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Abstract

Submodular maximization over a matroid con-
straint is a fundamental problem with vari-
ous applications in machine learning. Some
of these applications involve decision-making
over datapoints with sensitive attributes such
as gender or race. In such settings, it is crucial
to guarantee that the selected solution is fairly
distributed with respect to this attribute. Re-
cently, fairness has been investigated in sub-
modular maximization under a cardinality
constraint in both the streaming and offline
settings, however the more general problem
with matroid constraint has only been con-
sidered in the streaming setting and only for
monotone objectives. This work fills this gap.
We propose various algorithms and impossibil-
ity results offering different trade-offs between
quality, fairness, and generality.

1 INTRODUCTION

Machine learning algorithms are increasingly used in
decision-making processes. This can potentially lead to
the introduction or perpetuation of bias and discrimina-
tion in automated decisions. Of particular concern are
sensitive areas such as education, hiring, credit access,
bail decisions, and law enforcement (Munoz et al., 2016;
White House OSTP, 2022; European Union FRA, 2022).
There has been a growing body of work attempting to
mitigate these risks by developing fair algorithms for
fundamental problems including classification (Zafar
et al., 2017), ranking (Celis et al., 2018c), clustering
(Chierichetti et al., 2017), voting (Celis et al., 2018a),
matching (Chierichetti et al., 2019), influence max-
imization (Tsang et al., 2019), data summarization
(Celis et al., 2018b), and many others.
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In this work, we address fairness in the fundamental
problem of submodular maximization over a matroid
constraint, in the offline setting. Submodular functions
model a diminishing returns property that naturally oc-
curs in a variety of machine learning problems such as
active learning (Golovin and Krause, 2011), data sum-
marization (Lin and Bilmes, 2011), feature selection
(Das and Kempe, 2011), and recommender systems
(El-Arini and Guestrin, 2011). Matroids represent a
popular and expressive notion of independence sys-
tems that encompasses a broad spectrum of useful
constraints, e.g. cardinality, block cardinality, linear
independence, and connectivity constraints.

Several definitions of algorithmic fairness have been
proposed in the literature, but no universal metric ex-
ists. Here we adopt the common notion used in many
prior studies (Celis et al., 2018a,b,c; Chierichetti et al.,
2017, 2019) that requires a solution to be fair with
respect to a sensitive attribute such as race or gender.
Formally, given a set V of n items, each item is associ-
ated with a color c representing a sensitive attribute.
Let V1, . . . , VC denote the corresponding C disjoint
groups of items of the same color. A set S ⊆ V is fair
if `c ≤ |S ∩ Vc| ≤ uc for all c, for some chosen lower
and upper bounds `c, uc ∈ N. This notion subsumes
several other fairness definitions, e.g. diversity rules
(Cohoon et al., 2013; Biddle, 2006), statistical parity
(Dwork et al., 2012), or proportional representation
rules (Monroe, 1995; Brill et al., 2017). See Celis et al.
(2018a, Section 4) for a more detailed overview.

Without fairness, the problem of maximizing a submod-
ular function over a matroid constraint in the offline
setting has been studied extensively. For monotone
objectives, a tight (1 − 1/e)-approximation is known
(Calinescu et al., 2011b; Feige, 1998), while for non-
monotone objectives the best known approximation
is 0.401 given in (Buchbinder and Feldman, 2023).
An information-theoretic hardness of 0.478 was also
shown for the non-monotone case in (Oveis Gharan
and Vondrák, 2011).

Fair submodular maximization has been considered
under a cardinality constraint, in both the offline and
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streaming models. Celis et al. (2018a) presented a tight
(1− 1/e)-approximation to the problem in the offline
setting with monotone objectives. In the streaming
setting, El Halabi et al. (2020) gave a one-pass 0.3178-
approximation algorithm in the monotone case, and a
one-pass 0.1921q-approximation algorithm in the non-
monotone case, where q = 1 −maxc

`c
|Vc| .

1 They also

showed that achieving a better than q-approximation
in this case requires Ω(n) memory.

Fair submodular maximization under a general matroid
constraint was only studied in the streaming setting,
and only for monotone objectives. El Halabi et al.
(2023) provided a one-pass 1/2-approximation algo-
rithm that uses time and memory exponential in the
rank of the matroid; this factor is tight (Feldman et al.,
2020). They also gave a polynomial-time two-pass
1/11.656-approximation which uses O(k · C) memory
and violates the fairness lower bounds by a factor 2.

While some applications necessitate algorithms that
use small memory compared to the data size, others
can afford a larger memory budget. In this work, we
focus on the classic offline setting, which has not yet
been studied despite being more basic than streaming.
Our results show that it is possible to obtain stronger
performance guarantees in this case. We also consider
both monotone and non-monotone objectives, which
cover a wider range of applications.

1.1 Our Contributions

We present several algorithms and impossibility results
for fair matroid submodular maximization (FMSM)
in the offline setting, with trade-offs between quality,
fairness, and generality. Table 1 summarizes our ap-
proximation results and prior ones for this problem.

First, we observe that the streaming algorithms of
El Halabi et al. (2023) for monotone objectives apply
in the offline setting. This yields a 1/2-approximation
in exponential time with respect to the rank of the
matroid. And, with a slight modification, the two-pass
algorithm therein achieves a 1/(4 + ε)-approximation
in polynomial time, with a factor-2 violation of the
fairness lower bounds. We extend the latter result to
non-monotone objectives, obtaining a (1− β)/(8 + ε)-
approximation with a 1/β violation of the fairness lower
bounds, for any β ∈ [0, 1/2] (Theorem 3.1).

It is of course preferable to obtain algorithms that sat-
isfy the fairness constraints exactly. However, we give
strong evidence that this is very challenging in general.

1These approximations are better than the ones stated
in (El Halabi et al., 2020). They follow from their results by
plugging in the state-of-the-art approximations of Feldman
et al. (2021, Theorem 1 and 5) for streaming submodular
maximization over a matroid constraint.

A commonly used approach for submodular maximiza-
tion problems is relax-and-round, which consists of first
solving a continuous relaxation of the problem obtained
using the multilinear extension (see definition in Sec-
tion 2) of the objective over the convex hull PF of the
domain, then rounding the fractional solution. Most
studied submodular maximization problems that admit
a constant-factor approximation algorithm also admit
one based on the relax-and-round approach. Unfortu-
nately, we show that for FMSM, this approach cannot
yield a better than O(1/

√
n)-approximation in general

(Theorem 3.2), even for monotone objectives.

Yet, if we allow the fairness constraint to be satisfied
only in expectation, we can adapt this approach to ob-
tain a tight (1− 1/e)-approximation in expectation for
monotone objectives. For non-monotone objectives, the
approximation becomes (1−r−ε)/4 where r is the min-
imum `∞-norm of any vector in PF or its complement.
Both algorithms are also guaranteed to only violate the
fairness constraints by a multiplicative factor expected
to be small in practice (Theorem 3.3).

In fact, the factor r is closely tied to the hardness of
non-monotone FMSM. We show that no algorithm can
achieve a better than (1 − r)-approximation in sub-
exponential time, even without the matroid constraint
(Theorem 3.7). In the case of uniform or no matroid,
1 − r coincides with the notion of excess ratio q =
1 − maxc

`c
|Vc| studied by El Halabi et al. (2020). As

such, this inapproximability result extends the one
provided therein for the streaming setting.

While the (1− r) factor in the approximation for non-
monotone FMSM cannot be improved even for the
uniform matroid, we show that the 1/4 factor can be
improved to 0.401 in this case (Theorem 3.6). This
improves over the 0.1921q-approximation of (El Halabi
et al., 2020) in the streaming setting.

Finally, we study an interesting subclass of FMSM,
which we call decomposable FMSM, where the ob-
jective decomposes into submodular functions on the
equivalence classes of the matroid (see Definition 2.3)
or on the color groups of the fairness constraint. This
subclass enables us to consider fairness in the impor-
tant submodular welfare problem (see Section 2). We
provide a tight (1− 1/e)-approximation to decompos-
able FMSM for monotone objectives and a (1−r−ε)/4
for non-monotone objectives, in expectation, without
violating the fairness constraint (Corollary 4.4).

1.2 Additional Related Work

Before this paper, non-monotone FMSM was only stud-
ied in the offline setting in the special case of cardinality
constraint by Yuan and Tang (2023), who obtained a
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Table 1: Summary of results for FMSM in the offline setting (only polynomial-time algorithms with respect to n, k
and C are included). In the “Fairness Approx.” column, a (θ1, θ2) entry means the algorithm’s output satisfies
|S ∩Vc| ∈ [θ1`c, θ2uc]. The parameters ε > 0, β ∈ [0, 1/2] are arbitrary constants, and r = minx∈PF∪(1−PF ) ‖x‖∞.

Function Matroid Approx. Ratio Fairness Approx.

Monotone General 1− 1/e (Thm. 3.3) (1, 1) in expectation

Non-monotone General (1− r − ε)/4 (Thm. 3.3) (1−
√

3ln(2C)/`c, 1 +
√

3ln(2C)/uc)

Monotone General 1/(4 + ε) (El Halabi et al., 2023) (1/2, 1)

Non-monotone General (1− β)/(8 + ε) (Thm. 3.1) (β, 1)

Monotone Uniform 1− 1/e (Celis et al., 2018a) (1, 1)

Non-monotone Uniform 0.401(1− r) (Thm. 3.6) (1, 1)

Monotone decomposable General 1− 1/e (Thm. 4.4) (1, 1)

Non-monotone decomposable General (1− r − ε)/4 (Thm. 4.4) (1, 1)

0.2005-approximation for a specific setting of fairness
bounds where `c

|Vc| = a and uc
|Vc| = b for all c, for some

constants a, b ∈ [0, 1].2 Our results recover their guar-
antee (see Theorem 3.6 and the discussion below it).

Several works have studied other special cases and
variants of FMSM. Wang et al. (2021) studied a spe-
cial case of monotone FMSM in the streaming setting,
where fairness lower and upper bounds are equal for
each color, i.e., `c = uc for all c and without any ma-
troid constraint. Tang et al. (2023) and Tang and Yuan
(2023) studied a randomized variant of FMSM with car-
dinality constraint in the offline setting, where fairness
constraint only needs to be satisfied in expectation.

A closely related problem to FMSM is submodular
maximization over two matroid constraints; FMSM
reduces to this problem when `c = 0 for all c. Lee et al.
(2010) gave a 1/(2 + ε)-approximation for this problem
for monotone objectives, and a 1/(4+ε)-approximation
for non-monotone objectives.

An important special case of decomposable FMSM
arises by considering fairness in the submodular wel-
fare problem. Without fairness, this is a well-studied
problem for which a tight (1− 1/e)-approximation is
known (Vondrák, 2008; Khot et al., 2005). The submod-
ular welfare problem has many practical applications,
including resource allocation in wireless networks, bud-
get allocation in advertising campaigns, and division
of resources among multiple stakeholders. In several of
these applications, it is important to ensure that the
selected allocation is fair. Fairness in the submodular
welfare problem has been studied by Benabbou et al.
(2021), Aziz et al. (2023), and Sun et al. (2023). How-

2 The approximation given in (Yuan and Tang, 2023) is
0.401/2 for a ≤ 1/2 and 0.401/3 otherwise. However, their
analysis can be easily modified to show 0.401/2 = 0.2005-
approximation for any a.

ever, these works consider different notions of fairness
than we do: fairness is imposed on the value received
by each individual in the selected allocation, instead
of the size of the allocation assigned to each group of
individuals.

In this work, we focus on the case where the color
groups are disjoint. The case where groups can overlap
was considered in (Celis et al., 2018a) for the special
case of monotone FMSM with cardinality constraint.
They show that when elements can be assigned to 3 or
more colors, even determining feasibility is NP-hard.
But if fairness constraints are allowed to be violated,
they give a (1− 1/e− o(1))-approximation algorithm,
which satisfies the fairness constraint in expectation.
Our result for general monotone FMSM (Theorem 3.3)
is based on the same tools used for this result.

Fairness in submodular maximization has also been
studied under a different notion of fairness (Wang et al.,
2024; Tsang et al., 2019; Tang and Yuan, 2023) which
imposes a lower bound on the value that each group
derives from the solution, where groups are not nec-
essarily subsets of V , and the value is modeled by a
monotone submodular function. Both the variant of
fair submodular maximization considered in this line
of work and our work can be formulated as variants
of multi-objective submodular maximization problems
(Krause et al., 2008; Udwani, 2018; Chekuri et al., 2010);
see Appendix C for details.

2 PRELIMINARIES

Consider a ground set V with n items and a non-
negative set function f : 2V → R+. We say that f is
submodular if f(Y ∪ {e})− f(Y ) ≥ f(X ∪ {e})− f(X)
for any two sets Y ⊆ X ⊆ V and any element e ∈
V \X. Moreover, f is monotone if f(Y ) ≤ f(X) for
any two sets Y ⊆ X ⊆ V , and non-monotone otherwise.
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Throughout the paper, we assume that f is given as a
value oracle that computes f(S) given S ⊆ V .

Matroids. A matroid is a family of sets I ⊆ 2V with
the following properties:

• if X ⊆ Y and Y ∈ I, then X ∈ I;

• if X,Y ∈ I with |X| < |Y |, then there exists
e ∈ Y such that X + e ∈ I.

We use X+e for X ∪{e}. We assume that the matroid
is given as an independence oracle. We call a set X ⊆ V
independent if X ∈ I and a base if it is also maximal
with respect to inclusion. All the bases of a matroid
share the same cardinality k, referred to as the rank of
the matroid. Partition matroids are an important class
of matroids where V is partitioned into

⋃
iGi, where

each block Gi has an upper bound ki ∈ N, and a set
X is independent if |X ∩Gi| ≤ ki for all i.

Fair Matroid Submodular Maximization
(FMSM). Let V be partitioned into C sets, where
Vc denotes items of color c for all c ∈ [C] = {1, · · · , C}.
Given fairness bounds (`c, uc)c∈[C] and a matroid
I ⊆ 2V of rank k, the collections of fair sets C and
feasible sets F are defined as:

C = {S ⊆ V | `c ≤ |S ∩ Vc| ≤ uc ∀c ∈ [C]} ,
F = I ∩ C .

In FMSM, the goal is to find a set S ∈ F that max-
imizes f(S). We use OPT to refer to the optimal
value, i.e., OPT = maxS∈F f(S). We assume a feasi-
ble solution exists, i.e., F 6= ∅. An algorithm is an
α-approximation to FMSM if it outputs a set S ∈ F
such that f(S) ≥ α ·OPT.

We denote the convex hull of indicator vectors of fair
sets by PC = conv({1S | S ∈ C}) (fairness polytope), of
independent sets by PI = conv({1S | S ∈ I}) (matroid
polytope), and of feasible sets by PF = conv({1S | S ∈
F}) (feasible polytope). We also define the complement
of PF as 1− PF = {x ∈ [0, 1]n | 1− x ∈ PF}, where 1
is the all-ones vector. We recall in the following lemma
some useful properties shown by El Halabi et al. (2023,
Lemma C.1, Corollary C.4, Theorem C.5).

Lemma 2.1. The following hold:

a. PC = {x ∈ [0, 1]n :
∑
i∈Vc xi ∈ [`c, uc] ∀c ∈ [C]}.

b. PF corresponds to the intersection of the matroid
and fairness polytopes: PF = PI ∩ PC.

c. PF is solvable, i.e., linear functions can be maxi-
mized over it in polynomial time.

The following lemma from (Buchbinder et al., 2014,
Lemma 2.2) will be useful in the non-monotone case.

Lemma 2.2. Let g be a non-negative submodular func-
tion and let B be a random subset of V containing every
element of V with probability at most p (not necessarily
independently). Then E[g(B)] ≥ (1− p)g(∅).

Multilinear extension. An important concept in
submodular maximization is the multilinear extension
F : [0, 1]n → R+ of a submodular function f :

F (x) = E[f(R(x))] =
∑
S⊆V

f(S)
∏
i∈S

xi
∏

j∈V \S

(1− xj),

where R(x) is the set obtained by independently select-
ing each element i ∈ V with probability xi.

Decomposable FMSM. We also study a subclass
of the FMSM problem where the objective decomposes
into submodular functions on the equivalence classes
of the matroid or on the color groups of the fairness
constraint. We recall the notion of equivalent elements
in a matroid (Chekuri et al., 2010, Definition I.3).

Definition 2.3. Two elements i, j ∈ V are equivalent
in a matroid I if for any set S ∈ I not containing i
and j, S + i ∈ I if and only if S + j ∈ I.

This defines an equivalence relation. For example,
the equivalence classes of a partition matroid are the
partition groups Gi.

Definition 2.4. Let G ⊆ 2V be the equivalence classes
of the matroid I. We say that f is a decomposable
submodular function over F if

f(S) =
∑
G∈G

f1,G(S ∩G) +

C∑
c=1

f2,c(S ∩ Vc),

where f1,G, f2,c are submodular functions.

Submodular welfare problem. One noteworthy
example of decomposable submodular functions arises
from the submodular welfare problem. In this problem,
we are given a set of items B and a set of agents A
each with a monotone submodular utility function wi :
2B → R+. The goal is to distribute the items among
the agents to maximize the social welfare

∑
i∈A wi(Si),

where (Si)i∈A are the disjoint sets of items assigned
to each agent. It is known that this problem can be
written as a monotone submodular maximization over
a partition matroid constraint by defining the ground
set as V = A×B, the objective as f(S) =

∑
i∈A wi(Si)

where Si = {e ∈ B | (i, e) ∈ S}, and using the partition
matroid I = {S ⊆ V | (∀e ∈ B) |S ∩ (A × {e})| ≤ 1}
(Lehmann et al., 2006). In certain applications, it is
important to ensure that each group of agents receives
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a fair allocation of items. To that end, we introduce
the fair submodular welfare problem, where each agent
is assigned exactly one color c ∈ [C]; Ac is the set
of agents of color c. Let Vc = Ac × B and fc(S) =∑
i∈Ac wi(Si), then fc is monotone submodular and

f(S) =
∑C
c=1 fc(S ∩ Vc) is a monotone decomposable

submodular function over F . The fair submodular
welfare problem is then a special case of monotone
decomposable FMSM.

3 GENERAL CASE

In this section, we provide algorithms and impossibility
results for FMSM with general submodular objectives.

3.1 Algorithms with Lower Bounds Violation

We start by providing constant-factor approximation
algorithms for FMSM that violate the fairness lower
bounds by a constant factor. Such an algorithm can
be directly obtained in the monotone case from the
two-pass streaming algorithm of El Halabi et al. (2023,
Section 4). In the first pass, their algorithm finds a fea-
sible set S; in the second pass, S is extended to an α/2-
approximate solution which violates the lower bounds
by a factor 2, using an α-approximation algorithm A for
monotone submodular maximization over the intersec-
tion of two matroids. Using the state-of-the-art offline
1/(2 + ε)-approximation algorithm of Lee et al. (2010,
Theorem 3.1) as A, instead of a streaming algorithm, di-
rectly yields an improved 1/(4+ε)-approximation ratio.

We adapt this algorithm to non-monotone objectives by
randomly dropping an appropriate number of elements
from S to balance the loss in objective value and the
violation of the fairness lower bounds. We defer the
details to Appendix A.

Theorem 3.1. There exists a polynomial-time algo-
rithm for non-monotone FMSM, which outputs a set S
such that (i) S ∈ I, (ii) bβ`cc ≤ |Vc ∩ S| ≤ uc for any
color c ∈ [C], and (iii) E[f(S)] ≥ (1− β)OPT/(8 + ε)
for any β ∈ [0, 1/2] and ε > 0.

Proof sketch. We extend the result of El Halabi et al.
(2023, Lemma 4.3 and 4.4) to non-monotone objec-
tives; showing that dropping elements from S allows
us to only lose a factor (1 − β), in expectation, in
the objective value by Lemma 2.2, while keeping at
least bβ`cc elements from each color. Plugging in the
state-of-the-art 1/(4 + ε)-approximation algorithm of
Lee et al. (2010, Theorem 4.1) as A directly yields a
(1− β)/(8 + ε)-approximation, in expectation.

For example, if we accept a factor 2 violation of the
fairness lower bounds (β = 1/2), Theorem 3.1 gives a

1/(16 + ε)-approximation for non-monotone FMSM.

Note that if we use a streaming algorithm for A, the
adapted algorithm becomes a two-pass streaming algo-
rithm, as in the monotone case. In particular, using the
state-of-the-art 1/7.464-approximation algorithm by
Garg et al. (2021, Theorem 19) yields a (1−β)/14.928-
approximation in the streaming setting (Theorem A.3).

3.2 Hardness of Rounding

The optimal approximation algorithms for maximizing
a submodular function over a matroid constraint in
(Calinescu et al., 2011b; Feldman et al., 2011) rely on
first approximately solving a continuous relaxation of
the problem obtained by replacing f by its multilinear
extension and the matroid constraint by its convex hull,
then rounding the solution, which can be done with-
out any loss of utility using pipage or swap rounding
(Calinescu et al., 2011b; Chekuri et al., 2010). It is
then natural to attempt a similar relax-and-round ap-
proach here: first approximately solve the continuous
relaxation of FMSM,

max
x∈PF

F (x), (1)

and then round the obtained solution to a set in F .
Unfortunately, this approach fails in the presence of the
fairness constraint! In particular, we show that the in-
tegrality gap of Problem (1) is Ω(

√
n), even for a mono-

tone objective and a partition matroid. Hence, it is not
possible to obtain better than O(1/

√
n)-approximation

using this approach.

Theorem 3.2. There is a family of FMSM instances
where f is monotone and I is a partition matroid, for
which the integral optimum solution has value 1, but
the multilinear extension admits a fractional solution
of value Ω(

√
n).

Proof sketch. We encode bipartite perfect matching
as an instance of F where I is a partition matroid.
Then we construct an instance where the objective is
monotone and the bipartite graph has Θ(

√
n) perfect

matchings each of value 1, while taking x ∈ PF as the
average of the indicator vectors of the perfect matchings
yields F (x) = Θ(

√
n).

3.3 Algorithms with Expected Fairness

Motivated by Theorem 3.2, we adapt the relax-and-
round approach to ignore the fairness constraints dur-
ing the rounding phase. This allows us to use the
randomized swap rounding algorithm of Chekuri et al.
(2010, Section IV) to obtain an independent-set solu-
tion which preserves the same utility as the fractional
solution, and which satisfies the fairness constraints in
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expectation. This solution is further guaranteed, with
constant probability, to violate the fairness bounds by
at most a multiplicative factor, expected to be small
in practice. This approach is inspired from Celis et al.
(2018a, Theorem 14), who considered a special case
of FMSM with a monotone objective and a uniform
matroid, but with possibly non-disjoint color groups.
Theorem 3.3 extends their result to any matroid and
non-monotone objectives. The non-monotone case is
more challenging than the monotone case; we show in
Section 3.5 that it is impossible to obtain an approx-
imation better than (1 − minx∈PF∪(1−PF ) ‖x‖∞) for
non-monotone FMSM in sub-exponential time, even
for solving the continuous Problem (1).

Theorem 3.3. There exists a polynomial-time algo-
rithm for FMSM which outputs a solution S ∈ I
such that E[|S ∩ Vc|] ∈ [`c, uc] and E[f(S)] ≥ αOPT,
where α = 1 − 1/e if f is monotone and α = (1 −
minx∈PF∪(1−PF ) ‖x‖∞ − ε)/4 otherwise, for any ε > 0.
Moreover, the solution satisfies with constant probability
the following for all c ∈ [C],(

1−
√

3 ln(2C)
`c

)
`c ≤ |S ∩ Vc| ≤

(
1 +

√
3 ln(2C)
uc

)
uc.

Proof. We first obtain an α-approximation fractional
solution x ∈ PF for maxx∈PF F (x). For monotone
objectives, we can use the continuous greedy algorithm
of Calinescu et al. (2011a, Section 3.1 and Appendix
A), which achieves a (1 − 1/e)-approximation for
maximizing the multilinear extension over any integral
polytope, with high probability.3 Note that PF is
integral as it is the convex hull of integral points.

For non-monotone objectives, we can use the Frank-
Wolfe type algorithm of Du (2022, Sections 3.5
and 4.5) which achieves a (1 − minx∈P ‖x‖∞ − ε)/4-
approximation for maximizing the multilinear extension
over any polytope P , with high probability — see also
(Mualem and Feldman, 2023, Section 3) for an explicit
variant of the algorithm and its analysis. To obtain the
approximation ratio (1−minx∈PF∪1−PF ‖x‖∞ − ε)/4,
we apply the algorithm of Du (2022) to both Problem
(1) and its complement: maxx∈1−PF F̄ (x), where F̄ is
the multilinear extension of the complement f̄ of f ;
f̄(S) = f(V \ S). Both the continuous greedy and the
Frank-Wolfe type algorithms run in polynomial time
if the constraint polytope is solvable, which is the case
for PF and 1− PF by Lemma 2.1-c.

Next we round the fractional solution x to an inde-
pendent (but not necessarily feasible) set S ∈ I using
the randomized swap rounding scheme of Chekuri

3The result in (Calinescu et al., 2011a) is given for
matroid polytopes, but it applies more generally for any
integral polytope.

et al. (2010, Section IV). The rounded solution is
guaranteed to satisfy E[|S ∩ Vc|] = x(Vc) ∈ [`c, uc],
E[f(S)] ≥ F (x) ≥ αOPT (see Theorem II.1 therein).
The rest of the claim follows from the concentration
bounds given in (Chekuri et al., 2010, Theorem II.1)
and union bound. See details in Appendix B.2.

As discussed in (Celis et al., 2018a) – see discussion
under Theorem 14 therein – the violation of the fairness
constraints in the above theorem is expected to be small,
i.e.,

√
3 ln(2C)/uc ≤

√
3 ln(2C)/`c � 1, in typical fair-

ness applications. However, in general, this violation
can be arbitrarily bad. In particular, when F encodes
a bipartite perfect matching constraint, as in the proof
of Theorem 3.2, we have C = Θ(

√
n) and uc = `c = 1,

hence
√

3 ln(2C)/uc =
√

3 ln(2C)/`c � 1.

Note that the approximation ratio for non-monotone
objectives in Theorem 3.3 can be as good as 1/4
in some cases (for example if `c = 0 for all c or
uc = |Vc| for all c), but it can also be arbitrarily bad.
To illustrate this, we compute below the minimum
`∞-norm of PF and its complement for two special
cases of PF . See Appendix B.2 for the full proofs.

Example 3.4 (Uniform matroid). Let I be the uni-
form matroid with rank k. We order the color
groups such that `1

|V1| ≤ · · · ≤
`C
|VC | and let t be

the largest index t ∈ [C] such that `t
|Vt|
∑t
c=1 |Vc| +∑C

c=t+1 `c ≤ k (t ≥ 1 is well-defined since F 6=
∅). Then minx∈PF∪(1−PF ) ‖x‖∞ = min{maxc

`c
|Vc| , 1−

min{τ,minc≤t
uc
|Vc|}}, where τ =

k−
∑C
c=t+1 `c∑t
c=1 |Vc|

.

Proof sketch. We construct closed-form solutions to
minx∈PF ‖x‖∞ and minx∈1−PF ‖x‖∞ with `∞-norms
maxc

`c
|Vc| and 1−min{τ,minc≤t

uc
|Vc|}, respectively.

The fairness bounds are often set such that the
representation of color groups in a fair set is pro-
portional to their representation in the ground set,
i.e., `c, uc ∝ k|Vc|/n. If in particular `c ≤ k|Vc|/n
for all c, we get in Example 3.4 t = C, τ = k/n and
minx∈PF∪(1−PF ) ‖x‖∞ ≤ min{k/n, 1 − k/n} ≤ 1/2.
The corresponding approximation ratio in Theorem 3.3
for non-monotone objectives is then at least 1/8− ε.

Example 3.5 (Bipartite perfect matching). Let F be the
feasible set arising from the bipartite perfect matching
problem in the proof of the integrality gap Theorem 3.2.
We have minx∈PF∪(1−PF ) ‖x‖∞ = 1−Θ(1/

√
n).

Proof sketch. We show that the point x used
in the proof of Theorem 3.2 is a solution of
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minx∈PF∪(1−PF ) ‖x‖∞ with ‖x‖∞ = ‖1 − x‖∞ =
1−Θ(1/

√
n).

The corresponding approximation factor for Exam-
ple 3.5 in Theorem 3.3 for non-monotone objectives
is then O(1/

√
n). So relaxing the fairness constraints

was not helpful in this case!

Recall that the (1− 1/e)-approximation for monotone
objectives in Theorem 3.3 is tight even without the
fairness constraint (Feige, 1998). For non-monotone
objectives, the 1/4 factor is also tight for maximizing
the multilinear extension of a submodular function
over a general polytope (Mualem and Feldman, 2023,
Theorem 5.1); so improving it, if possible, would require
more specialized algorithms for solving Problem (1).

3.4 Uniform Matroid Case

In the special case of the uniform matroid, both
the fairness violation and the approximation ratio
for non-monotone objectives given in Theorem 3.3
can be improved. In particular, recall that a (1 −
1/e)-approximation can be obtained in this case for
monotone objectives, without any violation of the
fairness constraint (Celis et al., 2018a, Theorem
18). For non-monotone objectives, we show that a
0.401(1 − minx∈PF∪(1−PF ) ‖x‖∞)-approximation can
be obtained in expectation, also without any violation
of the fairness constraint.4

Theorem 3.6. There exists a polynomial-time al-
gorithm for non-monotone FMSM where I is
a uniform matroid, which achieves 0.401(1 −
minx∈PF∪(1−PF ) ‖x‖∞)-approximation in expectation.

Proof sketch. El Halabi et al. (2020, Theorem 5.2)
presented a polynomial-time algorithm with an
expected (1 − maxc

`c
|Vc| )α-approximation for non-

monotone FMSM over a uniform matroid, given any
α-approximation algorithm for non-monotone submod-
ular maximization over a matroid constraint.5 Plugging
in the state-of-the-art 0.401-approximation of Buch-
binder and Feldman (2023, Corollary 1.3) then yields a
0.401(1−maxc

`c
|Vc| )-approximation in expectation. Re-

call from Example 3.4 that minx∈PF ‖x‖∞ = maxc
`c
|Vc| .

To obtain the potentially better approximation fac-
tor 0.401(1−minx∈1−PF ‖x‖∞), we solve (as in Theo-
rem 3.3) the complement problem maxV \S∈F f̄(S).

4Note that the 0.401 factor in the approximation given
in Theorem 3.6 can be improved if a better approximation
for non-monotone submodular maximization over a general
or a partition matroid is developed in the future.

5The result in (El Halabi et al., 2020) is given for the
streaming setting, but it also holds offline.

We follow a similar strategy as El Halabi et al. (2020).
Namely, we first drop the lower bounds from the
constraint. The resulting problem maxS⊆V {f̄(S) :
|S ∩ Vc| ≤ |Vc| − `c, ∀c ∈ [C]} is a non-monotone
submodular maximization problem over a partition
matroid. Hence, a solution S with an expected 0.401-
approximation can be obtained for it. Next, we aug-
ment S to a feasible solution by carefully sampling
enough random elements from each color to satisfy
the lower bounds. Each element e ∈ V \ S is added
with probability at most x̄e, where x̄ is a solution of
minx∈1−PF ‖x‖∞ as in Example 3.4. Finally, we use
Lemma 2.2 to bound the loss in value resulting from
the additional elements. The sampling step is more
involved here than in the original problem because x̄
is non-integral. See details in Appendix B.3.

Theorem 3.6 recovers the result of Yuan and Tang
(2023) for the special case where `c

|Vc| = a and uc
|Vc| = b

for all c ∈ [C], for some constants a, b ∈ [0, 1].2 In-
deed, in that case t = C and τ = k/n ≥ a in Ex-
ample 3.4, and minx∈PF∪(1−PF ) ‖x‖∞ = min{a, 1 −
min{k/n, b}}, so the resulting approximation ratio is
at least 0.401 max{1− a, a} ≥ 0.2005.

More generally, for the typical choice of fairness bounds
discussed earlier in Section 3.3, where `c ≤ k|Vc|/n for
all c, the resulting approximation ratio is also at least
0.401/2 = 0.2005.

3.5 Non-monotone Hardness

In this section, we show that no approximation ratio
better than (1 − minx∈PF∪(1−PF ) ‖x‖∞) can be ob-
tained for non-monotone FMSM in sub-exponential
time, even without the matroid constraint.

Theorem 3.7. For any r in the form r = 1 −
1
t with t ≥ 2 and any ε > 0, a (1 − r + ε)-
approximation for FMSM that works for instances
where minx∈PF∪(1−PF ) ‖x‖∞ ≤ r requires an exponen-
tial number of value queries. This is also the case for
the continuous relaxation of FMSM, maxx∈PF F (x).
Furthermore, this is true even in the two special cases
where (i) C = 2 and I = 2V (no matroid constraint),
(ii) C = 1 and I is a partition matroid.

Proof sketch. The proof follows from the hardness re-
sults given in (Vondrák, 2013, Theorem 1.2 and 1.9)
for non-monotone submodular maximization over the
bases of a matroid, by showing that the hard instance
used therein is an instance of both special cases (i) and
(ii) of FMSM. See Appendix B.4.

Theorem 3.7 implies that any constant-factor approxi-
mation for FMSM or its continuous relaxation requires
an exponential number of value queries in general.
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Note that a uniform matroid with k = n is equiva-
lent to having no matroid constraint. In that case,
Example 3.4 shows that minx∈PF∪(1−PF ) ‖x‖∞ =

min{maxc
`c
|Vc| , 1 −minc

uc
|Vc|}, since t = C and τ = 1.

Hence, Example 3.4 and Theorem 3.7 yield a lower
bound of max{1−maxc

`c
|Vc| ,minc

uc
|Vc|} for the fairness

constraint alone. This matches the lower bound given in
(El Halabi et al., 2020, Theorem 5.1) for FMSM in the
streaming setting – the bound therein is 1−maxc

`c
|Vc|

and is stated for the uniform matroid, but the hard
instance used in the proof does not use any matroid
and has minc

uc
|Vc| = 0.

On the other hand, note that Example 3.5 does not nec-
essarily imply a hardness of O(1/

√
n) for the bipartite

perfect matching constraint, since the hard instance in
Theorem 3.7 is not an instance of that.

4 DECOMPOSABLE CASE

In this section, we study a special case of FMSM where
f is a decomposable submodular function over F (Def-
inition 2.4). We follow the relax-and-round approach
discussed in Section 3.2. Unlike the general case, this
approach works here; we show that the integrality gap
of Problem (1) is 1 in this case. To that end, we show
that the randomized swap rounding algorithm proposed
in (Chekuri et al., 2010, Section V) for the intersection
of two matroids can be applied to F .

We achieve this by reducing rounding on F to rounding
on the intersection of two matroids, one with the same
equivalence classes (Definition 2.3) as I and the other
with the color groups Vc as equivalence classes. Our
reduction uses the following simple observation.

Fact 4.1. Given any family of sets J ⊆ 2V , let J̃
denote the family of extendable sets: J̃ = {S ⊆ V |
there exists S′ ∈ J such that S ⊆ S′}. Then J and
J̃ have the same maximal sets.

When the matroid in F is the uniform matroid, F̃
was shown to form a matroid (El Halabi et al., 2020,
Lemma 4.1). We can then view any fair set as a base
in a matroid, as shown by the following lemma. See
Appendix B.5 for the proofs of this section.

Lemma 4.2. Let C̃k := {S ⊆ V | there exists S′ ∈
C, |S′| ≤ k such that S ⊆ S′}. Then any fair set S ∈ C
is a base of the matroid C̃k with k = |S| and vice versa.

We are now ready to give our reduction.

Theorem 4.3. There exists a polynomial-time round-
ing scheme which, given x ∈ PF , returns a feasible set
S ∈ F that for any decomposable submodular function
f over F satisfies E[f(S)] ≥ F (x).

Proof sketch. Since PF is solvable (Lemma 2.1-c), we

can write x as a convex combination of sets in F
in strongly polynomial time (Schrijver, 2003, Theo-
rem 5.15); i.e., x =

∑
t αt1It for some It ∈ F , αt ≥

0,
∑
t αt = 1. Lemma 4.2 implies that every set It is in

the intersection of the matroids I and C̃k, where k is
the size of the largest set It. Then x is a valid input
for swap rounding. If all sets It have the same size k,
then the returned rounded solution S ∈ I ∩ C̃k will also
have size k, and thus is a base of C̃k. By Lemma 4.2,
S is then also a fair set. The claim then follows from
(Chekuri et al., 2010, Theorem II.3) by noting that
the equivalence classes of C̃k are the color groups Vc,
and thus any decomposable submodular function over
F is also decomposable over I ∩ C̃k. If sets It do not
have the same size, we reduce to the equal-sizes case
by adding dummy elements.

Theorem 4.3 allows us to obtain the same approxima-
tion factors as in Theorem 3.3 but without violating
the fairness constraint.

Corollary 4.4. There exists a polynomial-time algo-
rithm for decomposable FMSM which achieves, in ex-
pectation, (1 − 1/e)-approximation if f is monotone
and (1−minx∈PF∪(1−PF ) ‖x‖∞ − ε)/4-approximation
otherwise, for any ε > 0.

Proof. This follows directly from the proof of The-
orem 3.3 and Theorem 4.3. Note also that both the
continuous greedy and the Frank Wolfe type algorithms
used to solve Problem (1) return a fractional solution
x which is already a convex combination of sets in
F . So this step can be skipped in the proof of Theo-
rem 4.3.

Recall that the fair submodular welfare problem (c.f.,
Section 2) is a special case of monotone decompos-
able FMSM. Corollary 4.4 then gives a (1 − 1/e)-
approximation for it.

In the special cases where C = 1 or I is the uniform
matroid, Corollary 4.4 applies to any submodular ob-
jective, since V1 = V in the first case and all elements
are equivalent in the second case, i.e., G = {V } in
Definition 2.3. Hence, Corollary 4.4 recovers the result
of Celis et al. (2018a, Theorem 18) for monotone objec-
tives. For non-monotone objectives, the approximation
guarantee in Corollary 4.4 can be of course improved
to the one given in Theorem 3.6.

It follows also that the hardness result in Theorem 3.7
applies to decomposable FMSM too.

Corollary 4.5. For any r of the form r = 1− 1
t with

t ≥ 2 and any ε > 0, a (1− r + ε)-approximation for
decomposable FMSM that works for instances where
minx∈PF∪(1−PF ) ‖x‖∞ ≤ r requires an exponential
number of value queries. This is also the case for
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the continuous relaxation of FMSM, maxx∈PF F (x).
Furthermore, this is true even in the two special cases
where (i) C = 2 and I = 2V (no matroid constraint),
(ii) C = 1 and I is a partition matroid.

Proof. This follows directly from the proof of Theo-
rem 3.7, by noting that any submodular function is
decomposable over F in both special cases; in (i) I is
a n-uniform matroid and in (ii) C = 1.

5 FUTURE DIRECTIONS

Our work leaves the following tantalizing question open:
is there a constant-factor approximation to monotone
FMSM (without fairness violations)? Even more fun-
damentally: is there a constant-factor approximation
to the problem of maximizing a monotone submod-
ular function over the set of perfect matchings in a
bipartite graph? On one hand, given our integrality
gap in Theorem 3.2 for the multilinear extension, a
positive answer would require novel algorithmic tech-
niques. On the other hand, in a plenary SODA talk,
Vondrák (2013) stated the following as a fundamental
question: “Can we approximate every maximization
problem with a monotone submodular objective (up to
constant factors) if we can approximate it with a linear
objective?” As maximum-weight perfect matching is
in P, a superconstant hardness of approximation for
the submodular perfect matching problem would imply
a negative answer to Vondrák’s question.
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Fairness in Submodular Maximization over a Matroid Constraint:
Supplementary Materials

A Algorithms for non-monotone FMSM with lower bounds violation

In this section, we present a constant-factor approximation algorithm for FMSM, where the function f is non-
monotone, which violates the fairness lower bounds by a constant factor. The algorithm is a simple adaptation
of the two-pass streaming algorithm in (El Halabi et al., 2023), with both a streaming and offline variant. The
first pass of our algorithm is the same (Algorithm 1). It collects a maximal independent set Ic ∈ I for each color
independently and then constructs a feasible solution S in ∪cIc.

Algorithm 1 Fair-Reservoir in (El Halabi et al., 2023)

1: Ic ← ∅ for all c = 1, ..., C
2: for each element e on the stream do
3: Let c be the color of e
4: If Ic + e ∈ I then Ic ← Ic + e
5: S ← a max-cardinality subset of

⋃
c Ic in I ∩ IC , where IC = {S ⊆ V | |Vc ∩ S| ≤ `c ∀c ∈ [C]}

6: Return S

Fair-Reservoir runs in polynomial time, uses O(k · C) memory, and is guaranteed to return a feasible solution
(El Halabi et al., 2023, Theorem 4.2).6 Step 5 consists in invoking any offline polynomial-time max-cardinality
matroid intersection algorithm (note that IC is a partition matroid).

The second pass of our algorithm is very similar to (El Halabi et al., 2023) (Algorithm 2). The feasible set S output
by Fair-Reservoir is again divided into sets S1 and S2. But instead of assigning elements deterministically
to S1 or S2 in such a way that each lower bound is violated by at most a factor two, we randomly assign, for
each c ∈ [C], bβ`cc elements from S ∩ Vc to S1, and bβ`cc from (S \ S1) ∩ Vc to S2, where β ∈ [0, 1/2] is a
user-defined parameter which controls the trade-off between fairness and objective value. This is possible since
S is feasible so it has at least `c elements of each color c. Note that both S1 and S2 are independent in I and
satisfy bβ`cc = |Si ∩ Vc| ≤ `c ≤ uc.

The goal of the second pass is to extend S1 and S2 into high-value independent sets while still satisfying the
fairness upper bounds and the relaxed lower bounds. To that end, similarly as (El Halabi et al., 2023), we define
the following matroids:

IC = {X ⊆ V | |X ∩ Vc| ≤ uc ∀c ∈ [C]} ,
I1 = {X ⊆ V | X ∪ S1 ∈ I} ,
I2 = {X ⊆ V | X ∪ S2 ∈ I}. (2)

Then we use any algorithm A that maximizes a non-monotone submodular function over two matroid constraints,
and run two copies of it in parallel, one with matroids IC , I1 and one with matroids IC , I2. Let R1, R2 be their
respective outputs. We add to Ri as many elements as necessary from Si to satisfy the relaxed lower bounds, and
return the better of the two resulting solutions.

6In the offline setting, we do not need to collect the sets Ic; we can directly compute a feasible set in V . These sets are
needed to maintain a low-memory usage O(k · C) in the streaming setting.
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Algorithm 2 Randomized-Fair-Streaming

1: Input: Set S from Fair-Reservoir, routine A, and β ∈ [0, 1/2]
2: S1 ← ∅, S2 ← ∅
3: for each color c do
4: Let Bc1, B

c
2 be sets of bβ`cc random elements from S ∩ Vc and (S ∩ Vc) \Bc1, respectively

5: S1 ← S1 ∪Bc1
6: S2 ← S2 ∪Bc2
7: Define matroids IC , I1, I2 as in Equation (2)
8: Run two copies of A, one for IC , I1 and one for IC , I2, and let R1 and R2 be their outputs
9: for i = 1, 2 do

10: S′i ← Ri
11: for e in Si do
12: Let c be the color of e
13: If |S′i ∩ Vc| < uc then S′i ← S′i + e
14: Return S′ = arg max(f(S′1), f(S′2))

Randomized-Fair-Streaming only differs from the second-pass algorithm in (El Halabi et al., 2023, Algorithm
2) by the way elements in S are assigned to S1 and S2, and the requirement that A works for non-monotone
objectives. Let us analyze its performance.

Lemma A.1. The output S′ of Randomized-Fair-Streaming satisfies (i) S′ ∈ I, (ii) |S′ ∩ Vc| ≤ uc, and
(iii) |S′ ∩ Vc| ≥ bβ`cc for any color c ∈ [C].

Proof. The proof follows in a similar way to (El Halabi et al., 2023, Lemma 4.3). For i ∈ {1, 2}, we have:

(i) By the definition of Ii in Equation (2) the set Ri output by A satisfies Ri ∪ Si ∈ I. Hence, S′i ∈ I by
downward-closedness since S′i \Ri ⊆ Si.

(ii) Since Ri ∈ IC and the elements added to it in the for loop on Line 11 never violate the upper bounds, we
have S′i ∈ IC .

(iii) By construction Si has at least bβ`cc elements of each color c. And for any color c such that |S′i ∩ Vc| < uc,
all the elements in Si ∩ Vc are added to S′i. Hence, |S′i ∩ Vc| ≥ |Si ∩ Vc| ≥ bβ`cc.

Lemma A.2. Assume that A is an α-approximation algorithm for non-monotone submodular maximization over
the intersection of two matroids. Then the output S′ of Randomized-Fair-Streaming satisfies E[f(S)] ≥
(1−β)α

2 OPT.

Proof. We first give a lower bound on max(f(R1), f(R2)) in the same way as in (El Halabi et al., 2023, Lemma
4.4). Let O be an optimal solution of FMSM. From Lemma 2.1 in (El Halabi et al., 2023), we know that O can
be partitioned into two sets O1, O2 such that O1 ∪ S1 ∈ I and O2 ∪ S2 ∈ I. Therefore Oi ∈ IC ∩ Ii for i ∈ {1, 2}
by definition of Ii and downward-closedness of IC . Since A is an α-approximation algorithm, we have that

max(f(R1), f(R2)) ≥f(R1) + f(R2)

2

≥α
2

(f(O1) + f(O2))

≥α
2

(f(O1 ∪O2) + f(O1 ∩O2))

≥α
2
f(O) =

α

2
OPT . (3)

It remains to compare f(Ri) with f(S′i) for i ∈ {1, 2}. To that end we define two non-negative submodular
functions g1, g2 as follows:

gi(W ) = f(W ∪Ri) for all W ⊆ S and i ∈ {1, 2}.
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For any i ∈ {1, 2}, we show that the set S′i \Ri of elements added to S′i in the for loop on Line 11 contains each
element of S with probability at most β. By construction of S1, S2, we have for any color c and any e ∈ S ∩ Vc,

P (e ∈ (S′1 \R1) ∩ Vc) ≤ P (e ∈ S1 ∩ Vc) =
bβ`cc
|S ∩ Vc|

≤ bβ`cc
`c
≤ β

and

P (e ∈ (S′2 \R2) ∩ Vc) ≤ P (e ∈ S2 ∩ Vc)
= P (e 6∈ S1 ∩ Vc)P (e ∈ S2 ∩ Vc | e 6∈ S1 ∩ Vc)

= (1− bβ`cc
|S ∩ Vc|

)
bβ`cc

|S ∩ Vc| − bβ`cc

=
bβ`cc
|S ∩ Vc|

≤ bβ`cc
`c
≤ β.

We apply Lemma 2.2 to submodular functions g1 and g2. We get that

E[f(S′i)] = E[gi(S
′
i \Ri)] ≥ (1− β)gi(∅) = (1− β)f(Ri).

Combining that with Equation (3), we get

E[f(S′)] =E[max(f(S′1), f(S′2))]

≥max(E[f(S′1)],E[f(S′2)])

≥(1− β) max(f(R1), f(R2))

≥ (1− β)α

2
OPT .

In the offline setting, we can use the state-of-the-art 1/(4 + ε)-approximation algorithm of Lee et al. (2010,
Theorem 4.1) as A. Theorem 3.1 then follows from Lemma A.1 and Lemma A.2.

Theorem 3.1. There exists a polynomial-time algorithm for non-monotone FMSM, which outputs a set S such
that (i) S ∈ I, (ii) bβ`cc ≤ |Vc ∩ S| ≤ uc for any color c ∈ [C], and (iii) E[f(S)] ≥ (1− β)OPT/(8 + ε) for any
β ∈ [0, 1/2] and ε > 0.

In the streaming setting, we can use the state-of-the-art 1/7.464-approximation algorithm of Garg et al. (2021,
Theorem 19) as A. Theorem A.3 then also follows from Lemma A.1 and Lemma A.2.

Theorem A.3. There exists a polynomial-time two-pass streaming algorithm for non-monotone FMSM, which
uses O(k · C) memory, and outputs a set S such that (i) S ∈ I, (ii) bβ`cc ≤ |Vc ∩ S| ≤ uc for any color c ∈ [C],
and (iii) E[f(S)] ≥ (1− β)OPT/14.928 for any β ∈ [0, 1/2].

B Missing proofs

In this section, we present the proofs that were omitted from the main text. We restate claims for convenience.

B.1 Proofs of Section 3.2

Theorem 3.2. There is a family of FMSM instances where f is monotone and I is a partition matroid, for
which the integral optimum solution has value 1, but the multilinear extension admits a fractional solution of
value Ω(

√
n).

Proof. We will encode bipartite perfect matching as an intersection of matroid and fairness constraints. Given
a bipartite graph (A ∪B,E), we set up a partition matroid to enforce that every vertex in A has at most one
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adjacent edge in the solution, and fairness constraints to enforce that every vertex in B has exactly one adjacent
edge in the solution (we assign color b to every edge (a, b)). We then have k = |A| = |B| = C.

To define an instance, we then need to describe a bipartite graph and a monotone submodular function defined
on its edges. For parameters t, s ≥ 1 we define the graph as follows: there are two special vertices 1 and 2; and
for i = 1, ..., t we add a path from 1 to 2 of length 2s+ 1 to the graph (thus inserting 2s new vertices). Note that
this graph is bipartite. Let Oi be the set of the s+ 1 “odd” edges on the i-th path. We define the submodular
objective function as f(S) =

∑t
i=1 1S∩Oi 6=∅.

Note that the graph has exactly t perfect matchings. Indeed, the choice of mate for vertex 1 determines the entire
perfect matching, which must then be the union of Oi (for some i) and the even edges from all the other paths. In
particular, for each i there is only one perfect matching that intersects Oi. Therefore the integral optimum is 1.

However, if we take x to be the average of the indicator vectors of the t matchings, then we get x ∈ PF and

F (x) =

t∑
i=1

(
1−

∏
e∈Oi

(1− xe)

)
= t ·

(
1−

(
1− 1

t

)s+1
)
.

If we set s = t, then F (x) = Ω(t), which is Ω(
√
n) as n = |E| = Θ(s · t).

B.2 Proofs of Section 3.3

We start by giving the full proof of Theorem 3.3.

Theorem 3.3. There exists a polynomial-time algorithm for FMSM which outputs a solution S ∈ I such that E[|S∩
Vc|] ∈ [`c, uc] and E[f(S)] ≥ αOPT, where α = 1−1/e if f is monotone and α = (1−minx∈PF∪(1−PF ) ‖x‖∞−ε)/4
otherwise, for any ε > 0. Moreover, the solution satisfies with constant probability the following for all c ∈ [C],(

1−
√

3 ln(2C)
`c

)
`c ≤ |S ∩ Vc| ≤

(
1 +

√
3 ln(2C)
uc

)
uc.

Proof. We first obtain an α-approximation fractional solution x ∈ PF for maxx∈PF F (x). For monotone objectives,
we can use the continuous greedy algorithm of Calinescu et al. (2011a, Section 3.1 and Appendix A), which
achieves a (1− 1/e)-approximation for maximizing the multilinear extension over any integral polytope, both in
expectation and with high probability.3 Note that PF is integral as it is the convex hull of integral points.

For non-monotone objectives, we can use the Frank-Wolfe type algorithm of Du (2022, Sections 3.5 and 4.5)
which achieves a (1 − minx∈P ‖x‖∞ − ε)/4-approximation for maximizing the multilinear extension over any
polytope P , both in expectation and with high probability — see also (Mualem and Feldman, 2023, Section 3)
for an explicit variant of the algorithm and its analysis. Applying this algorithm to Problem (1) then yields a
(1−minx∈PF ‖x‖∞ − ε)/4-approximation.

To obtain the potentially better approximation ratio (1−minx∈1−PF ‖x‖∞ − ε)/4, we solve the complement of
Problem (1): maxx∈1−PF F̄ (x), where F̄ is the multilinear extension of the complement f̄ of f ; f̄(S) = f(V \ S).
It is easy to verify that the complement of a submodular function is also submodular. So we can indeed use the
Frank-Wolfe type algorithm on the complement problem, which yields (1−minx∈1−PF ‖x‖∞− ε)/4 approximation
for it. Given an α-approximate solution x̄ for the complement problem, 1− x̄ is an α-approximate solution to the
original problem. To see this, we show that F̄ (x) = F (1− x):

F̄ (x) =
∑
S⊆V

f̄(S)
∏
i∈S

xi
∏

j∈V \S

(1− xj)

=
∑
S′⊆V

f(S′)
∏

i∈V \S′
xi
∏
j∈S′

(1− xj)

= F (1− x).

Hence, maxx∈PF F (x) = maxx∈PF F̄ (1 − x) = maxx′∈1−PF F̄ (x′). Running the Frank-Wolfe type algo-
rithm on both the original problem and its complement and picking the better solution then yields a
(1−minx∈PF∪1−PF ‖x‖∞ − ε)/4-approximation to Problem (1).
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Both the continuous greedy and the Frank-Wolfe type algorithms run in polynomial time if the constraint polytope
is solvable, which is the case for PF and 1− PF by Lemma 2.1-c.

Next we round the fractional solution x to an independent (but not necessarily feasible) set S ∈ I using the
randomized swap rounding scheme of Chekuri et al. (2010, Section IV). The rounded solution is guaranteed to
satisfy (see Theorem II.1 therein) E[|S ∩ Vc|] = x(Vc) ∈ [`c, uc], E[f(S)] ≥ F (x) ≥ αOPT, and for any c ∈ [C],
δ1 ≥ 0, and δ2 ∈ [0, 1],

P [|S ∩ Vc| ≥ (1 + δ1)uc] ≤
(

eδ1

(1 + δ1)(1+δ1)

)uc
≤ e−0.38ucδ

2
1 by (Celis et al., 2018a, Lemma 15)

and P [|S ∩ Vc| ≤ (1− δ2)`c] ≤ e−`cδ
2
2/2.

Then, by choosing δ1 =
√

3 ln(2C)/uc and δ2 =
√

3 ln(2C)/`c, we get by union bound that S satisfies |S ∩ Vc| ∈
[(1−

√
3 ln(2C)/`c)`c, (1+

√
3 ln(2C)/uc)uc)] for all c ∈ [C], with probability at least 1−1/(2C)1.14−1/(2C)1.5 ≥

1− 1/21.14 − 1/21.5 > 0.19.

Remark B.1. If f is monotone, we can further guarantee that for any δ > 0, the solution in Theorem 3.3 satisfies
with constant probability the following for all c ∈ [C],(

1−
√

3 ln(2C/(1−e−δ
2/16))

`c

)
`c ≤ |S ∩ Vc| ≤

(
1 +

√
3 ln(2C/(1−e−δ

2/16))
uc

)
uc

and f(S) ≥ (1− 1/e− δ) OPT.

Proof. If f is monotone, we can apply the lower-tail concentration bound in (Chekuri et al., 2010, Theorem
II.2). To that end, we assume without loss of generality that for any i ∈ V , there exists a feasible set S′ ∈ F
containing i, otherwise we can simply ignore such element. Note that we can easily check if an element i satisfies
this assumption, by maximizing a linear function over F , which assigns zero weights to all elements except i
and a non-zero weight to i. This can be done efficiently by Lemma 2.1-c. Under this assumption, the marginal
values of f are in [0,OPT], since for any i ∈ V , we have f(i | S) ≤ f(i) ≤ f(S′) ≤ OPT by submodularity and
monotonicity. Scaling f by 1/OPT, we obtain

P [f(S) ≤ (1− δ)F (x)] ≤ e−F (x)δ2/(8OPT )

≤ e−δ
2/16,

for any δ > 0, since F (x) ≥ (1 − 1/e) OPT with high probability. Hence, S is guaranteed to satisfy f(S) ≥
(1− δ)F (x) ≥ (1− 1/e− δ) OPT with probability 1− e−δ2/16.

Then we again use the concentration bounds in (Chekuri et al., 2010, Theorem II.1) but now choosing δ1 =√
3 ln(2C/(1−e−δ

2/16))
uc

and δ2 =

√
3 ln(2C/(1−e−δ

2/16))
`c

. We get by union bound that S satisfies all the bounds in

the claim with probability at least (1− e−δ2/16)(1− 1/(2C)1.14 − 1/(2C)1.5) > 0.19(1− e−δ2/16).

Next, we prove the statements of Example 3.4 and Example 3.5.

Example 3.4 (Uniform matroid). Let I be the uniform matroid with rank k. We order the color groups such

that `1
|V1| ≤ · · · ≤

`C
|VC | and let t be the largest index t ∈ [C] such that `t

|Vt|
∑t
c=1 |Vc| +

∑C
c=t+1 `c ≤ k (t ≥ 1

is well-defined since F 6= ∅). Then minx∈PF∪(1−PF ) ‖x‖∞ = min{maxc
`c
|Vc| , 1 − min{τ,minc≤t

uc
|Vc|}}, where

τ =
k−

∑C
c=t+1 `c∑t
c=1 |Vc|

.
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Proof. First we compute minx∈PF ‖x‖∞. For any x ∈ PF , we have `c ≤
∑
i∈Vc xi ≤ ‖x‖∞|Vc| for all c ∈ [C],

hence ‖x‖∞ ≥ maxc
`c
|Vc| . We show that this lower bound is achieved at a feasible vector x ∈ PF . Let x ∈ [0, 1]n

such that xi = `c
|Vc| for all i ∈ Vc and c ∈ [C], then ‖x‖∞ = maxc

`c
|Vc| and x ∈ PF since

∑
i∈Vc xi = `c ∈ [`c, uc]

and
∑
i∈V xi =

∑
c `c ≤ k by the assumption that F 6= ∅. Hence minx∈PF ‖x‖∞ = maxc

`c
|Vc| .

Next we compute minx∈1−PF ‖x‖∞ = minx∈PF ‖1− x‖∞ = 1−maxx∈PF mini∈V xi. Let x ∈ [0, 1]n such that

xi =

{
`c
|Vc| for all i ∈ Vc, c > t

min{τ, uc|Vc|} for all i ∈ Vc, c ≤ t.

We argue that x ∈ PF . We have x(Vc) = `c ∈ [`c, uc] for all c > t and x(Vc) = min{uc, τ |Vc|} for all c ≤ t. By
definition of t and τ , we have τ ≥ `t

|Vt| . Hence x(Vc) ≥ min{uc, `t
|Vt| |Vc|} ≥ `c for all c ≤ t. By definition of τ , we

also have x(V ) ≤ τ
∑t
c=1 |Vc|+

∑C
c=t+1 `c = k. We show next that mini∈V xi = min{τ,minc≤t

uc
|Vc|}. This holds

trivially if t = C. Otherwise, by definition of t < C, we have

k ≤ `t+1

|Vt+1|

t+1∑
c=1

|Vc|+
C∑

c=t+2

`c = `t+1

|Vt+1|

t∑
c=1

|Vc|+
C∑

c=t+1

`c,

hence τ ≤ `t+1

|Vt+1| = mini∈∪c>tVc xi. Thus mini∈V xi is attained at some color c ≤ t. This proves that

maxx∈PF mini∈V xi ≥ min{τ,minc≤t
uc
|Vc|}. To prove the upper bound, we observe that for any x′ ∈ PF , we

have mini∈V x
′
i|Vc| ≤ x′(Vc) ≤ uc for every c ∈ [C] and k ≥ x′(V ) ≥

∑C
c=t+1 `c + mini∈V x

′
i

∑t
c=1 |Vc|. Thus by

definition of τ , we get
min
i∈V

x′i ≤ min{τ, min
c∈[C]

uc
|Vc|} ≤ min{τ,min

c≤t
uc
|Vc|}.

Hence, minx∈1−PF ‖x‖∞ = 1−min{τ,minc≤t
uc
|Vc|} achieved at x̄ = 1− x.

Example 3.5 (Bipartite perfect matching). Let F be the feasible set arising from the bipartite perfect matching
problem in the proof of the integrality gap Theorem 3.2. We have minx∈PF∪(1−PF ) ‖x‖∞ = 1−Θ(1/

√
n).

Proof. We prove that minx∈PF∪(1−PF ) ‖x‖∞ = 1 − 1/t (recall that t = Θ(
√
n) in Theorem 3.2). The point x

used in the proof of Theorem 3.2 puts 1/t value on the “odd” edges, and 1− 1/t value on the “even” edges (each
of which belongs to all perfect matchings but one). Thus it has ‖x‖∞ = ‖1− x‖∞ = 1− 1/t. This proves the
≤ direction. For the ≥ direction, consider any x ∈ PF . The point x must satisfy

∑
e∈δ(1) xe = 1, where δ(1) is

the set of edges incident on the special vertex 1. As |δ(1)| = t, we must have xe ≤ 1/t for some e ∈ δ(1). Then
consider the path from vertex 1 to 2 containing e, and let e′ be the next edge after e on that path. The common
endpoint of e and e′ has degree two, thus xe′ = 1− xe ≥ 1− 1/t. Hence min{‖x‖∞, ‖1− x‖∞} ≥ 1− 1/t.

B.3 Proofs of Section 3.4

In this section, we expand on some details that were omitted from the proof of Theorem 3.6.

Theorem 3.6. There exists a polynomial-time algorithm for non-monotone FMSM where I is a uniform matroid,
which achieves 0.401(1−minx∈PF∪(1−PF ) ‖x‖∞)-approximation in expectation.

Proof. El Halabi et al. (2020, Theorem 5.2) presented a polynomial-time algorithm with an expected (1 −
maxc

`c
|Vc| )α-approximation for non-monotone FMSM over a uniform matroid, given any α-approximation algorithm

for non-monotone submodular maximization over a matroid constraint.5 Plugging in the state-of-the-art 0.401-
approximation of Buchbinder and Feldman (2019, Theorem 1.1) then yields a 0.401(1−maxc

`c
|Vc| )-approximation

in expectation. Recall from Example 3.4 that minx∈PF ‖x‖∞ = maxc
`c
|Vc| .

To obtain the potentially better approximation factor 0.401(1−minx∈1−PF ‖x‖∞), we solve (as in Theorem 3.3)
the complement problem maxV \S∈F f̄(S), where f̄(S) = f(V \ S). We follow a similar strategy as El Halabi
et al. (2020). Namely, we first drop the lower bounds from the constraint. The resulting problem maxS⊆V {f̄(S) :
|S ∩ Vc| ≤ |Vc| − `c, ∀c ∈ [C]} is a non-monotone submodular maximization problem over a partition matroid.
Hence, a solution S with an expected 0.401-approximation can be obtained for it.
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Next, we augment the solution S to a feasible one that we will denote S+. Let x̄ be a solution of minx∈1−PF ‖x‖∞,
which has a closed form as shown in Example 3.4. For each color c, we sample a set Bc ⊆ Vc of elements so that:

1. P [e ∈ Bc] = x̄e for all e ∈ Vc,

2. |Bc| is bx̄(Vc)c or dx̄(Vc)e for all c ∈ [C],

3.
∑
c |Bc| is bx̄(V )c or dx̄(V )e.

This can be done as follows, inspired by (Hartley and Rao, 1962, Section 2.1). Assign consecutive disjoint intervals
on the real line to elements, of length x̄e for each e ∈ V , grouped by colors; e.g., if V1 = {e1, e2, ...}, the first two
intervals would be [0, x̄e1) and [x̄e1 , x̄e1 + x̄e2). Now sample a random offset α ∈ [0, 1), and define Bc to be those
elements of Vc whose interval contains a point in Z + α. Property 1 follows directly. For property 2, note that
the union of intervals of all e ∈ Vc is also an interval (as elements of the same color are grouped together), of
length x̄(Vc); its intersection with Z + α must thus be of size either bx̄(Vc)c or dx̄(Vc)e, and every point in this
intersection adds exactly one new element to Bc since x̄e ≤ 1 for all e. Property 3 follows likewise.

Then, for every color such that |S ∩ Vc| < |Bc|, add any |Bc| − |S ∩ Vc| elements from Bc \ S to S. This obtains
S+. We argue that the augmented set S+ is feasible (for the complement problem maxV \S∈F f̄(S)). Note that
|Bc| ∈ {bx̄(Vc)c, dx̄(Vc)e} ⊆ [|Vc|−uc, |Vc|−`c], since x̄ ∈ 1−PF and the bounds are integral. For the lower bounds,
we have |S+ ∩Vc| ≥ |Bc| ≥ |Vc| −uc. For the upper bounds, note that |S+ ∩Vc| = max{|S ∩Vc|, |Bc|} ≤ |Vc| − `c,
since by definition of S, |S ∩ Vc| ≤ |Vc| − `c. Moreover, |S+| ≥

∑
c |Bc| ≥ bx̄(V )c ≥ n− k, since x̄ ∈ 1− PF and

n− k is an integer.

To bound the loss in value resulting from the additional elements, we make use of Lemma 2.2. Note that for any
e ∈ Vc, P [e ∈ S+ \ S] ≤ P [e ∈ Bc] = x̄e ≤ ‖x̄‖∞. Lemma 2.2 and the definitions of S and x̄ then imply that

E[f̄(S+)] ≥ (1− ‖x̄‖∞)E[f̄(S)] ≥ 0.401(1− min
x∈1−PF

‖x‖∞) max
V \S∈F

f̄(S).

Finally, taking the complement V \S+ yields a 0.401(1−minx∈1−PF ‖x‖∞)-approximation to the original problem,
in expectation.

B.4 Proofs of Section 3.5

In this section, we give the full proof of Theorem 3.7.

Theorem 3.7. For any r in the form r = 1− 1
t with t ≥ 2 and any ε > 0, a (1− r+ ε)-approximation for FMSM

that works for instances where minx∈PF∪(1−PF ) ‖x‖∞ ≤ r requires an exponential number of value queries. This
is also the case for the continuous relaxation of FMSM, maxx∈PF F (x). Furthermore, this is true even in the two
special cases where (i) C = 2 and I = 2V (no matroid constraint), (ii) C = 1 and I is a partition matroid.

Proof. Vondrák (2013, Theorem 1.2, 1.9 and Section 2) showed that any algorithm achieving a better than
(1− r)-approximation for the problem of maximizing a non-monotone submodular function over the bases of a
matroid I, where minx∈PI :

∑
i xi=k

‖x‖∞ ≤ r, requires exponentially many value queries. This holds also for the
continuous relaxation of the problem (see Theorem 1.9 and Section 2 therein).

We show that the hard instance used in the proofs of the lower bounds in (Vondrák, 2013) is a special case of
FMSM with minx∈PF∪(1−PF ) ‖x‖∞ ≤ r. In particular, the hard instance uses a ground set V = A ∪B, where A
and B are two disjoint sets, each of size t×m, for some large number m, and a partition matroid base constraint
B = {S : |S ∩A| = m and |S ∩B| = (t− 1)m} (see Section 2, Theorems 1.8 and 1.9 therein).

We can express this matroid base constraint via F in two ways. First, any matroid base constraint is a special
case of F where C = 1, V = V1, and `1 = u1 = k (the rank of the matroid), i.e., the fairness constraint reduces
to |S| = k. In the case of B, we have k = t ×m and minx∈PF∪(1−PF ) ‖x‖∞ = minx∈PI :

∑
i xi=k

‖x‖∞ = 1 − 1
t .

Alternatively, we can express B with a fairness constraint alone, with two color groups V1 = A, V2 = B,
`1 = u1 = m, and `2 = u2 = (t− 1)m.
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B.5 Proofs of Section 4

In this section, we prove Lemma 4.2 and Theorem 4.3.

Lemma 4.2. Let C̃k := {S ⊆ V | there exists S′ ∈ C, |S′| ≤ k such that S ⊆ S′}. Then any fair set S ∈ C is a
base of the matroid C̃k with k = |S| and vice versa.

Proof. Note that any fair set is a maximal set of the k-truncation of C given by Ck := {S ∈ C | |S| ≤ k} with
k = |S|. The family Ck is a special case of F where I is the k-uniform matroid, so the corresponding family of
extendable set C̃k is a matroid (El Halabi et al., 2020, Lemma 4.1). The claim then follows from Fact 4.1.

Theorem 4.3. There exists a polynomial-time rounding scheme which, given x ∈ PF , returns a feasible set
S ∈ F that for any decomposable submodular function f over F satisfies E[f(S)] ≥ F (x).

Proof. The randomized rounding scheme of Chekuri et al. (2010, Section V) takes as input a fractional solution
x′ ∈ PI1 ∩ PI2 , where I1 and I2 are two matroids, expressed as a convex combination of sets in I1 ∩ I2, and
returns a set S′ ∈ I1 ∩ I2 such that E[f ′(S′)] ≥ F ′(x′) for any submodular function f ′ which decomposes over
the equivalence classes of I1 or I2, i.e., f ′(S) =

∑
G∈G1 f

′
1,G(S ∩G) +

∑
G∈G2 f

′
2,G(S ∩G), where f ′1,G, f

′
2,G are

submodular functions and G1,G2 are the respective families of equivalence classes of I1 and I2 (see Theorem II.3
therein). If the sets in the input convex combination are all of the same size k, then the returned set will have
size k too7.

Given x ∈ PF , since PF is solvable (Lemma 2.1-c), we can write x as a convex combination of sets in F in strongly
polynomial time (Schrijver, 2003, Theorem 5.15); i.e., x =

∑
t αt1It for some It ∈ F , αt ≥ 0,

∑
t αt = 1.

Let k be the size of the largest set It. Lemma 4.2 implies that every set It is in the intersection of the matroids I
and C̃k, where C̃k is defined as in the lemma. Then x is already a valid input for swap rounding. If all sets It
have the same size, then the returned rounded solution S ∈ I ∩ C̃k is a base of C̃k, and thus also a fair set by
Lemma 4.2. So S is feasible. Otherwise, S is not necessarily feasible. In that case, we first need to add dummy
elements to make all sets It of equal size.

Let E be a set of k new dummy elements (not in V ). For every t, we add enough dummy elements from E to It to
obtain a set I ′t of size k. We also extend the matroid I to I+ = {S ⊆ V ∪E | S\E ∈ I} and the collection of fair sets
C to C+ = {S ⊆ V ∪E | S\E ∈ C}. It is easy to verify that I+ is also a matroid. Observe that C+ is also a collection
of fair sets over the extended ground set, since C+ = {S ⊆ V ∪ E | |S ∩ Vc| ∈ [`c, uc] ∀c ∈ [C], |S ∩ E| ∈ [0, |E|]},
so Lemma 4.2 applies to it. Moreover, C̃+k = {S ⊆ V ∪E | there exists S′ ∈ C+, |S′| ≤ k such that S ⊆ S′} is a

matroid of rank k, since any set in C̃+k has size at most k and there exists It ∈ C̃+k with size k for some t.

Let x′ =
∑
t αt1I′t . Since every set I ′t is in the intersection of the matroids I+ and C̃+k , x′ is a valid input to

swap rounding. And since all I ′t have size k, the returned rounded solution S′ ∈ I+ ∩ C̃+k will also have size k.

Hence, S′ is a base of C̃+k , and thus S′ ∈ C+ by Lemma 4.2. Removing the dummy elements from S′ then yields a
feasible solution S = S′ \ E ∈ I ∩ C.

It remains to show that the solution S preserves the value of F (x) for any decomposable submodular function f
over F . Define f ′ : 2V ∪E → R+ as f ′(S) = f(S \ E), then its multilinear extension F ′ : [0, 1]n+k → R+ is given
by F ′(x′) = F (x′V ) where x′V ∈ [0, 1]n is the vector corresponding to the entries of x′ in V . We observe that
f ′ decomposes over the equivalence classes of I+ or C̃+k , with f ′1,G(S) = f1,G(S \ E) and f ′2,c(S) = f2,c(S \ E),
where f1,G, f2,c are the functions in the decomposition of f (Definition 2.4). One can verify that f ′, f ′1,G, f

′
2,c

are submodular since f, f1,G, f2,c are submodular. The solution S returned by swap rounding then satisfies
E[f ′(S′)] = E[f(S)] ≥ F ′(x′) = F (x).

It is worth mentioning that El Halabi et al. (2023, Appendix C.2) have already shown a reduction of FMSM to
submodular maximization over the intersection of two matroid bases. However, their result cannot be used to
prove Theorem 4.3, since the matroids in their reduction have different equivalence classes than the ones of I and
the color groups. Using their reduction in Theorem 4.3 would require considering a much more restricted class of

7This is not explicitly stated in (Chekuri et al., 2010, Section V), but can be easily deduced from the description of the
merging operation therein.
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decomposable submodular functions (ones which are completely separable over V , or over subgroups of colors
obtained by splitting each color group into two).

C Relation to multi-objective submodular maximization

In this section, we discuss the connection of FMSM to multi-objective submodular maximization, where given m
submodular functions fi, the goal is to maximize their minimum mini∈[m] fi(S).

We can write FMSM as a multi-objective submodular maximization problem over two matroids:

max
S⊆V
{ min
i∈[C+1]

fi(S) : S ∈ I, |S ∩ Vc| ≤ uc ∀c ∈ [C]}, (4)

where fC+1 = f/OPT and fc = |S ∩ Vc|/`c for all c ∈ [C]. Recall that OPT is the optimal value of FMSM,
which can be guessed. A solution S of Problem (4) is then also an optimal solution to FMSM. To the best of our
knowledge, there are no existing work on multi-objective submodular maximization over two matroids.

In the special cases where there are no upper bounds (uc = |Vc|) or I is the uniform matroid, and f is monotone,
one can apply the result of (Chekuri et al., 2009, Theorem 7.2) on multi-objective submodular maximization
over a single matroid to obtain a (1− 1/e)-approximation for monotone FMSM. But the resulting runtime will
be exponential in

∑
c `c as the algorithm requires guessing the `c elements belonging to the optimal solution

for each group c, by brute force enumeration. Recall though that when I is the uniform matroid, a polynomial
time (1− 1/e)-approximation for monotone FMSM was provided in (Celis et al., 2018a, Theorem 18) under the
assumption that the groups are disjoint, which is not assumed in (Chekuri et al., 2010). Celis et al. (2018a) also
provided a (1− 1/e)-approximation algorithm for the overlapping groups case, but its runtime is also exponential
in C (see Theorem 20 therein).

Finally, if there are no upper bounds (uc = |Vc|), I is the uniform matroid, and f is monotone, then the constraint
in Problem (4) becomes a simple cardinality constraint. In this case, a (1 − 1/e − o(1))-approximation for
monotone FMSM can be obtained in polynomial-time if k = o(n), even with overlapping groups (Udwani, 2018;
Tsang et al., 2019).

The line of work (Wang et al., 2024; Tsang et al., 2019; Tang and Yuan, 2023) which studied submodular
maximization under a different notion of fairness can all be formulated as a monotone multi-objective submodular
maximization problem over a cardinality constraint.


