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Abstract

Generating calibrated and sharp neural net-
work predictive distributions for regression
problems is essential for optimal decision-
making in many real-world applications. To
address the miscalibration issue of neural net-
works, various methods have been proposed
to improve calibration, including post-hoc
methods that adjust predictions after train-
ing and regularization methods that act dur-
ing training. While post-hoc methods have
shown better improvement in calibration com-
pared to regularization methods, the post-hoc
step is completely independent of model train-
ing. We introduce a novel end-to-end model
training procedure called Quantile Recalibra-
tion Training, integrating post-hoc calibra-
tion directly into the training process with-
out additional parameters. We also present
a unified algorithm that includes our method
and other post-hoc and regularization meth-
ods, as particular cases. We demonstrate the
performance of our method in a large-scale
experiment involving 57 tabular regression
datasets, showcasing improved predictive ac-
curacy while maintaining calibration. We also
conduct an ablation study to evaluate the sig-
nificance of different components within our
proposed method, as well as an in-depth anal-
ysis of the impact of the base model and differ-
ent hyperparameters on predictive accuracy.
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1 INTRODUCTION

Critical decisions depend on the predictions made by
neural networks in many applications such as medical
diagnostics and autonomous driving (Begoli et al.,|2019;
Michelmore et al., [2018). To make decisions effectively,
it is often crucial to quantify predictive uncertainty ac-
curately (Gawlikowski et al., [2021; Abdar et al.,|2021).
Yet, neural networks might exhibit miscalibration (Guo
et al., |2017).

We focus on regression models that output a predictive
distribution. Central to our study, probabilistic calibra-
tionE] (Gueiting et al.,|2007) is an important property
that states that all quantiles must be calibrated. This
implies that the predicted 90% quantiles should exceed
90% of the corresponding realizations.

Several methods have been proposed to improve prob-
abilistic calibration and they can be divided into two
main categories. Post-hoc methods such as Quantile
Recalibration (Kuleshov et al., [2018) act after training
a base model and transform the predictions based on a
separate calibration dataset. Regularization methods
act during training and add a regularization term that
penalizes calibration (Chung et al.,|[2021)). Empirical
evidence suggests that post-hoc methods outperform
regularization methods in terms of calibration within
the context of regression (Dheur and Ben Taieb, |2023)).
This superiority has been attributed to the finite-sample
guarantee from which post-hoc methods benefit.

This paper introduces a novel method called Quan-
tile Recalibration Training that seamlessly integrates
post-hoc calibration into the training process, result-
ing in an end-to-end approach. Our method leverages
the concept of minimizing the sharpness of predictions
while ensuring calibration (Gneiting et al.,|2007)). By
minimizing the negative log-likelihood (NLL), our ap-
proach achieves the desired sharpness, while simultane-
ously ensuring calibration at each training step using a

Tn this paper, we refer to probabilistic calibration as
calibration to simplify terminology.
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dedicated calibration dataset. Recalibration Training
stands apart from other regularization methods by of-
fering improvements in both the NLL and calibration
of the final model. Our approach aligns with the recom-
mendation made by Wang et al. (2021)) to view model
training and post-hoc calibration as an integrated
framework rather than treating them as separate steps.
The code base, available at |https://github.com/
Vekteur/quantile-recalibration-training, has
been used for the implementation of all methods to
ensure a fair comparison.

We make the following main contributions:

1. We propose a novel training procedure to learn
predictive distributions that are probabilistically
calibrated at every training step, called Quantile
Recalibration Training (see Section . We also
propose an algorithm which unifies our Quantile
Recalibration Training with Quantile Recalibra-
tion, Quantile Regularization and standard NLL
minimization.

2. We demonstrate the effectiveness of our method
in a large-scale experiment based on 57 tabular
datasets. The results show improved NLL on the
test set while at the same time ensuring calibration

(see Section [f)).

3. We provide an in-depth analysis of the impact
of the base model and different hyperparameters
on predictive accuracy and calibration. We also
conduct an ablation study to evaluate the signifi-
cance of different components within our proposed
method (see Section [6]).

2 BACKGROUND ON
PROBABILISTIC CALIBRATION

We consider a univariate regression problem where a
target variable Y € ) depends on an input variable
X € X, where X is the input space and Y C R is the
target space. Our goal is to approximate the conditional
distribution Py-|x based on i.i.d. training data D =

{ (X5, Y5) }2’111 where (X;,Y;) ~ Pxy = Py x Px.

A probabilistic predictor, denoted as Fy : X — F is
defined by its parameters 6 from the parameter space
O. This function maps an input € X to a predictive
cumulative distribution function (CDF) Fp(- | z) in
the space F of distributions over R. This CDF has an
associated probability density function (PDF) given by

fo(- ).

Probabilistic calibration Given a possibly miscal-
ibrated CDF Fy, let Z = Fp(Y | X) € [0,1] denote

the probability integral transform (PIT) of Y condi-
tional on X and Fz(a) = Pr(Z < «) the corresponding
CDF. The model Fy is probabilistically calibrated (also
known as PIT-calibrated) if

Fz(a) =a VYae][0,1]. (1)

The CDF F is usually estimated from data us-
ing the empirical CDF, that we denote ®5MF (a) =
+ Zfil 1(Z; < «), where Z; = Fy(Y; | X;). We mea-
sure probabilitic calibration using the probabilistic cal-
ibration error (PCE), defined as

M
1
PCE(Fy) = 17> log = 2 ()]. ()
j=1

where 0 < a1 < --- < apr < 1 are equidistant quantile
levels. The number of levels M is fixed at 100 in the
paper. In essence, PCE computes the discrepancy
between the r.h.s and L.h.s. of for multiple values
of a.

Quantile recalibration Quantile Recalibration (QR,
Kuleshov et al., [2018) computes a probabilistically
calibrated CDF Fy = Fy o Fy, where Fy is estimated
from data. In fact, for each quantile level a € [0, 1], we
have:

Pr(Fy(Y | X) < a) = Pr(Fp(Y | X) < Fz () (3)

= Fz(Fy ' (o)) (4
=, (5)

~—

which shows that F} is calibrated.

Calibration map The estimator of Fy, called a
calibration map, can be the empirical CDF QDEMP com-
puted from the PITs Z] = Fy(Y/ | X]) of a separate

ii.d. calibration dataset D' = { (X;,Y/) };_;.

RRE

Since ®5MP is not differentiable, the resulting cali-

brated CDF F} is not differentiable either. Dheur and
Ben Taieb (2023) proposed to compute a differentiable
calibration map

N/
1 -
(I)EDE(O‘) = WZFLog(OC;Z;vbQN/ 2/5)7 (6)
=1

based on kernel density estimation (KDE). This corre-
sponds to a mixture of logistic CDFs F1,,; with means
Z},...,Z% and a variance b>N’~* following Scott’s
rule (Scott, [1979). The bandwidth b > 0 is a hyperpa-
rameter controlling the smoothness of the calibration
map. Note that <I>§<DE converges to <I>EMP as b — 0.

Furthermore, Dheur and Ben Taieb (2023) showed that
QR provides a finite-sample guarantee with a specific


https://github.com/Vekteur/quantile-recalibration-training
https://github.com/Vekteur/quantile-recalibration-training

Victor Dheur, Souhaib Ben Taieb

calibration map, namely:

Pr(@PP (Fy(Y | X)) < a) = % ~a, (7)

where ®DF () = ﬁ Zi\il 1(Z! < @) is a calibra-
tion map derived from Distributional Conformal Pre-
diction (Chernozhukov et al., 2021} Izbicki et al., 2020]).
This property is approximately obtained by other cali-
bration maps such as fI)gMP and <I>§<DE. We note that
the probability in is also taken over the calibration
dataset D'.

Quantile Regularization Recently, there has been
a surge of interest in regularization strategies for cal-
ibration based on differentiable objectives that are
optimized during training (see Section . Quantile
Regularization (QREG, Utpala and Rai, [2020) mini-
mizes a loss function of the form

N
_% > log fo(Y; | Xi) + ARqrec(6),  (8)

i=1

where the first term is the NLL and A > 0 is a regular-
ization hyperparameter. The regularization function
Raqrec(8) encourages calibration by minimizing the
KL divergence between Z and a uniformly distributed
random variable U. This reduces to maximizing the
differential entropy H(Z) of Z since Dky(Z | U) =
—H(Z).

Utpala and Rai, [2020| propose to estimate H(Z) using
sample-spacing entropy estimation (Vasicek, [1976]):

Rarec(8) 9)
| Nk Nl

= Z log {k(Z(iJrk) - Z)) (10)

~—H(Z), (11)

where k is a hyperparameter such that 1 < k < N
and Z(;) is the ith order statistics of Z1,...,Zn. To
ensure differentiability during optimization, the authors
employed a differentiable relaxation technique called
NeuralSort (Grover et al., [2019), as sorting is a non-
differentiable operation.

We note that this approach should be distinguished
from regularizers in classification (Pereyra et al., 2017)
that maximize the entropy of the target Y and not the
differential entropy of the PIT Z.

3 QUANTILE RECALIBRATION
TRAINING

We introduce Quantile Recalibration Training (QRT),
a novel method for training neural network regression

models. Predictive distributions are iteratively recali-
brated during model training and are hence calibrated
by design.

3.1 The QRT learning procedure

Recall that QR involves training Fy by minimizing
the NLL and then adjusting it by producing a revised
predictive distribution F) = ®5PE o Fy. Given that
the recalibration map ®5PF is differentiable, our QRT
procedure integrates it end-to-end into the optimization
procedure. Specifically, we directly minimize the NLL
of Fy which involves iteratively recalibrating it during
training. Using the chain rule, the NLL of F} can be
conveniently decomposed as follows:

SN —log f5(Yi | X,) (12)
=N —log fo(Y; | X;)—log f2(Fo(Y; | Xi)) (13)
= >N —log fo(Yi | Xi) + H(Z). (14)

The first term in is the NLL of the base model Fj
and H(Z) can be interpreted as the entropy of Z.

Interestingly, the second term H (Z) corresponds to
the opposite of the regularization term of QREG .
This observation could seem counter-intuitive since
it implies that, when training QRT, the PCE of Fjy
will be maximized by the second term H(Z) in the
decomposition. However, QRT is valid since it produces
Fy by minimizing the NLL of Fy, which is a strictly
proper scoring rule.

To compute the second term in ([13)), we estimate fz
using the derivative of the calibration map @gDE, which
has a closed-form expression given by

KDE () = 09575 () /90 (15)
1 N

=< > fros(as Zi, N7, (16)
i=1

where fiog is the PDF of a logistic distribution, as
described in Section 21

During training, ¢5PF is computed on the current

batch and Fj is thus, by design, calibrated on the cur-
rent batch. However, it does not satisfy the calibration
guarantee since the current batch has been seen dur-
ing training. Hence, as a final step, we perform QR on
a separate calibration dataset to obtain the calibration
guarantee. We give more details in Section [3.3]

Finally, to account for the finite domain [0, 1] of the PIT
Z, we perform a slight adjustment to the calibration
map ¢§(DE. The standard approach is to truncate the
distribution by redistributing the density that has been
estimated outside of [0, 1] uniformly in [0, 1]. Instead,
Blasiok and Nakkiran, |2023| propose to redistribute the
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Figure 1: Comparison of QRT and BASE according to different metrics computed on the validation dataset. The
three first columns show the decomposition of the NLL of QRT, where o = 1 for QRT and a = 0 for BASE. Each
row represents one dataset and each column one metric. The training curves are averaged over 5 runs and the
shaded area corresponds to one standard error. The vertical bars represent the epoch that was selected by early
stopping (the one that minimizes the validation NLL), averaged over the 5 runs. The horizontal bars represent
the value of the metric at the selected epoch, averaged over the 5 runs.

density slightly outside of [0, 1] near 0 and 1, assum-
ing that ¢5PE(z) = 0 for ¢ [~1,2]. The resulting
calibration map d)g‘EFL is defined as:

gy (x) = (17)
op " () + o P (—x) + g PP (2 —x)  ifw € [0,]]
0 if z ¢ [0,1].

This approach avoids an ill-defined calibration map
and often leads to improved NLL. More motivation and
details, including the definition of the corresponding
CDF ®REFL are given in Appendix @

3.2 [Illustrative example

Figure (1| illustrates the decomposition , where the
NLL of F} (first column) is equal to the sum of the NLL
of the base model Fy (second column) and the entropy
of the PIT (third column). To allow a comparison
between QRT and BASE, we alter the decomposition by
introducing a coefficient a to the second term. When
a = 1, we obtain the exact decomposition of QRT.
When a = 0, the first and second column are equal
and correspond to the loss of BASE. Metrics on this
figure are computed on the validation dataset and met-
rics computed on the training dataset are available
in Appendix [G] The vertical bars correspond to the
epoch selected by early stopping while the horizontal
bars correspond to the value of the metric at the epoch
selected by early stopping, on average over 5 runs. The
stars indicate the models QRC and QRTC, corresponding

to BASE and QRT, respectively, after QR on a separate
calibration dataset.

We can see that QRT achieves a lower validation NLL,
suggesting improved probabilistic predictions, even
though the NLL of Fy is higher, which means that
QRT relies on the calibration map to achieve a lower
NLL. We note that the calibration map does not intro-
duce any additional parameters. In terms of calibration,
we can see that the PCE of Base has a higher variance
across the epochs compared to QRT. The PCE of QRT
is more stable during training and often lower. By
constraining the model to be calibrated on a specific
dataset at each training step, QRT involves a form of
regularization which is fundamentally different from

QREG.

The stars indicate that, after the post-hoc step, QRTC
still benefits from improved NLL compared to QRC,
and the PCE is improved in both cases due to the
finite-sample guarantee provided by QR. These met-
rics reported on the 57 datasets that we consider in
Section [f] are available in Appendix [G] where we ob-
tain similar observations on most datasets despite their
heterogeneity.

3.3 A Unified Algorithm

Algorithm [If unifies QRT, QREG and BASE, with or
without QR, where the methods only differ by the hy-
perparameters o and C, as indicated in Table[I} The
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hyperparameter «, introduced in Section [3.2] is a coef-
ficient for the second term of the decomposition .
A value of o = 1 corresponds to QRT and o = 0 corre-
sponds to NLL minimization without QRT. Tuning the
hyperparameter « in order to minimize PCE(Fy) corre-
sponds to QREG with regularization strength A = —a.
The hyperparameter C controls whether the final model
is recalibrated on a separate calibration dataset using

QR.

Algorithm 1: QRT framework
Input : Predictive CDF Fjy, regularization strength
a € R, boolean C, training dataset D,
calibration dataset D’
foreach minibatch { (X;,Y5) }f;l C D, until early
stopping do
Compute Z; + Fp(Y; | X;), fori=1,...,B
Define d)g‘EFL from Zy,...,Zp using
L(0) =
—5 Yin log fo(Yi | Xi) + alog o™ (2:)
log f(Yi|X5)
Update parameters 6 using Vo L(6)
if C is True then
Compute Z « Fp(Y/ | X]), for i =1,...
Define ®FFFL from 77, ..., Zl’D,|
return the predictive CDF ®fFFL o F
else
return the predictive CDF Fjy

e

In Algorithm the calibration map Q%(DE is com-
puted at each step on the current batch, allowing QRT
to simultaneously use the neural network outputs to
compute the first term and the second term of the
decomposition . In Appendix |B| we investigate the
impact of computing the calibration map from data
sampled randomly in the training dataset, which allows
to compute the calibration map on a larger dataset.
We observe that the approach in Algorithm [I] provides
similar NLL than the approach in Appendix [B] while
being more computationally efficient. In Appendix [F]
we confirm that o = 1 provides the best NLL compared
to other values of «.

Table 1: Summary of the compared methods, which
differ only by the hyperparameters a and C' in Algo-
rithm [I} We recommend using QRTC.

Method \ BASE QRC QREG QREGC  QRT QRTC
a 0 0 Tuned Tuned 1 1
C False True False True False True

3.4 Time complexity

The proposed method can introduce increased computa-
tional demand due to evaluating log ¢5P=(Z;), which
results in O(B?) evaluations of froe per minibatch,
where B is the batch size (B = 512 in our experi-
ments). More precisely, 3B? evaluations of frog are
performed due to using the estimator ¢f='l (see Ap-
pendix@. This additional computational demand does
not depend on the size of the underlying neural net-
work and hence becomes less significant when training
highly computationally demanding models. In practice,
we observe the time per minibatch to be nearly two-
fold compared to a method without QR, as detailed in

Appendix [K]
4 RELATED WORK

Post-hoc calibration methods Many post-hoc cal-
ibration methods have been proposed for classification
problems (Kumar et al., [2019; Gupta et al., 2020).
The most popular one is called temperature scaling
(Guo et al., 2017) and has the useful property of pre-
serving accuracy. Conformal prediction, pioneered by
Vovk et al. (2005), is an attractive approach due to
the finite-sample coverage guarantee that it provides.
In regression, multiple approaches based on conformal
prediction have been proposed, including Conformal
Quantile Regression (Romano et al., 2019) and Distri-
butional Conformal Prediction (Chernozhukov et al.,
2021)). Quantile Recalibration (Kuleshov et al., |2018)
is another method which transforms predictive distri-
butions using a recalibration map, and has been shown
to be closely related to Distributional Conformal Pre-
diction (Dheur and Ben Taieb, 2023)). Finally, methods
have been proposed to target a stronger notion of cal-
ibration, called distribution calibration (Song et al.,
2019; Kuleshov and Deshpande, 2022).

Regularization methods Regularization-based cal-
ibration methods aim to improve calibration during
training, e.g. using ensembling (Lakshminarayanan,
Pritzel, et al., |2017), mixup (Zhang et al., [2018), la-
bel smoothing (Miiller et al., 2019), or penalizing high
confidence predictions (Pereyra et al., [2017)). Multiple
regularization objectives have been proposed in clas-
sification (A. Kumar et al., 2018; Karandikar et al.,
2021; Popordanoska et al., [2022; Yoon et al., 2023)
and regression (Pearce et al., 2018; Utpala and Rai,
2020; Chung et al., 2021; Dheur and Ben Taieb, [2023]).
While these methods allow to improve calibration, they
may negatively impact other accuracy metrics. In fact,
Karandikar et al. (2021) and Yoon et al. (2023) re-
ported selecting hyperparameters that minimize the
expected calibration error while decreasing the accu-
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Figure 2: Difference in test NLL between two post-hoc methods (QRTC and QRC) and BASE, where negative values
indicate an improvement compared to BASE, averaged over 5 runs with error bars corresponding to one standard
error. We observe that QRTC achieves a lower NLL than BASE and QRC on most datasets. Note that, for BASE, Fjy
is trained with a larger dataset that includes the calibration data of QRTC and QRC. The experimental setup is

described in Section |§|

racy by about 1%. Similarly, Dheur and Ben Taieb
selected the regularization factor A that min-
imizes the PCE with a maximum CRPS increase of
10%. In contrast to these methods, Recalibration Train-
ing did not impose such a trade-off in our large-scale
experiment and resulted in both improved NLL and
PCE.

Towards unifying model training and post-hoc
calibration Despite the potential benefits of combin-
ing post-hoc and regularization strategies to improve
calibration, empirical evidence from both classification
(Wang et al., and regression (Dheur and Ben
Taieb, contexts has indicated that frequently uti-
lized regularization methods result in neural networks
that are less calibratable. The method we propose is
consistent with the recommendation made by Wang
et al. to regard model training and post-hoc cali-
bration as a unified framework. Finally, recent works in
classification (Stutz et al., Einbinder et al.,
proposed integrating conformal prediction into neural
network training. The outcome is precise coverage with
smaller prediction sets.

5 A LARGE-SCALE
EXPERIMENTAL STUDY

We compare the performance of QRTC (Section
against BASE, QRC and QREG on several metrics in a
large-scale experiment. We also consider multiple ab-
lated versions of QRTC. We build on the large-scale
empirical study of Dheur and Ben Taieb E|and
consider the same underlying neural network architec-
tures, datasets and metrics. For these experiments,
81926 models were trained during a total of 180 hours
on 40 CPUs.

2https://github.com/Vekteur/
probabilistic-calibration-study

5.1 Benchmark datasets

In our study, we analyze a total of 57 data sets, in-
cluding 27 from the recently curated benchmark by
OpenML (Grinsztajn et al., , 18 obtained from
the AutoML Repository (Gijsbers et al., , and
12 from the UCI Machine Learning Repository (Dua
and Graff, . We divide each dataset into four sets:
training (65%), validation (10%), calibration (15%),
and test (10%). To ensure robustness, we repeat this
partitioning five times randomly and then average the
results. During the training process, we normalize both
the features, X, and the target, Y, using their respec-
tive means and standard deviations derived from the
training set. After obtaining predictions, we transform
them back to the original scale. For all methods, we
use early stopping (with a patience of 30) to choose
the epoch that gives the smallest validation NLL.

To avoid a potential bias in our analysis, we exclude
certain datasets that could not be suited for regression.
We identify these datasets using the proportion of tar-
gets Y that are among the 10 most frequent values in
the dataset, and we call this proportion the level of
discreteness. Table [3]in the Supplementary Material
shows that 13 out of 57 datasets have a level of dis-
creteness above 0.5 and these datasets appear in all 4
benchmark suites. QRTC was able to perform better on
these datasets, as discussed in Appendix [[] where full
results are available.

5.2 Experimental setup

Base neural network model The base model Fy is
a mixture of K = 3 Gaussians, where the means px(X),
standard deviations o (X), and weights wy(X), for
each component k£ = 1, ..., K are obtained as outputs
of a hypernetwork, which is a 3-layer MLP with 128
hidden units per layer. We also consider other base
models in Appendix [A]
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Figure 3: Comparison of QRTC, QRC, QREGC and BASE, as detailed in Section

Compared methods We compare all methods in
Table [1| where QR is applied, namely QRC, QRTC and
QREGC. We also compare BASE as a baseline method,
where, to ensure a fair comparison, the calibration
dataset is used as additional training data for the base
model Fjy since there is no need for a calibration dataset.
For QRTC and QREGC, the bandwidth b of ®XPF is se-
lected by minimizing the validation NLL in the set
{0.01,0.05,0.1,0.2 }. Appendix |C| shows that QRT
does not require extensive tuning of the hyperparame-
ter b. In fact, good results are already obtained with a
default value of b = 0.1. For QREGC, we select A = —«
where A € {0,0.01,0.05,0.2,1,5 } and minimizes PCE
with a maximum increase in continuous ranked prob-
ability score (CRPS) of 10% in the validation set, as
in Dheur and Ben Taieb, 2023 Since none of the com-
pared methods introduce additional parameters com-
pared to the baseline, all methods estimate parameters
in the same space ©.

Metrics We evaluate probabilistic predictions using
the NLL and CRPS, which are strictly proper scoring
rules. Probabilistic calibration is measured using PCE
(1). Finally, we measure sharpness using the mean
standard deviation of the predictions, denoted by SD.

Comparison of multiple models over many
datasets Given the different scales of NLL, CRPS,
and SD across datasets, we report Cohen’s d, a stan-
dardized effect size metric to compare the mean perfor-
mance of a method against a baseline. Cohen’s d values
of —0.8 and —2 are regarded as large and huge effect
sizes, respectively. Owing to the diverse nature of the
datasets used in our study, the performance metrics
of our models can exhibit substantial variations. To
effectively illustrate the results, we employ letter-value
plots to depict the distribution of Cohen’s d. These
plots highlight the quantiles at levels 1/8, 1/4, 1/2, 3/4
and 7/8, as well as any outliers. A median value below
zero indicates an improvement in the metric across
more than half of the datasets by the model. Letter-

value plots are ordered based on the median value to
facilitate an easy identification of the top-performing
methods.

In order to determine if there’s a significant difference
in model performance, we first apply the Friedman
test (Friedman, 1940). Subsequently, we carry out a
pairwise post-hoc analysis, as advocated by Benavoli et
al. (2016), using a Wilcoxon signed-rank test (Wilcoxon,
1945|) complemented by Holm’s alpha correction (Holm,
1979). These findings are represented by a critical
difference diagram (Demsar, 2006). The lower the
rank (further to the right), the superior the model’s
performance. A thick horizontal line illustrates a set of
models with statistically indistinguishable performance,
at a significance level of 0.05.

5.3 Results

Figure [2] illustrates the comparison in NLL of QRTC
and QRC across various datasets, relative to BASE. We
observe that QRTC consistently achieves a lower NLL
on the majority of the datasets. This suggests that
allowing the model to adapt to the calibration map
during training improves the final predictive accuracy,
without the need for extra parameters.

Figure [3] shows the letter-values plots for Cohen’s d
of different metrics (top panel) as well as the associ-
ated critical difference diagram (bottom panel), for all
methods and datasets. The reference model is BASE.
Figure shows that our proposed method, QRTC, is
able to significantly outperform the baseline and other
methods in terms of test NLL, as suggested by Figure[2]
In terms of PCE, since all considered methods except
BASE are combined with QR, they benefit from the
finite sample guarantee and achieve a similar PCE,
outperforming BASE.

We also observe that there is no significant difference in
terms of the CRPS of QRTC compared to other methods.
This suggests that QRT is able to place a high density
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Figure 4: Comparison of QRTC, QRGC, QRIC, QRLC and BASE as detailed in Section

at the observed/realized test data points while the
characteristics measured by CRPS, a distance-sensitive
scoring rule (Du, 2021)), are not significantly impacted.
Furthermore, all methods produce sharper predictions
than BASE, suggesting that BASE is underconfident,
despite achieving similar NLL than QRC.

5.4 The importance of the base model

We note that previous studies on calibration have often
focused on single Gaussian predictions with a small
number of layers (Lakshminarayanan, Pritzel, et al.,
2017; Utpala and Rai, [2020; Zhao et al., [2020). These
models have been outperformed in terms of NLL and
CRPS by mixture predictions (Dheur and Ben Taieb,
2023)). Following Dheur and Ben Taieb, [2023, we con-
sider a 3-layer MLP that predicts a mixture of 3 Gaus-
sians.

To further understand the role of the flexibility of the
base model, we consider a 3-layer MLP with varying
number of components in the mixture as well as a
ResNet. We observe that, in all scenarios, QRTC outper-
forms QRC on most datasets in terms of NLL. Moreover,
the enhancement is most pronounced in the case of mis-
specified single Gaussian mixture predictions. Detailed
results are available in Appendix [A]

6 AN ABLATION STUDY AND
ANALYSIS OF QUANTILE
RECALIBRATION TRAINING

6.1 Ablation study

In addition to the methods compared above, we provide
an ablation study in order to understand the impor-
tance of the different components of QRT. We consider
three ablated versions of QRT that differ from QRTC
by one aspect each.

QRIC, for QRT at initialization only, corresponds to
QRTC except that the calibration map is computed once
before the first training step and is fixed during the
rest of training (except for the last post-hoc step). The
goal is to show that improved initialization is not the
only strength of QRT.

QRGC, for QRT without gradient backpropagation, corre-
sponds to QRTC except that backpropagation does not
occur on the computation graph generated by the cali-
bration map, i.e., when computing Z! in Algorithm
While QRTC considers the calibration map as part of
the model, QRGC considers the calibration map as an
external actor that modifies the predictions at each
step. The goal is to show that merely applying QR at
each training step is not sufficient unless it is considered
an integral part of the model.

QRLC, for QRT with learned recalibration map, corre-
sponds to QRTC except that the PITs Z; in Algorithm
are replaced by additional learned parameters initial-
ized uniformly between 0 and 1. Thus, QRLC possesses
B more parameters than QRTC. The goal is to show that
the benefits of QRT are not only due to the additional
flexibility provided by the calibration map.

Figure [4] shows a comparison of these ablated versions
of QRTC against QRTC. We observe that all ablated ver-
sions result in significantly decreased NLL compared to
QRTC, highlighting the strengths of the different com-
ponents of QRT. Additionally, the CRPS and PCE
show no improvement compared to QRTC, and all ab-
lated versions result in slightly sharper predictions than
BASE.

7 CONCLUSION

We introduced Quantile Recalibration Training (QRT),
a novel method that produces predictive distributions
that are probabilistically calibrated by design at each
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training step. We demonstrated the effectiveness of
this approach through a large-scale experiment and an
ablation study. Our results indicate that QRT demon-
strates enhanced performance in both predictive accu-
racy (NLL) and calibration compared to the baseline.
Compared to Quantile Recalibration, QRT achieves
a similar calibration improvement with an additional
enhancement in NLL. This combination presents a
compelling option to produce predictive distributions
that are both accurate and well-calibrated. We also
discussed the issue of training regression models on
datasets with a discrete output variable. For future
work, we suggest extending our method to encompass
other calibration notions, such as distribution calibra-
tion (Song et al.,2019). Additionally, integrating other
calibration methods, such as Conformal Quantile Re-
gression (Romano et al., 2019)), into the training proce-
dure is an interesting direction to explore.
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A RESULTS ON DIFFERENT BASE MODELS

We present detailed results on the significance of the base model in influencing the performance of QRT, as
discussed in Section [5.4] of the main paper. While our primary experiments utilize a 3-layer MLP predicting
a mixture of three Gaussians, we also explore both less flexible mixtures with a single Gaussian and more
flexible mixtures comprising ten Gaussians. Additionally, we evaluate a neural network adopting a ResNet-like
architecture, referred to as ResNet. In Figures 5] to[7} we follow the exact same setup as in the main experiments
except that the underlying neural network is modified.

Figure [5| presents the results where the neural network is 3-layer MLP predicting a single Gaussian (i.e., one mean
and one standard deviation). In this misspecified case, we observe on Figure that, on many datasets, both
QRTC and QRC provide an improvement in NLL compared to BASE, despite BASE having access to the calibration
data. Moreover, QRTC provides an improvement in NLL compared to QRC in almost all cases. As in the main
experiments, QRTC, QRC and QREG are all able to provide a significant improvement in PCE compared to BASE,
with no significant difference between these three post-hoc models. There is also no significant difference in CRPS.
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(c) CD diagrams

Figure 5: Same setup than the main experiments (Figure [3|in the main text), except that the underlying neural
networks produces a single Gaussian instead of a mixture of 3 Gaussians.

Figure [6] shows the same experiment except that the underlying neural network produces a mixture of 10 Gaussians
(i.e., 10 means, 10 standard deviations, and 10 weights for each mixture component), offering high flexibility. In
this case, QRTC provides an improvement in NLL in slightly more than half the datasets and the improvement is
not significant, in contrast to the case of mixtures of size one and three. However, if we compare the post-hoc
models, QRTC is still significantly better than QRC and QREGC in terms of NLL while achieving a similar PCE as
QRC and QREGC. In terms of CRPS, BASE is slightly better than the post-hoc methods, but not significantly, which
could be explained by the fact that the training dataset of BASE also contains the calibration data. All post-hoc
methods achieve a similar CRPS. Finally, all post-hoc methods are significantly sharper than BASE, with QREG
being slightly sharper than QRTC and QRC.
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Figure 6: Same setup than the main experiments (Figure [3|in the main text), except that the underlying neural

networks produces a mixture of 10 Gaussians instead of a mixture of 3 Gaussians.

Figure [ shows the same experiments except that the model is a ResNet-like architecture predicting a mixture of
size 3, with 18 fully-connected hidden layers in total. The architecture was proposed by Gorishniy et al.,
and implemented with the default hyperparameters of Grinsztajn et al., The architecture from Gorishniy
et al., is reproduced here for completeness:

ResNet(x) = Prediction(ResNetBlock(...ResNetBlock(Linear(z))))
ResNetBlock(z) = x + Dropout(Linear(Dropout(ReLU(Linear(BatchNorm(z))))))
Prediction(z) = Linear(ReLU(BatchNorm(z)))

Since we predict a mixture of size K = 3, Output(z) is of dimension K *3 = 9. As for our MLP model, Output(x)
is split into u(x), p(x) and {(x). Then, we define o(z) = Softplus(p(z)) and w(z) = Softmax(I(z)). Finally, the
mixture is defined as:

where N (y; i, 02) is the density of a normal distribution with mean p and standard deviation o evaluated at y.

Figure shows that QRTC remains advantageous even in deep models, with a notable improvement in NLL
on most datasets compared to QRC. Similarly, observations from Figure [7] align with previous findings in PCE.
Finally, QRTC is both significantly better than QRC in CRPS and significantly sharper.
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Figure 7: Same setup than the main experiments (Figure [3[in the main text), except that the underlying neural
networks is a ResNet.

Finally, we provide a comparison of the performance of QRTC on all base models under consideration. Each model
is denoted by QRTC-<BM>- K where <BM> is the base model and K is the mixture size. As illustrated in Figure [§]

mixtures of size 3 and 10 achieve the best NLL and CRPS, and a simple MLP achieves a better performance
than a ResNet on these datasets.
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(a) Letter-value plots showing Cohen’s d for different metrics with respect to BASE (using an MLP model and mixture

predictions of size 3 as in the main text).
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Figure 8: Comparison of QRTC with different base models.

B IMPACT OF THE SIZE OF THE CALIBRATION MAP

QRTC-MLP-10
QRTC-RESNET-3

Rank of SD

As discussed in Section we investigate the impact of computing the calibration map from a dataset of size M
sampled randomly from the training dataset instead of the current batch. Specifically, this would correspond to

changing the training loop of Algorithm [I] as depicted by Algorithm [2}
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Algorithm 2: QRT framework where ¢5FL is computed from a random sample of the training dataset.
Input : Predictive CDF Fy, training dataset D, size of calibration map M
M + min{ M, |D| }
foreach minibatch { (X;,Y5) }f;l C D, until early stopping do

Sample { (X, Y/) }Zj\il from D without replacement

Compute Z! « Fy(Y/ | X!), fori=1,..., M

Define ¢f*Fr from Z7,..., Z), using

Compute Z; + Fp(Y; | X;), fori=1,...,B

£(0) = —5 SiL log fo(Yi | Xi) + log " (Z)

log f4(Yi]X:)
Update parameters 6 using VyL(6)

While the approach proposed in the main text requires B neural network evaluations per minibatch, Algorithm [2]
requires M + B neural network evaluations per minibatch, making it relatively slower.

In Figure [9] we investigate the performance of QRTC using Algorithm [2] with calibration maps of size M, and
denote these models QRTC- M. The model QRTC in blue corresponds to the same model as in the main paper,
with a calibration map computed from the current batch of size B = 512. It is worth noting that the post-hoc
step is still performed on a calibration dataset of the same size for all models. In terms of NLL, models with a
larger calibration map tend to perform better. In terms of PCE, all post-hoc models perform similarly. While no
decisive conclusions can be drawn, Figure suggests that larger calibration maps tend to result in improved
CRPS and sharper predictions. Overall, estimating the NLL of QRT using a larger calibration map tends to give
more accurate predictions.
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QRTC-32 - QrrC-512 oo o D @ o QRIC - ¢ » ¢o QRTC-8 e e oo
QRTC-128 QRTC-128 ool QRTC-512 4 we qrre-128 - T 0w
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(a) Boxplots of Cohen’s d of different metrics on all datasets, with respect to BASE.
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(b) CD diagrams
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Figure 9: Comparison of QRTC, where the calibration map has been computed on calibration datasets of different
sizes.

C IMPACT OF THE BANDWIDTH HYPERPARAMETER b

We evaluate the effect of tuning the bandwidth hyperparameter b in QRT. In Figure the bandwidth is either
selected by minimizing the validation NLL from the set 0.02, 0.05, 0.1, 0.2, 0.5, 1 (denoted by Tuned b), or it is
set to a fixed value. The results show that tuning b results in a significant improvement in NLL compared to
fixed values of b. Values of 0.1, 0.2 and 0.05 yield the best NLL improvement while values of 0.2 and 0.5 yield the
best CRPS improvement compared to BASE.

QRTC-2048 QRTC-32 QRTC-512



Probabilistic Calibration by Design for Neural Network Regression

Tuned b Tunedb 1 wC NP o ¢ b=0.2 b=05 ol oo
b=0.1 b=0.05 3 N pe o b=0.5 b=1.0 - e ¢+
b =0.05 - b=1.0 4 oo P ooo b=1.0 b=0.05 | I+ e
b=0.2 - b=02 1 ol ¢+ ¢ Tuned b b=0.2 - o = -
b=0.5 v=051 oA - © b=0.1- b=0.1 -+ T vo0 ¢
b=1.0 b=01 o ¢ b= 0.05 Tuned b o o —ve  +o¢
b=0.02 b=10.02 5 o JHe « o b=0.02 b=0.023 o [T e
71|01 71|0° 1(|)° 1(31 71|01 71|0“ 1(|)° 1(|)1 71|01 71|0° 1(IJ° 1(|)1 71|01 71|0° 1(|)° 1(|)1

Cohen’s d of NLL

Cohen’s d of PCE

Cohen’s d of CRPS

Cohen’s d of SD
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Figure 10: Comparison of QRTC with different values of the hyperparameter b.

D KERNEL DENSITY ESTIMATION ON A FINITE DOMAIN

We provide more motivation and details regarding the calibration map ®FFFL discussed in Section in the
main paper.

The limitation of a standard kernel density estimation within a finite domain [a, b] using a kernel like the logistic
distribution is that the resulting distribution becomes ill-defined due to non-null density values extending below a
and beyond b. In the following, to simplify notation, we denote ®§P¥ and ¢fPF by F and f respectively.

We would like to highlight that following our independent development of the "Reflected Kernel", we later
discovered that this concept had originally been introduced by Blasiok and Nakkiran, [2023

D.1 Truncated distribution

A standard approach is to truncate the distribution and redistribute the density below a and above b, namely
F(b) — F(a), such that the distribution is normalized. The resulting CDF is:

F(z)=F(a)/F(b)—F(a) if € [a,]
o5 (z) = €0 ifz<a (18)
1 ifx>0b
and the resulting PDF is:
$TRUNC (1) _ F@)/ P (b)~F(a) %f x € [a, b 19)
0 if © & [a, b].

A drawback of truncating the distribution on a finite domain is that the resulting distribution will be biased to
have lower density close to a and b and higher density elsewhere, as illustrated on Figure

D.2 Proposed approach: Reflected distribution

To remedy this problem, we define a new PDF ¢5EFL that "reflects" the base density f around a and b. More
precisely, for a given z > 0, the density in a — z is redistributed to a + z and the density in b + z is redistributed
to b— z. We assume that the density f is not too spread out, specifically f(z) =0 for z & [a — (b—a),b+ (b —a)].
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The resulting CDF is defined by:

F(z)—F(2a—2)+1— F(2b—x) it x € [a,b]
oy (x) = 40 ifz <a (20)
1 ifz>b

and the corresponding PDF is defined by:

GRETL () — f(z)+ f(2a —z) + f(2b - x) %fw € [a, b] (21)
0 if x & [a,b].
Figure [T1] compares four methods to estimate the calibration map from PIT realizations Z, ..., Zx. The method

@gMP was introduced in Sectionand corresponds to the empirical CDF, which is not smooth. In contrast, the
methods ®KPE, @TRUNC and SFEFL offer smooth estimations. This figure shows that ®FEFL is closer to the
empirical CDF than ®}RUNC and the value of the corresponding PDF ¢REFL is not overestimated, suggesting the
superiority of this estimator.

CDF CDF difference to empirical CDF PDF
1.0 ~ 0.2
oEMP 7 oEMP _ GEMP
084 — oKPE 7 —— oKDE_gEMP
@TRUNC P 0.1 ®TRUNC _ G EMP
064 — oREFL // —— oREFL_GEMP
,,' 0.0 e e
0.4 e
e ~0.1
0.2 -
0.0 + : : : : —0-21 : : : : : : : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 11: Comparison of different methods to estimate the calibration map. In this example, 512 PITs have
been sampled from a beta distribution Z ~ Beta(0.2,0.2) and the calibration map is estimated using @gDE with
b= 0.1 (Equation @ in the main text).

Figure [12| compares QRTC where the calibration map of the post-hoc model has been estimated using either @EDE,

@ERUN and <I>9REFL. We denote these methods QRTC-KDE, QRTC-TRUNC and QRTC-REFL respectively. It is worth
noting that QRTC-REFL corresponds to the method QRTC in the main text. In terms of NLL, QRTC-REFL performs
significantly better in terms of NLL and QRTC-KDE is the least effective. In terms of PCE, QRTC-REFL and
QRTC-KDE perform similarly and QRTC-TRUNC is the least effective. This confirms that the method of Reflected
Kernel should be preferred.
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1
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(a) Boxplots of Cohen’s d of different metrics on all datasets, with respect to BASE.

4 3 2 1 4 3 2 1
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BASE QRTC-TRUNC  QRTC-TRUNC QRTC-KDE
Rank of NLL Rank of PCE

(b) CD diagrams

Figure 12: Comparison between different kernel density estimation approaches. Note that the metrics CRPS
and SD are not provided because they are ill-defined for QRTC-KDE. More precisely, since the quantile function

(@gDE)fl returns values outside the interval [0, 1], we can not correctly sample from the model.
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In terms of PCE, both post-hoc methods perform similarly. In terms of CRPS, both post-hoc

methods display comparable performances but are sometimes outperformed by BASE. Analyzing SD, QRC exhibits
greater sharpness than BASE in nearly all instances, while QRTC sometimes does not exhibit increased sharpness.

datasets previously omitted in Section[5.1] With respect to NLL, QRTC consistently surpasses QRC in the majority

of datasets.

For a more comprehensive view, Figure [I3] presents a diagram analogous to Figure [2| from the main text, but
extends the comparison across NLL, PCE, CRPS, and SD metrics. Additionally, these diagrams incorporate

E DETAILED METRICS ON INDIVIDUAL DATASETS
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Figure 13: Comparison of QRTC and QRC with respect to BASE by showing the difference between the compared

methods and BASE according to a given metric, in average over 5 runs.
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F RESULTS WITH DIFFERENT VALUES OF «

We provide detailed results regarding the hyperparameter « of Algorithm [I]in the main text. As discussed in
Section [3:3] it is possible to design an algorithm unifying QRTC, QRC and QREGC, where the methods only
differ by the hyperparameter a. We assume here that Quantile Recalibration is applied (C = True) and only
consider variations of the hyperparameter «.. As discussed previously, a value of o = 1 corresponds to QRTC,
a = 0 corresponds to QRC and tuning « in order to minimize PCE(F}y) corresponds to QREGC with regularization
strength A = —a.

In Figure [[4] we provide results with different values of . Values of o between 0 and 1 can be considered as an
intermediate version between QRC and QRTC, while negative values correspond to QREGC. We also explore values
greater than 1 to visualize trends.

As expected, o = 1, corresponding to the NLL decomposition of the recalibrated model, obtains the best NLL,
and is significantly better than other values of a. In terms of CRPS, there is no significant differences for values
of a between 0 and 1.
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Figure 14: Comparison of different values of the hyperparameter «.

G METRICS PER EPOCH

In this section, we compare the behavior of training and validation NLL and PCE for both QRT and BASE
throughout the training process. We present learning curves for all the datasets considered in this study, sorted

by the number of training points. For detailed information and the complete names of these datasets, please refer
to Table [3l

The setup mirrors the illustrative example presented in Section [3.2} The training curves are averaged over 5 runs,
while the shaded area corresponds to one standard error. The vertical bars represent the epoch selected through
early stopping, which minimizes the validation NLL, averaged over the 5 runs. The horizontal bars represent the
average metric value at the selected epoch across the 5 runs. We draw the same conclusions as in the illustrative
example (Section . The CRPS and SD are not provided due to the high computational time required to
computed these metrics after Quantile Recalibration.

In Figures and we observe that the NLL of QRT tends to be lower after the same number of epochs,
indicating improved probabilistic predictions on both the training and validation datasets. Importantly, this
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improvement in NLL is consistent across datasets of different size. While the most significant enhancement in
NLL is seen in datasets with a high level of discreteness such as WIN, ANA and QUA, noticeable improvements are
also observed in most non-discrete datasets like CP1, YAC and PAR.

Referring to Figure [I6] and Figure [I8 we can observe that the PCE of BASE often exhibits higher variability
across epochs compared to QRT on both the validation and training datasets. This phenomenon indicates the
regularization effect of QRT. Additionally, we notice that the PCE is frequently lower at the same epochs for QRT,
although there are instances where this is not the case.

After reaching a certain epoch (indicated by the vertical bar), the model starts to overfit, leading to an expected
increase or stabilization of NLL and PCE on the validation dataset. On the other hand, the NLL on the training
dataset continues to decrease as anticipated, while the PCE exhibits high variation depending on the dataset.
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Figure 16: PCE on the validation dataset per epoch.
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Figure 17: NLL on

the training dataset per epoch.
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Figure 18: PCE on the training dataset per epoch.
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H RELATIONSHIP BETWEEN THE DISCRETENESS OF A DATASET AND
THE PERFORMANCE OF DIFFERENT MODELS

In this section, we discuss the issue that certain datasets from the UCI and OpenML benchmarks may not be
suitable for regression, as introduced in Section [5.1] Although we consider regression benchmarks, we observe
that, in many datasets, the target Y presents some level of discreteness. This is not surprising due to the finite
precision of numbers and to the roundings that can appear during data collection. For example, Table [3| shows
that, on 44 out of 57 datasets, more than half of the targets Y appear at least twice. This potential issue is more
important for certain datasets where some values of the targets Y appear very frequently.

We propose to identify these datasets using the proportions of values Y in the dataset that are among the 10
most frequent values, and we call this proportion the level of discreteness. For example, if a dataset only contains
10 distinct values, the level of discreteness would be 100%. Table [3]in the Supplementary Material shows that 13
out of 57 datasets have a level of discreteness above 0.5, i.e., more than half of the targets are among the 10 most
frequent ones. These datasets appear in all 4 benchmark suites.

In Figures (19| and we plot for each dataset the Cohen’s d of different metrics, averaged over 5 runs, compared
to the discreteness level of the dataset. For the NLL, CRPS and PCE, negative values of the Cohen’s d correspond
to an improvement. In order to show the average Cohen’s d conditional to the discreteness level, we provide an
isotonic regression estimate in red.

Figure [T9) shows that QRTC tends to provide a decreased NLL and increased CRPS for higher discreteness levels.
This can be explained by the ability of QRTC to put a high likelihood on a few values by minimizing the NLL but
neglect other aspects of the distributions. While previous work (Kohonen and Suomela, 2006]) has highlighted the
unsuitability of NLL as a metric for discrete datasets, they are still commonly found in regression benchmarks.
For example, Lakshminarayanan, Pritzel, et al. (2017)) and Amini et al. (2019) trained a model based on NLL on
the wine_quality dataset for which the output variable only takes 7 distinct values.
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Figure 19: Cohen’s d of different metrics compared to the discreteness level of a dataset for the QRTC model
relative to the BASE model.

Figure [20] shows the same metrics for QRC, where we observe that the improvement in NLL is less marked on
datasets with a higher discreteness level. The CRPS, however, is not decreased as much as with QRTC, which
suggests that QRTC is not suitable for datasets with a high level of discreteness. We don’t observe a notable trend
in terms of PCE.
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Figure 20: Cohen’s d of different metrics compared to the discreteness level of a dataset for the QRC model relative
to the BASE model.

I RESULTS ON ALL DATASETS

As discussed in Section [5.1] we provide the full results including the datasets with a high discreteness level.
Despite the potential issues discussed in Appendix [H] the conclusions drawn in Section [5] remain unchanged.
QRTC demonstrates a significant improvement in NLL with a negligible loss in CRPS. Figure detailing metrics on
the individual datasets are also available in Appendix [E}
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(b) Critical difference diagrams for different metrics.

Figure 21: Same setup than the main experiments (Figure |3|in the main text), with all the datasets.



Probabilistic Calibration by Design for Neural Network Regression

J RESULTS WHERE BASE DOES NOT HAVE ACCESS TO CALIBRATION
DATA

As discussed in Section we aimed to provide a fair comparison between BASE and the post-hoc methods by
training it on a larger dataset than the post-hoc methods QRTC, QRC and QREGC in all of our experiments. Since
the post-hoc methods benefit from the calibration data during the post-hoc step, all methods end up benefiting
from the same amount of data.

In order to gain deeper insights into the effect of the post-hoc step, we repeat our main experiments with the
exception that BASE does not have access to calibration data. Thus, QRC has the same base model than BASE and
performs an additional post-hoc step.

In Figure QRC shows that the post-hoc step never degrades NLL and sometimes results in a notable NLL
improvement, which suggests that a post-hoc step on additional calibration data is always beneficial. Figure
shows that QRC results in a significant NLL improvement compared to BASE, and QRTC results in an additional
significant NLL improvement compared to QRC. In terms of CRPS, there is no significant difference, and post-hoc
methods result in sharper predictions.
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Figure 22: Same setup than the main experiments (Figure [3|in the main text), except that BASE is not trained on
the calibration data.

K COMPUTATIONAL TIME

In Table[2] we present a comparative analysis of the training time for various methods across all datasets. Notably,
QRTC occasionally exhibits a training time that is approximately two times slower per epoch compared to BASE.
As discussed in Section [3:4] this disparity can be attributed to the extra computational overhead associated with
the computation of the calibration map, i.e., —% Zf;l log pREFE(Z;).
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Table 2: Comparison of the training time for different methods on all datasets.

Training time

Number of epochs

Time per epoch

BASE QREGC QRTC BASE QREGC QRTC | BASE QREGC QRTC
Dataset
Airlines DepDelay 10M 485.59 521.41 732.92 31.40 35.40 44.20 15.46 14.73 16.58
Allstate_ Claims_ Severity 284.53 1152.66 425.80 7.00 65.80 5.20 40.65 17.52 81.89
Buzzinsocialmedia_Twitter 923.56 997.29 863.84 84.60 93.00 53.20 10.92 10.72 16.24
MIP-2016-regression 14.97 22.07 39.65 167.00 181.40  228.00 0.09 0.12 0.17
Moneyball 7.55 22.62 14.63 78.00 141.00 74.60 0.10 0.16 0.20
SAT11-HAND-runtime-regression 119.73 150.92 113.64 241.40 232.60 182.60 0.50 0.65 0.62
Santander transaction value 24.01 26.02 26.60 3.80 5.00 3.80 6.32 5.20 7.00
Yolanda 364.63 834.97 406.50 6.60 55.40 9.80 55.25 15.07 41.48
abalone 35.27 31.20 77.67 52.60 49.60 107.80 0.67 0.63 0.72
boston 7.38 5.56 7.32 72.60 57.00 48.20 0.10 0.10 0.15
colleges 40.12 59.70 53.58 29.50 32.00 25.00 1.36 1.87 2.14
house prices nominal 6.74 7.07 10.22 51.80 7.50 28.20 0.13 0.94 0.36
quake 26.22 44.89 166.82 100.20 132.20  577.40 0.26 0.34 0.29
socmob 9.04 20.84 15.47 | 112.60 118.60 67.80 0.08 0.18 0.23
space_ ga 42.02 59.70 67.64 137.80 167.80 142.40 0.30 0.36 0.48
tecator 11.87 7.37 7.83 195.00 185.80 111.80 0.06 0.04 0.07
topo_2_1 41.00 38.62 33.81 15.80 14.20 11.40 2.60 2.72 2.97
us_ crime 10.19 28.18 16.38 21.00 67.40 22.60 0.49 0.42 0.72
Ailerons 66.42 87.46 136.04 21.00 37.80 41.00 3.16 2.31 3.32
Bike_Sharing_Demand 291.76 355.97 328.56 161.00 162.20 136.80 1.81 2.19 2.40
Brazilian __houses 159.17 337.55 169.54 137.40 230.20 128.20 1.16 1.47 1.32
MiamiHousing2016 118.08 181.59 125.74 62.20 101.80 64.20 1.90 1.78 1.96
california 254.69 414.27 278.82 110.60 151.00 125.00 2.30 2.74 2.23
cpu_act 62.56 105.46 65.00 63.00 84.20 46.60 0.99 1.25 1.39
diamonds 646.27 755.47 782.51 107.00 88.60 85.40 6.04 8.53 9.16
elevators 92.17 97.59 308.20 21.00 30.20 103.00 4.39 3.23 2.99
fifa 392.70 634.12 297.08 | 207.80 288.20 107.60 1.89 2.20 2.76
house_16H 200.43 539.11 388.17 67.80 185.00 115.40 2.96 2.91 3.36
house sales 138.38 325.24 121.14 34.60 113.80 29.40 4.00 2.86 4.12
isolet 128.97 222.28 187.13 136.20 222.60 167.00 0.95 1.00 1.12
medical _charges 687.66 984.32 840.41 62.20 75.00 49.80 11.06 13.12 16.88
nyc-taxi-green-dec-2016 1058.06 2083.84  1289.36 109.40 172.20 94.20 9.67 12.10 13.69
pol 164.51 364.97 409.18 91.80 165.00  214.60 1.79 2.21 1.91
sulfur 324.37 323.69 272.26 319.00 264.60 218.40 1.02 1.22 1.25
superconduct 342.96 553.18 514.55 147.80 196.20 164.40 2.32 2.82 3.13
wine quality 83.41 163.38 157.51 110.20 175.00 148.60 0.76 0.93 1.06
year 327.90 392.19 465.72 7.40 9.00 9.40 44.31 43.58 49.54
Mercedes_Benz_Greener _Manufacturing 16.23 24.78 26.14 8.60 9.80 7.80 1.89 2.53 3.35
OnlineNewsPopularity 137.57 182.44 232.98 7.80 10.20 14.60 17.64 17.89 15.96
SGEMM _GPU _kernel performance 1229.68 1046.17 901.34 117.80 80.20 83.80 10.44 13.04 10.76
analcatdata_supreme 103.73 213.92 141.89 255.80 323.40 203.60 0.41 0.66 0.70
black _friday 558.56 742.27 1164.06 42.20 65.00 77.40 13.24 11.42 15.04
particulate-matter-ukair-2017 690.45 756.80 760.01 35.80 59.40 34.60 19.29 12.74 21.97
visualizing soil 124.87 242.37 135.87 123.80 166.60 99.60 1.01 1.45 1.36
yprop_4_1 36.91 53.51 34.24 11.80 13.80 17.50 3.13 3.88 1.96
Airfoil 32.33 52.81 44.84 270.20 370.60 329.40 0.12 0.14 0.14
CPU 4.59 6.80 5.64 160.60 170.60 140.60 0.03 0.04 0.04
Concrete 12.40 20.60 16.92 179.80 149.40 119.40 0.07 0.14 0.14
Crime 4.76 8.83 7.27 43.00 53.80 42.20 0.11 0.16 0.17
Energy 14.45 25.44 22.17 | 219.00 219.00  201.80 0.07 0.12 0.11
Fish 6.13 10.07 11.06 76.20 66.60 72.20 0.08 0.15 0.15
Kin8nm 49.79 72.99 58.75 45.00 51.40 40.60 1.11 1.42 1.45
MPG 3.54 6.02 5.27 64.20 87.00 73.00 0.06 0.07 0.07
Naval 180.63 318.65 261.46 145.40 200.60 190.60 1.24 1.59 1.37
Power 174.46 207.21 238.07 | 203.80 186.20 193.00 0.86 1.11 1.23
Protein 1030.51 1329.29  1275.15 | 244.60 235.00 216.60 4.21 5.66 5.89
Yacht 6.73 8.85 11.13 189.40 169.40  228.40 0.04 0.05 0.05

L TABULAR REGRESSION DATASETS

The datasets considered in our study are detailed in Table[3] The table provides information about the benchmark
suite, full dataset name, abbreviations, number of training instances (truncated to 53,184 instances, similarly
to Dheur and Ben Taieb (2023)), and the number of features. Additionally, the last two columns represent
measures of the dataset’s discreteness levels, as discussed in Appendix [H] Proportions that are superior to 0.5 are

highlighted in bold.
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Table 3: Detailed properties of all datasets

Nb of Nb of Proportion of Proportion of
training instances features  top 10 most duplicated values
frequent values

Group Dataset Abbrev.

uci CPU CP1 135 7 0.33 0.64
Yacht YAC 200 6 0.11 0.21
MPG MPG 254 7 0.37 0.78
Energy ENE 499 9 0.05 0.22
Crime CRI 531 104 0.57 0.95
Fish FIS 590 6 0.04 0.12
Concrete CON 669 8 0.04 0.10
Airfoil AIl 976 5 0.02 0.04
Kin8nm KIN 5324 8 0.00 0.00
Power POW 6219 4 0.01 0.65
Naval NAV 7757 17 0.40 1.00
Protein PRO 31328 9 0.01 0.80

oml 297  wine quality WIN 4223 11 1.00 1.00
isolet ISO 5068 613 0.40 1.00
cpu_act CP2 5324 21 0.51 1.00
sulfur SUL 6552 6 0.01 0.09
Brazilian _houses BRA 6949 8 0.02 0.58
Ailerons AIL 8942 33 0.86 1.00
MiamiHousing2016 MIA 9069 13 0.12 0.91
pol POL 9817 26 0.98 1.00
elevators ELE 10936 16 0.80 1.00
Bike Sharing Demand BIK 11482 6 0.11 0.99
fifa FIF 11961 5 0.70 1.00
california CAL 13765 8 0.08 0.94
superconduct SUP 14201 79 0.05 0.93
house _sales HO3 14446 15 0.07 0.87
house 16H HO1 15266 16 0.17 0.96
diamonds DIA 37075 6 0.02 0.89
medical _charges MED 53164 3 0.00 0.05
year YEA 53164 90 0.58 1.00
nyc-taxi-green-dec-2016 NYC 53164 9 0.38 1.00

oml 299 analcatdata_supreme ANA 2633 12 1.00 1.00
Mercedes Benz MER 2735 735 0.02 0.53
_ Greener_ Manufacturing
visualizing_soil VIS 5616 5 0.43 1.00
yprop_4 1 YPR 5775 82 0.04 0.94
OnlineNewsPopularity ONL 27068 73 0.35 0.99
black _friday BLA 53164 23 0.00 0.95
SGEMM _ GPU SGE 53164 15 0.00 0.70
_kernel _performance
particulate-matter PAR 53164 26 0.05 0.92
-ukair-2017

oml_ 269 tecator TEC 156 124 0.19 0.48
boston BOS 328 22 0.18 0.73
MIP-2016-regression MIP 708 111 0.05 0.17
socmob SOC 751 39 0.36 0.76
Moneyball MON 800 18 0.09 0.86
house_ prices_nominal HO2 711 234 0.11 0.59
us_ crime US_ 1295 101 0.37 0.99
quake QUA 1415 3 1.00 1.00
space_ ga SPA 2019 6 0.01 0.00
abalone ABA 2715 10 0.90 1.00
SAT11-HAND- SAT 2886 118 0.06 0.61
runtime-regression
Santander transaction SAN 2898 3611 0.30 0.73
_value
colleges COL 4351 34 0.03 0.44
topo_2 1 TOP 5775 252 0.04 0.94
Allstate_ Claims_Severity ALL 53164 477 0.00 0.10
Yolanda YOL 53164 100 0.58 1.00
Buzzinsocialmedia Twitter BUZ 53164 70 0.25 0.98
Airlines_ DepDelay 10M AI2 53164 5 0.62 1.00

M EXAMPLES OF PREDICTIONS

To offer a deeper understanding of the shape of the predictions, Figures [23] to 28] display prediction examples
across various datasets. In these figures, each row illustrates density predictions from the same model, while every
column denotes the same instance, with the realization y marked by a green vertical bar. The associated NLL for
each prediction is also presented.
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Figures [23] to [26] are from datasets where QRTC outperformed QRC in terms of NLL. Notably, within these, QRTC
exhibits heightened confidence in its predictions for Figures [24] and However, in other datasets, the NLL
improvements are more subtle. The Figure [28| represents predictions on a dataset with a high level of discreteness
which has not be considered in the main experiments. In this case, QRTC assigns a high density to individual
values y, highlighting a limitation of NLL minimization, as discussed in Appendix [H} Overall, the shape of the
predictions can vary greatly in function of the dataset.
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Figure 23: Examples of predictions of BASE, QRC and QRTC on dataset Allstate_Claims_Severity (ALL).
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Figure 24: Predictions of BASE, QRC and QRTC on dataset house_prices_nominal (HO2).
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Figure 25: Predictions of BASE, QRC and QRTC on dataset Mercedes_Benz_Greener_Manufacturing (MER).
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Figure 26: Predictions of BASE, QRC and QRTC on dataset yprop_4_1 (YPR).
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Figure 27: Predictions of BASE, QRC and QRTC on dataset

space_ga (SPA).
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Figure 28: Predictions of BASE, QRC and QRTC on dataset abalone (ABA).
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