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Abstract

We introduce discriminator guidance in the
setting of Autoregressive Diffusion Models.
The use of a discriminator to guide a diffusion
process has previously been used for contin-
uous diffusion models, and in this work we
derive ways of using a discriminator together
with a pretrained generative model in the dis-
crete case. First, we show that using an opti-
mal discriminator will correct the pretrained
model and enable exact sampling from the
underlying data distribution. Second, to ac-
count for the realistic scenario of using a sub-
optimal discriminator, we derive a sequen-
tial Monte Carlo algorithm which iteratively
takes the predictions from the discriminator
into account during the generation process.
We test these approaches on the task of gen-
erating molecular graphs and show how the
discriminator improves the generative perfor-
mance over using only the pretrained model.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020) have in the last couple of years
received significant attention, and many improvements
and extensions of the original works have been pro-
posed. A recent work by Kim et al. (2023) intro-
duced discriminator guidance: a way of improving the
score estimation of a pretrained score-based diffusion
model by training a discriminator, and during gen-
eration combine the pretrained score model with the
gradient of the discriminator to obtain an improved
estimation of the score. Empirically, this approach
improves sample quality.

Score-based models operate on continuous data. One
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formulation of a diffusion model for discrete data
is the Autoregressive Diffusion Model (ARDM) by
Hoogeboom et al. (2022a) which builds on the Order-
Agnostic Autoregressive Model (OA-ARM) by Uria
et al. (2014). This is a significantly different formu-
lation of a diffusion model compared to the score-
based model, and it is therefore not straightforward to
use the existing formulation of discriminator guidance
for this type of model. However, given the improved
performance obtained by incorporating discriminator
guidance in the continuous setting, it is of interest to
develop such techniques also for the ARDM.

To address this challenge, we formulate the following
algorithms for incorporating a discriminator into the
sampling from an ARDM:

• Autoregressive Discriminator Guidance (ARDG),
which is the most similar to the continuous case
by Kim et al. (2023): the conditional distribution
predicted by the ARDM is corrected by a discrim-
inator, which we show enables exact sampling un-
der the (in practice unrealistic) assumption that
we can find a perfect discriminator.

• Sequential Monte Carlo (SMC) algorithms which
build on discriminator guidance, but aims at mit-
igating the accumulation of errors that can occur
due to imperfect discriminators for the intermedi-
ate sampling steps. This is made possible by the
sequential correction of intermediate target distri-
butions through the propagation, weighting, and
resampling steps of SMC.

Using these different approaches, we empirically verify
that discriminator guidance improves the generative
sample quality over regular ARDMs in the setting of
generating molecular graphs. Our code is available
online1.

2 BACKGROUND

Consider the task of generating a D-dimensional vec-
tor x = (x1, x2, . . . , xD), where each variable xi is dis-

1https://github.com/filipekstrm/graph_ardm

https://github.com/filipekstrm/graph_ardm
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Figure 1: Illustration of the ARDG method when applied to graphs. The variables xt (nodes and edges in the
graph) are one by one assigned values, where nodes and edges with ”?” correspond to variables which have not
yet been assigned. Assignment of the white node could be done by sampling from the conditional distribution
pθ(xσ(t)|xσ(<t)), which has been learnt by a neural network. In our method, however, a separate discriminator,
dϕ, has been trained to distinguish between real and fake (generated by the generative model pθ) samples. With
the help of this discriminator, we can correct the distribution pθ(xσ(t)|xσ(<t)) so that it becomes closer to the
true underlying data distribution pdata(xσ(t)|xσ(<t)).

crete. To this end, we will use an Autoregressive Dif-
fusion Model (ARDM) (Hoogeboom et al., 2022a) in
combination with a discriminator. This section there-
fore introduces background on the ARDM, discrimina-
tor guidance for continuous data, and some additional
related work.

We write pdata(x) for the true data distribution, and
pθ(x) for the generative model, which is effectively an
estimate of pdata(x) constructed using neural networks
with parameters θ.

2.1 Autoregressive Diffusion Models

To introduce ARDMs, we start from the standard au-
toregressive model (ARM). For an ARM, the data log-
likelihood log pθ(x) is factorized as

log pθ(x) =

D∑
t=1

log pθ(xt|x1:t−1), (1)

where x1:t−1 := (x1, . . . , xt−1). Under the autoregres-
sive model, data can be generated via ancestral sam-
pling, i.e., sample the variables xt conditioned on the
previously sampled values x1:t−1.

However, the autoregressive model assumes a certain
order of the variables xt. In the order agnostic au-
toregressive model (OA-ARM) (Uria et al., 2014),
the order is not viewed as fixed, but a random vari-
able drawn from the set of all permutations SD of
the indices {1, . . . , D}. Denoting the permutation as
σ = (σ(1), . . . , σ(D)), the data log-likelihood for OA-

ARM, given the order σ, is written as

log pθ(x|σ) =
D∑
t=1

log pθ(xσ(t)|xσ(<t)). (2)

Here, and in what follows, we use the shorthand nota-
tion σ(< t) := (σ(1), . . . , σ(t−1)) for brevity, to denote
the first t − 1 elements of the permutation. The full
data log-likelihood can then be written as the expec-
tation over all orders

log pθ(x) = logEσ [pθ(x|σ)] . (3)

To formulate ARDM, Hoogeboom et al. (2022a) use
the OA-ARM formulation in a diffusion model context:
by having a generative process according to Equa-
tion (2), i.e., pick an order randomly and then one
by one assigning values to the variables (or ”unmask-
ing” them) according to this order, the noising process
corresponds to randomly ”masking out” variables one
by one.

An OA-ARM or ARDM can then be trained by max-
imizing the log-likelihood as

log pθ(x) = logEσ [pθ(x|σ)] = Eσ [log pθ(x|σ)]

= Eσ

[
D∑
t=1

log pθ(xσ(t)|xσ(<t))

]
= Eσ

[
DEt

[
log pθ(xσ(t)|xσ(<t))

]]
= DEt

[
Eσ(<t)

[
Eσ(t)|σ(<t)

[
log pθ(xσ(t)|xσ(<t))

]]]
.

(4)

It can be noted that, contrary to Uria et al. (2014)
and Hoogeboom et al. (2022a), we have not relied
on Jensen’s inequality for moving the log inside the
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expectation (first equality). The reason for this is
that a different σ merely leads to a different factoriza-
tion of the same likelihood, and hence, log pθ(x|σ) =
log pθ(x), ∀σ.2

As σ is drawn uniformly from the set of all permuta-
tions, the inner-most expectation can be rewritten as a
sum over all masked elements, and training an ARDM
is done by maximizing the log-likelihood

log pθ(x) =

DEt

Eσ(<t)

 1

D − t+ 1

∑
k/∈σ(<t)

log pθ(xk|xσ(<t))

 .

(5)

2.2 Discriminator Guidance for Score-based
Diffusion Models

In score-based diffusion models (Song and Ermon,
2019; Song et al., 2020), a neural network sθ is
trained to estimate the score ∇ log pdata(x), where x
is now a continuous variable. The trained neural net-
work sθ (implicitly) defines a distribution pθ. If the
learnt score-function sθ deviates from the real score
∇ log pdata, there will be a gap between pdata and pθ.
By observing that

∇ log pdata(x) = sθ(x) +∇ log
pdata(x)

pθ(x)
, (6)

Kim et al. (2023) introduce a correction term

∇ log pdata(x)
pθ(x)

. This is not tractable, but they explain

how it can be estimated by training a discriminator
dϕ to discriminate between real and generated sam-
ples: if dϕ(x) can accurately predict the probability
that a sample x is drawn from the data distribution,

then the ratio
dϕ(x)

1−dϕ(x)
approximates pdata(x)

pθ(x)
and hence

cϕ(x) := ∇ log
dϕ(x)

1− dϕ(x)
≈ ∇ log

pdata(x)

pθ(x)
. (7)

This correction term is used together with sθ so that
the estimated score is sθ(x)+cϕ(x), which with a per-
fectly trained discriminator will correspond to the ex-
act score ∇ log pdata(x).

2.3 Other Related Work

Discrete Diffusion Models: Some early works on
discrete diffusion models are Multinomial Diffusion
(Hoogeboom et al., 2021) and D3PM (Austin et al.,

2Put differently, the true likelihood is independent of σ
and the introduction of σ as a latent variable only affects
the training of the model through the stochastic approxi-
mation of the expectation in Equation (4).

2021). In both these cases, the noise process consists
of the variables independently transitioning to differ-
ent states. In D3PM, an additional noising process is
introduced, absorbing state noise: at each time step,
variables are independently and with a certain proba-
bility ”decayed” into an ”absorbed” state. ARDM is a
continuous-time generalization of this process: in con-
tinuous time, at most one variable at a time will decay
into the absorbed state, and the noise process hence
boils down to finding the order in which the variables
decay. If the variables have the same probability of
decaying, the order in which they decay will be a draw
from the uniform distribution over all permutations of
the indices {1, . . . , D}. The reverse process is to ”un-
mask” the absorbed variables in the reverse order in
which they decayed. This reverse order will also be
from the uniform distribution, like in OA-ARM.

In our work, we focus on models which operate on dis-
crete state spaces. There are, however, formulations
of diffusion models for discrete data which use contin-
uous diffusion. Examples of these are EDM (Hooge-
boom et al., 2022b), CDCD (Dieleman et al., 2022),
and Bit Diffusion (Chen et al., 2023).

Diffusion Models for Graphs: In this work, we will
apply our model to the task of generating graphs. A
previous work by Niu et al. (2020) use continuous dif-
fusion to generate adjacency matrices, and Jo et al.
(2022) use continuous diffusion to generate graphs
with node and edge attributes. DiGress (Vignac et al.,
2023) is an extension of D3PM to graphs, which gen-
erates graphs with node and edge attributes and is the
first diffusion model for graphs that use discrete noise.

Generative Adversarial Networks: Generative
adversarial networks (GANs) (Goodfellow et al., 2014)
are perhaps the class of generative models which is
mostly associated with the term ”discriminator” as
training of GANs is done by training a generative
model and discriminator simultaneously in an adver-
sarial manner. In a standard GAN, the discriminator
is merely a training artifact and not used for gener-
ation. However, follow-up work have found ways of
using the discriminator also in the generative process
by rejection sampling (Azadi et al., 2018), Metropolis–
Hasting sampling (Turner et al., 2019), and Langevin
sampling (Che et al., 2020).

SMC and Diffusion Models: Concurrent to our
work, Wu et al. (2023); Cardoso et al. (2023) have
proposed SMC-based methods for solving inverse prob-
lems with diffusion-based priors. The resulting algo-
rithms show some resemblance to our SMC-based sam-
plers, but differ both in that they consider continuous
rather than discrete state spaces, and in that they fo-
cus on inverse problems and not discriminator guid-
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ance.

3 DISCRIMINATOR GUIDANCE
FOR ARDMS

To formulate a discrete discriminator guidance pro-
cedure, we assume we have a pre-trained generative
model, pθ, from which we can sample in an order-
agnostic autoregressive manner, i.e.,

xσ(t) ∼ pθ(xσ(t)|xσ(<t)). (8)

We denote the real data distribution as pdata, and train
a discriminator dϕ by maximizing

Lϕ = Eσ

[
Et

[
Epdata(xσ(≤t))

[
log dϕ(xσ(≤t))

]
+

Epθ(xσ(≤t))

[
1− log dϕ(xσ(≤t))

]]]
. (9)

Note that the discriminator is assumed to accept any
partial sample xσ(≤t), t ∈ {1, . . . , D} as input, and
return the probability that this is a partially masked
sample from the data distribution.

For a fixed generative model pθ, training the discrimi-
nator dϕ by minimizing Equation (9) has the optimum

d∗ϕ(xσ(≤t)) =
pdata(xσ(≤t))

pdata(xσ(≤t))+pθ(xσ(≤t))
(Goodfellow et al.,

2014). If we then define

Wt(xσ(≤t)) :=
dϕ(xσ(≤t))

1− dϕ(xσ(≤t))
, (10)

simple algebra gives, for an optimal discriminator d∗ϕ,

W ∗
t (xσ(≤t)) =

d∗ϕ(xσ(≤t))

1− d∗ϕ(xσ(≤t))
=

pdata(xσ(≤t))

pθ(xσ(≤t))
. (11)

Note that, if we parameterize the discriminator as

dϕ(xσ(≤t)) = sigmoid(fϕ(xσ(≤t))) =
exp(fϕ(xσ(≤t)))

1+exp(fϕ(xσ(≤t)))
,

it follows that

Wt(xσ(≤t)) = exp(fϕ(xσ(≤t))). (12)

In the following sections, we outline our sampling al-
gorithms which combine the pretrained model pθ and
the discriminator dϕ.

3.1 Autoregressive Discriminator Guidance

We first derive a discriminator guidance algorithm
which is a discrete counterpart of the continuous case
(i.e., Kim et al. (2023)). To this end, we start by
rewriting

pdata(xσ(≤t)) = pdata(xσ(t)|xσ(<t))pdata(xσ(<t)). (13)

Algorithm 1 Autoregressive Discriminator Guidance

Sample D ∼ p(D) {For samples with varying num-
ber of elements (see Section 3.3)}
Sample σ ∼ p(σ)
Initialize x0 = ∅ {Completely masked}
for t in 1 : D do
Ct = 0 {Normalization constant}
for each value of xσ(t) do

Compute dϕ({xσ(<t), xσ(t)})
Compute Wt({xσ(<t), xσ(t)}) (Equation (15))
Ct += Wt({xσ(<t), xσ(t)})pθ(xσ(t)|xσ(<t))

end for
Sample

xσ(t) ∼ C−1
t Wt({xσ(<t), xσ(t)})pθ(xσ(t)|xσ(<t))

end for

This can be done similarly for pθ(xσ(≤t)), and with
this, we get

W ∗
t (xσ(≤t)) =

pdata(xσ(t)|xσ(<t))pdata(xσ(<t))

pθ(xσ(t)|xσ(<t))pθ(xσ(<t))

=
pdata(xσ(t)|xσ(<t))

pθ(xσ(t)|xσ(<t))
W ∗

t−1(xσ(<t))

⇐⇒

pdata(xσ(t)|xσ(<t)) =
W ∗

t (xσ(≤t))

W ∗
t−1(xσ(<t))

pθ(xσ(t)|xσ(<t)).

(14)

As xσ(t) is discrete, the distribution on the right
hand side of Equation (14) can be computed as:
for each value of xσ(t), evaluate the discriminator
d∗ϕ({xσ(<t), xσ(t)}), compute W ∗

t ({xσ(<t), xσ(t)}), and
multiply this with pθ(xσ(t)|xσ(<t)). The denomi-
nator W ∗

t−1(xσ(<t)) does not depend on xσ(t), and
can therefore be implicitly computed by normaliz-
ing the probabilities W ∗

t (xσ(≤t))pθ(xσ(t)|xσ(<t)).
Hence, with a perfectly trained discrimina-
tor, we can now at each time step sample
from the data distribution, pdata(xσ(t)|xσ(<t)) ∝
W ∗

t ({xσ(<t), xσ(t)})pθ(xσ(t)|xσ(<t)). In other words,
we use the discriminator to correct the imperfect
predictions of the intermediate conditionals made by
pθ. In practice, we will not have access to a perfect
discriminator, but we can use the approximation

Wt({xσ(<t), xσ(t)}) =
dϕ({xσ(<t), xσ(t)})

1− dϕ{xσ(<t), xσ(t)})
, (15)

to obtain a guided sampling process to approximately
sample from pdata. We refer to this procedure as
Autoregressive Discriminator Guidance (ARDG). The
full procedure can be found in Algorithm 1, and is illus-
trated in Figure 1. In the algorithm we have assumed
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Algorithm 2 Bootstrap particle filter discriminator
guidance (BSDG). All operations for i = {1, . . . , N}
Sample D ∼ p(D) {For samples with varying num-
ber of elements (see Section 3.3)}
Sample σ ∼ p(σ)
Set xi

0 = ∅ and wi
0 = 1/N {Completely masked}

for t in 1 : D do
if ESS too low then

Resample {xi
σ(<t)}

N
i=1 and set wi

t−1 ≡ 1/N
end if
Sample xi

σ(t) ∼ pθ(xσ(t)|xi
σ(<t)) and set xi

σ(≤t) =

(xi
σ(<t), x

i
σ(t))

Compute w̃i
t = wi

t−1Wt(x
i
σ(≤t))/Wt−1(x

i
σ(<t))

Normalize wi
t = w̃i

t/
∑N

j=1 w̃
j
t

end for
Sample k ∼ Categorical(N, {wi

D}Ni=1)
return x = xk

σ

that the generation order (permutation) can be sam-
pled before the main loop: σ ∼ p(σ) (which is typically
the case for ARDMs), but it is also possible to sample
this one variable at a time σ(t) ∼ p(σ(t)|σ(< t)) as
part of the loop.

3.2 Sequential Monte Carlo

A possible drawback with ARDG is that (as any
”plain” autoregressive model) it is unable to correct,
at some later iteration, for mistakes made at earlier
iterations during the generation. However, intuitively
we might expect that the discriminator becomes more
accurate for large t, since it then has access to more
unmasked elements and thus more information. We
therefore propose an extension to ARDG based on Se-
quential Monte Carlo (SMC; see, e.g., Naesseth et al.
(2019)).

The motivation is that SMC can potentially be more
resilient to an accumulation of errors. The reason is
that SMC has a built-in correction mechanism, in the
sense that ”errors” in the intermediate target distri-
butions of the algorithm (details below) are corrected
for when transitioning from one iteration to the next.
Therefore, it is sufficient that the final target distribu-
tion is error-free to obtain an algorithm that is con-
sistent, i.e., asymptotically unbiased as the number of
SMC samples (”particles”) increases (Naesseth et al.,
2019). In our setting, this means that as long as
the discriminator dϕ(x) which has access to a com-
plete, unmasked sample is (a close approximation to)
the optimal classifier, the guided sampling process will
asymptotically generate samples from (a close approx-
imation of) the data distribution.

In practice we view the number of SMC particles N

Algorithm 3 Fully adapted SMC discriminator guid-
ance (FADG). All operations for i = {1, . . . , N}

Sample D ∼ p(D) {For samples with varying num-
ber of elements (see Section 3.3)}
Sample σ ∼ p(σ)
Set xi

0 = ∅ and wi
0 = 1/N {Completely masked}

for t in 1 : D do

Compute Ci
t−1 =

∑
xσ(t)

Wt({xi
σ(<t),xσ(t)})

Wt−1(xi
σ(<t)

)

Compute w̃i
t = wi

t−1C
i
t−1

Normalize wi
t = w̃i

t/
∑N

j=1 w̃
j
t

if ESS too low then
Resample {xi

σ(<t), C
i
t−1}Ni=1 and set wi

t ≡ 1/N
end if
Sample

xi
σ(t) ∼

1

Ci
t−1

Wt({xi
σ(<t), xσ(t)})

Wt−1(xi
σ(<t))

pθ(xσ(t)|xi
σ(<t))

and set xi
σ(≤t) = (xi

σ(<t), x
i
σ(t))

end for
Sample k ∼ Categorical(N, {wi

D}Ni=1)
return x = xk

σ

as a tuning parameter that can be used to trade com-
putational cost for improved accuracy. Importantly,
even in the extreme case N = 1, the two versions of
SMC that we propose below will reduce to standard
ARDM and ARDG, respectively. We therefore argue
that even a small N can be used to improve the per-
formance compared to the respective baselines.

In the derivation below we condition on a fixed genera-
tion order σ, but do not include this in the notation for
brevity. SMC is a class of methods for sampling from
a sequence of ”target distributions” {πt(xσ(≤t))}Dt=1.
This is done by sequentially generating a collection of
N interacting samples (or particles) that can be seen
as approximate draws from the targets. The target
distributions are assumed to be known only up to nor-
malization, such that

πt(xσ(≤t)) =
γt(xσ(≤t))

Zt

where γt(xσ(≤t)) can be evaluated but Zt may be
intractable. In many cases—including the applica-
tion studied in this paper—the actual distribution of
interest corresponds to the final target distribution
πD(xσ(≤D)) and the intermediate target distributions,

{πt}D−1
t=1 can be viewed as auxiliary quantities. Impor-

tantly, as mentioned above, the algorithm is consis-
tent under weak assumptions regardless of the choice
of these intermediate targets, which can thus be seen
as design variables.
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In what follows we will derive two versions of SMC-
based discriminator guidance. Both are based on the
same sequence of unnormalized target distributions,

γt(xσ(≤t)) = Wt(xσ(≤t))pθ(xσ(≤t)) (16)

for t = {1, . . . , D}, where Wt is defined in Equa-
tion (10). This means that, at iterations t = D,
samples are approximately from pdata(x) according to
Equation (11).

From the definition of γt in Equation (16) it follows
that we can write

γt(xσ(≤t)) =
Wt(xσ(≤t))pθ(xσ(t)|xσ(<t))

Wt−1(xσ(<t))
γt−1(xσ(<t)),

(17)

which can be interpreted as follows:

1. The conditional distribution pθ(xσ(t)|xσ(<t))
takes the role of a prior transition from iteration
t− 1 to t,

2. The ratio Wt(xσ(≤t))/Wt−1(xσ(<t)) takes the role
of a likelihood term correcting for the discrepan-
cies between the target at iteration t− 1 and t.

Using this interpretation we can readily obtain the
expressions for two commonly used versions of SMC
adapted to our setting: the bootstrap SMC and the
fully adapted SMC, respectively. Full derivations are
given in the appendix.

3.2.1 Bootstrap Discriminator Guidance

We initialize a set of N particles xi
0 = ∅ (completely

masked) and corresponding importance weights wi
0 =

1/N . For a bootstrap SMC we use the prior transition,
i.e., our pretrained generative model, as a proposal
distribution to propagate samples from one iteration
to the next. That is, at iteration t we sample

xi
σ(t) ∼ pθ(xσ(t)|xi

σ(<t)), i = {1, . . . , N}. (18)

The samples are extended as xi
σ(≤t) = (xi

σ(<t), x
i
σ(t)).

The importance weights are then updated using the
”likelihood”, i.e.,

wi
t ∝

Wt(x
i
σ(≤t))

Wt−1(xi
σ(<t))

wi
t−1, (19)

and are normalized to sum to one (hence the propor-
tionality sign).

A key concept in SMC is resampling, which allows
the algorithm to focus on the more promising (high
weight) samples and discard the less promising (low

weight) ones. This is done by monitoring the Effective
Sample Size (ESS), defined as

ESS :=
1∑N

i=1(w
i
t)

2
. (20)

If the ESS becomes too low (say, ESS < N/2), then
we generate a new set of particles by sampling with re-
placement from the current set of particles, with prob-
abilities given by the importance weights. After re-
sampling, the importance weights are reset to be 1/N .

The Bootstrap Discriminator Guidance (BSDG) pro-
cedure for discriminator guidance is summarized in Al-
gorithm 2. Note that, in the extreme case N = 1, the
procedure reduces to simply applying the pre-trained
ARDM without any guidance. N can thus be seen as
a tuning-parameter that can be used to improve the
quality of generated samples at the cost of increased
generation order, and even for N ≳ 1 we obtain a
functional method.

3.2.2 Fully Adapted Discriminator Guidance

An alternative to bootstrap SMC is to ”adapt” the
transition probability for extending the particles as
well as the resampling probabilities to the current tar-
get distribution. If this is done in a locally optimal
way, the method is referred to as fully adapted SMC
(Pitt and Shephard, 1999; Naesseth et al., 2019).

Similarly to how Equation (18) is viewed as sampling
from the prior, the locally optimal transition corre-
sponds to sampling from a posterior. With our inter-
pretation of the weight ratio as a likelihood, this means
that we sample xi

σ(t) from a distribution proportional
to

Wt({xi
σ(<t), xσ(t)})

Wt−1(xi
σ(<t))

pθ(xσ(t)|xi
σ(<t)), (21)

i.e., the product of the likelihood and the prior. Note
that this is the same transition probability as used by
ARDG; cf Equation (14).

Using this transition kernel, the importance weights
are updated as

wi
t ∝ wi

t−1 ×
∑
xσ(t)

Wt({xi
σ(<t), xσ(t)})

Wt−1(xi
σ(<t))

pθ(xσ(t)|xi
σ(<t)),

(22)

where the sum is the normalizing constant (”marginal
likelihood”) of Equation (21). Similarly to above, the
weights are normalized to sum to one.

Considering Equation (22) it can be noted that the im-
portance weights are independent of the realized values
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{xi
σ(t)} and only depend on particles up to iteration

t− 1. This is a consequence of the perfect adaptation
of the transition kernel to the current target γt. How-
ever, this also opens up for a one-step look-ahead in
the resampling step of the fully adapted SMC. That is,
we resample the particles from iteration t−1 using the
weights in Equation (22) before extending the particles
to iteration t according to Equation (21). When the
resampling is performed in this way, we obtain new im-
portance weights wi

t = 1/N ; if we do not resample at
some iteration we instead compute weights according
to Equation (22).

The resulting algorithm for Fully Adapted Discrimi-
nator Guidance (FADG) can be found in Algorithm 3.
In the extreme case N = 1 the method reduces to the
basic ARDG procedure (Algorithm 1). Hence, simi-
larly to how BSDG can be seen as a generalization of
(unguided) ARDM, the FADG can be seen as a gen-
eralization of ARDG.

3.3 Generating Samples of Varying
Dimension

We will use ARDM with discriminator guidance for
generating graphs. These can have different number of
nodes, n, which in turn means that the dimension D of
generated samples is random. Hence, we are interested
in generating from the joint distribution p(x, D). Simi-
larly to DiGress (Vignac et al., 2023), we enable this by
using the factorization pθ(x, D) = p(D)pθ(x|D), where
we set p(D) to the empirical distribution computed
from the training set. Specifically, in the case of graphs
we sample first the number of nodes n from its empir-
ical distribution, and then, for the case of undirected
graphs without self-loops, computeD = n+n(n−1)/2,
corresponding to the total number of nodes and edges
(see Section 4 for details). Formally we condition on
D in the generative procedures presented above, i.e.,
we target the distribution p(x|D) instead of p(x), but
we omit this conditioning for notational simplicity.

Furthermore, in the SMC algorithms we condition on
the permutation σ, so that the generation order is
shared between particles. That is, we first simulate
D ∼ p(D) and σ ∼ p(σ|D) and apply SMC to target
pθ(x|D,σ). To generate a single sample we then ran-
domly select one of the N particles with probabilities
given by their importance weights.3 To generate mul-
tiple samples we repeat this entire procedure, sampling
a new pair (D,σ) for each round.

3Alternatively, depending on the application, we can
keep all N samples and average over them when computing
expectations w.r.t. the generative distribution, resulting
in a reduction of Monte Carlo variance.

Table 1: Evaluation metrics on the QM9 dataset, when
using different generation orders and types of Discrim-
inator Guidance (DG). ARDM is a standard autore-
gressive diffusion model (no guidance) and ARDG,
BSDG, and FADG are the three methods proposed
in this paper. ARDM* is a standard ARDM that has
been trained for twice as long to match the extra train-
ing time required for training the discriminator.

Val. Uniq. Atm.S Mol.S
Model (%)↑ (%)↑ (%)↑ (%)↑
Test data 97.9 100 98.6 87.4
DiGress 95.4 97.6 98.1 79.8

U
n
if
or
m

ARDM 88.0 99.9 96.1 55.7
ARDM* 89.7 99.6 96.0 55.6
ARDG 88.3 99.7 96.7 66.3
BSDG 97.4 99.4 98.6 87.8
FADG 96.7 99.5 98.7 88.1

N
E
sN

ARDM 95.4 99.9 97.3 74.2
ARDM* 96.8 99.9 97.6 78.5
ARDG 95.3 99.9 97.4 76.9
BSDG 98.2 99.9 98.6 88.4
FADG 98.1 99.5 98.6 87.8

N
sE

s

ARDM 92.5 99.6 97.4 77.3
ARDM* 95.4 99.7 98.0 82.4
ARDG 95.0 99.9 97.7 81.0
BSDG 97.4 99.7 98.7 88.6
FADG 97.2 99.4 98.6 88.0

3.4 Computational Complexity

Adding discriminator guidance will inevitably add an
additional computational cost. ARDM requires D
evaluations of the generative model. ARDG requires
evaluating the discriminator for each possible value of
xσ(t), involving (1 + d)D network evaluations, with
d the dimension of xσ(t) (i.e., for each t, one evalua-
tion of the generative model, and then d evaluations
of the discriminator). FADG, which samples from the
same proposal as ARDG, will add to the computa-
tional complexity by a factor of the number of par-
ticles, N , i.e., it requires N(1 + d)D forward passes
through the networks.

BSDG on the other hand use the standard ARDM as
proposal, and just a single forward pass through the
discriminator per sample step t for weighting the par-
ticles. This means that it requires 2ND evaluations
of the networks. For high dimensional xσ(t), the num-
ber of network evaluations in BSDG can thus be lower
than that of standard ARDG if N < (1+d)

2 .
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Table 2: Evaluation metrics on the MOSES dataset, when using different types of Discriminator Guidance (DG).
For results for different generation orders, see the appendix.

Validity Uniqueness Novelty Filters FCD SNN Frag Scaf
Order DG (%)↑ (%)↑ (%)↑ (%)↑ ↓ ↑ ↑ ↑

U
n
if
o
rm

ARDM 82.2 100 97.2 94.9 2.937 0.483 0.993 0.067
ARDM* 82.6 100 97.0 95.6 3.153 0.494 0.991 0.050
ARDG 80.5 100 95.0 95.3 2.705 0.502 0.994 0.127
BSDG 85.9 100 92.4 98.4 2.609 0.560 0.993 0.059
FADG 90.1 100 91.7 98.4 2.537 0.541 0.995 0.105

4 EXPERIMENTS

The main objective with our experiments is to high-
light how incorporating discriminator guidance im-
proves the generative performance of the ARDM.
Therefore, we have not put any effort into improving
any architectural aspects of the backbone neural net-
work, but use the same graph transformer as DiGress
(Vignac et al., 2023) for both the generative model and
the discriminator. Details on the architecture as well
as details about training are given in the appendix.

As our model is working on partially masked graphs,
we cannot compute the extra features used by Vignac
et al. (2023), as we will not have access to, e.g., the
graph Laplacian. On the other hand, we evaluate in-
corporating a recent approach by Ekström Kelvinius
and Lindsten (2023) where the order in the ARDM
is not drawn from a uniform distribution. Instead,
the graphs are generated either by first assigning the
values of the nodes in a random order, and then the
edges (called NsEs), or by always assigning the edges
connecting the most recently assigned node with the
already assigned nodes (called NEsN).

The evaluation metrics are computed on a sample of
1 000 molecules generated by the models. In the SMC
algorithms, we use N = 10 particles per sample, mean-
ing we effectively have to generate 10 000 molecules,
but only keep 1 000 for evaluation. We include a model
ARDM*, which is standard ARDM with a training
time comparable with

4.1 QM9

We first evaluate our methods on the QM9 dataset
(Wu et al., 2018) and compare our results to Di-
Gress (Vignac et al., 2023), which is a recent diffu-
sion model for graphs and hence a very competitive
baseline. As the metrics on the standard QM9 setup
(no hydrogens) are already very good with a stan-
dard ARDM (see appendix), we turn our attention
to the more difficult task of explicitly modeling hy-
drogens. We evaluate our model using the metrics

Validity (Val., fraction on molecules for which RD-
Kit can obtain a valid SMILES string), Uniqueness
(Uniq., fraction of molecules with a different SMILES
representation), Atom stable (Atm.S, fraction of atoms
with correct valency) and Molecule stable (Mol.S, frac-
tion of molecules with 100 % atom stable). As can be
seen in Table 1, standard ARDM with a uniform order
performs slightly worse on all metrics when compared
to DiGress, but using a non-uniform order (NEsN
or NsEs) improves performance. Most importantly,
however, adding discriminator guidance improves over
ARDM for all choices of orders, and in particular the
SMC algorithms obtain close to ideal metrics when
compared to the dataset.

4.2 MOSES

Next, we evaluate ARDM with discriminator guidance
on MOSES (Polykovskiy et al., 2020), a more chal-
lenging dataset of almost two million small drug-like
molecules. This dataset is a lot larger than QM9, and
we therefore do not generate a new dataset of the same
size as the original dataset, but instead only 200 000
molecules, and then use random subsampling of these
during training of the discriminator. As we do not see
any direct differences in performance when using a dif-
ferent generation order, we present the results for the
uniform order in Table 2, and refer to the appendix
for results when using different generation orders.

MOSES is a standard benchmark with its own metrics,
and apart from Validity and Uniqueness used for QM9,
it also uses Novelty (fraction of the valid molecules
not part of the training set), Filters (fraction of gener-
ated molecules which pass filters used in dataset con-
struction), Fréchet ChemNet Distance (FCD) (Preuer
et al., 2018) (distance between hidden activations of a
pretrained ChemNet for generated and test set), SNN
(average similarity between molecules in generated set
and their nearest neighbor in test set), Fragment Sim-
ilarity (Frag, comparison of distributions of BRICS
fragments (Degen et al., 2008) in generated and test
set), and Scaffold similarity (Scaff, comparison of fre-
quencies of Bemis-Murcko scaffolds (Bemis and Mur-
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cko, 1996) in generated and test set).

We observe that the different discriminator guidance
methods improve many of the metrics over standard
ARDM. However, it seems that they do so at a slight
cost of novelty, i.e., they are slightly more prone to
generating molecules from the training set. This could
be interpreted as if the metrics are improved merely as
a result of sampling more from the training set. How-
ever, this is not the case, since rerunning the evalua-
tion using only novel molecules (see appendix), we ob-
serve the same improvements. It should also be noted
that the metrics are computed over valid molecules, so
even if the novelty is lower, the total number of valid
and novel molecules can be higher.

5 DISCUSSION & CONCLUSIONS

In this paper, we have derived three discriminator
guidance methods for ARDMs. First, we have a ver-
sion (ARDG) that can be seen as a discrete coun-
terpart of the continuous discriminator guidance by
Kim et al. (2023). Second, we have two SMC ver-
sions (BSDG and FADG) that can further improve the
generation quality by generating multiple interacting
samples in parallel. Our empirical results when gener-
ating molecular graphs show how discriminator guid-
ance improves the generative performance over stan-
dard ARDMs.

This improved performance naturally comes with an
increased computational cost as the discriminator
needs to be evaluated at each generation step. Addi-
tionally, for SMC we sample multiple particles in par-
allel for each generated sample. However, in contrast
to other diffusion models, ARDMs have a fixed num-
ber of generation steps (D, one per variable). Choos-
ing the number of particles N can therefore be seen
as a tuning knob that allows trading generation qual-
ity for computational cost, similarly to the number of
diffusion steps in standard diffusion models (both con-
tinuous and discrete models like D3PM and DiGress).
In particular, for the extreme case N = 1, BSDG and
FADG reduce to ARDM (no guidance) and ARDG,
respectively, meaning that even for small N we obtain
well-functioning methods (which is confirmed by our
empirical results with N = 10).

We think that this trade-off can be of importance in
applications or situations where it is more important
that the obtained samples are of high quality, than
being able to generate a large number of diverse sam-
ples with varying quality. For example, if the gener-
ated samples are to be further screened for some down-
stream application and this screening is expensive to
perform, it is desirable that the samples that are cho-
sen for screening are of higher quality, even if they are

relatively few. SMC provides the possibility to opti-
mize for this requirement by increasing the number of
particles and lowering the number of generated sam-
ples within a fixed computational budget.
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A SMC DETAILS

In this section, we give a more formal derivation of the two SMC algorithms that we use for discriminator
guidance.

As mentioned in the main text, SMC samples from a sequence of target distributions, {πt(xσ(≤t))}Dt=1, where πt

is known up to a normalizing constans, i.e.,

πt(xσ(≤t)) =
γt(xσ(≤t))

Zt
. (23)

To obtain these samples, SMC consists of three steps: resampling, propagating, and weighting. Each of the
three steps are associated with its own additional SMC ingredient: the ancestor probabilities νt−1 (used in the
resampling step), the proposal distributions qt(xσ(t)|xσ(<t)) (used in the propagation step), and the importance
weights wt (used in the weighting step). The latter can be obtained by first computing the unnormalized
importance weights w̃t as

w̃t = ωt(xσ(≤t))
wt−1

νt−1
, (24)

where

ωt(xσ(≤t)) =
γt(xσ(≤t))

γt−1(xσ(<t))q(xσ(t)|xσ(<t))
, (25)

and then normalizing by summing over all particles.

To design our SMC algorithms, we hence need to specify the target distributions γt, determine a proposal
distribution, qt(xσ(t)|xσ(<t)), and how to compute the ancestor probabilities νt−1. From this, the importance
weights will follow according to Equation (24).

We use γt(xσ(≤t)) = Wt(xσ(≤t))pθ(xσ(≤t)), as this leads to, at iteration t = D, samples that are approximately
from pdata(x) (see Equation (11)).

A.1 Bootstrap Particle Filter (BSPF)

For designing a bootstrap particle filter for discriminator guidance, we can use our pretrained model as the
proposal distribution, i.e.,

qt(xσ(t)|xσ(<t)) = pθ(xσ(t)|xσ(<t)). (26)

As in a standard BSPF, we set the ancestor sample weights equal to the importance weights, i.e.,

νt−1 = wt−1. (27)

With this choice of proposal and ancestor probabilities, we have that

ωt(xσ(≤t)) =
γt(xσ(≤t))

γt−1(xσ(<t))q(xσ(t)|xσ(<t))

=
Wt(xσ(≤t))pθ(xσ(≤t))

Wt−1(xσ(<t))pθ(xσ(<t))pθ(xσ(t)|xσ(<t))

=
Wt(xσ(≤t))pθ(xσ(≤t))

Wt−1(xσ(<t))pθ(xσ(≤t))

=
Wt(xσ(≤t))

Wt−1(xσ(<t))
. (28)

Then, the importance weights become

w̃t =
Wt(xσ(≤t))

Wt−1(xσ(<t))

wt−1

νt−1
, (29)
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which, if resampling is performed with νt−1 = wt−1, gives w̃t =
Wt(xσ(≤t))

Wt−1(xσ(<t))
. However, if resampling is not

performed (i.e., if ESS is sufficiently large), this can be viewed as instead setting νt−1 = 1/N and using a low
variance sampler (for example, systematic). The expression in Equation (29) covers both cases.

A.2 Fully Adapted Particle Filter (FAPF)

In a fully adapted particle filter (Pitt and Shephard, 1999; Naesseth et al., 2019), the proposal should be the
locally optimal proposal

qt(xσ(t)|xσ(<t)) =
γt({xσ(<t), xσ(t)})∫

γt({xσ(<t), xσ(t)})dxσ(t)

. (30)

For notational convenience when deriving the locally optimal proposal, we define

Ct(xσ(<t)) =

∫
γt({xσ(<t), xσ(t)})dxσ(t)

γt−1(xσ(<t))
. (31)

By multiplying the right-hand side of the locally optimal proposal by
γt−1(xσ(<t))

γt−1(xσ(<t))
and rearranging terms, we find

that the locally optimal proposal is the same as the proposal in ARDG (Section 3.1), namely

qt(xσ(t)|xσ(<t)) =
γt−1(xσ(<t))∫

γt({xσ(<t), xσ(t)})dxσ(t)

γt({xσ(<t), xσ(t)})
γt−1(xσ(<t))

=
1

Ct(xσ(<t))

Wt({xσ(<t), xσ(t)})pθ({xσ(<t), xσ(t)})
Wt−1(xσ(<t))pθ(xσ(<t))

=
1

Ct(xσ(<t))

Wt({xσ(<t), xσ(t)})
Wt−1(xσ(<t))

pθ(xσ(t)|xσ(<t)). (32)

As Ct(xσ(<t)) is part of the normalizing constant of the proposal, and as xσ(t) is discrete, we can compute
Ct(xσ(<t)) as

Ct(xσ(<t)) =
∑
xσ(t)

Wt({xσ(<t), xσ(t)})
Wt−1(xσ(<t))

pθ(xσ(t)|xσ(<t)). (33)

In addition to using the locally optimal proposal, a fully adapted particle filter uses un-normalized ancestor
probabilities which take into account possible values of future xσ(t) as (Pitt and Shephard, 1999)

ν̃t−1 = wt−1

∫
γt({xσ(<t), xσ(t)})dxσ(t)

γt−1(xσ(<t))
= wt−1Ct(xσ(<t)), (34)

which can be normalized by summing over all particles.

Finally, the un-normalized importance weights are computed by using ωt(xσ(≤t)), which with the locally optimal
proposal becomes

ωt(xσ(≤t)) =
γt(xσ(≤t))

γt−1(xσ(<t))q(xσ(t)|xσ(<t))

=
γt(xσ(≤t))

γt−1(xσ(<t))

Ct(xσ(<t))γt−1(xσ(<t))

γt(xσ(≤t))

= Ct(xσ(<t)), (35)

resulting in

w̃t =
wt−1

νt−1
Ct(xσ(<t)). (36)
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It can be noted that if resampling is performed, this is done using νt obtained by normalizing ν̃t from Equa-
tion (34), leading to w̃t = 1 and hence, wt = 1/N . But just as for a BSPF, if ESS is still high enough and
resampling is not performed in a step, this can be viewed as setting νt = 1/N , meaning νt is not a normalization
of ν̃t. We cover both these cases in Equation (36).

A.3 Experimental settings

In all SMC experiments, we used N = 10. We used systematic resampling and resampled when ESS < 0.7N .

B NETWORK AND TRAINING DETAILS

For both the generator and discriminator, we have used the graph transformer developed for DiGress. We have
used the code from the the public DiGress code repository4. However, we do not use the extra features used for
DiGress, as we do not have access to a full graph.

B.1 Generator

For the generator, we tried to closely follow the hyperparameters (e.g., number of layers and hidden dimensions)
chosen for DiGress. When training, we used the Adam optimizer (while DiGress use AdamW), and tweaked the
learning rate slightly depending on the dataset and generation order (Uniform, NEsN, or NEN). For QM9, we
used 75 % of the full dataset as training data (roughly 98 000 molecules), slightly less than DiGress which used
100 000 molecules.

B.2 Discriminator

Architecture The discriminator has a backbone architecture that is identical to the generator (i.e., a graph
transformer with the same number of layers and hidden dimensions). This backbone produces hidden features
for each node and edge in the graph. In the generator, these features are used to predict the class logits in the
generative distribution pθ(xσ(t)|xσ(<t)). For the discriminator, however, we use mean pooling to obtain a pooled
node feature, hnode, and edge feature, hedge. That is, if letting V and E represent the set of nodes and set of
edges, respectively, we obtain

hnode =
1

|V |
∑
i∈V

hi (37)

hedge =
1

|E|
∑

(i,j)∈E

h(i,j). (38)

These are concatenated and processed by an MLP to predict a single logit l, i.e.,

l = MLP(hnode ⊕ hedge), (39)

with ⊕ denoting concatenation of vectors. We used a single hidden layer in the MLP, with the hidden dimension
being the same as the dimension of hnode.

The logit can be converted into the probability of the sample being from the real dataset by applying a sigmoid.
However, as shown in Equation (12), when computing the weights Wt(xσ(≤t)), we use the logit directly as
Wt(xσ(≤t)) = exp(l) which works better numerically.

Training The already trained generative model is used to generate another dataset which is combined with
the real dataset to train the discriminator. This generated dataset is of the same size as the original dataset in
the case of QM9, and in the case of MOSES consists of 200 000 samples, which is ∼ 10% the size of the original
dataset.

We used the AdamW optimizer and tweaked the learning rate by observing cross entropy on a validation set
which consisted of both real and generated data. The validation set was created by setting aside 15% of the
dataset. We find empirically that initializing the discriminator with the weights of the generator helps with
training, especially in the initial phase. We therefore used this strategy when initializing all discriminators.

4https://github.com/cvignac/DiGress/

https://github.com/cvignac/DiGress/
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B.3 Computational Resources

Both generators and discriminators were trained on single NVIDIA A100 40 GB GPUs.

C ADDITIONAL RESULTS

C.1 QM9 without hydrogen

For the task of generating molecules from QM9 when not modelling hydrogens, we provide the Validity and
Uniqueness for standard ARDM, compared to DiGress, in Table 3.

Table 3: Evaluation metrics on the QM9 dataset, without modeling hydrogens. The metrics are very good, as
we have comparable results with DiGress (Vignac et al., 2023).

Validity Uniqueness
Model (%)↑ (%)↑
DiGress 99.0 96.2
ARDM 99.1 96.9

C.2 MOSES with non-Uniform Generation Order

Just as for QM9, we evaluated the approach of Ekström Kelvinius and Lindsten (2023) where the distribution
of generation orders, p(σ), is not uniform over all possible orders. However, in contrast to QM9 where this
approach gave significant boost in performance, this was not the case for MOSES. We do see, however, the same
qualitative results that discriminator guidance consistently provides improved performance, given a choice of
p(σ). The full MOSES results can be found in Table 4

Table 4: Evaluation metrics on the MOSES dataset, when using different generation orders and types of Dis-
criminator Guidance (DG).

Validity Uniqueness Novelty Filters FCD SNN Frag Scaf
Order DG (%)↑ (%)↑ (%)↑ (%)↑ ↓ ↑ ↑ ↑

U
n
if
or
m

ARDM 82.2 100 97.2 94.9 2.937 0.483 0.993 0.067
ARDM* 82.6 100 97.0 95.6 3.153 0.494 0.991 0.050
ARDG 80.5 100 95.0 95.3 2.705 0.502 0.994 0.127
BSDG 85.9 100 92.4 98.4 2.609 0.560 0.993 0.059
FADG 90.1 100 91.7 98.4 2.537 0.541 0.995 0.105

N
E
sN

ARDM 81.6 100 98.3 88.5 3.452 0.463 0.989 0.072
ARDM* 82.1 100 98.6 94.5 2.942 0.486 0.986 0.065
ARDG 85.0 100 97.2 95.3 3.138 0.495 0.990 0.072
BSDG 87.2 100 96.7 96.7 2.681 0.519 0.993 0.064
FADG 88.9 100 93.3 98.7 2.440 0.533 0.995 0.081

N
sE

s

ARDM 81.3 100 97.0 93.5 2.993 0.494 0.986 0.039
ARDM* 76.9 100 97.4 92.1 3.159 0.485 0.990 0.060
ARDG 84.2 100 95.4 94.7 2.776 0.509 0.992 0.037
BSDG 89.0 100 92.4 98.4 2.778 0.532 0.994 0.057
FADG 91.0 100 93.7 98.8 2.343 0.539 0.995 0.075

C.3 MOSES metrics on only novel molecules

In Table 5, we present the corresponding metrics for MOSES but only on novel molcules, and see the same pattern
with DG improving over standard ARDM. As mentioned in the paper, all metrics are computed on only valid
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Table 5: Metrics for MOSES, but computed only on novel molecules

Valid Uniqueness Novelty Filters FCD SNN Frag Scaf

U
n
if
o
rm

ARDM 82.2 100 100 94.7 2.972 0.480 0.993 0.068
ARDG 80.5 100 100 95.0 2.797 0.496 0.993 0.131
BSDG 85.9 100 100 98.2 2.699 0.524 0.994 0.063
FADG 90.1 100 100 98.3 2.607 0.533 0.995 0.114

molecules, meaning that even if the novelty is lower, the total number of novel (and valid) molecules generated
with desired properties can be higher. For example, according to the numbers in Table 5 and Table 2, the fraction
of the generated molecules by ARDM that are valid, novel and pass the filters is 0.822 · 0.972 · 0.947 = 75.7%,
while the same number for FADG is 0.901 · 0.917 · 0.983 = 81.2%.

C.4 Generation with different seeds

To evaluate how much the results can vary, we generate new sets of 1 000 molecules using a different seed, and
present the results in Table 6 and Table 7. The same pattern can be seen in these tables as those in the main
text, with discriminator guidance improving most metrics.

Table 6: Evaluation metrics on the QM9 dataset when using a different seed

Validity Uniqueness Atom stable Mol stable
Order Model (%)↑ (%)↑ (%)↑ (%)↑

Test data 97.9 100 98.6 87.4
DiGress 95.4 97.6 98.1 79.8

U
n
if
or
m

ARDM 87.5 100 96.0 55.3
ARDG 88.0 99.4 97.0 67.8
BSDG 97.0 99.7 98.9 89.0
FADG 97.6 99.2 98.7 88.3

N
E
sN

ARDM 95.1 99.7 97.1 73.0
ARDG 93.2 99.8 97.3 74.5
BSDG 98.8 99.7 98.8 89.4
FADG 97.0 99.6 98.6 88.0

N
sE

s

ARDM 92.7 99.9 97.3 77.0
ARDG 94.3 99.7 97.8 81.6
BSDG 97.9 99.7 98.5 87.1
FADG 97.3 99.1 98.4 85.8

C.5 Varying number of particles

In Table 8, we present the results on MOSES for BSDG and FADG when varying the number of particles, N .
We conclude that N = 10 is a reasonable compute-quality trade-off for this case.

D LICENSE INFORMATION

QM9 is provided by the original authors on Figshare5, and was accessed through Pytorch Geometric6. The
license is unspecified.

The MOSES dataset was accessed via the official open source library moses 7 with an MIT License.

5https://springernature.figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_
kilo_molecules/978904

6https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.QM9.html
7https://github.com/molecularsets/moses/

https://springernature.figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904
https://springernature.figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904
https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.datasets.QM9.html
https://github.com/molecularsets/moses/
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Table 7: Evaluation metrics on the MOSES dataset with a different seed.

Validity Uniqueness Novelty Filters FCD SNN Frag Scaf
Order DG (%)↑ (%)↑ (%)↑ (%)↑ ↓ ↑ ↑ ↑

U
n
if
o
rm

ARDM 80.4 100 97.4 93.8 2.942 0.487 0.992 0.095
ARDG 84.6 100 95.0 94.9 2.503 0.509 0.995 0.106
BSDG 89.6 100 92.4 98.2 2.789 0.527 0.992 0.050
FADG 88.3 100 91.4 98.2 2.532 0.537 0.993 0.082

N
E
sN

ARDM 81.9 100 98.2 90.2 3.110 0.468 0.990 0.083
ARDG 85.6 100 97.1 94.2 2.887 0.501 0.993 0.075
BSDG 86.6 100 95.4 97.2 2.746 0.518 0.994 0.046
FADG 89.2 100 93.4 98.1 2.749 0.527 0.993 0.035

N
sE

s

ARDM 78.8 100 98.6 93.3 3.159 0.487 0.987 0.091
ARDG 83.7 100 96.3 95.5 2.736 0.505 0.994 0.055
BSDG 88.0 100 93.2 98.0 2.636 0.526 0.995 0.079
FADG 91.0 100 92.7 98.7 2.565 0.535 0.993 0.095

Table 8: Evaluation metrics on the MOSES dataset when using the uniform generation order and varying the
number of particles, N .

Validity Uniqueness Novelty Filters FCD SNN Frag Scaf
N (%)↑ (%)↑ (%)↑ (%)↑ ↓ ↑ ↑ ↑

B
S
D
G

5 87.9 100 92.0 97.5 2.606 0.528 0.993 0.073
10 85.9 100 92.4 98.4 2.609 0.560 0.993 0.059
25 87.9 100 92.4 98.2 2.650 0.538 0.992 0.079
50 89.8 100 92.9 98.4 2.459 0.537 0.993 0.090

F
A
D
G

5 88.1 100 91.5 98.4 2.504 0.533 0.994 0.082
10 90.1 100 91.7 98.4 2.537 0.541 0.995 0.105
25 90.1 100 92.1 99.1 2.589 0.537 0.991 0.036
50 87.5 100 90.5 99.1 2.809 0.532 0.993 0.035

Parts of the code used in this work (e.g., the graph transformer and code for evaluation) were taken from the
public DiGress code repository8 and modified. This code is licensed with an MIT License.

8https://github.com/cvignac/DiGress/

https://github.com/cvignac/DiGress/
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