together
with covering an asynchronous version of Decentral-
ized SGD (4), we also cover asynchronous versions
of FedAvg orLocal SGD, together with FedBuff
[Nguyen et al., 2022].

Asynchronous SGD on Loss Networks. If com-
munication latencies are not negligible compared to
computational ones, designing an algorithm that is
asynchronous and decentralized becomes much more
challenging, as the naive implementation might lead
to deadlocks. In order to handle non-negligible com-
munication delays, we use loss networks [Kelly,
1991] to enforce that the edges adjacent to “busy”
nodes are prohibited to be used for communicating2.
This enables us to design communication/computation
schemes that fit in the AGRAF framework, while not
violating the physical delay constrains. We introduce
these Loss Networks in Section 5.2: we define them
more thoroughly, and provide their ergodic mixing
properties with explicit constants that depend on the
graph topology and local communication and compu-
tation delays.

3 Assumptions and Notations

We consider solving the problem (2) under several
standard [see, e.g., Bubeck, 2015] combinations of con-
ditions on the objective F . We denote the minimum
of f as f∗ := minx∈Rd f(x), an upper bound on the
initial suboptimality ∆ ⩾ f(x̄0)−f∗, and an upper
bound on the initial distance to the minimizer D ⩾
min {∥x0 − x∗∥ : x∗ ∈ argminx f(x)} that we assume

2Loss Networks were initially introduced by F. Kelly to
model telecommunication networks, where the same mo-
bile phone cannot initiate another phone call while being
busy with another call. In our case, phone calls should be
thought as communicating with a neighbor.

to exist. ∥·∥ denotes the Euclidean norm. A function F
is convex if for each x, y and subgradient g ∈ ∂F (x),
we have F (y) ⩾ F (x) + ⟨g, y − x⟩. When Fv and
fv are convex, we do not necessarily assume they are
differentiable, but we abuse notation and use ∇fv(x)
and ∇Fv(x; ξ) to denote an arbitrary subgradient at
x. The loss Fv is B-Lipschitz-continuous if for each
x, y and ξ, we have |Fv(x; ξ) − Fv(y; ξ)| ⩽ B∥x− y∥.
The objective fv is L-smooth if it is differentiable and
its gradient is L-Lipschitz-continuous. We also assume
the stochastic gradients have σ2-bounded variance3.

Assumption 1 (Noise). There exists σ2 such that for
all x and v ∈ V, we have E [∇xFv(x, ξv)] = ∇fv(x) and
E
[
∥∇fv(x)−∇xFv(x, ξv)∥2

]
⩽ σ2, where ξv ∼ Dv.

Graph, communications and mixing. We now
formulate the communication assumptions we will
make. For k ⩾ 0, as opposed to some previous
Asynchronous Decentralized SGD analyses [Lian et al.,
2017b, Bornstein et al., 2023], we do not want to as-
sume that Wk mixes well in mean (i.e., that the spec-
tral gap of E [Wk|W0, . . . ,Wk−1] is non-null or some
other related assumption), since Wk may possibly be
the identity matrix. We use the least restrictive as-
sumption under which convergence of (synchronous)
decentralized SGD is established [Koloskova et al.,
2020], by assuming that if we wait enough communica-
tion updates, a consensus will ultimately be achieved.

Assumption 2 (Ergodic mixing). Wk ∈ [0, 1]V×V ,
Wk1 = 1, and there exist ρ, kρ > 0 such that we have
∀k ∈ N and ∀x ∈ RV :

E
[∥∥∥W (k:k+kρ)x− x̄

∥∥∥2|Fk

]
⩽(1− ρ)2∥x− x̄∥2, (5)

where for k, ℓ ⩾ 0, W (k,ℓ) = Wℓ−1 . . .Wk+1Wk, and
Fk = σ(xs,gs−1,Ws−1, s ⩽ k) is the filtration up to
step k.

This assumption makes it possible to consider any
“reasonable” communication scheme. In the rest of
the paper, when assuming that Assumption 2 holds
for some constants (ρ, kρ), we write ρ̄ = e−1

e
ρ
kρ

(with

e = exp(1)), and this quantity is used in our main
results.

Heterogeneous and homogeneous settings,
sampling assumptions. Assuming that the se-
quence of nodes (Ik)k⩾0 that iteratively perform local
updates is arbitrary makes it possible to encompass
all possible computation orderings and cover arbitrary
delays. It is much more general than assuming that
Ik = V for all k (decentralized SGD) or Ik = {vk} for

3which can easily be generalized to
E
[
∥∇fv(x)−∇xFv(x, ξv)∥2

]
⩽ σ2 + δ2∥∇fv(x)∥2.
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vk sampled independently from the past, as assumed in
most previous asynchronous decentralized works [Lian
et al., 2015, Bornstein et al., 2023]. However, if func-
tions fv are not all equal and if the sequence vk is
arbitrary, convergence to the global function f can-
not be assured (some of the nodes v might simply
never appear during training). We therefore need to
make some sampling assumption if we assume that
local functions can be heterogeneous. We will thus
assume either one the two following assuptions: (i)
the heterogeneous setting where local functions fv can
be different, but where we make some node-sampling
assumption for computations, and (ii) the homoge-
neous setting, where computations can be arbitrary,
but functions fv are all the same. Note that it is clas-
sical in asynchronous optimization to either assume
(i) or (ii); for instance, Asynchronous SGD with arbi-
trary orderings is proved to converge only under such
assumptions [Mishchenko et al., 2022, Koloskova et al.,
2022]. However, Asynchronous Decentralized works
only assume that the sampling assumption (i) holds.
Formally, we summarize these into the following two
assumptions.

Assumption 3 (Heterogeneous setting). There exists
ζ2 such that the population variance satisfies:∑

v∈V
qv∥∇fv(x)−∇f(x)∥2 ⩽ ζ2 , ∀x ∈ Rd . (6)

There exists p = (pv)v∈V ∈ [0, 1]V such that
the sequence (1v∈Ik

)k⩾0 is i.i.d. distributed, with
P (v ∈ Ik) = pv for all k ⩾ 0, v ∈ V. We denote
κp = pmax

p̄ , pmax = maxv pv and p̄ = 1/n
∑

v∈V pv
Furthermore, we assume that p is proportional to q:
p = βq, and since

∑
v qv = 1, we thus have β = np̄.

Assumption 4 (Homogeneous setting). All functions
fv satisfy fv ≡ f . No assumption on (Ik)k⩾0.

4 General Convergence Analysis

We now turn to our main results: convergence guar-
antees for AGRAF SGD, under a variety of regular-
ity assumptions and settings. Note that in almost all
cases, our rates do not depend on any upper bound
on the maximal delays, which is a key feature of our
analysis. This is also the case for asynchronous SGD
[Koloskova et al., 2022, Mishchenko et al., 2022] or a
recent asynchronous decentralized SGD work [Born-
stein et al., 2023]. In this section, while presenting the
results, we will only compare our results to degenerate
baselines such as minibatch SGD, asynchronous SGD
or decentralized SGD, in order to give simple argu-
ments to show that our rates have expected order of
magnitudes, leaving more complex comparisons and
applications to be developed in Section 5. We first
start with convex-Lipschitz losses. In this section, all

the rates are obtained for a constant stepsize γ (that
differs in each different case and is time-horizon depen-
dent), explicited in the proofs in the Appendix.

Theorem 1 (Lipschitz-convex rate). Assume that
f is convex and that for almost all (i.e., with
probability 1) ξ ∼ Dv Fv(·, ξ) is B-Lipschitz for

some B > 0, let D2 ⩾ ∥x0 − x⋆∥2, and FK =

E
[
f
(

1∑
k<K |Ik|

∑K−1
k=0

∑
v∈Ik

xk
v

)
− f(x⋆)

]
.

1. In the homogeneous setting (Assumption 4),

FK = O

(√
B2D2nρ̄−1∑

k<K |Ik|

)
.

2. In the heterogeneous setting (Assumption 3),

FK = O

(√
B2D2∑
k<K |Ik|

× n
√
pmax(

√
κp + ρ̄−1)

)
.

We thus recover the well-known rate of minibatch
SGD for convex-Lipschitz losses, by setting ρ̄ = 1 and
|Ik| = n, leading to the optimal rate O(

√
B2D2/K)

[Nemirovsky and Yudin, 1983]. Asynchronous SGD
has also been studied under such assumptions, with
the rate O(

√
B2D2n/K) that we recover here (ρ̄ = 1

and |Ik| = 1) [Mishchenko et al., 2022], that is min-
max optimal [Woodworth et al., 2018]. No rates under
the given assumptions existed for Decentralized (local)
SGD, that thus exhibits a rate of O(

√
B2D2ρ̄−1/K).

Finally, adding the sampling assumption not only en-
ables to handle heterogeneous functions, but also leads
to improved rates: for well balanced weights (pv ≈ p̄
and κp ≈ 1) we have n

√
p̄ρ̄−1 instead of nρ̄−1, which

can improve the rate by a factor 1/
√
n if O(1) agents

compute at the same time, which is usually the case in
the asynchronous setting. This phenomenon (better
rates under the sampling assumption) appears in all
our other rates below.

Theorem 2 (Lipschitz-smooth-convex rate). Assume
that f is convex, for almost all ξ ∼ D, F (·, ξ) is B-
Lipschitz for some B > 0, fv is L-smooth, Assump-
tion 1 holds, and let D2 ⩾ ∥x0 − x⋆∥2. In the homo-
geneous setting,

E

[
f

(
1∑

k<K |Ik|

K−1∑
k=0

∑
v∈Ik

xk
v

)
− f(x⋆)

]

= O

(
Lρ̄−1nD2∑

k<K |Ik|

√
σ2B2∑
k<K |Ik|

+

(
D2n

√
L (B2 + ρ̄−1σ2)∑
k<K |Ik|

) 2
3


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For Lipschitz-smooth functions, setting ρ̄−1 = 1 and
|Ik| = 1, we recover the exact same rates as Asyn-
chronous SGD under arbitrary delays, recently derived
by Mishchenko et al. [2022], Koloskova et al. [2022],
and that do not depend on any upper bound on the
delays. These rates are thus extended to the more
general AGRAF SGD algorithm.

Theorem 3 (Smooth-convex). Assume that f is con-

vex, all fv are L-smooth, and let D2 ⩾ ∥x0 − x⋆∥2.

1. In the homogeneous setting,

E

[
f

(
1∑

k<K |Ik|

K−1∑
k=0

∑
v∈Ik

xk
v

)
− f(x⋆)

]

= O

(
LD2(nρ̄−1 +

√
nτmax)∑

k<K |Ik|
+

√
Dσ2∑
k<K |Ik|

+

[
D2
√
Lσ2n2ρ̄−1∑
k<K |Ik|

]2/3 ,

where τmax ⩾ supk<K,v∈V
∑τ(k+1,v)

ℓ=k |Iℓ| is an upper
bound on the maximal compute delay.

2. In the heterogeneous setting,

E

[
f

(
1

K

∑
k<K

x̄k

)
− f(x⋆)

]

= O

LD2√κp

(
1
p̄ + (ρ̄

√
p̄)−1

)
K

+

√
D2(σ2 + ζ2)

np̄K

+

[
D2
√
Lσ2pmaxρ̄−1 + Lζpmaxρ̄−2

p̄K

] 2
3

 .

Removing the Lipschitz assumption, we are still able
to recover and extend the rates of Asynchronous SGD
with constant stepsizes. Note that under no sampling
assumption, this rate depends on

√
nτmax instead of n

as in the previous two theorems; however, this depen-
dency is still better than depending on τmax since we
always have τmax ⩾ n. We expect to be able to re-
move this dependency by the use of varying stepsizes
as was done for Asynchronous SGD (where stepsizes
scale as 1/(Lτ(k)), inversely proportional to the ac-
tual delay). However, such stepsizes cannot be used in
a fully decentralized setting, since a given node can-
not be aware of the iteration counter k and thus of
the delay τ(k). Note also that in the sampling case,
we have E

[∑
k<K |Ik|

]
= np̄K, so that the statisti-

cal rate is still reached. These comments also applies
to the non-convex and smooth setting below, for
which we fall back to showing that the algorithm will
find an approximate first-order stationary point of the

objective. We recover, as in the convex-smooth case
just above, the exact same rates as Koloskova et al.
[2020] for Decentralized (local) SGD.

Theorem 4 (Non-convex and smooth rates). Assume
that the functions fv are L-smooth.

1. In the homogeneous setting,

E

[
1∑

k<K |Ik|
∑
k<K

|Ik|
∥∥∇f(x̄k)

∥∥2]

= O

(
LF0(

√
nτmax+nρ̄−1)

K
+

(
Lσ2F0

K

) 1
2

+

(
LσnF0

K
√
ρ̄

) 2
3

)
.

2. In the heterogeneous setting,

E

[
1

K

∑
k<K

∥∥∇f(x̄k)
∥∥2]

= O

(
LF0
√
κp(

1
p̄ + (ρ̄

√
p̄)−1)

K
+

(
L(σ2 + ζ2)F0

K

) 1
2

+

(
LnF0

√
σ2pmaxρ̄−1 + ζ2pmaxρ̄−2

K

) 2
3

 .

Remark 1 (Heterogeneous without sampling). So
far, the heterogeneous setting was only considered un-
der a sampling assumption. In fact, generalizing
[Mishchenko et al., 2022, Theorem 4] to AGRAF SGD,
under both heterogeneous functions with population
variance ζ2 (as in eq. (6)) and arbitrary ordering of
the updates, the exact same rate as Theorem 4.1 up
to an additional term O(ζ2) could be obtained.

5 Applications

5.1 Better rates for Asynchronous
Decentralized SGD

A first direct application of our theory is a better anal-
ysis of Asynchronous Decentralized SGD. Comparing
our analysis with those of Lian et al. [2017b], Born-
stein et al. [2023], we highlight that our work handles
arbitrary computation orders and delays in the homo-
geneous settings, as opposed to Lian et al. [2017b],
Bornstein et al. [2023] that are only valid for kρ = 1
in Assumption 2 (which means that at any step k,
conditionally on the current state, the graph of edges
that can be sampled must be connected) and under
a sampling assumption. In both homogeneous and
heterogeneous cases, our communication assumptions
are much less restrictive. Furthermore, under simi-
lar computation and regularity assumptions as Lian
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Table 1: We compare the number of iterations required to reach the statistical regime O(σ2/
∑

k<K |Ik|) (if it is reached)
of previous Asynchronous Decentralized SGD works [Lian et al., 2017b, Bornstein et al., 2023] with our rates (Theorems 2
and 3). Strong communication assumption : Assumption 2 with kρ = 1 and Wk independent from the past; Sampling

assumption : Ik = {vk} with vk i.i.d. sampled or P(v ∈ Ik) = pv i.i.d. sampled. (a) Bornstein et al. [2023] reaches

O(ρ̄−2
√

σ2/K) instead, after O(n2ρ̄−4) iterations.

Reference
Communication

Assumption

Computation

Assumption
Regularity

# iterations before√
σ2

K
regime

Lian et al. [2017b] Strong Sampling Smoothness O(max(n4ρ̄−4, τ4max))

Bornstein et al. [2023] Strong Sampling Smoothness N.A.(a)

Theorem 2.1 (convex) Assumption 2 Arbitrary Smooth-Lipschitz, Homogeneous O(n4ρ̄−2)

Theorem 4.1 Assumption 2 Arbitrary Smooth, Homogeneous O(max(n4ρ̄−2, nτmax))

Theorem 4.2 Assumption 2 Sampling Smoothness O(n2ρ̄−4)

et al. [2017b], Bornstein et al. [2023] (sampling and
smooth losses, see last line of Table 1), our conver-
gence bound (Theorem 3.2) reaches a statistical rate√
σ2/

∑
k<K |Ik| after

∑
k<K |Ik| = O(n2ρ̄−4), while

Bornstein et al. [2023] does not reach such a statisti-
cal rate and Lian et al. [2017b] reaches this rate after
K = O(max(n4ρ̄−4, τ4max)) iterations. For the sake of
comparison, we take p̄ of order 1 in our rates.

5.2 Asynchronous Decentralized SGD on
Loss Networks

The previous considerations and the AGRAF SGD
rates hold as long as there is no communication de-
lay. The following question then arises: given a com-
munication graph G = (V, E) with communication de-
lays τ{v,w} and computation delays τv for v ∈ V and
{v, w} ∈ E , can we reverse-engineer and build commu-
nication/computation schemes that fit in the AGRAF
SGD framework and that do not break the communi-
cation and computation constraints? Can we analyze
such a scheme and prove that it mixes well (in the
sense that Assumption 2 holds, for explicit values of
ρ, kρ) ?

Overview of the Loss Network scheme. Start-
ing with Ik = {vk, wk} ∈ E , and communication
matrices Wk corresponding to an averaging along
the edge {vk, wk} as a baseline (i.e., Wk = IV −
(evk−ewk

)(evk−ewk
)⊤

2 where (ev) is the canonical basis
of RV) as a baseline, choosing a sequence Ik such that
there is no induced communication delays becomes
tricky. While assuming that {vk, wk} is sampled inde-
pendently from the past with fixed probability [Lian
et al., 2017b] is amenable for the analysis (since then
Assumption 2 directly holds for kρ = 1), this can incur
communication delays if for instance the same node is
sampled in two consecutive updates.

To alleviate this issue, we remove the independence be-
tween sampled edges in the following way: we impose

that nodes that are already involved in a communi-
cation are tagged as busy, and that busy nodes can-
not be involved in new communications. Then once
a node finishes a computation, it can then choose a
new neighbor (who is not busy) to start communicat-
ing with. Doing so, the induced communication matri-
ces are no longer independent, as they follow a Markov
process. This scheme is inspired by Loss-Networks,
introduced in [Kelly, 1991] to model telecommunica-
tion networks, in which an edge in the graph models a
phone communication that can happen; since a phone
cannot make several calls in parallel, once involved in
a communication with some neighboring node it can-
not be called by another neighbor while it is busy; this
is exactly the same process we use, phone calls being
replaced by model communications.

How to schedule such a process ? If nodes start
a new communication right after they finish their last
one, the process can end up in deadlock and thus does
not mix at all: this is for instance the case on the cycle
or line graphs with an even number of nodes [Kelly,
1991]. We thus need to introduce some randomness
and some waiting times. We proceed as follows and use
exponential random waiting times as in Kelly [1991].

(i) Once a node v finishes a communication, it waits
a time Tv ∼ Exp(pv) (exponential random variable, of
intensity pv).

(ii) If v is still not busy after this waiting time, v
samples some neighboring node w ∼ v with probability
p{v,w}

pv
to communicate with, for

∑
w∼v p{v,w} = pv.

(iii) If w is busy, this procedure restarts at (i), else
both v and w become busy and can communicate.
Once they are busy, they cannot communicate with
other nodes. The communication between v and w
consists in averaging local values by setting xv, xw to
(xv + xw)/2. When this is done, they each perform
a local (eventually delayed) gradient step, and then
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become non-busy. Overall, the kth update reads:

xk+1
vk

=
xk
vk

+ xk
wk

2
− γ∇Fvk

(
xk−τ(vk,k)
vk

, ξk−τ(vk,k)
vk

)
,

(7)
and similarly at node wk. The procedure described
just above ((i)-(ii)-(iii)) to sample pairs of nodes
that iteratively perform computations and pairwise
communications can be instantiated locally, provided
nodes know when their neighbors in the graph are busy
— this can be relaxed by adding some “busy-checking”
operation. However, the key challenge here lies in that
the communication matrices (Wk)k⩾0 induced by the
updates Equation (7) are not independent, and analyz-
ing some form of ergodic mixing time becomes highly
non-trivial. Still, using the randomness introduced in
this procedure through the exponential waiting times
and the sampling of neighbors, we are able to prove
that Assumption 2 holds, for values of ρ, kρ that de-
pend on the physical delays.

Assumption 5 (Loss Network assumptions). There
exist τv, τ{v,w} ∈ R>0

4 for v ∈ V, {v, w} ∈ E > 0 such
that a communication between v and w takes a time
at most τ{v,w}, and computing a stochastic gradient at
node v takes a time at most τv.

Theorem 5. Under Assumption 5, assume that

p{v,w} = min
(

1
maxu∼v τ ′

{u,w}
, 1
2(max(dv,dw)−1)τ ′

{v,w}

)
,

where dv is the degree of node v and τ ′{v,w} = τ{v,w} +

max(τv, τw). Let Λ be the spectral gap (smallest non-
null eigenvalue of the weighted Laplacian) of the graph

G with weights λ{v,w} =
minu∼{v,w} p{v,w}

d
∑

e∈E pe
, {v, w} ∈ E,

where d is the max degree in the graph. Then, As-
sumption 2 is verified for ρ

kρ
= Õ(Λ).

Given a graph G with physical communication and
computation latencies

{
τv, τ{v,w}

}
(Assumption 5), we

are thus able to exhibit a communication scheme that
satisfies communication and computation constraints,
while still fitting in the framework of AGRAF SGD
under the assumptions used in our convergence rates.
Crucially, the mixing constant Λ explicitly depends on
the graph and the delays, through the smallest non-
null eigenvalue of the weighted graph Laplacian, with
explicit weights λ{v,w} on the edges. These weights de-
pend on local delays: having straggler nodes or edges
do not slow down communication or computations, if
there are fast edges/nodes that are dense enough in the
graph. To further highlight the importance of having
weights λ{v,w} that only depend on the local delays,
this can be put in perspective of Asynchronous SGD,
that is proved to depend only on the averaged com-
putation delay 1

n

∑
v∈V

1
τv

rather than the max delay
[Koloskova et al., 2022, Mishchenko et al., 2018]. For

4τv, τ{v,w} are physical continuous-time delays.

decentralized optimization over a given graph, depend-
ing on the averaged communication delays wouldn’t
make sense since all communication paths need to
be taken into account; hence, the counterpart to the
mean delay in the graph is a weighted Laplacian,
with weights on edge {v, w} that are function of lo-
cal delays, instead of a max delay which is the asyn-
chronous speedup [Even et al., 2021c]. Disclaimer.
The proof of Theorem 5 is adapted from that of Even
et al. [2021b], an unpublished work by a subset of the
authors.

Conclusion

We introduced a unifying framework for studying
asynchronous and decentralized algorithms; our anal-
ysis recovers and improves over that of previous asyn-
chronous decentralized SGD works, while being much
more general. The flexibility of our framework further-
more enables us to leverage an asynchronous speedup
under communication and computation delays, by the
introduction of Loss Networks and new analysis tools,
thus providing a non-trivial sampling scheme that
still satisfies the ergodic mixing property introduced
by Koloskova et al. [2020].

Aknowledgements. M.E. thanks Konstantin Mis-
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A Equivalence of two ergodic mixing assumptions

The following assumption is a consequence of Assumption 2: if Assumption 2 holds for some τ, ρ, then Assump-
tion 6 holds for ρ̄ = c ρ

τ where c is some numerical constant. In fact, as we prove in Proposition 1, they are both
equivalent, but the following proves to be easier to handle in the analysis.

Assumption 6. Wk1 = 1 and there exist ρ̄ such that we have ∀k, ℓ ∈ N and ∀x ∈ RV :

E

[∥∥∥∥W (k:k+ℓ)x− 1

n
11⊤x

∥∥∥∥2|Fk

]

⩽ 2(1− ρ̄)2ℓ
∥∥∥∥x− 1

n
11⊤x

∥∥∥∥2 .
(8)

Proposition 1. Assumptions 2 and 6 are equivalent, in the following sense.

1. If Assumption 2 holds for some ρ ∈ [0, 1] and for some kρ ∈ N∗, then Assumptions 6 holds for ρ̄ = c ρ
kρ
, for

c > 0 some numerical constant.

2. If Assumption 6 holds for some ρ̄ ∈ [0, 1], then Assumption 2 holds for any ρ ∈ (0, 1) and kρ =⌈
1
2 ln(2) ln(1−ρ)

ln(1−ρ̄)

⌉
(∝ ρ

ρ̄ for ρ, ρ̄ small).

Proof. We first prove 1. Assume that Assumption 2 holds for some ρ, kρ. If Assumption 2 holds for ρ it holds
for any ρ′ < ρ, so that we can assume without loss of generality that ρ ⩽ 1 −

√
2. Let k, ℓ ∈ N and x ∈ RV .

Using Assumption 2 ⌊ ℓ
kρ
⌋, we have that:

E

[∥∥∥∥W (k:k+ℓ)x− 1

n
11⊤x

∥∥∥∥2|W0, . . . ,Wk

]
⩽ (1− ρ)2⌊ℓ/kρ⌋

∥∥∥∥x− 1

n
11⊤x

∥∥∥∥2 .
Thus, (1 − ρ)2⌊ℓ/kρ⌋ ⩽ (1 − ρ)2(ℓ/kρ−1) ⩽ 1

(1−ρ)2 (1 − ρ)2ℓ/kρ . Then, 1
(1−ρ)2 ⩽ 2 and (1 − ρ)2ℓ/kρ ⩽ e−2ℓρ/kρ ⩽

(1− c ρ
kρ
)2ℓ for c ∈ (0, 1) some numerical constant (c = e−1

e ), since ρ
kρ

⩽ 1.

We now prove 2. Assume that Assumption 6 holds for ρ̄ > 0, and let ρ > 0. We have:

E

[∥∥∥∥W (k:k+ℓ)x− 1

n
11⊤x

∥∥∥∥2|W0, . . . ,Wk

]
⩽ (1− ρ)2

∥∥∥∥x− 1

n
11⊤x

∥∥∥∥2 ,
provided that ℓ satisfies:

2(1− ρ̄)2ℓ ⩽ (1− ρ)2 .

This is satisfied for:

ℓ ⩾
1
2 ln(2) ln(1− ρ)

ln(1− ρ̄)
,

and thus Assumption 5 holds for ρ and kρ =
⌈

1
2 ln(2) ln(1−ρ)

ln(1−ρ̄)

⌉
.
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B Preliminaries for our convergence rates

For k ⩾ 0, , and for any k ⩾ 0 and v ∈ V:

next(k, v) = inf {ℓ ⩾ k , v ∈ Iℓ} , prev(k, v) = sup {ℓ < k , v ∈ Iℓ} ∪ {0} , τ(k, v) = k − prev(k + 1, v) .

In other words, at a given iteration k, next(k, v) is the iteration at which the node v will finish computing its
current gradient, prev(k, v) is the iteration at which the node v started computing its current gradient, and
τ(k, v) is the current computational delay of node v at time k.

Let also x̄k = 1
n

∑
v∈V xk

v ∈ Rd and gk = (1v∈Ik
∇Fv(x

prev(k,v)
v , ξ

prev(k,v)
v ), so that xk+1 = Wkx

k − γgk.

B.1 Virtual iterate sequence to handle delays

As in Mishchenko et al. [2022], the delay analysis relies on the study of a virtual sequence. Noticing that

x̄k+1 = x̄k − γ
n

∑
v∈Ik

g
t−τ(k,v)
v and mimicking the analysis of asynchronous SGD, we introduce the sequence{

x̂k, k ⩾ 1
}
that lives in Rd, defined through the following recursion:

x̂k+1 = x̂k − γ

n

∑
v∈Ik

gkv , x̂1 = x̄0 −
γ

n

∑
v∈V

g0v .

We then have, for all k ⩾ 1:

x̂k − x̄k = −γ

n

∑
v∈V\Ik

gprev(k,v) .

The difference
∥∥x̂k − x̄k

∥∥ can thus be easily bounded.

Lemma 1 (Virtual iterates control). If stochastic gradients are bounded by a constant B > 0, we have:∥∥x̂k − x̄k
∥∥ ⩽ γB . (9)

In the general case,

E
[∥∥x̂k − x̄k

∥∥2] ⩽ 2γ2

n

(
σ2 +

∑
v∈V

E
[∥∥∥∇fv(xprev(v,k)

v )
∥∥∥2]) . (10)

Proof. Equation (9) is proved using a triangle inequality, while Equation (10) is a direct application of [Stich
and Karimireddy, 2019, Lemma 15].

B.2 Consensus control

Lemma 2 (Consensus control). We have:∑
k<K

E
∥∥xk − x̄k

∥∥2 ⩽ 2γ2σ2ρ̄−1
∑
k<K

|Ik|+
4γ2

ρ̄2

∑
k<K

∑
v∈Ik

E
[∥∥∥∇fv(xk−τ(k,v)

v )
∥∥∥2] (11)

⩽ 2γ2σ2ρ̄−1
∑
k<K

|Ik|+
4γ2

ρ̄2

∑
k<K

∑
v∈Ik

E
[∥∥∇fv(xk

v)
∥∥2] . (12)

If the stochastic gradients are bounded by some B > 0,∑
k<K

E
∥∥xk − x̄k

∥∥2 ⩽
2γ2B2

ρ̄2

∑
k<K

|Ik| . (13)

Proof. Under Assumption 2, we can bound the variations of xk− x̄k (here, x̄k = 11⊤xk). Using Cauchy-Schwarz
inequality, for am > 0 scalars and bm ∈ Rp vectors, we have:∥∥∥∥∥∑

m

bm

∥∥∥∥∥
2

⩽

(∑
m

a−1
m

)(∑
m

am∥bm∥2
)

.
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We now apply this to xk − x̄k = −γ
∑k

m=0 W
(m:k)(g̃m −¯̃gm) to obtain:

E
∥∥xk − x̄k

∥∥2 = E

∥∥∥∥∥γ
k∑

m=0

W (m:k)(g̃m −¯̃gm)

∥∥∥∥∥
2


⩽ γ2
k∑

m′=0

(1− ρ̄)k−m′
k∑

m=0

(1− ρ̄)−(k−m)E
[∥∥∥W (m:k)(g̃m −¯̃gm)

∥∥∥2]

⩽ 2γ2 1

ρ̄

k∑
m=0

(1− ρ̄)k−mE
[
∥g̃m∥2

]

leading to, if stochastic gradients are bounded by B:

E
∥∥xk − x̄k

∥∥2 ⩽
2γ2B2

ρ̄

∑
ℓ<k

(1− ρ̄)k−ℓ|Iℓ| ,

and thus: ∑
k<K

E
∥∥xk − x̄k

∥∥2 ⩽
2γ2B2

ρ̄2

∑
k<K

|Ik| .

We also have, using a bias-variance decomposition (not exactly, since the gm are not independent, but using the
martingale version as in [Stich and Karimireddy, 2021, Lemma 15]):

E
∥∥xk − x̄k

∥∥2 = E

∥∥∥∥∥γ
k∑

m=0

W (m:k)(g̃m−τ(m) −¯̃gm)

∥∥∥∥∥
2


⩽ 2γ2σ2
∑
ℓ<k

(1− ρ̄)k−ℓ|Iℓ|+
4γ2

ρ̄

k∑
m=0

(1− ρ̄)k−m
∑
v∈Im

E
[∥∥∥∇fv(x(m−τ(m,v))

v )
∥∥∥2] ,

so that: ∑
k<K

E
∥∥xk − x̄k

∥∥2 ⩽ 2γ2σ2ρ̄−1
∑
k<K

|Ik|+
4γ2

ρ̄2

∑
k<K

∑
v∈Ik

E
[∥∥∥∇fv(xk−τ(k,v)

v )
∥∥∥2] .

C Loss Networks analysis

Disclaimer. This proof is adapted from that of Even et al. [2021b], an unpublished work by a subset of the
authors.

In this section, we prove Theorem 5 and provide some more information on loss networks. The updates of
decentralized SGD on loss networks write as:

xk+1
vk

=
xk
vk

+ xk
wk

2
− γ∇Fvk

(
xk−τ(vk,k)
vk

, ξk−τ(vk,k)
vk

)
xk+1
wk

=
xk
vk

+ xk
wk

2
− γ∇Fwk

(
xk−τ(wk,k)
wk

, ξk−τ(wk,k)
wk

) , (14)

leading to xk+1 = Wkx
k − γgk, for Wk = W{vk,wk} = IV −

(evk−ew−k)(evk−ew−k)
⊤

2 , and gk the corresponding
delayed gradients. Note then that this takes the same form as the AGRAF SGD sequence.

Definition 1 (Poisson point process (P.p.p.)). A Poisson point process of intensity p > 0 is a random
discrete subset P of R⩾0 that can be written as P = {T0 < T1 < . . . < Tk < . . .}, where (Tk − Tk−1)k⩾1 are i.i.d.
exponential random variables of mean 1

p .
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Boyd et al. [2006] consider a model (without any delay) for gossip algorithms, where updates are that of Equa-
tion (14) without the gradient steps, and these updates happen at the times of Poisson point processes (a
P.p.p. of intensity p{v,w} for an update along {v, w}). Consequently, Wk is independent from the past, and

P
(
Wk = W{v,w}

)
∝ p{v,w}.

The P.p.p. model considered in Boyd et al. [2006] where the updates are performed at the times of Poisson point
processes is particularly amenable to analysis, but it assumes that communications and computations are done
instantaneously. Thus, actual implementations differ from its underlying assumptions, unless further synchrony is
assumed. To alleviate this issue, with pairwise communications ruled by point processes as a baseline, we consider
a protocol in which nodes are tagged as busy when they are already engaged in an update, and communications
between busy nodes are forbidden. Our model is inspired from classical Loss Network models [Kelly, 1991],
in which edges are activated following the same procedure as in the P.p.p. model, with a P.p.p. of intensity
p{v,w}. Note that we do not consider these intensities to be constraints of the problem, but rather parameters

of the algorithm, that can be tuned. Each node has an exponential clock of intensity pv
1
2

∑
w∼v p{v,w}. At each

clock-ticking, if v is not busy, it selects a neighbor w with probability p{v,w}/
∑

u∼v p{u,v}. If w is not busy, v
and w compute and exchange information, becoming busy for a duration τ ′{v,w}. We can think of this procedure
as classical gossip on an underlying random graph that follows a Markov-Chain process. The difference between
our communication model on Loss Networks and the P.p.p. model lies in that in our case, Wk is not independent
on the past. In fact, we have:

P ({vk, wk} = {v, w}|Fk) =
1{v,w not busy at time Tk}p{v,w}∑

{u,u′}∈E 1{u,u′ not busy at time Tk}p{u,u′}
,

leading to complicated intricacies between the matrices (Wk)k, that we need to handle.

Proving Theorem 5 requires to show that there exist ρ, kρ (that need to be computed) such that for any k ⩾ 0,
x ∈ RV ,

E
[∥∥∥W{vk+kρ−1,wk+kρ−1} · . . . ·W{vk,wk}(x− x̄)

∥∥∥2|Fk

]
⩽ (1− ρ)2∥x− x̄∥2 .

Our proof of Theorem 5 follows three main steps: i) Deriving convergence results for more general communication
schemes than loss networks, under deterministic assumptions on the activations. ii) Adapting Step i) to stochastic
assumptions on the delays. iii) Deriving high-probability upper-bounds on the delays between two activations
in loss networks in order to fall under the assumptions of Step i).

C.1 Descent lemma under deterministic assumptions on the activations

We consider general activation processes P{v,w}, where we define P{v,w} as P{v,w} = {Tk : {vk, wk} = {v, w}},
and these times are called activation times of edge {v,w}. When edge {v, w} is activated, the update
described in (14) is performed. The delay of an edge is defined as its (random) waiting time between two
activations. Two ergodicity-like conditions on the delays are needed: (i) edges activated regularly enough and
(ii) incident edges must not be activated too many times.

We now formally introduce these assumptions. We consider discrete time in this section: more precisely, k ∈ N
stands for the k-th edge activation.

Definition 2. Consider a communication scheme with edge-activation point processes P{v,w}. Let k = 0, 1, 2, ...
index the consecutive edge activations. Let ℓ ∈ N, {v, w} and {u, u′} ∈ E. Let k{v,w} < ℓ{v,w} such that k{v,w} ⩽
k < ℓ{v,w} be consecutive activation times (in discrete time) of {v, w}. Denote T{v,w}(k) = ℓ{v,w}−k{v,w}−1 the
total number of edge activations between the two consecutive activations of {v, w}. Denote N({u, u′}, {v, w}, k)
the number of activations of edge {v, w} in the activations {s{v,w}, s{v,w} + 1, ..., t{v,w} − 1}.
Assumption 7 (Delay Assumptions). There exist T ∈ N∗, a, b > 0, and ℓ{v,w} > 0, {v, w} ∈ E such that, for
the quantities and the communication scheme in Definition 2:

1. For all k ∈ N, all edges are activated between iterations k and k + T − 1.

2. ∀k ⩾ 0,∀({v, w}) ∈ E, T{v,w}(k) ⩽ aℓ{v,w}: ({v, w}) is activated at least every aℓ{v,w} activations.

3. ∀k ⩾ 0,∀({v, w}), ({u, u′}) ∈ E such that ({u, u′}) ∼ ({v, w}), N({u, u′}, {v, w}, k) ⩽ ⌈ bℓ{v,w}
ℓ{u,u′}

⌉.
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Assumption (1) is implied by Assumption (2) if T = max({v,w}) ℓ{v,w}. Taking ℓ{v,w} as a deterministic upper-
bound on the delays of edge ({v, w}) between two activations in continuous time is sufficient to have Assumption
(2) and (3), with some normalizing constant a, and b such that ℓ{v,w}/b is a lower-bound on these delays.

The main technical difficulty lies in the fact that at a defined activation time t, some nodes are not available:
at any time k ⩾ 0,

∑
({v,w})∈E not busy Wk usually differs from

∑
{v,w} p{v,w}W{v,w} (and

∑
({v,w})∈E not busy Wk

may have a null spectral gap) as in Markov-Chain Gradient Descent [Even, 2023], thus making an analysis such
as in the P.p.p. model impossible. To alleviate this difficulty, in order to make sure that all edges are taken
into account when performing the averaging, the Lyapunov function Λk that we study considers the value of the
objective for T consecutive activation times. It is defined as follows:

∀k ∈ N,Λk(x) =
1

T

k+T−1∑
ℓ=k

∥∥∥W (0,ℓ)(x− x̄)
∥∥∥2 , x ∈ RV .

The first step of the proof of Theorem 5 consists in proving the following.

Theorem 6. Consider a general communication scheme as in Definition 2, that satisfies Assumption 7 for
constants ℓ{v,w}, a, b > 0,. Let γ be the smallest positive eigenvalue of the Laplacian of the graph G with weights:

ν{v,w} = Cℓ−1
{v,w} min

{u,u′}∼{v,w}

ℓ{u,u′}

ℓ{v,w}
, {v, w} ∈ E ,

where C = 1
2a+8d2

maxab
. Then we have, for all k, ℓ ∈ N:

Λk+ℓ(x) ⩽ (1− γ)
ℓ
Λk(x) .

Proof. We fix x ∈ RV , k, ℓ. To prove this intermediate theorem, we need to study every matrix multiplication
involved. At iteration k, not every coordinates is available, hence the need to study the impact of T multiplications
together.

A gradient step alongside edge {v, w} only involves edges in its neighborhood (thanks to the sparsity of the
matrix A), a key element that will need to be explicited. The proof involves three main steps.

Before that, we need to introduce edge dual variables. Matrix multiplications by matrices like W{v,w} aim at

minimizing the function F (y) = 1
2

∑
v∈V(yv − xv)

2, which is minimized at y = x̄. A standard way to deal with
the constraint x1 = ... = xn, is to use a dual formulation, by introducing a dual variable λ ∈ RE indexed by
the edges. We first introduce a matrix A ∈ RV×E such that Ker(A⊤) = Vect(I) where I is the constant vector
(1, ..., 1)⊤. A is chosen such that:

∀{v, w} ∈ E,Ae{v,w} = µ{v,w}(ev − ew). (15)

for some non-null constants µ{v,w}. We define µ{v,w} = −µ{v,w} for this writing to be consistent. This matrix
A is a square root of the laplacian of the graph weighted by ν{v,w} = µ2

{v,w}. The constraint x1 = ... = xn can

then be written A⊤x = 0. The dual problem reads as follows:

min
y∈RV ,A⊤y=0

F (y) = min
y∈RV

max
λ∈RE

F (y)− ⟨A⊤y, λ⟩.

Let F ∗
A(λ) := F ∗(Aλ) = FA(λ) for λ ∈ RE×d where F ∗ is the Fenchel conjugate of F . Now, notice that for our

particular form of F , we in fact have F ∗ = F . The dual problem reads

min
y∈RV ,y1=...=yn

F (y) = max
λ∈RE

−FA(λ).

Thus F ∗
A(λ) is to be minimized over the dual variable λ ∈ RE .

We now make a parallel between pairwise operations between adjacent nodes in the network and coordinate
gradient steps on F ∗

A. As F ∗
A(λ) = maxy∈RV −F (y) + ⟨Aλ,y⟩, to any λ ∈ RE a primal variable y ∈ RV is
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uniquely associated through the formula ∇F (y) = Aλ. The partial derivative of F ∗
A with respect to coordinate

{v, w} ∈ E of λ reads :

∇{v,w}F
∗
A(λ) = (Ae{v,w})

⊤∇F ∗(Aλ) = µ{v,w}(∇g∗v((Aλ)v)−∇g∗w((Aλ)w)) ,

where we denote gv(y) :
1
2 (y − xv)

2. Consider then the following step of coordinate gradient descent for F ∗
A on

coordinate {v, w} of λ, performed when edge {v, w} is activated at iteration k (corresponding to time Tk), and
where U{v,w} = e{v,w}e

⊤
{v,w}:

λk+1 = λk+1 −
1

µ2
{v,w}

U{v,w}∇{v,w}F
∗
A(λk). (16)

Denoting yk = Aλk ∈ RV , we obtain the following formula for updating coordinates v and w of y when {v, w}
activated:

yv,k+1 = yv,k −
1

2
(yvk − ywk

) =
1

2
(yvk

ywk
) = yw,k+1 . (17)

Thus, yk+1 = Wky
k is equivalent to λk+1 = λk− 1

2µ2

{vk,wk}
∇{vk,wk}F

∗
A(λk), which is easier to study. Also, notice

that this is the consensus distance exctly: F ∗
A(λ) = F (y) for y = Aλ.

Hence, Λk(x) = F (yk) = F ∗
A(λk) here yk = Aλk is obtained with the recursion λk+1 = λk −

1
2µ2

{vk,wk}
∇{vk,wk}F

∗
A(λ

k), with initialisation y0 = x: we thus study this sequence.

Step 1: First, notice that F ∗
A is µ2

{v,w}-smooth along every coordinate {v, w}, so that using local smoothness,

for all {v, w} ∈ E and λ ∈ RE , for γ ⩽ 1
2µ2

{vk,wk}
, we have:

F ∗
A(λ−∇{v,w}F

∗
A(λ))− F ∗

A(λ) ⩽
1

4µ2
{v,w}

∥∥∇{v,w}F
∗
A(λ)

∥∥2 . (18)

Applying Equation (18), where {vℓ, wℓ} is the ℓth activated edge:

F ∗
A(λ

ℓ+1)− F ∗
A(λ

ℓ) ⩽ − 1

4µ2
{vℓ,wℓ}

∥∇{vℓ,wℓ}F
∗
A(λ

ℓ)∥2 . (19)

Hence, summing:

Λk+1 ⩽ Λk −
1

T

∑
k⩽ℓ<k+T

1

4µ2
{vℓ,wℓ}

∥∇{vℓ,wℓ}F
∗
A(λ

ℓ)∥2 , (20)

Notice that:
1

T

∑
k⩽ℓ<k+T

∑
{v,w}∈E

∥∇{v,w}F
∗
A(λ

ℓ)∥2 =
1

T

∑
k⩽ℓ<k+T

∥∇F ∗
A(λ

ℓ)∥2 ⩾ σAΛt (21)

σA is the strong convexity parameter of F ∗
A which is equal tolower bounded by λ+

min(A
TA), which itself is exactly

the smallest positive non-null eigenvalue of the graph Laplacian with weights µ2
{v,w}. Hence, if an inequality of

the type
C

T

1

T

∑
k⩽ℓ<k+T

∑
{v,w}∈E

∥∇{v,w}F
∗
A(λ

ℓ)∥2 ⩽
1

4µ2
{vℓ,wℓ}

∥∇{vℓ,wℓ}F
∗
A(λ

ℓ)∥2 (22)

holds, we have using strong convexity:

Λk+1 ⩽ Λk −
C

T

∑
k⩽ℓ<k+T

∥∇F ∗
A(λ

ℓ)∥2 ⩽ (1− CσA)Λk . (23)

We thus need to tune correctly the µ2
{v,w} and C in order to have (22) verified.

Step 2: We are looking for necessary conditions for (22) to hold. In the left term, every coordinate is present
at each time ℓ. However, in the right hand side of the inequality, just the activated one is present. We will need
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to compensate this with a bigger factor in front of the gradients. In order to compare these quantities, we need
to introduce upper bound inequalities on ∥∇{v,w}F

∗
A(λ(s))∥2, that only make activated coordinates intervene.

Let s ∈ {t, ..., t + T − 1}, and suppose that there exists t ⩽ r ⩽ s < r + t{v,w} ⩽ t + T − 1 such that {v, w} is
activated at times r and r + t{v,w}. Thanks to the asumption on T , either one of these integers exists. If the
other one doesn’t, replace it with t for r, and by t + T − 1 for r + t{v,w}. Thanks to our asumptions, we know
that t{v,w} ⩽ aℓ{v,w}. We have the following basic inequalities:

∥∇{v,w}F
∗
A(λ(s))∥2 ⩽ (∥∇{v,w}F

∗
A(λ(r))∥+ ∥∇{v,w}F

∗
A(λ(s))−∇{v,w}F

∗
A(λ(r))∥)2 (24)

⩽ 2(∥∇{v,w}F
∗
A(λ(r))∥2 + ∥∇{v,w}F

∗
A(λ(s))−∇{v,w}F

∗
A(λ(r))∥2). (25)

The quantity ∥∇{v,w}F
∗
A(λ(s))−∇{v,w}F

∗
A(λ(r))∥2 then needs to be controlled. We use the following lemma.

Lemma 3. For λ, λ′ ∈ RE , and {v, w} ∈ E, we have:

∥∇{v,w}F
∗
A(λ)−∇{v,w}F

∗
A(λ

′)∥2 ⩽ 8d{v,w}µ
2
{v,w}

∑
({u,u′})∼({v,w})

µ2
{u,u′}∥λ{u,u′} − λ′

{u,u′}∥
2. (26)

Proof. First, notice that ∇{v,w}F
∗
A(λ) = µ{v,w}(∇g∗i ((Aλ)v)−∇g∗j ((Aλ)w)). Then:

∥∇f∗
v ((Aλ)v)−∇f∗

v ((Aλ′)w)∥ = ∥(A(λ− λ′))v∥ (smoothness)

= ∥
∑

{u,u′}∼{v,w}

µ{u,u′}(λ− λ′){u,u′}∥

⩽
∑

{u,u′}∼{v,w}

µ{u,u′}∥(x− x′){u,u′}∥

Conclude by taking the square and summing for v and w.

Using this with λ = λ(s) and λ′ = λ(r):

∥∇{v,w}F
∗
A(λ(s))∥2 ⩽ 2∥∇{v,w}F

∗
A(λ(r))∥2 (27)

+ 2d{v,w}
∑

r<k<r+t{v,w}

N(({vk, wk}), {v, w}, k)
µ2
{v,w}

2µ2
{vk,wk}

∥∇{vk,wk}F
∗
A(λ(k))∥2 (28)

⩽ 2∥∇{v,w}F
∗
A(λ(r))∥2 (29)

+ 2d{v,w}
∑

r<k<r+t{v,w}

⌈
b

ℓ{v,w}

L{vk,wk}

⌉
µ2
{v,w}

µ2
{vk,wk}

∥∇{vk,wk}F
∗
A(λ(k))∥2 (30)

The advantage of this last expression is that only activated quantities are present on the right hand side.

Step 3: The last step of the proof consists in summing the last inequality for t ⩽ ℓ < t + T , {v, w} ∈ E.
When summing, each ∥∇{vk,wk}F

∗
A(λ(k))∥2 appears on the right hand-side of the inequality, with a factor upper-

bounded by (here instead of {vk, wk} we write ({v, w})):

2aℓ{v,w} + 2d{v,w}
∑

{u,u′}∼{v,w}

aℓ{u,u′}

⌈
bℓ{u,u′}

ℓ{v,w}

⌉
µ2
{u,u′}

µ2
{v,w}

. (31)

We want the expression above multiplied by C defined in Step 1 to be upper-bounded by 1
4µ2

{v,w}
, in order for

(22) to be verified. This is possible if and only if:

C

4aℓ{v,w}µ
2
{v,w} + 4d{v,w}

∑
{u,u′}∼{v,w}

a

⌈
bℓ{u,u′}

ℓ{v,w}

⌉
ℓ{u,u′}µ

2
{u,u′}

 ⩽
1

2
, (32)
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where C is defined in step 1 of the proof. This is equivalent to:

C

aℓ{v,w}µ
2
{v,w} + d{v,w}

∑
{u,u′}∼{v,w}

a
bℓ2{u,u′}

ℓ{v,w}
µ2
{u,u′}

 ⩽
1

8

if ∀{u, u′} ∼ {v, w}, ℓ{v,w} ⩽ bℓ{u,u′},

where we bounded
⌈
b
ℓ{v,w}
ℓ{u,u′}

⌉
by 2

bℓ{v,w}
ℓ{u,u′}

here. We here see that in this case, if

µ2
{v,w} =

1

2ℓ{v,w}
× min

{u,u′}∼{v,w}

ℓ{u,u′}

ℓ{v,w}
(33)

with 8a+ 8d2maxb ⩽ C−1, our inequality holds. However, our inequality on the ceil operator seems not to work
in the general case. Let’s take {u, u′} a neighbor of {v, w} such that ℓ{v,w} > bℓ{u,u′}. As ℓ{v,w} > bℓ{u,u′},

we have ⌈ bℓ{u,u′}
ℓ{v,w}

⌉ = 1, leading to a⌈ bℓ{u,u′}
ℓ{v,w}

⌉ℓ{u,u′}µ
2
{u,u′} = aℓ{u,u′}µ

2
{u,u′} ⩽ a ⩽ ab. Hence, our result still holds.

Conclusion: We have our result for C = 1
2a+8d2

maxab
and a laplacian weighted with local communication

constraints: µ2
{v,w} = 1

2ℓ{v,w}
×min{u,u′}∼{v,w}

ℓ{u,u′}
ℓ{v,w}

. The final rate thus depends on the smallest eigenvalue of

the laplacian weighted by:
1

2a+ 8d2maxab

1

Lmax

1

2ℓ{v,w}
× min

{u,u′}∼{v,w}

ℓ{u,u′}

ℓ{v,w}
. (34)

This ends the proof of Theorem 6.

C.2 Adding stochasticity

We now prove the following result.

Theorem 7 (Adding Stochasticity ). Assume that, for all k ∈ N, there exists a Fk+T−1-measurable event Ak,
such that P(Ak|Fk) ⩾ 1

2 almost surely, and that under Ak, Assumption 7 holds for all k ⩽ ℓ ⩽ k+ T − 1. Then,
we have the following bound on Λk(x):

E[Λk(x)] ⩽

(
1

4
(1− γ)T/3 +

3

4

)⌈ k
2T ⌉

E[Λ0] ,

where γ is defined in Theorem 6.

Proof. Using the same arguments as in the proof of Theorem 6, we obtain:

E[Λt+1 − Λt|Ft, At] ⩽ −σΛt. (35)

However, this is not enough to conclude. Under AC
t , we only know that Λt+1 ⩽ Λt (our local coordinate gradient

steps cannot increase distance to the optimum). Hence:

E[Λt+1|Ft] ⩽ (1− σIAt)Λt. (36)

And then, by induction:

E[Λt] ⩽ E[PtΛ0], where Pt =

t−1∏
s=0

(1− σIAs
). (37)

However, no direct bound on Pt exists. The interdependencies on the events At make it impossible for an
induction to prove a bound of the form ⩽ (1 − σ/2)t. However, the logarithm of the product seems easier to
study:

log(Pt) = log(1− σ)

t−1∑
s=0

IAs
, (38)
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giving us E log(Pt) ⩽ log(1 − σ)t/2, as P(At) ⩾ 1/2. We are thus going to make a study in probability. For

t ∈ N, let Xt =
1
T

∑t+T−1
s=t IAs

. Using Markov-type inequalities conditionnaly on Ft gives:

P(Xt ⩾ 1/3|Ft) + 1/3P(Xt ⩽ 1/3|Ft) ⩾ E[Xt|Ft] ⩾ 1/2 =⇒ P(Xt ⩾ 1/3|Ft) ⩾ 1/4. (39)

Thus, we have: E[
∏t+T−1

s=t (1− IAs
σ)|Ft] ⩽ 1

4 (1− σ)T/3 + 3
4 . We then know how to control T consecutive factors

of the product Pt. Skipping the next T terms, we have:

E

[
t+3T−1∏

s=t

(1− IAs
σ)

]
= E

[
t+T−1∏
s=t

(1− IAs
σ)

t+2T−1∏
s=t+T

(1− IAs
σ)

t+3T−1∏
s=t+2T

(1− IAs
σ)

]
(40)

⩽ E

[
t+T−1∏
s=t

(1− IAs
σ)

t+3T−1∏
s=t+2T

(1− IAs
σ)

]
(41)

⩽ E

[
t+T−1∏
s=t

(1− IAs
σ)EFt+2T

{
t+3T−1∏
s=t+2T

(1− IAs
σ)

}]
(42)

as in the last right hand side, the first big product is Ft+2T -measurable (our asumption on the As states that

they are Fs+T−1-measurable). Then, using inequality E
[∏t+T−1

s=t (1− IAs
σ)|Ft

]
⩽ 1

4 (1 − σ)T/3 + 3
4 twice, with

t and t+ 2T , we get:

E

[
t+3T−1∏

s=t

(1− IAsσ)

]
⩽ E

[
t+T−1∏
s=t

(1− IAsσ)

(
1

4
(1− σ)T/3 +

3

4

)]

⩽

(
1

4
(1− σ)T/3 +

3

4

)2

.

Proceeding the same way by induction leads us to:

E[Pt] ⩽

(
1

4
(1− σ)T/3 +

3

4

)⌊t/(2T )⌋

, (43)

which is the desired bound.

From the proof, we thus have the following corollary.

Corollary 1. Assume that, for all k ∈ N, there exists a Fk+T−1-measurable event Ak, such that P(Ak|Fk) ⩾ 1
2

almost surely, and that under Ak, Assumption 7 holds for all k ⩽ ℓ ⩽ k + T − 1. Then, we have the following
bound on Λk(x), for any k ⩾ 0:

E [Λk+2T (x)|Fk] ⩽

(
1

4
(1− γ)T/3 +

3

4

)
E[Λk(x)|Fk] .

where γ is defined in Theorem 6.

C.3 Expliciting the constants in the loss networks model we consider

We now need to compute and tune the constants introduced in Theorem 6 for the assumptions of Theorem 7 to
hold in our Loss Network model. We begin by the following lemma, inspired by queuing theory arguments, that
upper bound the probability that an edge stays inactivated for a long period of time.

Note that we here come back to continuous time, to study the loss network model. What is important to keep
in mind is that an edge cannot be occupied for a time longer than τ ′{v,w}.

Lemma 4. Let δ ∈ (0, 1). For any t0 ⩾ 0, {v, w} ∈ E, if the Poisson intensities are such that p{v,w} =
1

2max(di,dj)−1 (τ
′
{v,w})

−1 and τ ′max({v, w}) = max{u,u′}∼{v,w} τ
′
{u,u′}, let:

ℓ{v,w} =
log(δ−1)

log(1− (1− e−1)e−1)
(p−1

{v,w} + τ ′max({v, w})) .

We have:
P({v, w} not activated in [t0, t0 + ℓ{v,w}]|Ft0) ⩽ δ. (44)
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Proof of Lemma 4. Let {v, w} ∈ E and t0 ⩾ 0 fixed. We use tools from queuing theory [Tanner, 1995,
M/M/∞/∞ queues] in order to compute the probability that edge {v, w} is activable at a time t or not. More
formally, we define a process N{v,w}(t) with values in N, such that N{v,w}(t0) = 1 if {v, w} non-available at time
t0 and 0 otherwise. Then, when an edge {u, u′} such that {u, u′} ∼ {v, w} is activated, we make an increment of 1
on N{v,w}(t) (a customer arrives). This customer stays for a time τ ′{u,u′} and when he leaves, N{v,w} is decreased

by 1. Thus N{v,w} ⩾ 0 a.s., and if N{v,w} = 0, then edge {v, w} is available. For t ⩾ max{u,u′}∼{v,w} τ
′
{u,u′} + t0,

N{v,w}(t) follows a Poisson law of parameter
∑

{u,u′}∼{v,w} p{u,u′}τ
′
{u,u′}. For any t ⩾ max{u,u′}∼{v,w} τ

′
{u,u′}+t0:

P({v, w} available at time t|Ft0) ⩾ P(Ni(t) = 0) = exp(−
∑

{u,u′}∼{v,w}

p{u,u′}τ
′
{u,u′}).

That leads to taking p{u,u′} = 1
2

1
max(dk,dl)−1 (τ

′
{u,u′})

−1 for all edges, in order to have

P({v, w} available at time t|Ft0) ⩾ 1/e.

Then, P({v, w} rings in [t, t+ p−1
{v,w}]) = 1− e−1, giving:

P({v, w} activated in [t0, t0 + τ ′max({v, w}) + p−1
{v,w}]|Ft0) = P({v, w} rings in [t, t+ p−1

{v,w}])

× P({v, w} available at time t|Ft0 , {v, w} rings at a time t ∈ [t0 + τ ′max({v, w}), t0 + τ ′max({v, w}) + p−1
{v,w}])

⩾ (1− e−1)e−1,

where we use the memoriless property of exponential random variables. Take k ∈ N such that (1−(1−e−1)e−1)k ⩽
δ, leading to k = log(6|E|)/ log(1− (1− e−1)e−1). Let

ℓ{v,w} = k(p−1
{v,w} + τ ′max({v, w})).

Then we have a.s.:

P({v, w} not activated in [t0, t0 + ℓ{v,w}]|Ft0) ⩽ δ. (45)

Let t ∈ N be fixed, and Bt be the event: ”in the activations t, t+1, ..., t+T −1, all edges are activated”. Let then
Ct({v, w}, s) for t ⩽ s < t + T be the event min(T{v,w}(s), t + T − s, s − t) ⩽ aℓ{v,w} and Dt({u, u′}, {v, w}, s)
be the event N({u, u′}, {v, w}, s) ⩽ ⌈bℓ{v,w}/ℓ{u,u′}⌉, where N({u, u′}, {v, w}, s) is the number of activations of
{u, u′} between two activations of {v, w}, around time s, where we only take into account the activations between
activations t and t+ T − 1. Let then At = Bt ∩ (∩{u,u′},{v,w}∈E,t⩽s<t+TCt({v, w}, s) ∩Dt({u, u′}, {v, w}, s)).

We want P(At) ⩾ 1/2 for correct constants a, b, T and ℓ{v,w} (that can differ from τ ′{v,w}) in order to
apply Theorems 6 and 7. Note that this event is Ft+T−1-measurable, as desired. We first study the
length of time ℓ{v,w} edge {v, w} must wait in order to be activated with high probability (high meaning more

that 1− 1
12|E| ). This result is Lemma 4. Then, we use this length to determine the constants T, a, b, ℓ{v,w} needed.

Lemma 5. For any continuous time t0 ⩾ 0, {v, w} ∈ E, if p{v,w} = 1
2max(di,dj)−1 (τ

′
{v,w})

−1 and τ ′max({v, w}) =
max{u,u′}∼{v,w} τ

′
{u,u′}, let ℓ{v,w} = log(6|E|)

log(1−(1−e−1)e−1) (p
−1
{v,w} + τ ′max({v, w})). We have, almost surely:

P({v, w} not activated in [t0, t0 + ℓ{v,w}]|Ft0) ⩽
1

6|E|
. (46)

Proof of Lemma 4. Let {v, w} ∈ E and t0 ⩾ 0 fixed. We use tools from queuing theory [Tanner, 1995]
(M/M/∞/∞ queues) in order to compute the probability that edge {v, w} is activable at a time t or not.
More formally, we define a process N{v,w}(t) with values in N, such that N{v,w}(t0) = 1 if {v, w} non-available
at time t0 and 0 otherwise. Then, when an edge {u, u′}, {u, u′} ∼ {v, w} is activated, we make an increment of
1 on N{v,w}(t) (a customer arrives). This customer stays for a time τ ′{u,u′} and when he leaves we make N{v,w}
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decrease by 1. We have N{v,w} ⩾ 0 a.s., and if N{v,w} = 0, {v, w} is available. For t ⩾ max{u,u′}∼{v,w} τ
′
{u,u′}+t0,

N{v,w}(t) follows a Poisson law of parameter
∑

{u,u′}∼{v,w} p{u,u′}τ
′
{u,u′}. For any t ⩾ max{u,u′}∼{v,w} τ

′
{u,u′}+t0:

P({v, w} available at time t|Ft0) ⩾ P(Ni(t) = 0) = exp(−
∑

{u,u′}∼{v,w}

p{u,u′}τ
′
{u,u′}). (47)

That leads to taking p{u,u′} = 1
2

1
max(dk,dl)−1 (τ

′
{u,u′})

−1 for all edges, in order to have

P({v, w} available at time t|Ft0) ⩾ 1/e. Then, P({v, w} rings in [t, t+ p−1
{v,w}]) = 1− e−1, giving:

P({v, w} activated in [t0, t0 + τ ′max({v, w}) + p−1
{v,w}]|Ft0) = P({v, w} rings in [t, t+ p−1

{v,w}]) (48)

× P({v, w} available at time t|Ft0 , {v, w} rings at a time (49)

t ∈ [t0 + τ ′max({v, w}), t0 + τ ′max({v, w}) + p−1
{v,w}]) (50)

⩾ (1− e−1)e−1, (51)

where we use the fact that exponential random variables have no memory. Take k ∈ N such that (1 − (1 −
e−1)e−1)k ⩽ 1

6|E| , leading to k ≈ log(6|E|)/ log(1− (1− e−1)e−1). Let ℓ{v,w} = k(p−1
{v,w} + τ ′max({v, w})). Then

we have a.s.:

P({v, w} not activated in [t0, t0 + ℓ{v,w}]|Ft0) ⩽
1

6|E|
. (52)

Bounding T : A direct application of Lemma 4 leads, with L = max{v,w} ℓ{v,w}, to:

T = 2
∑
{v,w}

L

τ ′{v,w}
. (53)

Indeed, for all {v, w}, not being activated in activations t, t + 1, ..., t + T − 1 means not being activated for a
continuous interval of time of length more than ℓ{v,w}. Hence:

P(∃({v, w}) ∈ E : ({v, w}) not activated in {t, ..., t+ T − 1}|Ft) (54)

⩽
∑

{v,w}∈E

P(({v, w}) not activated in {t, ..., t+ T − 1}|Ft) (55)

⩽
∑

{v,w}∈E

P(({v, w}) not activated in [t, t+ ℓ{v,w}]|Ft) (56)

⩽ |E| × 1

6|E|
(57)

= 1/6. (58)

Bounding T{v,w}: Applying Lemma 4 with 12|E|T instead of 6|E| leads to controlling all the inactivation lengths
by a length ℓ′{v,w}, with a probability more than 1 − 1/(12|E|T ). Let {v, w} ∈ E and s ∈ N, t ⩽ s < t + T .

Let α > 0 to tune later. Denote by δ{v,w}(s) the (random) inactivation time of {v, w}, around iteration s. Note
that conditionnaly on the inactivation period δ{v,w}(s), T{v,w}(s) is dominated in law by a Poisson variable of
parameter Iδ{v,w}(s), hence line (60):

P(T{v,w}(s) ⩾ αℓ′{v,w}|Ft) ⩽ P(T{v,w}(s) ⩾ αℓ′{v,w}|Ft, δ{v,w} ⩽ ℓ′{v,w})× P(δ{v,w} ⩽ ℓ′{v,w}) + P(δ{v,w} ⩾ ℓ′{v,w})

(59)

⩽ P(Poisson(Iℓ′{v,w}) ⩾ αℓ′{v,w}) +
1

12|E|T
(where I =

∑
{v,w}∈E

p{v,w}) (60)

⩽
1

12|E|T
+

1

12|E|T
(61)

=
1

6|E|T
, (62)

for some α > 0 big enough, to determine with the following large deviation inequality:
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Lemma 6 (A Large Deviation Inequality on discrete Poisson variables.). Let Z ∼ Poisson(λ), for some λ > 0.
Then, for all u ⩾ 0:

P(Z ⩾ u) ⩽ exp(−u+ λ(e− 1)). (63)

This large deviation leads to taking α = 2eI for (61) to be true. Finally, we get:

P(T{v,w}(s) ⩾ αℓ′{v,w}|Ft) ⩽
1

6|E|T
. (64)

Bounding N({u, u′}, {v, w}, s): If δ{v,w}(s) ⩽ ℓ′{v,w}, this random variable is dominated by a Poisson variable

of parameter p{u,u′}ℓ
′
{v,w}. Hence, still with Lemma 6, with probability more than 1 − 1

12|E|2T , we can bound

N({u, u′}, {v, w}) by e log(12|E|2T ) + p{u,u′}ℓ{v,w}(e− 1) ⩽ 2ep{u,u′}L{v,w}.

Explicit writing of the union bound on AC
t : AC

t = BC
t ∪ (∪{u,u′},{v,w}∈E,t⩽s<t+TCt({v, w}, s)C ∪

Dt({u, u′}, {v, w}, s)C) ∈ Ft+T−1. Thanks to the previous considerations, we have that PFt(BC
t ) ⩽ 1/6 with (58),

PFt(Ct({v, w}, s)C) ⩽ 1
6|E|T with (64) and P(Dt({u, u′}, {v, w}, s)C |Ft) ⩽ 1

6|E|2T , for the following constants and

weights:

• τ̃ ′
−1

{v,w} = p{v,w} = min( 1
τ ′
max({v,w}) ,

1
2(max(di,dj)−1)

1
τ ′
{v,w}

);

• T = 2Imax{v,w}∈E
˜τ ′{v,w}

log(6|E|)
log(1−(1−e−1)e−1) ;

• a = 2eI log(6|E|T )
log(1−(1−e−1)e−1) ;

• b = 2e log(6|E|T )
log(1−(1−e−1)e−1) .

The union bound is the following:

PFt(AC
t ) ⩽ PFt(BC

t ) +
∑

s,{v,w}

PFt(Ct({v, w}, s)C) +
∑

s,{v,w}

PFt(∪{u,u′}Dt({u, u′}, {v, w}, s)C) (65)

⩽ 1/6 + |E|T/(6|E|T )× 2 (66)

⩽ 1/2. (67)

The rate of convergence γ is then defined as the smallest non null eigenvalue of the laplacian of the graph,
weighted by:

ν{v,w} =
p{v,w} min{u,u′}∼{v,w}

τ ′
{v,w}

τ{u,u′}

8a(1 + d2b)
=

min{u,u′}∼{v,w} p{u,u′}

c1 ln(6|E|T )(1 + d2 ln(6|E|T )2)
∑

{u,u′}∈E p{u,u′}
(68)

C.4 Concluding

What we have proved so far, is that for any k ⩾ 0, any x ∈ RV , we have:

E [Λk+2T (x)|Fk] ⩽

(
1

4
(1− γ)T/3 +

3

4

)
E[Λk(x)|Fk] ,

where γ is defined in Equation (68). Then, Λk+2T (x) ⩾ 1
2

∥∥W (0,k+2T )(x− x̄)
∥∥2 and Λk(x) ⩽ 1

2

∥∥W (0,k)(x− x̄)
∥∥2,

so that applying this for k = 0, almost surely conditionned on F0,

E
[∥∥∥W (0,2T )(x− x̄)

∥∥∥2|F0

]
⩽

(
1

4
(1− γ)T/3 +

3

4

)
E[∥x− x̄∥2|F0] ,
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Now, noticing that our analysis holds almost surely for any configuration F0, doing a time translation and
starting from a configuration Fk for any k, we get that:

E
[∥∥∥W (k,k+2T )(x− x̄)

∥∥∥2|Fk

]
⩽

(
1

4
(1− γ)T/3 +

3

4

)
E[∥x− x̄∥2|Fk] ,

so that Assumption 2 holds for ρ = 1
4 (1− (1− γ)T/3), kρ = 2T , and hence ρ

kρ
= O(γ), which leads to Theorem 5:

γ is the eigengap of the graph, with weights of order Õ(min{u,u′}∼{v,w} p{u,u′}
d2

∑
{u,u′}∈E p{u,u′}

).

D Proof of Theorem 1: Convex-Lipchitz case

D.1 Homogeneous setting, Lipschitz (bounded gradients) and convex without sampling

Proof. Studying the virtual sequence, we expand:

E
[∥∥x̂k+1 − x⋆

∥∥2] = E

∥∥x̂k − x⋆
∥∥2 − 2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x̂

k − x⋆⟩+ γ2

n2

∥∥∥∥∥∑
v∈Ik

gkv

∥∥∥∥∥
2


⩽ E
[∥∥x̂k − x⋆

∥∥2 − 2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x

k
v − x⋆⟩+ 2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x

k
v − x̄k⟩

+
2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x̄

k − x̂k⟩
]

+
γ2B2|Ik|2

n2
,

where we used the Lipschitz assumption, Egk
v = ∇fv(xk

v) and boundness of gradients. Denote:

T1 = −2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x

k
v − x⋆⟩

T k
2 =

2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x

k
v − x̄k⟩

T3 =
2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x̄

k − x̂k⟩ .

Using convexity of f ,

T1 ⩽ −2γ

n

∑
v∈Ik

(f(xk
v)− f(x⋆)) .

Using the Lipschitz assumption and Equation (9) that controls
∥∥x̄k − x̂k

∥∥, we bound T3::

T3 ⩽
2γ2B2|Ik|

n
.

Using the Lipschitz assumption and our consensus bound from Equation (13), we bound T k
2 :∑

k<K

T k
2 ⩽

∑
k<K

2γB

n

√∑
v∈Ik

E
[
∥xk

v − x̄k∥2
]

⩽
∑
k<K

2γB

n

√
E
[
∥xk − x̄k∥2

]
⩽
∑
k<K

γ2B2

nρ̄
+

ρ̄

B
E
[∥∥xk − x̄k

∥∥2]
⩽

3γ2B2

nρ̄

∑
k<K

|Ik| .
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Consequently, denoting η = γ
n and summing over k < K,

2η
∑
k<K

∑
v∈Ik

E
[
f(xk

v)− f(x⋆)
]
⩽ E

[∥∥x̂0 − x⋆
∥∥2]+ η2B2

(
E|Ik|+ 2n+ 3nρ̄−1

) ∑
k<K

|Ik|

⩽ E
[∥∥x̂0 − x⋆

∥∥2]+ η2B2
(
3n+ 3nρ̄−1

) ∑
k<K

|Ik| .

Dividing by 2η
∑

k<K |Ik|,

E

[
1∑

k<K |Ik|
∑
k<K

∑
v∈Ik

f
(
xk
v

)
− f(x⋆)

]
⩽

E
[∥∥x̂0 − x⋆

∥∥2]
2η
∑

k<K |Ik|
+

ηB2

2
(3n+ 3nρ̄−1) ,

and

E
[∥∥x̂0 − x⋆

∥∥2] ⩽ ∥∥x0 − x⋆
∥∥2 − 2η

∑
v∈V
⟨∇f(x0), x0 − x⋆⟩+ η2G2/n

⩽
∥∥x0 − x⋆

∥∥2 + η2B2/K ,

provided that K ⩾ n. Optimizing over η, we obtain that for η =
√

D2

2KB2(3n+2nρ̄−1) ,

E

[
f

(
1∑

k<K |Ik|

K−1∑
k=0

∑
v∈Ik

xk
v

)
− f(x⋆)

]
⩽ 2

√
2B2D2(3n+ 2nρ̄−1)∑

k<K |Ik|
.

D.2 Lipschitz (bounded gradients) and convex with sampling

Proof. Taking the proof just above, we still have

E
[∥∥x̂k+1 − x⋆

∥∥2] ⩽ E
[∥∥x̂k − x⋆

∥∥2 + T k
1 + T k

2 + T3

]
+

γ2B2|Ik|2

n2
.

We have, using convexity and then Lipschitzness:

T k
1 = −2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x

k
v − x⋆⟩

⩽ −2γ

n

∑
v∈Ik

pvfv(x
k
v)− f(x⋆)

= −2γ

n

∑
v∈Ik

pvfv(x̄
k)− f(x⋆) + fv(x

k
v)− f(x̄k)

⩽ −2γ

n

∑
v∈Ik

fv(x̄
k)− f(x⋆)−B

∥∥xk
v − x̄k

∥∥ ,
so that

E
[
T k
1

]
⩽ −2γp̄

n
(Ef(x̄k)− f(x⋆)) +

2γB

n

∑
v∈V

pv
∥∥xk

v − x̄k
∥∥

⩽ −2γp̄

n
(Ef(x̄k)− f(x⋆)) +

2γBpmax

n

√
n
∥∥xk − x̄k

∥∥ .
We then have that: ∑

k<K

2γBpmax

n

√
n
∥∥xk − x̄k

∥∥ ⩽ 2
√
2
γ2B2pmax√

n

√
K
∑
k<K

|Ik| .
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Then,

T3 ⩽
2γ2B2

n
.

We handle the consensus term differently. For some α > 0 to be fix later, and taking the expectation condition-
nally on xk, ∑

k<K

E
[
T k
2

]
⩽
∑
k<K

∑
v∈Ik

E
[
γ2

nα

∥∥∇f(xk
v)
∥∥2 + α

n

∥∥xk
v − x̄k

∥∥2]

⩽
∑
k<K

γ2B2|Ik|
αn

+
α

n

∑
v∈V

pv
∥∥xk

v − x̄k
∥∥2

⩽
γ2B2

αn

∑
k<K

|Ik|+
αpmax

n

∑
k<K

E
∥∥xk − x̄k

∥∥2
⩽

(
γ2B2

αn
+

αpmax

n

2γ2B2

ρ̄2

) ∑
k<K

|Ik| .

We set α = 1/
√
pmaxρ̄−2, so that:

∑
k<K

E
[
T k
2

]
⩽ 2

γ2B2

n2
×√pmaxnρ̄

−1 ×
∑
k<K

|Ik| .

The rest of the proof then follows as before, and we obtain

E

[
f

(
1∑

k<K |Ik|

K−1∑
k=0

∑
v∈Ik

xk
v

)
− f(x⋆)

]
= O


√√√√ B2D2∑

k<K |Ik|
(n+ (pmax)1/2nρ̄−1 + n3/2pmax

√
K∑

k<K |Ik|
)

 .

To conclude, we notice that nK∑
k<K |Ik| is of order 1/p̄ where p̄ = 1

n

∑
v∈V .

E Proof of Theorem 2: smooth-Lipschitz-convex rates

E.1 Smooth-Lipschitz-convex rates without sampling, homogeneous case

Proof. As before, we have:

E
[∥∥x̂k+1 − x⋆

∥∥2] ⩽ E
[∥∥x̂k − x⋆

∥∥2 + T1 + T k
2 + T3

]
+

γ2σ2|Ik|+ γ2E
∥∥∑

v∈Ik
∇fv(xk

v)
∥∥2

n2
,

with

T1 = −2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x

k
v − x⋆⟩

T k
2 =

2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x

k
v − x̄k⟩

T3 =
2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x̄

k − x̂k⟩ .

First, using convexity of fv ≡ f ,

T1 ⩽ −2γ

n

∑
v∈Ik

(fv(x
k
v)− fv(x

⋆)) = −2γ

n

∑
v∈Ik

(f(xk
v)− f(x⋆)) .



Asynchronous SGD on Graphs

Using Assumption 6 we have, where C > 0 can be arbitrary:

E
[
T k
2

]
⩽

2γ

n

∑
v∈Ik

E
[∥∥∇f(xk

v)
∥∥∥∥xk

v − x̄k
∥∥]

⩽
Cγ

n

∑
v∈Ik

E
[∥∥∇f(xk

v)
∥∥2]+ γ

Cn
E

[∑
v∈Ik

∥∥xk
vk
− x̄k

∥∥2]

⩽
2LCγ

n

∑
v∈Ik

E
[
(f(xk

v)− f(x⋆))
]
+

γ

Cn
E
[∥∥xk − x̄k

∥∥2] .
We also have:

T3 ⩽
γ

n

(
C
∑
v∈Ik

∥∥∇f(xk
v)
∥∥2 + 1

C

∥∥x̄k − x̂k
∥∥2)

⩽
γ

n

(
2LC

∑
v∈Ik

(f(xk
v)− f(x⋆)) +

γ2B2

C
|Ik|

)
.

Thus,

2γ

n

∑
v∈Ik

(Ef(xk
v)− f(x⋆)) ⩽ −E

[∥∥x̂k+1 − x⋆
∥∥2]+ E

[∥∥x̂k − x⋆
∥∥2]+ γ2σ2|Ik|

n2
+

2γ2L|Ik|
n2

∑
v∈Ik

(Ef(xk
v)− f(x⋆))

+
2LCγ

n

∑
v∈Ik

E
[
(f(xk

v)− f(x⋆))
]
+

γ

Cn
E
[∥∥xk − x̄k

∥∥2]
+

γ

n

(
2LC

∑
v∈Ik

(f(xk
v)− f(x⋆)) +

γ2B2

C
|Ik|

)
.

Summing over k < K and using Lemma 2, we obtain:

2γ

n

∑
k<K

∑
v∈Ik

(Ef(xk
v)− f(x⋆)) ⩽ E

[∥∥x̂0 − x⋆
∥∥2]+ γ2σ2

n2

∑
k<K

|Ik|+
2γL

n

(
2C + γ

) ∑
k<K

∑
v∈Ik

(Ef(xk
v)− f(x⋆))

+
∑
k<K

γ

Cn
E
[∥∥xk − x̄k

∥∥2]+ γ3B2

Cn

∑
k<K

|Ik|

⩽ E
[∥∥x̂0 − x⋆

∥∥2]+ γ2σ2

n2

(
1 +

2γρ̄−1n

C

) ∑
k<K

|Ik|+
∑
k<K

γ

Cn
E
[∥∥xk − x̄k

∥∥2]
+

γ3B2

Cn

∑
k<K

|Ik|+
2γL

n

(
2C + γ +

4γ2

ρ̄2
) ∑
k<K

∑
v∈Ik

(Ef(xk
v)− f(x⋆)) .

Hence, provided that 2C + γ + 4γ2

ρ̄2 ⩽ 1
2L , which is verified for C = 1

8L and γ ⩽ 1
4L ×

1
1+2ρ̄−1 , we have:

γ

n

∑
k<K

∑
v∈Ik

(Ef(xk
v)− f(x⋆)) ⩽ E

[∥∥x̂0 − x⋆
∥∥2]+ γ2σ2

n2

(
1 + 16Lγρ̄−1n

) ∑
k<K

|Ik|+
8Lγ3B2

n

∑
k<K

|Ik| ,

leading to, for η = γ/n:

E

[
f

(
1∑

k<K |Ik|

K−1∑
k=0

∑
v∈Ik

xk
v

)
− f(x⋆)

]
⩽

E
[∥∥x̂0 − x⋆

∥∥2]
η
∑

k<K |Ik|
+ ησ2 + η2

(
16Lσ2n2ρ̄−1 + 8LB2n2

)
.

Optimizing over η ⩽ 1
4L ×

1
n(1+2ρ̄−1) , we thus obtain that:

E

[
f

(
1∑

k<K |Ik|

K−1∑
k=0

∑
v∈Ik

xk
v

)
− f(x⋆)

]

=O

 LD2nρ̄−1∑
k<K |Ik|

+

√
Dσ2∑
k<K |Ik|

+

[
D2
√

LB2n2 + Lσ2n2ρ̄−1∑
k<K |Ik|

]2/3 .
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E.2 Smooth-Lipschitz-convex rates with sampling, heterogeneous case

Proof. We have:

E
[∥∥x̂k+1 − x⋆

∥∥2] ⩽ E

[∥∥x̂k − x⋆
∥∥2 − 2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x̂

k − x⋆⟩

]
+

γ2σ2|Ik|+ γ2E
∥∥∑

v∈Ik
∇fv(xk

v)
∥∥2

n2
,

and we will handle the middle term differently than before. Using − 2γ
n

∑
v∈Ik
⟨∇fv(xk

v), x̂
k − x⋆⟩ =

− 2γ
n

∑
v∈Ik
⟨∇fv(xk

v), x
k
v−x⋆⟩− 2γ

n

∑
v∈Ik
⟨∇fv(xk

v), x̂
k−xk

v⟩ and then convexity for the first term and smoothness
for the second, we obtain:

−2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x̂

k − x⋆⟩ ⩽ −2γ

n

∑
v∈Ik

(
fv(x

k
v)− fv(x

⋆)− 2γ

n

∑
v∈Ik

fv(x̂
k)− fv(x

k
v)−

L

2

∥∥xk
v − x̂k

∥∥2)

= −2γ

n

∑
v∈Ik

fv(x̂
k)− fv(x

⋆) +
γL

n

∑
v∈Ik

∥∥xk
v − x̂k

∥∥2 .
Taking the expectation wrt Ik:

E

[
−2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x̂

k − x⋆⟩

]
⩽ −2γ

n

∑
v∈V

pv
(
fv(x̂

k)− fv(x
⋆)
)
+

γL

n

∑
v∈V

pv
∥∥xk

v − x̂k
∥∥2

⩽ −2γnp̄

n

(
f(x̂k)− f(x⋆)

)
+

2γLpmax

n

∥∥xk − x̄k
∥∥2 + γL

n

∑
v∈V

pv
∥∥x̂k − x̄k

∥∥2
⩽ −2γnp̄

n

(
f(x̂k)− f(x⋆)

)
+

2γLpmax

n

∥∥xk − x̄k
∥∥2 + 2γLp̄

∥∥x̂k − x̄k
∥∥2 .

Then, for the variance term, we need to bound E
∥∥∑

v∈Ik
∇fv(xk

v)
∥∥2. For any (zv)v∈V , we have

E
[∥∥∑

v∈Ik
zv
∥∥2] = E

[∑
v,v′∈V 1v∈V1v′∈V⟨zv, zv′⟩

]
=

∑
v ̸=v′∈V 1v∈Vpvpv′⟨zv, zv′⟩ +

∑
v∈V pv∥zv∥2 ⩽∑

v∈V pv∥zv∥2 +
∥∥∑

v∈V pvzv
∥∥2. And finally, using convexity of the squared norm,

∥∥∑
v∈V pvzv

∥∥2 ⩽

np̄
∑

v∈V pv∥zv∥2. Hence, we have

EIk

∥∥∥∥∥∑
v∈Ik

∇fv(xk
v)

∥∥∥∥∥
2

⩽
∑
v∈V

pv
∥∥∇fv(xk

v)
∥∥2 + ∥∥∥∥∥∑

v∈V
pv∇fv(xk

v)

∥∥∥∥∥
2

.

Thus, plugging this in the first inequality,

2γnp̄

n

(
Ef(x̂k)− f(x⋆)

)
⩽ E

[∥∥x̂k − x⋆
∥∥2 − ∥∥x̂k+1 − x⋆

∥∥2]+ E

[
γ2σ2|Ik|+ γ2E

∥∥∑
v∈Ik

∇fv(xk
v)
∥∥2

n2

]

+ E
[
2γLpmax

n

∥∥xk − x̄k
∥∥2 + 2γLp̄

∥∥x̂k − x̄k
∥∥2]

= E
[∥∥x̂k − x⋆

∥∥2 − ∥∥x̂k+1 − x⋆
∥∥2]

+
γ2σ2np̄+ γ2

∑
v∈V pvE

∥∥∇fv(xk
v)
∥∥2 + γ2

∥∥∑
v∈V pv∇fv(xk

v)
∥∥2

n2

+ E
[
2γLpmax

n

∥∥xk − x̄k
∥∥2 + 2γLp̄

∥∥x̂k − x̄k
∥∥2] .
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Then, using smoothness, we have that f(x̄k) − f(x⋆) ⩽ f(x̂k) − f(x⋆) + ⟨∇f(x̂k), x̂k − x̄k⟩ + L
2

∥∥x̄k − x̂k
∥∥ ⩽

2(f(x̂k)− f(x⋆)) + 2L
∥∥x̄k − x̂k

∥∥2, leading to:

2γnp̄

n

(
Ef(x̄k)− f(x⋆)

)
⩽

4γnp̄

n

(
Ef(x̂k)− f(x⋆)

)
+

4Lγnp̄

n

∥∥x̄k − x̂k
∥∥2

⩽ 2E
[∥∥x̂k − x⋆

∥∥2 − ∥∥x̂k+1 − x⋆
∥∥2]

+
2γ2σ2np̄+ 2γ2

(∑
v∈V pvE

∥∥∇fv(xk
v)
∥∥2 + ∥∥∑v∈V pv∇fv(xk

v)
∥∥2)

n2

+ E
[
4γLpmax

n

∥∥xk − x̄k
∥∥2 + 8γLp̄

∥∥x̂k − x̄k
∥∥2] .

We have
∥∥x̂k − x̄k

∥∥2 ⩽ γ2B2. Now,∑
v∈V

pv
∥∥∇fv(xk

v)
∥∥2 ⩽ 2

∑
v∈V

pv
∥∥∇fv(xk

v)−∇fv(x̄k)
∥∥2 + pv

∥∥∇fv(x̄k)
∥∥2

⩽ 2L2pmax

∥∥xk − x̄k
∥∥2 + 2

∑
v∈V

pv
∥∥∇fv(x̄k)

∥∥2
⩽ 2L2pmax

∥∥xk − x̄k
∥∥2 + 2np̄

∥∥∇f(x̄k)
∥∥2 + 2np̄ζ2 .

Then, ∥∥∥∥∥∑
v∈V

pv∇fv(xk
v)

∥∥∥∥∥
2

⩽ 2

∥∥∥∥∥∑
v∈V

pv∇fv(x̄k)

∥∥∥∥∥
2

+ 2

∥∥∥∥∥∑
v∈V

pv(∇fv(xk
v)−∇fv(x̄k))

∥∥∥∥∥
2

⩽ 2(np̄)2
∥∥∇f(x̄k)

∥∥2 + 2(np̄)
∑
v∈V

pv
∥∥(∇fv(xk

v)−∇fv(x̄k))
∥∥2

⩽ 2(np̄)2
∥∥∇f(x̄k)

∥∥2 + 2(np̄)
∑
v∈V

pvL
2
∥∥xk

v − x̄k
∥∥2

⩽ 2(np̄)2
∥∥∇f(x̄k)

∥∥2 + 2(np̄)pmaxL
2
∥∥xk − x̄k

∥∥2
Thus, this leads to:

2γnp̄

n

(
Ef(x̄k)− f(x⋆)

)
⩽ 2E

[∥∥x̂k − x⋆
∥∥2 − ∥∥x̂k+1 − x⋆

∥∥2]+ 2γ2(σ2 + 2ζ2)np̄+ 8γ2n2p̄2
∥∥∇f(x̄k)

∥∥2
n2

+ E
[(4γLpmax

n
+

2γ2L2pmax(1 + np̄)

n

)∥∥xk − x̄k
∥∥2 + 8γLp̄

∥∥x̂k − x̄k
∥∥2] .

We now use the following lemma.

Lemma 7. For stepsizes γ ⩽ ρ̄
4L

√
pmax

, we have:∑
k<K

E
[∥∥xk − x̄k

∥∥2] ⩽ 4γ2σ2ρ̄−1np̄K + 8γ2ρ̄−2
∑
v∈V

∥∥∇fv(x̄0)
∥∥2 + 16γ2ρ̄−2np̄

∑
k<K

(∥∥∇f(x̄k)
∥∥2 + ζ2

)
.

Proof of the lemma. Denoting CK =
∑

k<K E
[∥∥xk − x̄k

∥∥2] and using Lemma 2, we have

Ck ⩽ 2γ2σ2ρ̄−1
∑
k<K

|Ik|+
4γ2

ρ̄2

∑
k<K

E

[∑
v∈Ik

∥∥∥∇fv(xk−τ(k,v)
v )

∥∥∥2]

⩽ 2γ2σ2ρ̄−1np̄K + 8γ2ρ̄−2
∑
v∈V

∥∥∇fv(x̄0)
∥∥2 + 4γ2

ρ̄2

∑
k<K

∑
v∈V

pvE
[∥∥∇fv(xk

v)
∥∥2] ,



Mathieu Even, Anastasia Koloskova, Laurent Massoulié

using
∑

k<K

∑
v∈Ik

∥∥∥∇fv(xk−τ(k,v)
v )

∥∥∥2 ⩽
∑

k<K

∑
v∈Ik

∥∥∇fv(xk
v)
∥∥2 +

∑
v∈V

∥∥∇fv(x0
v)
∥∥2. Then,∑

v∈V pvE
[∥∥∇fv(xk

v)
∥∥2] ⩽ 2

∑
v∈V pvE

[∥∥∇fv(x̄k)
∥∥2] + 2

∑
v∈V pvE

[∥∥∇fv(x̄k)−∇fv(xk
v)
∥∥2] ⩽

2np̄ζ2 + 2np̄E
∥∥∇f(x̄k)

∥∥2 + 2L2pmaxE
∥∥xk − x̄k

∥∥2, which leads to:

CK ⩽ 2γ2σ2ρ̄−1np̄K + 4γ2ρ̄−2
∑
v∈V

∥∥∇fv(x̄0)
∥∥2 + 8γ2ρ̄−2np̄

∑
k<K

(∥∥∇f(x̄k)
∥∥2 + ζ2

)
+ 8γ2L2pmaxρ̄

−2CK ,

leading to the desired result for γ ⩽ ρ̄
4L

√
pmax

.

Using Lemma 1 and Lemma 7, we thus have:

2γnp̄

n

∑
k<K

(
Ef(x̄k)− f(x⋆)

)
⩽ 2E

[∥∥x̂0 − x⋆
∥∥2]+ 2γ2(σ2 + 2ζ2)p̄K

n
+ 4γ2p̄

∑
k<K

E
[∥∥∇f(x̄k)

∥∥2]
+ E

[(4γLpmax

n
+

2γ2L2pmax

n

) ∑
k<K

∥∥xk − x̄k
∥∥2]+ 8γ3LB2p̄K

⩽ 2E
[∥∥x̂0 − x⋆

∥∥2]+ 2γ2(σ2 + 2ζ2)p̄K

n
+ 4γ2p̄

∑
k<K

E
[∥∥∇f(x̄k)

∥∥2]++8γ3LB2p̄K

+
6γLpmax

n

[
4γ2σ2ρ̄−1np̄K + 8γ2ρ̄−2

∑
v∈V

∥∥∇fv(x̄0)
∥∥2 + 16γ2ρ̄−2np̄

∑
k<K

(∥∥∇f(x̄k)
∥∥2 + ζ2

)]

= 2E
[∥∥x̂0 − x⋆

∥∥2]+ (8γ2Lp̄+ 96γ3L2pmaxp̄ρ̄
−2
) ∑
k<K

E
[
f(x̄k)− f(x⋆)

]
+

2γ2(σ2 + 2ζ2)p̄K

n

+ γ3K
(
8LB2p̄+ 24Lσ2pmaxp̄ρ̄

−1 + 96Lζ2pmaxp̄ρ̄
−2
)
+

48γ2Lpmaxρ̄
−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2 .

Hence, for stepsizes satisfying 8γLp̄ + 96γ2L2pmaxp̄ρ̄
−2 ⩽ p̄, which is verified for γ ⩽ min

(
1

16L ,
ρ̄

14L
√
pmax

)
, we

obtain:

∑
k<K

(
Ef(x̄k)− f(x⋆)

)
⩽

2E
[∥∥x̂0 − x⋆

∥∥2]
γp̄

+
2γ(σ2 + 2ζ2)K

n
+ γ2K

(
8LB2 + 24Lσ2pmaxρ̄

−1 + 96Lζ2pmaxρ̄
−2
)

+
48γLpmaxρ̄

−2

np̄

∑
v∈V

∥∥∇fv(x̄0)
∥∥2 .

Optimizing over γ ⩽ min
(

1
16L ,

ρ̄
14L

√
pmax

, ρ̄
L

)
, this leads to:

1

K

∑
k<K

(
Ef(x̄k)− f(x⋆)

)
=O

LD2
(

1
p̄ +

√
pmax

p̄2 ρ̄−1
)

K
+

[
D2
√
LB2 + Lσ2pmaxρ̄−1 + Lζpmaxρ̄−2

p̄K

] 2
3

+

√
D2(σ2 + ζ2)

np̄K
+

ρ̄−1 pmax

p̄

K

1

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2) .
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F Proof of Theorem 3: smooth-convex case

F.1 Homogeneous without sampling

Proof. As before, we have:

E
[∥∥x̂k+1 − x⋆

∥∥2] ⩽ E
[∥∥x̂k − x⋆

∥∥2 + T1 + T k
2 + T3

]
+

γ2σ2|Ik|+ γ2E
∥∥∑

v∈Ik
∇fv(xk

v)
∥∥2

n2
,

with

T1 = −2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x

k
v − x⋆⟩

T k
2 =

2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x

k
v − x̄k⟩

T3 =
2γ

n

∑
v∈Ik

⟨∇fv(xk
v), x̄

k − x̂k⟩ ,

We will bound T1, T2 as in the proof with the Lipschitz assumption. For the term T3, using convexity and
Lemma 1:

ET3 ⩽
γ

n

(
C
∑
v∈Ik

∥∥∇f(xk
v)
∥∥2 + 1

C
E
∥∥x̄k − x̂k

∥∥2)
⩽

γ

n

(
2LC

∑
v∈Ik

(f(xk
v)− f(x⋆)) +

2γ2

Cn
|Ik|(σ2 +

∑
v∈V

∥∥∥∇f(xk−τ(v,k)
v )

∥∥∥2))
⩽

2γ2

Cn2
|Ik|σ2 +

γ

n

(
2LC

∑
v∈Ik

(f(xk
v)− f(x⋆)) +

2γ2

Cn
|Ik|

∑
v∈V

∥∥∥∇f(xk−τ(v,k)
v )

∥∥∥2) .
for γ ⩽ 1/(nL). Then,

∑
k<K

|Ik|
∑
v∈V

∥∥∥∇f(xk−τ(v,k)
v )

∥∥∥2 ⩽
∑
v∈V

∑
k<K:v∈Ik

∥∥∇f(xk
v)
∥∥2 next(v,k+1)−1∑

ℓ=k

|Iℓ|

⩽ τmax

∑
v∈V

∑
k<K:v∈Ik

∥∥∇f(xk
v)
∥∥2

⩽ 2Lτmax

∑
v∈V

∑
k<K:v∈Ik

f(xk
v)− f(x⋆) ,

where τmax is an upper bound on the maximal compute delay defined as τmax ⩾ supk<K

∑next(v,k+1)−1
ℓ=k |Iℓ|.

Thus,

2γ

n

∑
v∈Ik

(Ef(xk
v)− f(x⋆)) ⩽ −E

[∥∥x̂k+1 − x⋆
∥∥2]+ E

[∥∥x̂k − x⋆
∥∥2]

+
γ2σ2|Ik|

n2

+
2γ2L|Ik|

n2

∑
v∈Ik

(Ef(xk
v)− f(x⋆))

+
2LCγ

n

∑
v∈Ik

E
[
(f(xk

v)− f(x⋆))
]

+
γ

Cn
E
[∥∥xk − x̄k

∥∥2]
+

2γ2L

Cn2
|Ik|σ2 +

γ

n

(
2LC

∑
v∈Ik

(f(xk
v)− f(x⋆)) +

2γ2

Cn
|Ik|

∑
v∈V

∥∥∥∇f(xk−τ(v,k)
v )

∥∥∥2) .
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Summing over k < K, using Lemma 2 and our bound on T3, we obtain:

2γ

n

∑
k<K

∑
v∈Ik

(Ef(xk
v)− f(x⋆)) ⩽ E

[∥∥x̂0 − x⋆
∥∥2]+ 3γ2σ2

n2

∑
k<K

|Ik|

+
2γL

n

(
2C + γ +

2τmaxγ
2

Cn

) ∑
k<K

∑
v∈Ik

(Ef(xk
v)− f(x⋆))

+
∑
k<K

γ

Cn
E
[∥∥xk − x̄k

∥∥2]
⩽ E

[∥∥x̂0 − x⋆
∥∥2]+ γ2σ2

n2

(
1 +

2γρ̄−1n

C

) ∑
k<K

|Ik|+
∑
k<K

γ

Cn
E
[∥∥xk − x̄k

∥∥2]
+

γ3B2

Cn

∑
k<K

|Ik|

+
2γL

n

(
2C + γ +

2τmaxγ
2

Cn
+

4γ2

ρ̄2
) ∑
k<K

∑
v∈Ik

(Ef(xk
v)− f(x⋆)) ,

using Lemma 7 to handle the sum of the terms
∥∥xk − x̄k

∥∥2.
Hence, provided that 2C + γ + 2τmaxγ

2

Cn + 4γ2

ρ̄2 ⩽ 1
2L , which is verified for C = 1

8L and γ ⩽ 1
4L ×

1

1+2ρ̄−1+4
√

τmax/n
,

we have:

γ

n

∑
k<K

∑
v∈Ik

(Ef(xk
v)− f(x⋆)) ⩽ E

[∥∥x̂0 − x⋆
∥∥2]+ γ2σ2

n2

(
3 + 16Lγρ̄−1n

) ∑
k<K

|Ik| ,

leading to, for η = γ/n:

E

[
f

(
1∑

k<K |Ik|

K−1∑
k=0

∑
v∈Ik

xk
v

)
− f(x⋆)

]
⩽

E
[∥∥x̂0 − x⋆

∥∥2]
η
∑

k<K |Ik|
+ 3ησ2 + η216Lσ2n2ρ̄−1 .

Optimizing over η ⩽ 1
4L ×

1
n(1+2ρ̄−1)+4

√
nτmax

, we thus obtain that:

E

[
f

(
1∑

k<K |Ik|

K−1∑
k=0

∑
v∈Ik

xk
v

)
− f(x⋆)

]

=O

LD2(nρ̄−1 +
√
nτmax)∑

k<K |Ik|
+

√
Dσ2∑
k<K |Ik|

+

[
D2
√
Lσ2n2ρ̄−1∑
k<K |Ik|

]2/3 .

F.2 Heterogeneous setting under sampling

Proof. As in the Lipschitz case, we have:

2γnp̄

n

∑
k<K

(
Ef(x̄k)− f(x⋆)

)
⩽ 2E

[∥∥x̂0 − x⋆
∥∥2]+ 2γ2(σ2 + 2ζ2)p̄K

n
+ 4γ2p̄

∑
k<K

E
[∥∥∇f(x̄k)

∥∥2]
+ E

[
6γLpmax

n

∑
k<K

∥∥xk − x̄k
∥∥2]+ 8γLp̄E

[∑
k<K

∥∥x̄k − x̂k
∥∥2] .

Since losses are no longer assumed to be Lipschitz, we cannot bound this last term E
[∑

k<K

∥∥x̄k − x̂k
∥∥2] by

γ2B2. However, using Lemma 1,

E

[∑
k<K

∥∥x̄k − x̂k
∥∥2] ⩽

2γ2σ2K

n
+

2γ2

n
E

[∑
v∈V

∑
k<K

∥∥∥∇fv(xprev(v,k)
v )

∥∥∥2] .
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Then,

E

[∑
v∈V

∑
k<K

∥∥∥∇fv(xprev(v,k)
v )

∥∥∥2] =
∑
v∈V

∑
k<K

E
[∥∥∇fv(xk

v)
∥∥21v∈Ik

(next(k, v)− k)
]

=
∑
v∈V

∑
k<K

E
[∥∥∇fv(xk

v)
∥∥2 × 1

pv
× pv

]
=
∑
v∈V

∑
k<K

E
[∥∥∇fv(xk

v)
∥∥2]

⩽
1

pmin

∑
v∈V

∑
k<K

pvE
[∥∥∇fv(xk

v)
∥∥2] .

since the random variables
∥∥∇fv(xk

v)
∥∥2, 1v∈Ik

and next(k, v) − k are independent, E [1v∈Ik
] = pv (Bernoulli

random variable) and E [next(k, v)− k] = 1
pv

(geometric random variable). And then, as we proved before,∑
v∈V

∑
k<K pvE

[∥∥∇fv(xk
v)
∥∥2] ⩽ 2L2pmax

∥∥xk − x̄k
∥∥2 + 2np̄

∥∥∇f(x̄k)
∥∥2 + 2np̄ζ2. Consequently,

2γnp̄

n

∑
k<K

(
Ef(x̄k)− f(x⋆)

)
⩽ 2E

[∥∥x̂0 − x⋆
∥∥2]+ 2γ2(σ2 + 2ζ2)p̄K

n

+ (4γ2p̄+ 32γ3Lp̄
pmax

pmin
)
∑
k<K

E
[∥∥∇f(x̄k)

∥∥2]
+ E

[(6γLpmax

n
+

32γ3L3p̄pmax

npmin

) ∑
k<K

∥∥xk − x̄k
∥∥2]+ 16γ3σ2Lp̄K

n
+

32γ3Lζ2p̄2

pmin

⩽ 2E
[∥∥x̂0 − x⋆

∥∥2]+ 2γ2(σ2 + 2ζ2)p̄K

n

+ (4γ2p̄+ 32γ3Lp̄
pmax

pmin
)
∑
k<K

E
[∥∥∇f(x̄k)

∥∥2]
+ E

[
12γLpmax

n

∑
k<K

∥∥xk − x̄k
∥∥2]+ 16γ3σ2Lp̄K

n
+

32γ3Lζ2p̄2

pmin
.

provided that γ ⩽
√

6pmin

32L2pmax
. Plugging Lemma 7 in here, we obtain:

2γnp̄

n

∑
k<K

(
Ef(x̄k)− f(x⋆)

)
⩽ 2E

[∥∥x̂0 − x⋆
∥∥2]+ 2γ2(σ2 + 2ζ2)p̄K

n

+ (4γ2p̄+ 32γ3Lp̄
pmax

pmin
)
∑
k<K

E
[∥∥∇f(x̄k)

∥∥2]
+

16γ3σ2Lp̄K

n
+

32γ3Lζ2p̄2

pmin

+
12γLpmax

n

[
4γ2σ2ρ̄−1np̄K + 8γ2ρ̄−2

∑
v∈V

∥∥∇fv(x̄0)
∥∥2 + 16γ2ρ̄−2np̄

∑
k<K

(∥∥∇f(x̄k)
∥∥2 + ζ2

)]
= 2E

[∥∥x̂0 − x⋆
∥∥2]+ (8γ2Lp̄+ 192γ3L2pmaxp̄ρ̄

−2 + 64γ3L2p̄
pmax

pmin

) ∑
k<K

E
[
f(x̄k)− f(x⋆)

]
+

2γ2(σ2 + 2ζ2)p̄K

n
+ γ3K

(
8LB2p̄+ 24Lσ2pmaxp̄ρ̄

−1 + 96Lζ2pmaxp̄ρ̄
−2
)

+
96γ3Lpmaxρ̄

−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2 .
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For 8γ2Lp̄ + 192γ3L2pmaxp̄ρ̄
−2 + 64γ3L2p̄pmax

pmin
⩽ γp̄ which is verified for γ ⩽ min

(
1

24L ,
ρ̄

24L
√
pmax

, 1

14L
√

pmax
pmin

)
,

we have:

γp̄
∑
k<K

(
Ef(x̄k)− f(x⋆)

)
⩽ 2E

[∥∥x̂0 − x⋆
∥∥2]+ 96γ3Lpmaxρ̄

−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+
2γ2(σ2 + 2ζ2)p̄K

n
+ γ3K

(
8LB2p̄+ 24Lσ2pmaxp̄ρ̄

−1 + 96Lζ2pmaxp̄ρ̄
−2
)
,

and thus:

1

K

∑
k<K

(
Ef(x̄k)− f(x⋆)

)
⩽

2E
[∥∥x̂0 − x⋆

∥∥2]
p̄γK

+
96γ2Lpmaxρ̄

−2

np̄K

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+
2γ(σ2 + 2ζ2)

n
+ γ2

(
8LB2 + 24Lσ2pmaxρ̄

−1 + 96Lζ2pmaxρ̄
−2
)
.

Now, we use ∑
v∈V

∥∥∇fv(x̄0)
∥∥2 ⩽

∑
v∈V

∥∥∇f(x̄0)
∥∥2 + ζ2 ⩽

∑
v∈V

2L(f(x0)− f(x⋆)) + ζ2 ,

so that

96γ2Lpmaxρ̄
−2

np̄K

∑
v∈V

∥∥∇fv(x̄0)
∥∥2 ⩽

192γ2L2pmaxρ̄
−2

p̄K
(f(x0)− f(x⋆)) +

96ζ2γ2Lpmaxρ̄
−2

p̄K

⩽
192γ2L2pmaxρ̄

−2

p̄

1

K

∑
k<K

(
Ef(x̄k)− f(x⋆)

)
+

96ζ2γ2Lpmaxρ̄
−2

p̄K

⩽
1

2

1

K

∑
k<K

(
Ef(x̄k)− f(x⋆)

)
+ 96ζ2γ2Lpmaxρ̄

−2 ,

for K ⩾ 1
p̄ and γ ⩽ 1ρ̄

384L

√
p̄

pmax
. Thus,

1

2K

∑
k<K

(
Ef(x̄k)− f(x⋆)

)
⩽

2E
[∥∥x̂0 − x⋆

∥∥2]
p̄γK

+
2γ(σ2 + 2ζ2)

n
+ γ2

(
8LB2 + 24Lσ2pmaxρ̄

−1 + 192Lζ2pmaxρ̄
−2
)
.

Optimizing over admissible γ’s leads to:

1

K

∑
k<K

(
Ef(x̄k)− f(x⋆)

)

=O

LD2
(

1
p̄

√
pmax

pmin
+
√

pmax

p̄2 ρ̄−1
)

K
+

√
D2(σ2 + ζ2)

np̄K
+

[
D2
√
LB2 + Lσ2pmaxρ̄−1 + Lζpmaxρ̄−2

p̄K

] 2
3

 .

G Proof of Theorem 4: smooth non-convex case

G.1 Homogeneous without sampling

Proof. Using L-smoothness and a virtual sequence x̂ defined in Section B.1, we have

Ek+1f(x̂
k+1) ⩽ f(x̂k)− γ

n

∑
v∈Ik

〈
∇f(x̂k),∇f(xk

v)
〉

︸ ︷︷ ︸
:=T1

+
Lγ2

2n2

σ2|Ik|+ E

∥∥∥∥∥∑
v∈Ik

∇f(xk
v)

∥∥∥∥∥
2
 (69)
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We separately estimate the middle term as

T1 = −γ

n

∑
v∈Ik

〈
∇f(x̂k),∇f(xk

v)
〉
= −γ

n

∑
v∈Ik

〈
∇f(x̄k),∇f(xk

v)
〉
+

γ

n

∑
v∈Ik

〈
∇f(x̄k)−∇f(x̂k),∇f(xk

v)
〉

⩽
γ

n

∑
v∈Ik

(
−1

2

∥∥∇f(x̄k)
∥∥2 − 1

2

∥∥∇f(xk
v)
∥∥2 + L2

2

∥∥xk
v − x̄k

∥∥2)+
γ

n

∑
v∈Ik

(
1

4

∥∥∇f(xk
v)
∥∥2 + L2

∥∥x̄k − x̂k
∥∥2)

⩽ − γ

4n

∑
v∈Ik

∥∥∇f(xk
v)
∥∥2 − |Ik|γ

2n

∥∥∇f(x̄k)
∥∥2 + L2γ

2n

∑
v∈Ik

∥∥xk
v − x̄k

∥∥2 + γL2|Ik|
n

∥∥x̄k − x̂k
∥∥2

where we used that for any vectors a, b ∈ Rd it holds that −⟨a, b⟩ = − 1
2 ∥a∥

2 − 1
2 ∥b∥

2
+ 1

2 ∥a− b∥2 and also it

holds that 2⟨a, b⟩ ⩽ γ ∥a∥2 + γ−1 ∥b∥2 for any γ > 0 and we chose γ = 2.

We further use Lemma 1 to estimate the last term

T1 ⩽ − γ

4n

∑
v∈Ik

∥∥∇f(xk
v)
∥∥2 − |Ik|γ

2n

∥∥∇f(x̄k)
∥∥2 + L2γ

2n

∥∥xk − x̄k
∥∥2

+
2L2γ3|Ik|

n2

(
σ2 +

∑
v∈V

E
[∥∥∥∇fv(xprev(v,k)

v )
∥∥∥2])

Putting this estimate of T1 back into (69) we get

Ek+1f(x̂
k+1) ⩽ f(x̂k) +

Lγ2σ2|Ik|
2n2

+
Lγ2

2n

∑
v∈Ik

E
∥∥∇f(xk

v)
∥∥2 − γ

4n

∑
v∈Ik

∥∥∇f(xk
v)
∥∥2 − |Ik|γ

2n

∥∥∇f(x̄k)
∥∥2

+
L2γ

2n

∥∥xk − x̄k
∥∥2 + 2L2γ3|Ik|

n2

(
σ2 +

∑
v∈V

E
[∥∥∥∇fv(xprev(v,k)

v )
∥∥∥2])

Using that γ < 1
4L we estimate

Ek+1f(x̂
k+1) ⩽ f(x̂k)− γ

8n

∑
v∈Ik

∥∥∇f(xk
v)
∥∥2 − |Ik|γ

2n

∥∥∇f(x̄k)
∥∥2 + L2γ

2n

∥∥xk − x̄k
∥∥2

+
2L2γ3|Ik|

n2

(
σ2 +

∑
v∈V

E
[∥∥∥∇fv(xprev(v,k)

v )
∥∥∥2])+

Lγ2σ2|Ik|
2n2

Taking the full expectation and summing over all the iterations k, we get∑
k<K

|Ik|γ
2n

E
∥∥∇f(x̄k)

∥∥2 ⩽ (f(x0)− f⋆)− γ

8n

∑
k<K

∑
v∈Ik

E
∥∥∇f(xk

v)
∥∥2 + L2γ

2n

∑
k<K

E
∥∥xk − x̄k

∥∥2
+

Lγ2σ2
∑

k<K |Ik|
2n2

(1 + 4Lγ) +
2L2γ3

n2

∑
k<K

∑
v∈V
|Ik|E

[∥∥∥∇fv(xprev(v,k)
v )

∥∥∥2]
For the third term we use Lemma 2, and for the last term we use that

∑
k<K

|Ik|
∑
v∈V

∥∥∥∇f(xprev(v,k)
v )

∥∥∥2 ⩽
∑
v∈V

∑
k<K:v∈Ik

∥∥∇f(xk
v)
∥∥2 next(v,k+1)−1∑

ℓ=k

|Iℓ|

⩽ τmax

∑
v∈V

∑
k<K:v∈Ik

∥∥∇f(xk
v)
∥∥2

where τmax is an upper bound on the maximal compute delay defined as τmax ⩾ supk<K

∑next(v,k+1)−1
ℓ=k |Iℓ|. For

estimating the third term with Lemma 2, we also use that∑
k<K

∑
v∈Ik

E
[∥∥∥∇fv(xk−τ(k,v)

v )
∥∥∥2] ⩽ ∑

k<K

∑
v∈Ik

E
[∥∥∇fv(xk

v)
∥∥2]
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We therefore get

∑
k<K

|Ik|γ
2n

E
∥∥∇f(x̄k)

∥∥2 ⩽ (f(x0)− f⋆)− γ

8n

∑
k<K

∑
v∈Ik

E
∥∥∇f(xk

v)
∥∥2 + L2γ

2n
2γ2σ2ρ̄−1

∑
k<K

|Ik|

+
2L2γ3

nρ̄2

∑
k<K

∑
v∈Ik

E
[∥∥∇f(xk

v)
∥∥2]

+
Lγ2σ2

∑
k<K |Ik|

2n2
(1 + 4Lγ) +

2L2γ3

n2
τmax

∑
k<K

∑
v∈Ik

E
∥∥∇f(xk

v)
∥∥2

We further use that the stepsize γ < 1
8L (
√

n
τmax

+ ρ̄)

∑
k<K

|Ik|γ
2n

E
∥∥∇f(x̄k)

∥∥2 ⩽ (f(x0)− f⋆) +
L2

n
γ3σ2ρ̄−1

∑
k<K

|Ik|+
Lγ2σ2

∑
k<K |Ik|

n2

Therefore,

∑
k<K

|Ik|E
∥∥∇f(x̄k)

∥∥2 ⩽
2n

γ
(f(x0)− f⋆) + 2L2γ2σ2ρ̄−1

∑
k<K

|Ik|+
2Lγσ2

∑
k<K |Ik|

n

Denoting T =
∑

k<K |Ik| and tuning over the stepsize γ, we get

1∑
k<K |Ik|

∑
k<K

|Ik|E
∥∥∇f(x̄k)

∥∥2 ⩽
16LF0(

√
nτmax + nρ̄−1)

T
+ 4

(
Lσ2F0

T

) 1
2

+ 4

(
LσnF0

T
√
ρ̄

) 2
3

where F0 = (f(x0)− f⋆).

G.2 Heterogeneous with sampling

Proof. Using L-smoothness of f ,

Ek+1f(x̂
k+1) ⩽ f(x̂k)− γ

n
E
∑
v∈Ik

〈
∇f(x̂k),∇fv(xk

v)
〉

︸ ︷︷ ︸
:=T1

+
Lγ2

2n2

σ2E|Ik|+ E

∥∥∥∥∥∑
v∈Ik

∇fv(xk
v)

∥∥∥∥∥
2
 (70)

We separately estimate the T1 term

T1 = −γ

n
E
∑
v∈Ik

〈
∇f(x̂k),∇fv(xk

v)
〉
= −γ

n
E
∑
v∈Ik

〈
∇f(x̂k),∇fv(x̄k)

〉
+

γ

n

∑
v∈Ik

E
〈
∇f(x̂k),∇fv(x̄k)−∇fv(xk

v)
〉

= −γp̄
〈
∇f(x̂k),∇f(x̄k)

〉
+

γ

n

∑
v∈Ik

E
〈
∇f(x̂k),∇fv(x̄k)−∇fv(xk

v)
〉

⩽ γp̄

(
−1

2

∥∥∇f(x̂k)
∥∥2 − 1

2

∥∥∇f(x̄k)
∥∥2 + L2

2

∥∥x̂k − x̄k
∥∥2)+

γ

n

(
1

2
np̄
∥∥∇f(x̂k)

∥∥2 + L2

2
E
∑
v∈Ik

∥∥xk
v − x̄k

∥∥2)

Since E
∑

v∈Ik
∇fv(x̄k) = np̄ ∇f(x̄k), and E|Ik| = np̄. We further use that E

∑
v∈Ik

∥∥xk
v − x̄k

∥∥2 =∑
v∈V pv

∥∥xk
v − x̄k

∥∥2 ⩽ pmax

∥∥xk − x̄k
∥∥2. Therefore,

T1 ⩽ −γp̄

2

∥∥∇f(x̄k)
∥∥+ γp̄L2

2

∥∥x̂k − x̄k
∥∥2 + γL2pmax

2n

∥∥xk − x̄k
∥∥2
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Putting this back to (70) and summing it up over K, we get

γp̄

2

∑
k<K

E
∥∥∇f(x̄k)

∥∥2 ⩽ (f(x0)− f⋆) +
γp̄L2

2

∑
k<K

E
∥∥x̂k − x̄k

∥∥2
+

γL2pmax

2n

∑
k<K

E
∥∥xk − x̄k

∥∥2 + Lγ2σ2p̄K

2n

+
Lγ2

2n2

∑
k<K

E

∥∥∥∥∥∑
v∈Ik

∇fv(xk
v)

∥∥∥∥∥
2

We use calculations from Section E.2 to further estimate the last term

E

∥∥∥∥∥∑
v∈Ik

∇fv(xk
v)

∥∥∥∥∥
2

⩽
∑
v∈V

pv
∥∥∇fv(xk

v)
∥∥2 + ∥∥∥∥∥∑

v∈V
pv∇fv(xk

v)

∥∥∥∥∥
2

∑
v∈V

pv
∥∥∇fv(xk

v)
∥∥2 ⩽ 2L2pmax

∥∥xk − x̄k
∥∥2 + 2np̄

∥∥∇f(x̄k)
∥∥2 + 2np̄ζ2 . (71)

∥∥∥∥∥∑
v∈V

pv∇fv(xk
v)

∥∥∥∥∥
2

⩽ 2(np̄)2
∥∥∇f(x̄k)

∥∥2 + 2(np̄)pmaxL
2
∥∥xk − x̄k

∥∥2

We therefore get

γp̄

2

∑
k<K

E
∥∥∇f(x̄k)

∥∥2 ⩽ (f(x0)− f⋆) +
γp̄L2

2

∑
k<K

E
∥∥x̂k − x̄k

∥∥2
+

γL2pmax

2n

∑
k<K

E
∥∥xk − x̄k

∥∥2 + Lγ2σ2p̄K

2n

+
Lγ2

n2

(
(L2pmax + (np̄)pmaxL

2)
∥∥xk − x̄k

∥∥2 + (np̄+ (np̄)2)
∥∥∇f(x̄k)

∥∥2 + np̄ζ2
)

⩽ (f(x0)− f⋆) +
γp̄L2

2

∑
k<K

E
∥∥x̂k − x̄k

∥∥2
+

γL2pmax

2n

[
1 + 2Lγ

(
1

n
+ p̄

)] ∑
k<K

E
∥∥xk − x̄k

∥∥2
+

Lγ2p̄Kσ2

2n
+

Lγ2np̄(1 + np̄)

n2

∑
k<K

∥∥∇f(x̄k)
∥∥2 + Lγ2p̄ζ2K

n

We further use Lemma 1 to estimate the term with E
∥∥x̂k − x̄k

∥∥2:
E
[∥∥x̂k − x̄k

∥∥2] ⩽ 2γ2

n

(
σ2 +

∑
v∈V

E
[∥∥∥∇fv(xprev(v,k)

v )
∥∥∥2])

And we use calculations from Section F.2 estimating

E

[∑
v∈V

∑
k<K

∥∥∥∇fv(xprev(v,k)
v )

∥∥∥2] ⩽
1

pmin

∑
v∈V

∑
k<K

pvE
[∥∥∇fv(xk

v)
∥∥2] .
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And (71) to estimate the last term. Therefore we get

∑
k<K

E
[∥∥x̂k − x̄k

∥∥2] ⩽ 2γ2

n

(
σ2K +

1

pmin

∑
k<K

2L2pmax

∥∥xk − x̄k
∥∥2 + 2np̄

∑
k<K

∥∥∇f(x̄k)
∥∥2 + 2np̄ζ2K

)

And

γp̄

2

∑
k<K

E
∥∥∇f(x̄k)

∥∥2 ⩽ (f(x0)− f⋆) +
γL2pmax

2n

[
1 + 2Lγ

(
1

n
+ p̄

)
+

4γ2L2p̄

pmin

] ∑
k<K

E
∥∥xk − x̄k

∥∥2
+

Lγ2p̄Kσ2

2n
(1 + γL) +

Lγ2np̄(1 + np̄+ 2γLnp̄/pmin)

n2

∑
k<K

∥∥∇f(x̄k)
∥∥2

+
Lγ2p̄ζ2K

n
(1 + 2np̄γL)

We further use that γ < min
{

1
4L ,

√
p̄

4L
√
pmin

}
γp̄

2

∑
k<K

E
∥∥∇f(x̄k)

∥∥2 ⩽ (f(x0)− f⋆) +
γL2pmax

n

∑
k<K

E
∥∥xk − x̄k

∥∥2
+

Lγ2p̄Kσ2

2n
(1 + γL) + 3Lγ2p̄

∑
k<K

∥∥∇f(x̄k)
∥∥2 + Lγ2p̄ζ2K

n
(1 + 2np̄γL)

We further use Lemma 7:

γp̄

2

∑
k<K

E
∥∥∇f(x̄k)

∥∥2 ⩽
γL2pmax

n

[
4γ2σ2ρ̄−1np̄K + 8γ2ρ̄−2

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+16γ2ρ̄−2np̄
∑
k<K

(∥∥∇f(x̄k)
∥∥2 + ζ2

)]

+
Lγ2p̄Kσ2

2n
(1 + γL) + 3Lγ2p̄

∑
k<K

∥∥∇f(x̄k)
∥∥2 + Lγ2p̄ζ2K

n
(1 + 2np̄γL) + (f(x0)− f⋆)

⩽ (f(x0)− f⋆) + 4γ3L2pmaxp̄ρ̄
−1Kσ2 +

8γ3L2pmaxρ̄
−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2

+
Lγ2p̄Kσ2

2n
(1 + γL)

+ Lγ2p̄(3 + 16γLρ̄−2pmax)
∑
k<K

∥∥∇f(x̄k)
∥∥2 + 2Lγ2p̄ζ2K

n
(1 + 8ρ−2nγLpmax)

Taking the stepsize γ < min{ 1
24L ,

ρ̄
16L

√
pmax
} we get:

γp̄

4

∑
k<K

E
∥∥∇f(x̄k)

∥∥2 ⩽ (f(x0)− f⋆) + 4γ3L2pmaxp̄ρ̄
−1Kσ2

+
8γ3L2pmaxρ̄

−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2 + 2Lγ2p̄Kσ2

2n

+
2Lγ2p̄ζ2K

n
(1 + 8ρ−2nγLpmax)

We conclude as in the smooth convex case by tuning the stepsize and getting rid of the
8γ3L2pmaxρ̄

−2

n

∑
v∈V

∥∥∇fv(x̄0)
∥∥2.
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