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Abstract

Uncertainty estimation is critical in high-
stakes machine learning applications. One
effective way to estimate uncertainty is con-
formal prediction, which can provide predic-
tive inference with statistical coverage guar-
antees. We present a new conformal regres-
sion method, Spline Prediction Intervals via
Conformal Estimation (SPICE), that esti-
mates the conditional density using neural-
network-parameterized splines. We prove
universal approximation and optimality re-
sults for SPICE, which are empirically re-
flected by our experiments. SPICE is
compatible with two different efficient-to-
compute conformal scores, one designed for
size-efficient marginal coverage (SPICE-ND)
and the other for size-efficient conditional
coverage (SPICE-HPD). Results on bench-
mark datasets demonstrate SPICE-ND mod-
els achieve the smallest average prediction
set sizes, including average size reductions of
nearly 50% for some datasets compared to
the next best baseline. SPICE-HPD models
achieve the best conditional coverage com-
pared to baselines. The SPICE implemen-
tation is made available.

1 INTRODUCTION

Uncertainty estimation is an essential problem in ma-
chine learning, especially for domains with high-stakes
decisions such as medicine (Begoli et al., 2019), drug
discovery (Scalia et al., 2020), and self-driving (Abdar
et al., 2021). This work focuses on predictive infer-
ence for scalar regression, where the goal is to build
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a prediction set rather than output a single value, in
which the true target value is likely to fall. This for-
mulation is an effective way to account for predictive
uncertainty.

Conformal prediction (Vovk et al., 2005) is one of the
most successful frameworks to approach building pre-
dictive sets. It only requires exchangeability of the
data, does not make distributional and model assump-
tions, and comes with non-asymptotic coverage guar-
antee.

In this work, we present a deep regression model specif-
ically designed for conformal prediction techniques,
resulting in small and efficient-to-compute prediction
sets with statistical coverage guarantees. As we will
show, our proposed method has several theoretical
and practical advantages over existing conformal pre-
diction techniques and results in sharper predictive
sets and improved conditional coverage on a range of
benchmark datasets.

1.1 Conformal Prediction Background

We present an overview of split conformal prediction
(Lei et al., 2015) for completeness and to introduce
notation. For a more comprehensive introduction, see
Angelopoulos and Bates (2022). Let {(xi, yi)}Ni=1 de-
note N samples drawn from an unknown joint dis-
tribution with density function fX,Y (x, y). In split
conformal, we randomly split the data into a train-
ing set Dtrain = {(xi, yi)}Ntrain

i=1 and calibration data

Dcal = {(xi, yi)}Ntrain+Ncal

i=Ntrain+1 .

1.1.1 Conformal Scores

The first step is to train a model f̂(x) on Dtrain. Given
the model, we define a conformal score S(x, y), which
is higher the more the model’s prediction disagrees
with y. In a regression setting, a common way to build
a conformal score is to divide the absolute residual by
some heuristic uncertainty score, u(x), such as the en-
semble variance (Angelopoulos and Bates, 2022, §2.3).
In the case where f̂(x) models the conditional density
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Table 1: Comparison of the properties of different conformal regression methods. disjoint indicates whether a
method can output multiple prediction intervals. opt. marginal indicates whether a method has oracle-optimal
marginal size (see Section 1.2 for more information). opt. conditional indicates asymptotically optimal
conditional size. deterministic indicates whether prediction set computation is deterministic or stochastic.
computation is the computational complexity of computing a prediction set. ∗CHR has asymptotically optimal
conditional interval size only for unimodal conditional distributions.

MODEL disjoint opt. marginal opt. conditional deterministic computation

CQR (Romano et al., 2019) ✘ ✘ ✘ ✔ O(1)
CHR (Sesia and Romano, 2021) ✘ ✘ ✔∗ ✘ O([# bins ≈ 103] · [# grid points = 1,000])
PCP (Wang et al., 2023) ✔ ? ? ✘ O([# samples ≈ 50] · [sample complexity])
SPICE-ND [OURS] ✔ ✔ ✘ ✔ O([# knots ≈ 30])
SPICE-HPD [OURS] ✔ ✘ ✔ ✔ O(# knots · [log precision ≈ 15])

of Y | X, one can use S(x, y) = −f̂(y | x). No matter
what model and conformal score, the conformal pre-
diction sets will have statistical guarantees. However,
the modeling and score choices are critical for the size
and properties of the prediction sets. A poor choice
of model or score will lead to large and uninformative
prediction sets.

1.1.2 Conformal Prediction Sets

In conformal prediction, the user specifies a desired
miscoverage rate, α ∈ [0, 1]. 1 − α is called the nom-
inal coverage. Assuming (xtest, ytest) and Dcal are ex-
changeable, split conformal builds prediction sets C(x)
such that:

P[ytest ∈ C(xtest)] ≥ 1− α, (1)

where the probability is taken over all possible draws
of (xtest, ytest) and Dcal. This property is known as
marginal coverage, since for any individual (xtest, ytest)
pair we have no guarantee. The stronger conditional
coverage would be if Equation 1 held for each specific
test sample.

In order to build the prediction sets, we calculate a
quantile of the conformal scores of the calibration set,
which we denote Scal = {S(x, y) : (x, y) ∈ Dcal}, as
follows:

q̂ = quantile

[
Scal,

⌈(Ncal + 1)(1− α)⌉)
Ncal

]
. (2)

Equation 2 is a slightly adjusted version of the nominal
coverage quantile of the conformal score. The predic-
tion set for a test sample is then:

C(xtest) = {y : S(xtest, y) ≤ q̂}. (3)

Intuitively, the prediction set contains all the possible
values of y that align well, to a degree determined
by q̂, with the model’s prediction. A more accurate
model will have a smaller q̂, reflecting the fact that
the true ys better align with the model’s predictions
in the calibration set.

1.2 Conformal Regression Desiderata

We have seen that any conformal score will result in
marginal coverage. Therefore, we have to compare
conformal methods based on other important prop-
erties of the prediction sets.

One key property is the flexibility of C(x) in its abil-
ity to cover multiple intervals of possible values for y.
Sesia and Romano (2021) argue that the prediction set
should be a single interval for improved interpretabil-
ity. While this may be beneficial in some contexts, out-
putting multiple prediction intervals can make the pre-
diction set much smaller in many cases (Wang et al.,
2023). One case where this may be important is if
there is a hidden categorical variable that leads to
a multimodal conditional distribution for y, in which
case a single interval could have to span between mul-
tiple modes and thereby include low-density regions.
Additionally, applications with inherently multimodal
observations have been highlighted across many do-
mains (Izbicki et al., 2022).

Another important design principle is the size of the
prediction intervals, assuming a perfect conditional
density model (i.e. f̂(y | x) = f(y | x)). Intuitively,
given an oracle model, a well-designed conformal score
should result in the smallest possible prediction inter-
vals (Lei and Wasserman, 2014). We refer to this prop-
erty, without any constraints besides marginal cover-
age, as optimal marginal size. When the score also
results in conditional coverage, we call the property
optimal conditional size. Optimal marginal size is
achieved by under-covering highly variable conditional
examples, which means that both properties cannot
be simultaneously achieved (Sadinle et al., 2019). In
practice, optimal conditional coverage can lead to im-
proved non-oracle conditional coverage, while resulting
in larger average prediction set sizes. One example of
a regression score with optimal conditional coverage
is the High Predictive Density (HPD) score (Izbicki
et al., 2022).
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Figure 1: The three stages of SPICE-ND. SPICE-HPD shares the first stage but differs in the calibration and
prediction stages.

Another practical consideration is the complexity of
computing the conformal score and prediction sets.
Some models, such as Conformalized Quantile Regres-
sion (CQR) (Romano et al., 2019), only require adding
an offset to a prediction interval. Others require nu-
meric integration (Izbicki et al., 2022), random sam-
pling (Wang et al., 2023), or constructing large nested
sets of intervals (Sesia and Romano, 2021). A high
computational complexity can hinder applications in
real-world settings. Additionally, some methods use
randomized procedures to build the predictive set, re-
sulting in stochastic predictions. In this regard, a de-
terministic computation could improve reproducibil-
ity, which is critical in many domains.

We summarize these desiderata in Table 1 and show
that our method, Spline Prediction Intervals via
Conformal Estimation (SPICE), achieves a uniquely
strong combination of them.

Overall, we highlight the following contributions:

• We introduce a new and effective conformal re-
gression method (SPICE), with two conformal
score variants that can be efficiently computed on
GPU, and release the code1.

• SPICE prediction sets with the negative condi-
tional density conformal score (SPICE-ND) have
oracle-optimal marginal size.

• SPICE prediction sets with the HPD conformal
score (SPICE-HPD) have asymptotically optimal
conditional size.

• We prove that SPICE can uniformly approximate
any continuous conditional density function and
that it can express any finite union of prediction
intervals (Section 2.2.3, 2.3.3).

• SPICE-ND models consistently achieve the small-
est prediction sets compared to all baselines on
standard conformal regression benchmarks.

• SPICE-HPD models achieve the best conditional
coverage results compared to the baseline models.

1https://github.com/ndiamant/spice

2 Spline Prediction Intervals via
Conformal Estimation (SPICE)

2.1 Overview

SPICE uses a neural network to build a spline esti-
mate of the conditional density f(Y | X). The con-
ditional density estimate can then be used in either
of two conformal scores to build prediction sets with
different properties. Overall, SPICE consists of three
main components:

1. A flexible neural network encoder which converts
inputs into embeddings. This is standard across
neural conformal-regression methods and enables
regression on any modality a neural network can
take as input.

2. A spline module which converts embeddings into
conditional density functions (Section 2.2). This
is the central innovation of SPICE. Low-order-
splines as density functions enable efficient and
closed-form computation of conformal scores pre-
diction sets, while maintaining expressiveness.

3. One of two conformal scores (Section 2.3). One
score results in optimal marginal size (Sec-
tion 2.3.1), while the other satisfies optimal con-
ditional size (Section 2.3.2). Both allow for ex-
pressive and flexible prediction sets.

See Figure 1 for a visual overview of SPICE.

2.2 Conditional Density Estimation

SPICE estimates the conditional density as fourth-
degree-and-below polynomial splines, enabling inte-
gration and root-finding in closed form. The degree
of a spline is the order of its polynomials, e.g. degree
n = 2 for quadratic polynomials. For this work, we
used first and second-degree splines, although the same
approach can be applied to third and fourth-order
polynomials, as they also have closed-form solutions.
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We make the assumption that Y has support only on
a finite interval, and in practice we zero-one normalize
the data so that 0 ≤ y < 1. We note that we could map
unbounded Y to zero-one using a function such as the
sigmoid as noted by Barron and Sheu (1991), although
the asymptotic interval size results would only apply
with respect to the non-linearly transformed space.
For generality and expressivity, SPICE differentiably
maps covariates x to a spline in two stages. First,
an encoder neural network NNθe(x) = z encodes x.
Next, two neural network modules map z to K sorted
spline-knot positions and n(K − 1) + 1 knot heights,
where n is the polynomial order. The differentiable
parameterization of positions and heights is detailed
in Appendix B.1.
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Figure 2: Zero-truncated Lagrange polynomials inter-
polating two (left) and three (right) points.

In this spline parameterization, there is a polyno-
mial between every pair of consecutive knot positions
(ti, ti+1). The positions and heights are used to con-
struct n + 1 points to uniquely specify each polyno-
mial. We index the heights used to specify the i-th
polynomial as hj

i , where j ranges in (1, . . . , n + 1).
Note that some heights are redundantly indexed; i.e.
hn+1
i = h1

i+1. In addition to the knots, we need n− 1
evenly2 spaced intermediate positions between ti and
ti+1 (Equation 4):

τ ji = ti + (j − 1) · (ti+1 − ti)

n
, where j = 1, . . . , n+ 1.

(4)
Using the positions and heights, we derive the unique
order-n Lagrange polynomial, pi(y), that interpolates
{(τ ji , h

j
i )}

n+1
j=1 . We constrain h1

i and hn+1
i to be posi-

tive, but let all other hj
i be any real number to max-

imize expressiveness. In order to ensure pi(y) > 0,
a requirement to build a density function, we define
p̄i(y) = max (pi(y), 0). Figure 2 illustrates examples
for degrees one and two.

2For degrees three and four, Chebyshev points would
likely be more effective (Trefethen, 2019).

2.2.1 Normalizing the Conditional Density

So far, we have shown how SPICE builds a non-
negative spline from x. In order for the spline to be a
valid density function, it needs to be normalized such
that its integral evaluates to one. The normalizing
constant is simply the sum of the integrals of the zero-
truncated polynomials. The normalizing constant can
be efficiently computed on GPU in O(Kn) time by
integrating each polynomial pi(y) between its bounds
and then subtracting the integrals between the poly-
nomials’ roots (Appendix B.2). The final normalized
conditional density estimate is:

f̂θ(y | x) = p̄ℓ(y) /

K−1∑
i=1

∫ ti+1

ti

p̄i(y
′)dy′, (5)

where ℓ is selected such that tℓ ≤ y < tℓ+1. Note
that ℓ can be found in O(logK) time using binary
search, since the knot positions are sorted, resulting
in an overall complexity in O(Kn) for evaluating the
estimated conditional density.

2.2.2 Training the Conditional Density
Estimator

f̂θ(y | x) is differentiably parameterized with respect
to the encoder, knot position, and knot height parame-
ters ({θe, θt, θh}). Therefore, SPICE can be trained us-
ing standard batch gradient descent methods to maxi-
mize the log-likelihood of the observed (x, y) ∈ Dtrain.

2.2.3 Universal Approximation Theorem for
Neural Splines

Both splines and neural networks are known to be very
expressive, so it is not surprising that combining them
results in a flexible function class. Without loss of
generality to other intervals, we present the following
universal approximation result on the unit cube.

Theorem 1. Let I denote the unit interval [0, 1]. Sup-
pose for integer d > 1 that f : (Id−1 × I) → R ≥ 0
is continuous. Then for any ϵ > 0, there exists a
SPICE model without the unit-integral-normalization
step, which we denote f̂(x, y) : (Id−1× I) → R ≥ 0, for

which sup(x,y)∈Id |f(x, y)− f̂(x, y)| < ϵ.

Proof of Theorem 1 is provided in Appendix A.1.

Remark 1. Theorem 1 may be extensible to non-
continuous functions using recent results for approx-
imating discontinuous functions (Ismailov, 2023).

Corollary 1. Unit-integral-normalized SPICE can
approximate any continuous conditional density func-
tion f on [0, 1]d.

Proof of Corollary 1 is provided in Appendix A.2.
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2.3 Conformalizing SPICE

SPICE builds prediction intervals using either of two
conformal scores: Sf̂ (x, y) = −f̂θ(y | x) (Sec-

tion 2.3.1) or the Highest Predictive Density (HPD)
score, SHPD(x, y), defined in Izbicki et al. (2022) (Sec-
tion 2.3.2). We refer to SPICE with the negative den-
sity score as SPICE-ND, and SPICE with the HPD-
score as SPICE-HPD.

2.3.1 Negative Density Conformal Score

SPICE can use the negative estimated density of y,
i.e. Sf̂ (x, y) = −f̂θ(y | x), as an efficient and effective
conformal score. As noted before, SPICE can compute
the conditional density at y in O(Kn) time, which is
much faster than the forward pass of the neural net-
work encoder for practical values of K. A cutoff q̂
with which to build prediction sets is found using the
conformal scores computed on the calibration set as
described in Section 1.1.1.

Given q̂, the prediction set CND(x) consists of all the

values y such that f̂θ(y | x) > −q̂, following the
conformal procedure described in Section 1.1.2. Fig-
ure 3 shows prediction sets for first and second-degree
SPICE-ND. The prediction set CND(x) can be com-
puted in O(Kn) time since all it requires is finding
the roots of low-order polynomials (Appendix B.3).

SPICE-ND achieves oracle-optimal marginal size due
to the argument of Sadinle et al. (2019, §2.1) as a corol-
lary of the Neyman–Pearson lemma. Under an argu-
ment similar to that of Izbicki et al. (2022), this could
likely be extended into asymptotic optimality under
consistency assumptions. However, we believe oracle-
optimality is sufficient to justify the design choice of
the negative density score. Indeed, we empirically
found the negative density score yielded the small-
est average prediction set sizes (Section 4.2). Inter-
estingly, in a mixed frequentist-Bayesian setting and
under some technical assumptions, using the negative-
posterior-predictive-density of y | x as the conformal
score minimizes the Bayes-risk while preserving fre-
quentist marginal coverage (Hoff, 2023).

2.3.2 HPD Conformal Score

Under the assumptions outlined for Izbicki et al. (2022,
Theorem 25), which include the consistency of the
conditional density estimator, the HPD-score results
in asymptotically optimal conditional prediction set
sizes, which is a stronger property than oracle-optimal
conditional coverage. The HPD-score is defined as the
negative3 integral of the estimated conditional density

3For notational consistency we swapped the sign of the
HPD-score from its original presentation.
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y

̂ f θ
(y

∣x
)

Degree n= 1

t0 t1 t2 t3 t4 t5 t6t7 t8 t9 t10
y

̂ f θ
(y

∣x
)

Degree n= 2

Figure 3: Examples of CND(x) for first (left) and sec-
ond degree (right) SPICE-ND. The horizontal dashed
line is −q̂, and the filled-in regions show the intervals
of y in CND(x).

where the density is less than the density of y:

SHPD(x, y) = −
∫
y′ : f̂θ(y′|x)≤f̂θ(y|x)

f̂θ(y
′ | x)dy′. (6)

The HPD-score indicates a higher model error when y
has lower density compared to other potential values
of y. Notably, SPICE can compute the HPD-score in
O(Kn) using the efficient root finding and integration
properties of low-order polynomials.

In order to build prediction sets, a cutoff q̂ is found
using the split-conformal procedure described in Sec-
tions 1.1.1 resulting in the following prediction sets:

CHPD(x) =

{
y :

∫
y′ : f̂θ(y′|x)≤f̂θ(y|x)

f̂θ(y
′ | x)dy′ > −q̂

}
.

(7)
Computing an HPD prediction set for SPICE is more
involved than for the negative density score, and is
done approximately to arbitrary precision using the
bisection method (Appendix B.4). This procedure has
an asymptotic runtime inO

(
Kn log2

1
ϵ

)
, where ϵ is the

desired precision. In practice, we only need to run the
bisection method for 24 steps to have higher precision
than 32-bit floats, and all the computations can be
done on GPU.

2.3.3 Prediction Sets Expressible by SPICE

Here, we examine which prediction sets SPICE is ca-
pable of expressing. It is clear that given control of the
conformal cutoff q̂ and enough knots, SPICE could ex-
press any finite union of intervals in [0, 1]. However,
unique to SPICE is its flexibility to build any pre-
diction set even without control of q̂. For example,
PCP (Wang et al., 2023) can express up to as many
intervals as samples are taken from its conditional gen-
erative model (Section 3), but the smallest any of those
intervals can be is 2q̂. That extra flexibility may par-
tially explain the empirical reduction in interval sizes
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achieved by SPICE (Section 4.2). We formalize this
flexibility in the following theorem.

Theorem 2. Let P =
⋃m

i=1[ai, bi] ⊆ [0, 1] where ai <
bi < ai+1 and 1 ≤ m ≤ M for some natural numbers m
and M . Then the following are true with K = 4M+2:

1. Given any q̂ : 0 < −q̂ · |P| < 1 there ex-
ists a SPICE-ND model with K knots such that
CND(x) = P for some arbitrary x.

2. Given any 0 < −q̂ < 1 there exists a SPICE-HPD
model with K knots such that CHPD(x) = P for
some arbitrary x.

See Appendix A.3 for a proof. Theorem 2 shows that
SPICE can express any union of intervals with a num-
ber of knots linear in the number of intervals given any
conformal cutoff.

3 RELATED WORK

Durkan et al. (2019) introduced a monotonically in-
creasing cubic spline, which served as an invertible
layer in the context of normalizing flows. This was
part of the inspiration for the spline conditional den-
sity function, and we leveraged their technique for dif-
ferentiably parameterized spline bin-widths.

Conformalized Quantile Regression (CQR) (Romano
et al., 2019) has become one of the most common con-
formal regression methods. CQR uses the pinball-loss
(Steinwart and Christmann, 2011) to train a neural
network to estimate the α and 1−α quantiles of Y | x,
where α is a tunable hyperparameter. The conformal
procedure results in an offset q̂ which leads to predic-
tion set C(x) = [f̂α(x) − q̂, f̂1−α(x) + q̂]. Asymptoti-
cally, CQR does have conditional coverage, but does
not always find the minimal prediction interval (Sesia
and Romano, 2021).

Conditional Histogram Regression (CHR) (Sesia and
Romano, 2021) can be seen as a more flexible exten-
sion of CQR with the additional goal of finding the sin-
gle minimal prediction interval with asymptotic condi-
tional coverage. Rather than estimating just two quan-
tiles, CHR estimates many (up to 1,000 in their exper-
iments). The CHR conformal score involves building
a series of nested intervals, each being a subset or su-
perset of an initial interval following the nested sets
paradigm (Gupta et al., 2022). Each interval is de-
signed to be the minimal interval that is predicted to
contain a target probability mass, and that satisfies
nesting with the initial interval. The conformal score
is the index of the nested interval that contains the
true y. Assuming that the conditional distribution
is unimodal and that the quantile prediction model

is consistent, CHR asymptotically finds the smallest
possible interval and achieves conditional coverage.

Probabilistic Conformal Regression (PCP) (Wang
et al., 2023) is a method to adapt any conditional
generative model to conformal regression. The PCP
conformal score is calculated by sampling from the es-
timated conditional distribution (usually around 50
samples), and then finding the minimum Euclidean
distance between y and any of the samples. The pre-
diction set is then defined as the union of balls around
samples from the target distribution, with the ball ra-
dius equal to the quantile computed from the calibra-
tion set. PCP thus enables disjoint prediction inter-
vals, and therefore tends to find smaller prediction sets
than CHR or CQR. However, PCP does not provide
guarantees for asymptotic conditional coverage. Addi-
tionally, both conformal scores and predicted intervals
rely on sampled points, making the estimation stochas-
tic. In the following, we use the strongest PCP variant
shown by Wang et al. (2023), HPD-PCP-MixD, which
uses a Gaussian mixture for the conditional distribu-
tion and rejects the bottom 20% least likely samples
from the score and prediction set calculations.

Distributional Conformal Prediction (DCP) intro-
duced by Chernozhukov et al. (2021) is a conformal
regression method which uses an estimated condi-
tional cumulative distribution and has similar asymp-
totic results to CHR. In experiments, Sesia and Ro-
mano (2021) found CHR outperformed DCP, so we
did not include DCP as a baseline. Dist-split and
CD-split (Izbicki et al., 2020) are two conformal re-
gression methods that work with conditional density
estimators. These methods were built on by Izbicki
et al. (2022) to design the HPD conformal score, which
we leverage with SPICE-HPD to gain optimal condi-
tional size. The HPD-score (Izbicki et al., 2022) was
tested with the FlexCode conditional density estima-
tor (Izbicki and Lee, 2017), which requires many hy-
perparameters to tune, and was not designed for neu-
ral network density estimation, so we did not include
it as a baseline. Both Dist-split and CD-split were out-
performed by PCP in Wang et al. (2023), so we also
did not include them as baselines and used PCP as a
stronger baseline.

4 EXPERIMENTS

We evaluated SPICE-ND, SPICE-HPD, and the base-
line models on eight datasets commonly used for con-
formal regression benchmarking (dataset details in Ap-
pendix C.3). Each model had approximately the same
number of parameters and the same encoder archi-
tecture to ensure differences in performance were not
caused by architecture. Hyperparameters were se-
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Table 2: Normalized marginal size results on benchmark datasets. The nominal coverage was set to 90%. Bold
indicates the best mean; underline indicates the second best. mean is the average size across all datasets.

MODEL bike bio blog meps19 meps20 meps21 star temp. mean

CQR 1.00± 0.01 0.99± 0.00 0.20± 0.01 0.98± 0.02 0.91± 0.02 0.87± 0.02 0.89± 0.01 0.89± 0.01 0.84± 0.09
CHR 0.89± 0.01 0.98± 0.00 0.14± 0.01 0.74± 0.01 0.70± 0.01 0.66± 0.01 0.91± 0.01 0.89± 0.01 0.74± 0.09
PCP 0.23± 0.00 0.59± 0.00 0.16± 0.01 0.81± 0.01 0.82± 0.02 0.79± 0.02 0.89± 0.01 0.28± 0.00 0.57± 0.11
Hist. 0.26± 0.00 0.53± 0.00 0.38± 0.00 0.66± 0.03 0.59± 0.07 0.77± 0.01 0.94± 0.01 0.31± 0.01 0.56± 0.08
SPICE-ND (n = 1) 0.20± 0.00 0.59± 0.02 0.09± 0.00 0.57± 0.01 0.55± 0.01 0.52± 0.01 0.90± 0.01 0.27± 0.00 0.46± 0.09
SPICE-HPD (n = 1) 0.24± 0.00 0.62± 0.02 0.15± 0.01 0.87± 0.01 0.82± 0.01 0.87± 0.02 0.93± 0.01 0.29± 0.00 0.60± 0.11
SPICE-ND (n = 2) 0.22± 0.00 0.55± 0.01 0.10± 0.00 0.32± 0.04 0.35± 0.03 0.37± 0.03 0.83± 0.01 0.28± 0.00 0.38± 0.08
SPICE-HPD (n = 2) 0.23± 0.00 0.58± 0.01 0.19± 0.01 0.45± 0.04 1.11± 0.20 0.64± 0.14 0.84± 0.01 0.28± 0.01 0.54± 0.11

Table 3: Approximate label-conditional coverage results on benchmark datasets at 90% nominal coverage. Bold
indicates the best mean; underline indicates the second best. mean is the average across all datasets.

MODEL bike bio blog meps19 meps20 meps21 star temp. mean

CQR 0.47± 0.01 0.52± 0.00 0.06± 0.01 0.52± 0.00 0.43± 0.01 0.41± 0.01 0.76± 0.01 0.69± 0.01 0.48± 0.07
CHR 0.47± 0.01 0.53± 0.00 0.08± 0.01 0.53± 0.00 0.46± 0.01 0.43± 0.01 0.73± 0.01 0.67± 0.01 0.49± 0.07
PCP 0.80± 0.01 0.84± 0.00 0.37± 0.01 0.53± 0.01 0.51± 0.01 0.50± 0.01 0.81± 0.01 0.87± 0.01 0.65± 0.07
Hist. 0.75± 0.01 0.85± 0.00 0.02± 0.00 0.01± 0.01 0.00± 0.00 0.03± 0.01 0.81± 0.03 0.86± 0.00 0.42± 0.15
SPICE-ND (n = 1) 0.83± 0.01 0.83± 0.01 0.24± 0.01 0.52± 0.01 0.50± 0.01 0.47± 0.01 0.81± 0.01 0.87± 0.00 0.63± 0.08
SPICE-HPD (n = 1) 0.86± 0.00 0.83± 0.01 0.25± 0.01 0.61± 0.00 0.60± 0.01 0.61± 0.01 0.83± 0.01 0.87± 0.00 0.68± 0.07
SPICE-ND (n = 2) 0.80± 0.01 0.84± 0.01 0.21± 0.01 0.56± 0.01 0.53± 0.01 0.49± 0.01 0.76± 0.01 0.87± 0.00 0.63± 0.08
SPICE-HPD (n = 2) 0.85± 0.01 0.84± 0.01 0.42± 0.01 0.57± 0.02 0.59± 0.02 0.54± 0.02 0.77± 0.01 0.86± 0.01 0.68± 0.06

lected using grid search, with the same number of
hyperparameter combinations searched over for each
method. Further optimization details are in Ap-
pendix C.5. Results were computed on a heldout test
dataset using 20 replicates with different random ini-
tializations and train-validation splits for each model
(data split details in Appendix C.4).

4.1 Discretized y Baseline

We also introduce a simple baseline for conformal re-
gression by discretizing the domain of y into equally
sized bins, and using a conformal technique commonly
used in the classification setting. Specifically, we used
the negative model-predicted probability of the dis-
cretized y as the conformal score, which is the optimal
choice in terms of expected prediction set size for an
oracle classifier (Sadinle et al., 2019). To the best of
our knowledge, other studies on conformal regression
have not incorporated this baseline, although a simi-
lar approach has been used in other contexts for condi-
tional density estimation (Chen et al., 2022). Given its
simplicity, properties, and adequate performance, we
believe that including it should become common prac-
tice in future works. This model is denoted as Hist. in
the following results. Details are in Appendix C.7.

4.2 Marginal Size Results

All models achieved their marginal coverage targets as
expected, so we compared the average interval sizes

on heldout data. We normalized the size measure-
ment to the size achieved by a marginal histogram of
the training y in order to make sizes more comparable
across datasets (Appendix C.8). As shown in Table 2,
SPICE-ND with n = 1, 2 consistently resulted in the
smallest interval sizes. SPICE-HPD performed worse
in terms of average interval size, but was competitive
with the baseline methods. Of the baseline methods,
PCP and our histogram baseline were the most perfor-
mant. Overall, SPICE-ND (n = 2) had the smallest
intervals, perhaps due to the increased flexibility of
quadratic versus linear interpolation.

4.3 Conditional Coverage Results

Conditional coverage is the coverage of a prediction
set for a specific set of covariates, x. It is inaccessible
except for synthetic data, so it can only be approxi-
mated for real data. Following the recommendation
of Angelopoulos and Bates (2022), we measured label-
conditional coverage as our conditional coverage met-
ric (details in Appendix C.9). For completeness, we
also computed the worst-slab coverage (WSC) (Cau-
chois et al., 2021; Romano et al., 2020) to approximate
conditional coverage (Appendix D.1).

As shown in Table 3, SPICE-HPD with n = 1 and
n = 2 had the best and second best conditional cov-
erage respectively on average across all datasets. In
six out of eight datasets, SPICE-HPD outperformed
SPICE-ND and otherwise had close to the same con-
ditional coverage, reflecting the benefit of the optimal



SPICE: Conformalized Deep Splines

Figure 4: Example prediction sets for SPICE-ND and two baselines on a synthetic data sample.

conditional size property.

Figure 5: Kernel-density plots of the sizes of predictive
sets for each model on the BIKE dataset.

4.4 Analysis of Interval Sizes

In order to understand the smaller predictive set sizes
of SPICE, we analyzed the distributions of the set
sizes for each model on the BIKE dataset (Figure 5).
The CQR and CHR set sizes were relatively invari-
ant across test samples compared to the methods with
more flexible prediction sets. PCP had much more
varied sizes, potentially reflecting the stochasticity of
its predictive set construction procedure. PCP was
also less likely to express the smallest intervals, which
may be due to the restriction of the smallest possible
interval size it can express (Section 2.3.3).

These differences were supported by results on syn-
thetic data with heteroscedastic bimodal conditional
distributions (described in Appendix C.10). We show
example prediction sets in Figure 4. We found that
CHR and CQR were forced to cover low-density re-
gions due to their single-interval prediction set con-
straint. PCP prediction intervals captured the bi-
modality, but also covered some low predictive density
regions. This is due to the q̂ radius around condi-
tional samples extending outside of the high-density
regions. In contrast, the SPICE-ND prediction sets
covered only high-density regions.

5 DISCUSSION

SPICE-ND consistently achieved the smallest av-
erage prediction set sizes across experiments, and
SPICE-HPD the best conditional coverage results, re-
flecting their marginal and conditional size design
goals. Nonetheless, SPICE-ND also performed well
in terms of conditional coverage. This suggests that
SPICE-ND may be a suitable general-purpose choice
when marginal coverage is key and conditional cover-
age is not critical, due to its computational efficiency
(Table 1). Degree-two spline SPICE models resulted in
smaller interval sizes and comparable conditional cov-
erage results. The flexibility of quadratic compared to
linear functions may explain this result, and suggests
cubic splines could be a valuable avenue for future ex-
ploration.

The strong performance of Hist., the discrete classi-
fier baseline (Section 4.1), highlights the importance
of incorporating competitive baselines when evaluat-
ing new conformal methods, and should be considered
in future conformal regression studies.

A limitation of SPICE is its inability to directly han-
dle multi-target regression problems. An interesting
area of future work is extending SPICE to the multi-
target case, perhaps by modeling the joint density. For
multi-target problems, we currently recommend PCP,
despite its lack of optimality results, because of its flex-
ibility of choice in conditional generative models and
simple prediction set computation.

6 CONCLUSION

We introduced SPICE, which provides an expressive,
efficient, and practical method for uncertainty estima-
tion in scalar regression problems. SPICE achieves
a unique combination of advantages and consistently
outperforms existing methods, resulting in sharper
predictive sets and improved conditional coverage.
The effectiveness of SPICE highlights the benefits
of co-designing the regression model and conformal
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scores. The code release will support adoption in ap-
plications such as medicine and drug discovery, where
reliable uncertainty estimation is critical. An impor-
tant direction for future work is applying SPICE to
selection problems, such as portfolio optimization and
experimental design (Jin and Candès, 2023; Stanton
et al., 2023). Among many potential application ar-
eas, survival analysis (Wang et al., 2019) represents a
promising use case of SPICE, as conditional coverage
is particularly valuable in this setting, and efficient
evaluation of the conditional CDF could enable sur-
vival predictions with statistical coverage guarantees.
Finally, a promising research direction involves the ad-
dition of SPICE uncertainty quantification to founda-
tional models, which are becoming a critical tool across
many fields, including biology and drug discovery (He-
imberg et al., 2023; Theodoris et al., 2023). Improved
uncertainty estimation could enhance their reliability
and applicability, ultimately improving their effective-
ness in discovery problems.
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Shannon Turley, Héctor Corrada Bravo, Josh
Kaminker, Jason A. Vander Heiden, and Aviv
Regev. Scalable querying of human cell atlases via
a foundational model reveals commonalities across
fibrosis-associated macrophages. bioRxiv, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error lin-
ear units (GELUs). arXiv, 2016. arXiv:1606.08415.

Peter Hoff. Bayes-optimal prediction with frequentist
coverage control. Bernoulli, 29(2):901–928, 2023.

Kurt Hornik. Approximation capabilities of multilayer
feedforward networks. Neural Networks, 4(2):251–
257, 1991.

Vugar E. Ismailov. A three layer neural network
can represent any multivariate function. Journal
of Mathematical Analysis and Applications, 523(1):
127096, 2023.



SPICE: Conformalized Deep Splines

Rafael Izbicki and Ann B. Lee. Converting high-
dimensional regression to high-dimensional condi-
tional density estimation. Electronic Journal of
Statistics, 11(2):2800–2831, 2017.

Rafael Izbicki, Gilson Shimizu, and Rafael Stern. Flex-
ible distribution-free conditional predictive bands
using density estimators. In Proceedings of the
Twenty Third International Conference on Artificial
Intelligence and Statistics, pages 3068–3077. PMLR,
2020.

Rafael Izbicki, Gilson Shimizu, and Rafael B. Stern.
CD-split and HPD-split: Efficient Conformal Re-
gions in High Dimensions. Journal of Machine
Learning Research, 23(87):1–32, 2022.

Ying Jin and Emmanuel J Candès. Selection by pre-
diction with conformal p-values. Journal of Machine
Learning Research, 24(244):1–41, 2023.

Jing Lei and Larry Wasserman. Distribution-free pre-
diction bands for non-parametric regression. Journal
of the Royal Statistical Society Series B: Statistical
Methodology, 76(1):71–96, 2014.

Jing Lei, Alessandro Rinaldo, and Larry Wasserman.
A conformal prediction approach to explore func-
tional data. Annals of Mathematics and Artificial
Intelligence, 74(1):29–43, 2015.

Ilya Loshchilov and Frank Hutter. SGDR: Stochas-
tic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations,
2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference
on Learning Representations, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:
2825–2830, 2011.

M. J. D. Powell. Approximation Theory and Methods,
chapter 20-21. Cambridge University Press, 1981.

Prashant Rana. Physicochemical Properties
of Protein Tertiary Structure. UCI Ma-
chine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C5QW3H.

Yaniv Romano, Evan Patterson, and Emmanuel Can-
des. Conformalized Quantile Regression. In Ad-
vances in Neural Information Processing Systems,
volume 32, 2019.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes.
Classification with valid and adaptive coverage. Ad-

vances in Neural Information Processing Systems,
33:3581–3591, 2020.

Mauricio Sadinle, Jing Lei, and Larry Wasserman.
Least ambiguous set-valued classifiers with bounded
error levels. Journal of the American Statistical As-
sociation, 114(525):223–234, 2019.

Gabriele Scalia, Colin A. Grambow, Barbara Per-
nici, Yi-Pei Li, and William H. Green. Evaluat-
ing Scalable Uncertainty Estimation Methods for
Deep Learning-Based Molecular Property Predic-
tion. Journal of Chemical Information and Mod-
eling, 60(6):2697–2717, 2020.

Matteo Sesia and Yaniv Romano. Conformal Predic-
tion using Conditional Histograms. In Advances in
Neural Information Processing Systems, volume 34,
pages 6304–6315, 2021.

Samuel Stanton, Wesley Maddox, and Andrew Gor-
don Wilson. Bayesian optimization with confor-
mal prediction sets. In Francisco Ruiz, Jennifer Dy,
and Jan-Willem van de Meent, editors, Proceedings
of The 26th International Conference on Artificial
Intelligence and Statistics, pages 959–986. PMLR,
2023.

Ingo Steinwart and Andreas Christmann. Estimating
conditional quantiles with the help of the pinball
loss. Bernoulli, 17(1):211–225, 2011.

Christina V Theodoris, Ling Xiao, Anant Chopra,
Mark D Chaffin, Zeina R Al Sayed, Matthew C
Hill, Helene Mantineo, Elizabeth M Brydon, Zexian
Zeng, X Shirley Liu, et al. Transfer learning enables
predictions in network biology. Nature, pages 1–9,
2023.

Lloyd N Trefethen. Approximation Theory and Ap-
proximation Practice, Extended Edition, chapter 2.
SIAM, 2019.

Vladimir Vovk, Alexander Gammerman, and Glenn
Shafer. Algorithmic learning in a random world, vol-
ume 29. Springer, 2005.

Ping Wang, Yan Li, and Chandan K Reddy. Machine
learning for survival analysis: A survey. ACM Com-
puting Surveys (CSUR), 51(6):1–36, 2019.

Zhendong Wang, Ruijiang Gao, Mingzhang Yin,
Mingyuan Zhou, and David Blei. Probabilistic
Conformal Prediction Using Conditional Random
Samples. In Proceedings of The 26th International
Conference on Artificial Intelligence and Statistics,
pages 8814–8836. PMLR, 2023.

Checklist

1. For all models and algorithms presented, check if
you include:
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(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]
When technical assumptions are necessary,
they are noted (e.g. continuity for Theo-
rem 1). The SPICE model and predictions
set computations are thoroughly described in
the main text and the supplement.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]
We included a zipped directory including all
the source code including python package re-
quirements and installation instructions as
supplementary material.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]
Proofs are provided in the supplement.

(c) Clear explanations of any assumptions. [Yes]
Assumptions are part of each proof.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]
All code to reproduce the results is at https:
//github.com/ndiamant/spice.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
These are described in Appendices C.6, C.5,
and C.4.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]
All errors were computed as the standard er-
ror of the mean over 20 random seeds.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]
All experiments were run on an internal clus-
ter of A100 NVIDIA GPUs.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]
Dataset sources are in Appendix C.3.

(b) The license information of the assets, if ap-
plicable. [Yes]
License information is included in Ap-
pendix C.3.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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A PROOFS

A.1 Proof of Universal Approximation Theorem

We reproduce Theorem 1 here for easy reference.

Theorem. Let I denote the unit interval [0, 1]. Suppose for integer d > 1 that f : (Id−1 × I) → R ≥ 0 is
continuous. Then for any ϵ > 0, there exists a SPICE model without the normalization to unit-integral step,
which we denote f̂(x, y) : (Id−1 × I) → R ≥ 0, for which sup(x,y)∈Id |f(x, y)− f̂(x, y)| < ϵ.

This theorem is general to single-hidden-layer neural network encoders for the spline-knot positions and heights.
It also holds for our specific parameterization of spline knots (Appendix B.1), since the softmax is a continuous,
surjective function onto (0, 1).

Proof. Let ϕ ∈ RK be a vector of spline parameters for natural number K and let s(ϕ, y) for y ∈ I be the
resulting spline function. Let S (x) : Id−1 → RK be a function mapping x to spline parameters such that for all
x ∈ Id−1

sup
y∈I

|f(x, y)− s(S (x), y)| < ϵ/3. (8)

We know S (x) exists for sufficiently large K by the fact that splines can uniformly approximate continuous
functions (Powell, 1981, Theorem 20.11).

Next, we define function E : (Id−1 × RK) → R ≥ 0 as

E(x, ϕ) = sup
y∈I

|s(S (x), y)− s(ϕ, y)|. (9)

Since splines are continuous in their knot positions and heights, the function E is also continuous in ϕ by the
continuity of compositions of continuous functions. Therefore, there exists a δ such that for all x ∈ Id−1 and
functions S ′(x) : Id−1 → RK such that ||S ′(x)− S (x)||∞ < δ we have that

E (x,S ′(x)) = sup
y∈I

|s (S (x), y)− s (S ′(x), y) | < ϵ/3. (10)

We now use a classic universal approximation theorem for neural networks to show that a neural network exists
that can be S ′(x). Hornik (1991) showed that a single-hidden-layer feed-forward neural network can uniformly
approximate any continuous function on a compact subset of R, such as Id−1. Therefore, there exists feed-forward
neural network N : Id−1 → RK such that

sup
x∈Id−1

||N (x)− S (x)||∞ < δ. (11)

Finally, by combining Equations 8 and 11, we have by the triangle inequality that

sup
(x,y)∈Id

|s(N (x), y)− f(x, y)| ≤ sup
(x,y)∈Id

|f(x, y)− s(S (x), y)|+ sup
(x,y)∈Id

|s(N (x), y)− s(S (x), y)|

≤ 2ϵ/3 < ϵ.

We have shown that a feed-forward network which outputs a spline can uniformly approximate any continuous
function on the hypercube. This completes the proof.
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A.2 Proof of Universal Approximation of Conditional Density Functions

We reproduce Corollary 1 here for convenience.

Corollary. Unit-integral-normalized SPICE can approximate any continuous conditional density function f on
[0, 1]d.

Proof. Let f̂ be an unnormalized approximation of f such that |f(x, y) − f̂(x, y)| < δ for some δ > 0. By

Theorem 1, we know such f̂ exists. For any x, we define normalized SPICE as:

f̃(x, y) =
f̂(x, y)∫ 1

0
f̂(x, y)dy

.

Note that the normalization constant is bounded on both sides: 1− δ <
∫ 1

0
f̂(x, y)dy < 1+ δ. Using this fact we

can bound the approximation error of f̃ .

sup
(x,y)∈Id

|f(x, y)− f̃(x, y)| ≤ max

{
sup

(x,y)∈Id

∣∣∣∣∣f(x, y)− f̂(x, y)

1− δ

∣∣∣∣∣ , sup
(x,y)∈Id

∣∣∣∣∣f(x, y)− f̂(x, y)

1 + δ

∣∣∣∣∣
}

≤ max

{
sup

(x,y)∈Id

∣∣∣∣f(x, y)− f(x, y) + δ

1− δ

∣∣∣∣ , sup
(x,y)∈Id

∣∣∣∣f(x, y)− f(x, y)− δ

1 + δ

∣∣∣∣
}
.

Let M be the maximum absolute value of f , which exists since f is continuous on a closed interval. Then by
setting δ < 1/2 and rearranging, we get:

sup
(x,y)∈Id

|f(x, y)− f̃(x, y)| ≤ max

{
δ2|M − 1|, δ 2

3
|M − 1|

}
.

By setting δ < min {ϵ/(2|M − 1|), 1/2} we attain our result.

A.3 Proof of SPICE Interval Expressiveness

Theorem. Let P =
⋃m

i=1[ai, bi] ⊆ [0, 1] where ai < bi < ai+1 and 1 ≤ m ≤ M for some natural numbers m and
M . Then the following are true with K = 4M + 2:

1. Given any q̂ : 0 < −q̂ · |P| < 1 there exists a SPICE-ND model with K knots such that CND(x) = P for
some arbitrary x.

2. Given any 0 < −q̂ < 1 there exists a SPICE-HPD model with K knots such that CHPD(x) = P for some
arbitrary x.

The proof of Theorem A.3 is a constructive proof and focuses on degree-one splines, since any higher degree
spline can express a lower degree one. The construction is not necessarily the most efficient way to build our
target prediction set in terms of number of knots, but it shows that any such prediction set can be constructed
with a linear number of knots. See Figure 6 for a visualization of the constructed prediction sets.

Proof. We begin by noting that, as a result of Theorem 1, SPICE can express any combination of knot positions
{ti}Ki=1 and knot heights {hi}Ki=1 such that f̂θ integrates to one. Therefore, we will show that there exists a

combination of knot parameters for any given q̂ that results in the goal prediction set P and that results in f̂θ
integrating to one.
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0
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∫ ̂fθ=1

Figure 6: Method for constructing an arbitrary union of intervals P as prediction sets by SPICE-ND and
SPICE-HPD.

The SPICE-ND case. For SPICE-ND, the prediction set is CND(x) = {y : f̂θ(y | x) > −q̂}. We start by
constructing the first interval [a1, b1] using three knots. For convenience, we will define c = −q̂. Set (t1, h1) =
(0, 0), (t2, h2) = (a1, 0), (t3, h3) = (a1, c + ϵ), and (t4, h4) = (b1, c + ϵ) for some c > ϵ > 0. Note that the

interval {f̂θ(y | x) > c : y ∈ [0, b1]} is exactly [a1, b1], and that
∫ b1
0

f̂θ(y | x)dy = (c + ϵ)(b1 − a1). This
exact same procedure is then repeated for each interval, defining {ti, hi} for i = 1, . . . , 4m. Finally, we add
(t4m, h4m) = (bm, 0) and (t4m+1, h4m+1) = (bm, 1). If we have more knots (i.e. m < M), we set them all to (1,

0) so they have no effect. We have now recreated P. What remains is setting ϵ so that
∫
f̂θ(y | x)dy = 1. Setting

ϵ = 1
|P| − c, the integral is:

∫ 1

0

f̂θ(y | x)dy =

m∑
i=1

(bi − ai)(c+ ϵ) = (c+ ϵ)|P| = 1, (12)

completing the SPICE-ND case.

The SPICE-HPD case. SPICE-HPD requires new knot parameters. Set (t1, h1) = (0, 0), (t2, h2) = (0, ai),
(t3, h3) = (a1, ϵ), and (t4, h4) = (b1, ϵ) for some 0 < ϵ. Continuing this way, we set (t4(i−1)+1, h4(i−1)+1) =
(t4i, 0), (t4(i−1)+2, h4(i−1)+2) = (ai, 0), (t4(i−1)+3, h4(i−1)+3) = (ai, ϵ), and (t4(i−1)+4, h4(i−1)+4) = (bi, 0) for all
i = 1, . . . ,m. If m < M , we set the remaining knots to (1, 0) so they have no effect. Recall that the prediction
set of SPICE-HPD is:

CHPD(x) =

{
y :

∫
y′ : f̂θ(y′|x)≤f̂θ(y|x)

f̂θ(y
′ | x)dy′ > c

}
, (13)

where c = −q̂. Since f̂θ = 0 for any region outside of P, we now no that CHPD(x) excludes all the regions

out side of P as desired. Note that
∫
f̂θ(y | x) = ϵ|(P )|. Setting ϵ = 1/|P| we satisfy the integration to one

constraint. It is now also true that for any y ∈ P, the integral
∫
y′∈P)

f̂θ(y
′ | x)dy′ = 1, since f̂θ(y | x) = ϵ for

all y ∈ P. That means P = CHPD(x) as desired.

B NEURAL SPLINES

B.1 Knot Parameterization

Throughout this section we will denote the encoding of x as NNθe(x) = z.
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B.1.1 Knot Positions

The knot position module maps z to a sorted vector {ti}Ki=1 where K is the number of knots. We used a modified
version of the code of Durkan et al. (2019) to ensure the knot positions were sorted and between zero and one.
For numerical reasons, that involved using a minimum distance between knots, ϵ. The first step constructs
unnormalized widths from z using a single linear layer. The unnormalized widths are then softmaxed to get
widths that sum to one to get widths vi. Next, non-zero widths wi are constructed as:

wi = ϵ+ (1− ϵ ∗K)vi. (14)

Widths are converted to positions by taking the cumulative sum, and then prepending zero. Finally, ϵ is added
to the last knot position so that it equals one.

SPICE (n = 2) requires one additional position parameter for each pair knot positions. That position parameter
is created by taking the midpoint between each consecutive pair of knot positions generated by the above
procedure.

B.1.2 SPICE (n = 1) Knot Heights

Unnormalized knot heights are produced using a single linear layer applied to z. The heights are then made
positive using the softplus function. Finally, the heights are normalized by dividing the spline defined by the
knot positions and heights by their integral (Appendix B.2).

B.1.3 SPICE (n = 2) Knot Heights

The knot heights for each non-midpoint position are the same as for (n = 1), the softplus of a linear layer
applied to z. The knot heights for the midpoint positions are generated without using an activation, so they
can be negative. Lagrange coefficients (ai, bi, ci) which interpolate between each pair of consecutive positions
and heights and the midpoint positions and heights, are computed. These define the polynomial aiy

2 + biy + c
on [ti, ti+1. After zero-truncation, these polynomials define a spline, which is then divided by its integral so it
integrates to one.

B.2 Spline Integration

B.2.1 Integrating SPICE (n = 1)

Integrating a piecewise linear function just requires summing together the area of a series of trapezoids. Each
trapezoid’s area is 1

2 (ti+1 − ti)(hi + hi+1).

B.2.2 Integrating SPICE (n = 2)

Between each consecutive knot positions, we have a zero truncated polynomial p̄i(y) = max[aiy
2 + biy + c, 0] on

[ti, ti+1]. The first step is to integrate the non-zero-truncated polynomial (ai/3y
3 + bi/2y

2 + ciy)

∣∣∣∣ti+1

ti

. The next

step is to compute the roots r1i < r2i (if they exist) using the quadratic formula. If they exist, they are clipped to
be in [ti, ti+1]. The same integral is then computed between the roots (which is necessarily negative) and then
subtracted from the non-zero-truncated integral.

B.3 Building Negative Density Prediction Sets

Given a conformal quantile q̂, the first step is to compute all the intersection positions of each polynomial
component f̂θ(y | x) and −q̂. The intersections are found by computing the roots of the polynomial pi(y) + q̂.
The roots are then clipped to be in [ti, ti+1].

In the (n = 1) case, whether the interval is inside or outside the clipped roots is determined by the slope of
polynomial. In the (n = 2) case, there are two possible cases to consider.

If the roots do not exist (are complex), then the interval is set to [ti, ti+1] if the vertex of the polynomial is above
zero (ci − b2i /(4a) > 0). Otherwise the interval is set to be empty.
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If the roots do exist, the sign of the vertex is used to determine whether the prediction interval is between
(positive vertex) or outside of the roots (negative vertex). In the outside roots case, we get two intervals, which
are [ti, r

1
i ] and [r2i , ti+1].

The intervals for each polynomial component are unioned to compute the prediction set CND(x).

B.4 Building HPD Prediction Sets

Given a conformal quantile q̂, the prediction set is computed using the bisection algorithm. A lower bound ℓ0 = 0
and u0 = supy f̂θ(y | x) are initialized. Next a midpoint mi = (ui + ℓi)/2 is computed. Next, the following
integral is computed:

Fi =

∫
{y : f̂θ(y|x)<mi}

f̂θ(y | x)dy. (15)

If Fi < −q̂, then ℓi+1 = mi and ui+1 = ui; otherwise ℓi+1 = ℓi and ui+1 = mi. This process is repeated 15 times
so that F15 ≈ −q̂. The HPD-prediction set is then {y : f̂θ(y | x) > F15}, which intervals can be computed the
same way as for SPICE-ND.

C EXPERIMENTAL DETAILS

C.1 Data Preprocessing

For each model, the training inputs (x) were preprocessed to have approximately zero mean and standard
deviation one using the population mean and standard deviation estimated from the train split.

For SPICE models, the targets, y, were processed to range approximately between zero and one using the
scikit-Learn (Pedregosa et al., 2011) min-max scaler fit to the train split ys.

For the baseline models, besides Hist., the ys were transformed to have approximately zero mean and standard
deviation one.

For Hist., ys were binned into discrete bins, with the number of bins being a hyperparameter. The bin boundaries
were evenly spaced between the minimum and maximum value of y.

C.2 Shared Neural Network Encoder

Every model had a two-layer fully-connected neural network with GeLU (Hendrycks and Gimpel, 2016) activa-
tions to encode x. The first layer mapped the input dimension to 32 hidden units. The second layer mapped 32
hidden units to 32 encoding units.

Each model used depth one linear layers following the encoding to predict quantiles / bin probabilities / distri-
bution parameters.

C.3 Benchmark Datasets

We give a brief description of each benchmark dataset and its source. See Romano et al. (2019) for more details
about these data.

• bike: UCI repository bike sharing data (Fanaee-T, 2013) (CC BY 4.0 license).

• BIO: UCI repository (Rana, 2013) protein property prediction dataset (CC BY 4.0 license).

• BLOG: UCI repository (Buza, 2014) blog feedback prediction dataset (CC BY 4.0 license).

• MEPS19-21: Medical expenditure panel survey datasets numbers 19 through 21 (Cohen et al., 2009) (Open
Database License).

• STAR: Student achievement dataset (Achilles et al., 2008) (CC0 1.0 License).

• TEMP.: Cho et al. (2020) introduced temperature forecasting data to compare machine learning models
for correcting numerical weather simulations (CC BY 4.0 license).



Nathaniel Diamant, Ehsan Hajiramezanali, Tommaso Biancalani, Gabriele Scalia

C.4 Data Splits

The data were randomly split into five buckets: train 50%, validation 10%, calibration 10%, calibration validation
10%, test 20%. The sample assignments within train / validation / calibration / validation calibration were
determined by random seed, while the test set was held constant across all experiments and was only used to
generate results after hyperoptimization.

C.5 Hyperparameter Optimization

Each model was hyperoptimized over a grid of five learning rates and four values of a capacity hyperparameter
for a total of 20 combinations. Each hyperparameter combination was evaluated on three different random seeds
for robustness.

Evaluation was done by conformal calibration on the calibration split and conformal prediction on the calibration
validation split. Hyperparameters were selected uniquely for each dataset and model to minimize the average
size at 90% nominal coverage averaged across all three seeds.

The hyperparameter grids were as follows:

1. CQR. Learning rate: [1e− 1, 5e− 2, 1e− 2, 5e− 3, 1e− 3]. Nominal quantile interval: [0.3, 0.5, 0.7, 0.9].

2. CHR. Learning rate: [1e− 1, 5e− 2, 1e− 2, 5e− 3, 1e− 3]. Number of quantiles: [50, 200, 350, 500].

3. PCP. Learning rate: [1e− 1, 5e− 2, 1e− 2, 5e− 3, 1e− 3]. Number of mixture components: [5, 10, 15, 20].

4. Hist. Learning rate: [1e− 1, 5e− 2, 1e− 2, 5e− 3, 1e− 3]. Number of bins: [11, 21, 31, 51].

5. SPICE (n = 1). Learning rate: [5e− 2, 1e− 2, 5e− 3, 1e− 3, 5e− 4]. Number of knots: [11, 21, 31, 51].

6. SPICE (n = 2). Learning rate: [1e− 2, 5e− 3, 1e− 3, 5e− 4, 1e− 4]. Number of knots: [11, 21, 31, 51].

C.6 Model Training

Models were trained using the AdamW (Loshchilov and Hutter, 2019) optimizer with weight decay 1e− 4 for a
maximum of 50,000 batches of size 512 stopping earlier if the validation loss did not improve after 125 passes
over the training data. The final model was selected based on its best validation loss, which was calculated every
100 batches or full pass over the training data, whichever was smaller. The validation loss was calculated on 10
batches or the full validation set, whichever was smaller. The learning rate was decayed according to the cosine
annealing schedule (Loshchilov and Hutter, 2017). The gradient was clipped to have max-norm of five.

C.7 Conditional Histogram Baseline

The Hist. model was trained as a classifier model on discretized y values (Appendix C.1) using the negative
log-likelihood loss. The architecture and hyperparameter optimization was shared with the other models. The
conformal score was the negative probability of the true class.

C.8 Prediction Set Size Normalization

The size normalization can be thought of as dividing by the prediction set size of an unconditional version of the
Hist. baseline. y was first discretized into 20 evenly spaced bins, then the probability of y being in each bin was
computed on the train split. This resulted in an unconditional “model” for predicting y | x. This model was then
conformalized using the calibration split with the negative-probability of y as the conformal score. The score
was then used to compute a constant prediction set for the test data. The size of that prediction set was the
normalization constant for that dataset. All prediction set sizes in the results were divided by the corresponding
normalization constant for the relevant dataset. This process is in the function called get baseline size in the
supplementary code.
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C.9 Label Conditional Coverage Approximation

Label conditional coverage was approximated by binning Y into five buckets. Coverage was computed on the
test set for each bucket. Label conditional size was reported as the worst coverage across all five buckets.

C.10 Synthetic Data Experiment

In order to generate the synthetic bimodal data, 2,000 x values were taken at even spacing between zero and
one. Noise was then sampled as

σ(x) = 0.1 + xU,

where U was random uniform on [0, 1] for each x. A random indicator was then sampled for each x with equal
probability as zero or one. If the indicator was one, y was set to σ. Otherwise y was set to −σ. Preprocessing
was done for each model the same way as for the benchmark data (Appendix C.1).

D ADDITIONAL RESULTS

D.1 Worst-slab Coverage (WSC)

WSC is an approximation of conditional coverage that involves an adversarial optimization problem to find the
minimum coverage over a slab in feature space. We used the implementation of Romano et al. (2020), but
found some unexpected results, such as WCS being greater than marginal coverage (PCP, STAR dataset). This
indicates a problem in the optimization procedure, which led us to prefer the simpler label-conditional coverage
approximation. The model ranks remain mostly the same for conditional coverage according to WSC, with
SPICE-HPD (n = 1) having the best conditional coverage and SPICE-HPD (n = 2) and PCP being second best.

Table 4: Worst-slab approximated conditional coverage results. The nominal coverage was set to 90%. Bold
indicates the best mean; underline indicates the second best. mean is the average size across all datasets.

MODEL bike bio blog meps19 meps20 meps21 star temp. mean

CQR 0.66± 0.01 0.67± 0.00 0.68± 0.00 0.67± 0.00 0.65± 0.00 0.54± 0.01 0.89± 0.01 0.61± 0.01 0.67± 0.03
CHR 0.66± 0.01 0.69± 0.00 0.69± 0.00 0.67± 0.00 0.66± 0.00 0.55± 0.00 0.88± 0.01 0.58± 0.01 0.67± 0.03
PCP 0.81± 0.01 0.87± 0.00 0.76± 0.00 0.80± 0.01 0.82± 0.01 0.78± 0.01 0.94± 0.01 0.90± 0.01 0.83± 0.02
Hist. 0.83± 0.01 0.89± 0.00 0.65± 0.01 0.75± 0.01 0.50± 0.06 0.59± 0.01 0.92± 0.01 0.89± 0.01 0.75± 0.06
SPICE-ND (n = 1) 0.83± 0.01 0.88± 0.00 0.69± 0.00 0.74± 0.01 0.77± 0.00 0.67± 0.01 0.89± 0.02 0.89± 0.01 0.79± 0.03
SPICE-HPD (n = 1) 0.85± 0.01 0.89± 0.00 0.76± 0.01 0.88± 0.01 0.90± 0.01 0.89± 0.01 0.88± 0.02 0.88± 0.01 0.87± 0.02
SPICE-ND (n = 2) 0.82± 0.01 0.88± 0.01 0.71± 0.00 0.73± 0.01 0.74± 0.01 0.63± 0.02 0.88± 0.01 0.90± 0.01 0.79± 0.03
SPICE-HPD (n = 2) 0.84± 0.01 0.88± 0.00 0.85± 0.00 0.78± 0.01 0.76± 0.02 0.73± 0.02 0.90± 0.01 0.88± 0.01 0.83± 0.02


