
Learning-Based Algorithms for Graph Searching Problems

Adela Frances DePavia Erasmo Tani Ali Vakilian
University of Chicago

adepavia@uchicago.edu
University of Chicago
etani@uchicago.edu

TTIC
vakilian@ttic.edu

Abstract

We consider the problem of graph search-
ing with prediction recently introduced by
Banerjee et al. (2023). In this problem, an
agent, starting at some vertex r has to tra-
verse a (potentially unknown) graph G to find
a hidden goal node g while minimizing the
total distance travelled. We study a setting
in which at any node v, the agent receives a
noisy estimate of the distance from v to g. We
design algorithms for this search task on un-
known graphs. We establish the first formal
guarantees on unknown weighted graphs and
provide lower bounds showing that the algo-
rithms we propose have optimal or nearly-
optimal dependence on the prediction error.
Further, we perform numerical experiments
demonstrating that in addition to being ro-
bust to adversarial error, our algorithms per-
form well in typical instances in which the
error is stochastic. Finally, we provide alter-
native simpler performance bounds on the al-
gorithms of Banerjee et al. (2023) for the case
of searching on a known graph, and establish
new lower bounds for this setting.

1 INTRODUCTION

Searching on graphs is a fundamental problem which
models many real-world applications in autonomous
navigation. In a graph searching problem instance, an
agent is initialized at some vertex r ∈ V (referred to
as the root) in some (potentially weighted, directed)
graph G = (V,E). The agent’s task is to find a goal
node g ∈ V . The agent searches for g by sequen-
tially visiting adjacent nodes in the graph. The graph

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

searching problem terminates when the agent reaches
the goal node, and the cost incurred by the agent is
the total amount of distance they travelled.

There are two main settings of interest. In the explo-
ration setting, as the agent moves through the graph,
it only learns the structure of G by observing the
vertices and edges adjacent to the nodes it has vis-
ited, a model sometimes referred to as the fixed graph
scenario (Komm et al., 2015; Kalyanasundaram and
Pruhs, 1994). In the strictly-easier planning setting,
the agent is given the entire graph G ahead of time,
but does not know the identity of the goal node g.

Without additional information, in the worst-case the
agent must resort to visiting the entire graph, a task
which amounts to finding an efficient tour in an un-
known graph1(Berman, 2005; Dobrev et al., 2012;
Megow et al., 2012; Eberle et al., 2022). Recently,
Banerjee et al. (2023) consider the setting when an al-
gorithm for graph searching also receives some predic-
tion function, f : V → R, representing some (noisy)
estimate of the distance to the goal node g at any
given node v ∈ V . This setup models applications in
which the searcher receives advice from some machine-
learning model designed to predict the distance to the
goal; this problem fits into the broader framework of
learning-based algorithms, which exploit (potentially
noisy) advice from a machine learning model to en-
hance their performance.

In the case of planning, Banerjee et al. (2023) pro-
pose an intuitive strategy that can be deployed in
weighted and unweighted graphs and analyze its per-
formance in terms of structural properties of the in-
stance graph, such as its maximum-degree and its
doubling-dimension. They establish formal guarantees
on the cost incurred by their algorithm under different
notions of prediction error. In contrast, their results
in the exploration setting are limited: they propose an

1We note that historically the task of finding an efficient
tour in an unknown graph has been referred to as graph
exploration, but following the conventions of Banerjee et al.
(2023) we reserve this name for the graph search problem
on an unknown graph.

Learning-Based Algorithms for Graph Searching Problems

algorithm for exploration in unweighted trees. Their
algorithm is tailored to this restricted class of graphs
and their guarantees are parameterized by the num-
ber of incorrect predictions, which does not capture
the magnitude of the deviation between predictions
and true distances.

This paper seeks to expand the understanding of graph
exploration problems with predictions. We design
algorithms which can be deployed on a variety of
weighted graphs and prove worst-case guarantees on
their performance. We also complement this analysis
by providing lower-bounds for these problems, showing
that the algorithms studied in this work are optimal
or nearly optimal. In particular, we focus on two dif-
ferent error models. In the absolute error model, the
magnitude of the error at a node is independent of
that node’s true distance to the goal, and guarantees
are given in terms of the total magnitude of the error
incurred at every node. In the relative error model,
nodes further from the goal may have larger deviation
between the prediction and the truth, and algorithmic
guarantees are parameterized by the maximum ratio
of the error to the true distance at any vertex.

Related Works Online graph searching problems
have long been used as basic models for problems
in autonomous navigation Berman (2005). Search-
ing with access to predictions, also referred to as “ad-
vice” or “heuristics” in different communities, is a com-
monly studied variant (Pelc, 2002; Dobrev et al., 2012;
Eberle et al., 2022; Banerjee et al., 2023). The problem
and prediction settings considered in this work most
closely correspond to those considered by Banerjee
et al. (2023). This setup models applications in which
predictions are the output of some machine-learning
model. Recent years have seen a marked increase in
the integration of machine learning techniques to en-
hance traditional algorithmic challenges (Angelopou-
los et al., 2020; Gupta et al., 2022; Mitzenmacher
and Vassilvitskii, 2022; Antoniadis et al., 2023). More
generic forms of advice and the advice-complexity of
exploration tasks are long-standing subjects of study.
Komm et al. (2015) study the case when the the
searcher receives generic advice, which can take the
form of any bit string, and prove results about the
advice complexity of this task. For a more detailed
survey of related works, we direct the reader to Sec-
tion A.

Organization In Section 1.1 we formally state the
main results of the paper. In Section 2 we present
technical preliminaries and define relevant notation.
Sections 3 and 4 contain algorithms and analysis for
exploration under absolute and relative error models
respectively. In Section 5 we derive new bounds in the

planning setting via metric embeddings. Finally, in
Section 6 we complement these results with numerical
experiments. All missing proofs are in Section B of the
supplementary material.

1.1 Summary Of Results

We begin by formally describing the exploration and
planning settings:

The Exploration Problem In this setting, both
the graph G and the predictions f are initially un-
known to the agent: the agent is initialized with
access to the root node r, the neighbors of r, and
the predictions at all of these nodes. As the algo-
rithm proceeds, on each iteration i it has access
in memory to a subgraph Gi ⊆ G containing the
nodes it has visited, the neighbors of those nodes,
and any edges between visited nodes and neigh-
bors. The searcher can only query predictions
from nodes in the subgraph Gi. This problem
models exploration of an unknown environment.

The Planning Problem In this setting, both the
graph G and the predictions f are fully known to
the searcher upon initialization.

For any algorithm which visits an ordered sequence
of vertices v1, . . . , vT , we denote the algorithmic cost
ALG

def
=

∑
i∈T dGi(vi, vi+1), where dGi(·, ·) denotes the

shortest (weighted) path distance in the graph Gi de-
scribed above. The guarantees in this paper com-
pare ALG to the optimal cost a posteriori, denoted
by OPT

def
= dG(r, g).

Exploration Under Absolute Error A natural
way of measuring the error of some predictions is the
magnitude of the difference between the true distance-
to-goal and prediction value at each node. In Section 3
we propose an algorithm for the exploration problem
on weighted graphs and prove performance guarantees
parameterized by these error measures. In particular,
we prove the following theorem:

Theorem 1. There is an algorithm (Algo-
rithm 1) for searching arbitrary (potentially di-
rected) graphs which finds the goal g by travel-
ing a distance of at most OPT+ E−1 + n · E+∞,
where E−1

def
=

∑
v∈V max {0, d(v, g)− f(v)} and

E+∞
def
= maxv∈V max {0, f(v)− d(v, g)}.

This algorithm enjoys several advantages over the most
recent results on the exploration problem by Banerjee
et al. (2023). Their work introduces an involved combi-
natorial algorithm for exploration on unweighted trees
whose performance is parametrized by the ℓ0 norm

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

(the number of non-zero entries) of the vector of errors.
The guarantees of their algorithm do not apply when
the graph being searched is not an unweighted tree. In
contrast, the algorithm proposed in the present work
is intuitive and easily implementable, and the guaran-
tees obtained hold in a wide variety of settings, e.g.
when the graph is weighted and/or directed. The per-
formance of the algorithm is parameterized by the nat-
ural absolute deviation (ℓ1) error measure.

We also establish that under the above parameteriza-
tion, the proposed algorithm is in some sense optimal
(see Theorem 6). Further our analysis highlights that
the same algorithm performs particularly well when
(erroneous) predictions only underestimate distance to
the true goal. Prediction functions with this property
are referred to as admissible. They are key objects of
study in path-finding literature and are well-motivated
by applications (Dechter and Pearl, 1985; Eden et al.,
2022; Ferguson et al., 2005; Pohl, 1969).

Relative Errors One realistic setting for applica-
tions is one in which the error is proportionate to the
magnitude of the distance to the goal. In order to cap-
ture this behavior, we consider a different error model
in which the ratio of the error to true distance-to-goal
at every vertex is assumed to be bounded by some
value ε ∈ (0, 1):

(1− ε)d(v, g) ≤ f(v) ≤ (1 + ε)d(v, g). (1)

We do not place any restriction on the total amount
of error in the graph beyond this condition.

We consider two regimes of multiplicative error. In the
first setting, ε is assumed to be known to the searcher
a priori. We propose an algorithm and show that it
achieves the following competitive ratio:

Theorem 2. Consider the exploration problem on a
weighted tree where predictions satisfy (1) with respect
to ε ∈ (0, 1), and ε is known. Then there exists an
algorithm (Algorithm 2) which succeeds in finding the
goal g and incurs competitive ratio at most

ALG

OPT
≤ 1

1− ε
+ nε · 4

(1− ε)2
.

In particular, if the predictions are admissible, then
the same algorithm incurs competitive ratio

ALG

OPT
≤ 1 + nε · 2

1− ε
.

In the second regime ε is assumed to be small (ε <
1/3) but its exact value is not assumed to be known.
For this setting, we design a different algorithm which
allows us to prove the following result:

Theorem 3. Given G a weighted tree with predictions
f satisfying Equation (1) for some unknown ε < 1/3,
then Algorithm 3 with β = 2/3 incurs competitive ratio
at most

ALG

OPT
≤ 2 +O

(
nε

5 + 3ε

(1− 3ε)2

)
.

In Section 4, we describe our algorithms for these prob-
lems, prove the above theorems, and complement these
algorithmic guarantees with lower bounds that show
these algorithms are nearly optimal.

Planning Problems Banerjee et al. (2023) consider
problems in which both the full graph and all pre-
dictions are available to the algorithm upon initial-
ization. This setting is referred to as the planning
problem. They construct algorithms for this version
of the problem under different error models and the
guarantees they obtained are outlined in Table 1. In
many regimes (e.g. planning on unweighted trees un-
der error parametrized by the ℓ0-norm of the vector
of errors, denoted E0, and planning on graphs under
error parametrized by the ℓ1-norm of the vector of er-
rors, denoted E1) matching lower bounds for their al-
gorithms can be established, as shown in the table.
A notable exception is the case of planning on un-
weighted graphs under E0 parametrization: they es-
tablish an upper bound of OPT+2O(α)O(E20) where α
is the doubling dimension of the graph. In particular,
the lower bounds they provide fail to match the depe-
dence on the quadratic term E20 in their upper bound.

We provide an alternative analysis of their algorithm
based on metric properties of the instance graph which
shows that in some classes of graphs one can reduce
the asymptotic dependence on E0 from a quadratic to a
linear factor. In particular, we consider the distortion
of embedding the instance graph into a weighted path
or cycle graph, and establish the following guarantee:

Theorem 4. Consider G an unweighted graph such
that G admits an embedding into a weighted path or a
weighted cycle of distortion at most ρ. Then on G, the
E0 planning algorithm of Banerjee et al. (2023) incurs
cost at most OPT+O(ρE0).

We note that the results present in Table 1 which were
not proved by Banerjee et al. (2023) are established in
this paper in Section 5 and the proved in the supple-
mentary material.

2 TECHNICAL PRELIMINARIES
AND NOTATION

Graphs are assumed to be weighted and directed, un-
less otherwise specified. (Weighted) shortest-path dis-

Learning-Based Algorithms for Graph Searching Problems

E0, unweighted E1, positive weights

Trees with
maximum degree ∆

upper bound OPT+O(∆E0) (†) OPT+O(∆E21)
(integer distances)

lower bound max {OPT,Ω(∆E0)} (†) max
{
OPT,Ω(∆E21)

}
Graphs with

doubling dimension α

upper bound OPT+ 2O(α)O(E20) (†) OPT+ 2O(α)O(E1) (†)

lower bound Unknown max {OPT,Ω(2αE1)}

Graphs with path-
embedding distortion ρ

upper bound OPT+O(ρE0) OPT +O(ρE1)

lower bound Unknown max {OPT,Ω(ρE1)}

Table 1: Known results for planning problem in different settings. (†) denotes results from Banerjee et al. (2023).
∆ denotes the maximum degree of any vertex in the graph, α denotes the doubling-dimension of the graph, and
ρ denotes the distortion of the path-embedding on G. Banerjee et al. (2023) in their work note the absence of a
matching lower bound in the graph planning problem. This gap motivates this work’s study of planning bounds
parameterized by metric embeddings, which yields a reduced asymptotic dependency on E0. For full discussions
of lower bounds for E1 parametrized by ∆, α, and ρ, see Lemmas 11 and 13, and Lemma 20 in Section B of the
supplementary material.

tances in a graph G are denoted by dG(·, ·). Given a
set S ⊆ V , let ∂S be its external vertex boundary:

∂S
def
= {v ∈ G \ S | ∃u ∈ S : v ∼ u}

For a vertex set S ⊆ V , we denote by tourG(S) the
(weighted) length of the shortest walk that visits all
nodes in S:

tourG(S)
def
= max

v∈S
min

W∈W(v,S)
lengthG(W), (2)

where W(v, S) is the set of walks in G starting at ver-
tex v and visiting every vertex in S.

Given a metric space (X, dX) its doubling constant is
the minimum number λ such that, for every r > 0, ev-
ery ball of radius r can be covered by at most λ balls
of radius r/2 (Gupta et al., 2003). The doubling con-
stant of a graph G is the doubling constant of (G, d)
where d is the shortest path distance on G. The dou-
bling dimension of the space, denoted α, is defined as
α

def
= log2 λ.

Notation For Exploration Algorithms Recall
that in exploration problems, the true graph G is ini-
tially unknown to the searcher. Thus in the setting
of exploration, one needs to distinguish between the
shortest known path distance between two vertices and
the true shortest path distance. To this end, let Vi−1

be the set of vertices visited by iteration i and let Gi

be the subgraph of G containing: all of the vertices
in Vi−1 ∪ ∂Vi−1, and all of the edges adjacent to Vi−1.
Throughout this paper, we emphasize the distinction
between dGi

and dG. In general, we have dGi
≥ dG.

When analyzing performance, we denote the progress
made on the ith iteration as

∆i
def
= dG(vi, g)− dG(vi+1, g). (3)

Observe that, under the assumption that v0, v1, . . . , vT
are nodes visited by some algorithm which originates
at r and terminates at g (i.e. v0 = r and vT = g) we
have:

T−1∑
i=0

∆i = dG(r, g)− 0 = OPT.

Metric Embeddings When analyzing the planning
algorithms of Banerjee et al. (2023), we consider met-
ric embeddings on graphs, and parametrize results in
terms of the distortion of the relevant embedding:

Definition 1 (Distortion). Given a function τ :
X → Y between two finite metric spaces (X, dX) and
(Y, dY), we define the distortion dist(τ) of τ as the
minimum value ρ satisfying the following: there exists
a constant c > 0 such that for all x1, x2 ∈ X,

c · dX(x1, x2) ≤ dY (τ(x1), τ(x2)) ≤ c · ρ · dX(x1, x2).

3 EXPLORATION UNDER
ABSOLUTE ERROR

In this section we study the absolute error regime, in
which the ℓ1 norm of the vector of errors is bounded
by some constant E1, not necessarily known to the
searcher. We consider the following natural rule: on
the ith iteration, choose the next vertex to visit by

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

picking the node vi ∈ ∂Vi−1 minimizing the sum of
dGi(vi−1, vi) and f(vi) (See Algorithm 1). This itera-
tive step can be interpreted as visiting the vertex that
would be on the shortest path to the goal if all the
predictions f(v) were correct.

Algorithm 1 ℓ1-Greedy_Search(G, r)
v0 ← r
i← 0
V0 ← {r}
while vi ̸= g do

i← i+ 1
vi ∈ argminv∈∂Vi−1

dGi
(vi−1, v) + f(v)

Vi ← {v0, ..., vi}
end while

We remark that because we are working in the explo-
ration setting, Algorithm 1 does not have access to
the true distances dG(·, ·) and must instead make use
of dGi

(·, ·) the distances in the subgraph of observed
vertices at iteration i.

Theorem 1 parametrizes the worst-case guarantees for
Algorithm 1 in terms of the total negative error E−
and the maximum-occurring positive error E+∞. This
asymmetry corresponds to the intuition that positive
errors can obstruct the search task more dramatically
than negative errors by obscuring shortest paths to the
goal. Indeed, an immediate corollary of Theorem 1 is
the following result about the performance of Algo-
rithm 1 in the setting in which the prediction function
is admissible (i.e. error is only negative):

Corollary 5. Consider the problem of searching a
weighted (possibly directed) graph with predictions f
satisfying f(v) ≤ dG(v, g) ∀v ∈ V Then there exists
an algorithm which finds the goal g with cost at most
OPT+ E1, where E1 is the total ℓ1 error in the predic-
tions, i.e. E1

def
=

∑
v∈V |f(v)− d(v, g)|.

The dependency on E− and E+∞ in Theorem 1 is opti-
mal in the following sense:

Theorem 6. For every E− > 0, there exist graph
search instances with total negative error E− such that
any algorithm for the exploration problem on these in-
stances must incur cost at least OPT+E− in the worst
case. Additionally, for any n > 3 and any E+∞, there
exist graph search instances on n nodes with maximum
positive error E+∞ such that any algorithm for the ex-
ploration problem on these instances must incur cost
at least OPT+ E+∞(n− 2) in the worst case.

We note that the lower bound in Theorem 6 also
holds for the expected distance travelled of random-
ized search strategies, up to constant factors, as per
the following result.

Proposition 7. For every E− > 0 there exists a graph
search instance with total negative error E− such that
any randomized algorithm incurs expected costs at least
OPT+ 1

2E
− on this instance. Moreover, for any n > 3

and any E+∞ there exists a graph search instance on n
nodes with maximum positive error E+∞ such that any
randomized algorithm must incur expected cost at least
OPT+ (n− 2)E+∞/2 on this instance.

The full proof of Theorem 1 and the proof of Corol-
lary 5, given in Section B, rely on a charging argu-
ment which shows that distance travelled away from
the goal can be directly attributed to errors in the pre-
dictions of observed nodes. The proof of Theorem 6
and Proposition 7 are constructive and can also be
found in Section B.

For completeness we now sketch the proof of Theo-
rem 1. The proof considers the progress ∆i as in
Equation (3), which measures how much closer the
agent is to the goal after the ith iteration of the
algorithm. The cost of the algorithm is given by
ALG =

∑
i∈[T] dGi

(vi−1, vi). At each step i ∈ [T],
one can show that the distance travelled dGi

(vi−1, vi)
in the observed subgraph Gi is bounded above by the
sum of three terms:

dGi
(vi−1, vi) ≤ ∆i + E−(vi) + E+(wi), (4)

where E−(vi) is the negative error at vi, and E+(wi)
is the positive error at some vertex wi on a shortest
path from vi−1 to g. In particular, all three terms in
this upper bound are independent of the observed sub-
graph Gi. The statement of the theorem then follows
by summing both sides of Equation (4) over all i ∈ [T].

4 EXPLORATION UNDER
RELATIVE ERROR

In this section, we consider the setting when the pre-
diction function satisfies Equation (1) for every v ∈ V .
We assume that ε ∈ (0, 1): in particular, if ε ≥ 1,
then f(v) = 0 is a valid prediction at every vertex and
no exploration algorithm can avoid visiting the entire
graph in the worst case.

If ε is known to the searcher a priori then given access
to the prediction at a node, the searcher can construct
an upper bound on the true distance-to-goal. On trees
this allows one to limit exploration to a ball of some
radius R (dependent on ε and OPT) around the ini-
tial vertex, effectively “pruning” distant nodes from the
vertex set. In particular, one could limit their search
to the set:

Sε,r
def
=

{
v ∈ V | dG(v, r) ≤

1

1− ε
f(r)

}
. (5)

Learning-Based Algorithms for Graph Searching Problems

We couple this observation with the algorithm in the
previous section and obtain the following algorithm.

Algorithm 2 ε-Known_Search(G, r, ε)
v0 ← r
i← 0
V0 ← {r}
while vi ̸= g do

i← i+ 1
vi ∈ argminv∈∂Vi−1∩Sε,r

dGi(vi−1, v) + f(v)
Vi ← {v0, ..., vi}

end while

In Section B we leverage favorable properties of the
set Sε,r to show that Algorithm 2 satisfies the guar-
antees of Theorem 2. We observe that in particular,
Theorem 2 implies that for any n the competitive ra-
tio incurred by Algorithm 2 tends to 1 as ε→ 0. The
combination of the truncation with the shortest-path
rule in Algorithm 2 was necessary to secure this prop-
erty: for example, a simple scheme such as running
breadth-first-search on the truncated set Sε,r would
not enjoy such a guarantee in the worst case.

We note that Algorithm 2 crucially relies on the fact
that the searcher knows the value of ε and so it cannot
be deployed in the setting where ε is unknown. For
the latter regime we propose an alternative algorithm,
also based on Algorithm 1, which provably succeeds
for unknown values of ε under the assumption that ε
is small, e.g. ε < 1/3.

Algorithm 3 ε-Unknown_Weighted_Search(G, r, β)
v0 ← r
i← 0
V0 ← {r}
while vi ̸= g do

i← i+ 1
vi ∈ argminv∈∂Vi−1

βdGi
(vi−1, v) + f(v)

Vi ← {v0, ..., vi}
end while

In Section B we show that on trees this reweighting
scheme ensures that Algorithm 3 never explores nodes
which are far from the goal and use this property to es-
tablish the guarantees in Theorem 3 under the setting
where β = 2/3.

We give a lower bound to establish that Algorithm 2 is
almost optimal. Specifically, we show that even when
ε is known a-priori, the asymptotic dependence on n ·ε
is tight up to factors of 1/(1− ε):
Theorem 8. For all n sufficiently large (n ≥ 6) and
for any ε ∈ (0, 1), there exists an instance I of the
exploration on weighted trees G with predictions (1),

such that any algorithm for the exploration problem on
G must incur cost ALG ≥ (1 + nε)OPT on I.

Note that this lower bound also applies to the regime
addressed by Algorithm 3. Moreover, one can prove
an analogous lower bound for the case of potentially
randomized exploration strategies, as per the following
result.

Proposition 9. For all n sufficiently large (n ≥ 6)
and for any ε ∈ (0, 1), there exists an instance I of the
exploration on weighted trees G with predictions (1),
such that any randomized algorithm for the exploration
problem on G must incur cost ALG ≥ (1 + nε

2)OPT
on I.

4.1 Planning With Relative Error

Under the model of relative error described by Equa-
tion (1), planning problems become either trivial or
impossible, with no intermediate regimes. In the con-
text of predictions f(v) = (1 + εv)dG(v, g) for some
εv ∈ [−ε, ε], we observe that it must be that f(g) = 0,
independent of the value of ε. For the planning prob-
lem to be nontrivial, there must also occur vertices
v ̸= g such that f(v) = 0. Thus, for nontrivial in-
stances of the planning problem in this regime, ε ≥ 1.
However, instances with such (large) values of ε are
hopeless in the worst case: such a setting allows for
the prediction of every node to be set equal to 0, a
case which forces the searcher to visit every node in
the worst case.

5 PLANNING

5.1 Planning Bounds Via Metric Embeddings

In this section, we analyze the performance of the algo-
rithm by Banerjee et al. (2023) for the planning prob-
lem, as a function of how similar the target graph is
to some graph G′ admitting inexpensive tours. In the
planning problem, the full graph G as well as all pre-
dictions f are made available to the algorithm upon
initialization. Banerjee et al. (2023) study the implied
error functions ϕ0 : V → R and ϕ1 : V → R, defined
as

ϕ0(v)
def
= |{u ∈ V : f(u) ̸= dG(u, v)}|

and
ϕ1(v)

def
=

∑
u∈V

|f(u)− dG(u, v)|.

Banerjee et al. (2023) consider an algorithm that iter-
atively visits sublevel sets of ϕ0 or ϕ1 respectively, for
geometrically increasing thresholds (see Algorithm 4).
Their algorithm is very simple: for every threshold, it
visits every node in the sublevel set before increasing

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

to the next threshold value. Algorithmically, Banerjee
et al. (2023) accomplish this by computing a minimum
length Steiner tree of the sublevel set, which is in gen-
eral not computationally efficient. However, one can
replace this computationally expensive procedure with
a polynomial-time constant factor approximation (see
e.g. (Karlin et al., 2021)), which preserves the asymp-
totic upper bound on the algorithms’ performance.

Algorithm 4 FullInfoX (G, r, ϕ) from Banerjee et al.
(2023)
▷ ∀κ ∈ R : L−

ϕ (κ) := {v ∈ G | ϕ(v) ≤ κ}
Vi ← r
λ← 0
while g ̸∈ Vi do

Vi ← Vi ∪ L−
ϕ (2

λ)
Compute a minimum length Steiner tree of Vi

and perform an Euler tour of the tree
λ← λ+ 1

end while

This definition of Algorithm 4 motivates our analy-
sis, which focuses on the distortion of embedding the
instance graph into some graph G′ which admits inex-
pensive tours. Recall the definition of tourG(S) as in
Equation (2).

Definition 2 (Easily-tourable). A graph G′ =
(V ′, E′) is c-easily-tourable for some c > 0 if for any
S′ ⊆ V ′, tourG′ ≤ c · diam(S′).

In Section B, we establish that in easily-tourable
graphs the algorithm of Banerjee et al. enjoys good
performance. We then show that if a graph G can be
embedded into an easily-tourable graph G′ with dis-
tortion ρ, then G itself must be easily-tourable with
tour costs that scale with ρ. This culminates in the
following result:

Lemma 10. Given G an unweighted graph, if G ad-
mits an embedding τ : G → G′ of distortion ρ for
G′ some cG′-easily-tourable graph, then Algorithm 4
with objective ϕ = ϕ0 from Banerjee et al. (2023)
incurs cost at most OPT + O(ρ · cG′ · E0). If G has
integer-valued distances and admits an embedding of
distortion ρ into G′ some easily-tourable graph, then
Algorithm 4 with objective ϕ = ϕ1 incurs cost at most
OPT+O(ρ · cG′ · E1).

In particular, (weighted) paths and cycles are easily-
tourable with respect to constant c, resulting in the
guarantees in Theorem 4. In Section C we give results
suggesting that our analysis of planning problems via
metric embeddings is a refinement of the analysis of
Banerjee et al. (2023).

1 1
r
11

11

...

.

..

.

... ...W

W W

W

W

W

W

WW

W

W

W

1

1

1

1

1

1

1

1

1

1

1

1

g

Figure 1: The lower bound construction for the proof
of Lemmas 11 and 13.

5.2 Lower bounds For Planning

In this section, we provide lower bounds that extend
the results in Banerjee et al. (2023). Consider the plan-
ning problem on some weighted graph G with integer
weights2 where prediction error is parameterized by
E1. Banerjee et al. (2023) propose an algorithm which
provably incurs cost at most OPT + O(E1poly(λ)),
where λ is the doubling constant of the input graph.
We provide complementary lower bounds by establish-
ing the following result:

Lemma 11. Let A be any algorithm for the planning
problem which is guaranteed to incur cost: OPT +
O(Ea1λb) for some a, b ∈ R when run on a weighted
graph G with doubling constant λ, and with a error
vector e⃗ such that ∥e∥1 = E1. Then it must be the case
that a ≥ 1. Moreover, if a = 1, then b ≥ 1.

Our lower bounds are constructive, and consider a
family of graphs illustrated in Figure 1. A full proof
can be found in Section B.

It is known that the doubling constant is always at
least as large as the maximum degree but we note
that in general it may be much larger even if one re-
stricts themselves to trees. We analyze the algorithm
of Banerjee et al. (2023) and prove that in trees with
integer weights performance of their algorithm can be
bounded in terms of maximum degree, at the cost of
paying a higher asymptotic dependence on E1:
Lemma 12. Given G a tree with integer-valued dis-
tances and maximum degree ∆, consider the planning
problem on G with predictions satisfying E1 ≥ 1.

2We note that the analysis of Banerjee et al. for the
above setting also appears to go through for the case non-
integer weights, and that the lower bound provided by
Lemma 11 would then hold for that setting too.

Learning-Based Algorithms for Graph Searching Problems

Figure 2: Performance of Algorithms 1 and 3 against random errors. Experimental procedures are detailed in
Section D. The number of nodes is fixed over all graph topologies and error settings. LEFT: Average and standard
deviation of ALG−OPT incurred by Algorithm 1 over 2000 independent random trials for varying values of E1.
RIGHT: Average and standard deviation of ALG/OPT incurred by Algorithm 3 over 2000 independent random
trials for varying values of ε.

Then on this problem instance Algorithm 4 with objec-
tive ϕ = ϕ1 from Banerjee et al. (2023) incurs cost at
most OPT+O(∆E21).

We establish corresponding lower bounds via a similar
construction to that in Lemma 11:
Lemma 13. Let A be any algorithm for the planning
problem on trees with integer weights which is guaran-
teed to incur cost: OPT+O(Ea1∆b) for some a, b ∈ R
when run on a tree G with maximum degree ∆ and
with a prediction vector e⃗ such that ∥e∥1 = E1. Then
it must be the case that a ≥ 1 and b ≥ 1. Moreover, it
must be that a+ b ≥ 3.

6 NUMERICAL EXPERIMENTS:
IMPACT OF RANDOM ERRORS

Throughout this paper we have focused on worst-case
theoretical guarantees. In this section, we provide
numerical results exploring the effectiveness of Algo-
rithms 1 and 3 on exploration problems beyond the
worst-case setting, particularly under random errors.
The experiments show that in addition to being robust
to adversarial error, the algorithms considered per-
form well in instances with stochastic error. Moreover,
we find that although the guarantees for Algorithm 3
were shown only for trees, empirically the algorithm
also succeeds on general (cyclic) graphs. These results
suggest that Algorithms 1 and 3 could be deployed
effectively for exploration problems in practice.

We study the performance of Algorithm 1 in the abso-
lute regime and Algorithm 3 in the relative regime. In
the left subfigure of Figure 2 we plot the performance
of Algorithm 1 for different graph topologies when the
error is sampled at random in an absolute fashion. We

plot the performance against the total ℓ1-norm of the
error vector. In the right subfigure of Figure 2 we ex-
plore the performance of Algorithm 3 against relative
error. Once again, we find that the algorithm enjoys
empirical performance superior to that predicted by
the worst-case upper bound. In particular, the gap
between the worst-case bound and the average empir-
ical performance is consistent over families of graphs
with very different topologies.

In Table 2 we report the average ratio of algorithmic
cost incurred to value of the upper-bound in Theo-
rem 1 (given as a percentage). We compute this per-
centage for different classes of graphs over 100 runs
of these experiments when the error, initial node and
goal node, and graph structure (when applicable) have
been sampled at random.

We also empirically compare the performance of Al-
gorithm 1 to another natural heuristic, which we call
Smallest Prediction. In Smallest Prediction, the agent
always travels to the vertex v in ∂Vi−1 with the
smallest value of the prediction function f(v). While
our theoretical results already show that Algorithm 1
achieves optimal performance in the worst-case, we
show that our algorithm performs better than Small-
est Prediction in the presence of random error across
a variety of graph topologies. In Figure 3, we plot
the average performance of Algorithm 1 against the
performance of Smallest Prediction (measured as the
distance travelled by the agent, minus OPT, as a frac-
tion of of OPT) in random trees with 100 vertices for a
growing value of the magnitude E1 of the error vector.
More details on this comparison can be found in the
supplementary material.

Further details of our experiments, including details

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

Algorithm 1
Smallest Prediction

(A
L

G
-O

P
T

)/
O

P
T

Figure 3: A comparison of the performance of Algo-
rithm 1 with the Smallest Prediction heuristic. We
plot the average and the standard deviation of the
performance of Algorithm 1 and that of the Smallest
Prediction heuristic against the magnitude of the error
vector E1. Experiments in this figure were conducted
on random trees; for analogous results on other graph
topologies, see Figure 9 in Appendix D.

GRAPH
FAMILY

Random
Lobster

Erdös
Rényi

Random
Tree

Circular
Ladder

COST(%) 2.4± 2.5 3.1± 4.3 1.7± 2.3 0.7± 0.5

Table 2: Average empirical cost of running Algorithm
1 as a percentage of the upper bound in Theorem 1 for
different family of graphs. Experiments performed on
graphs with 300 nodes. These results demonstrate that
when run with randomly-generated errors, the actual
cost incurred by the algorithm is a very small fraction
of the upper bound.

on the error models and the graph families being used
in the experiments can be found in Section D in the
supplementary material.

7 CONCLUSIONS AND FUTURE
DIRECTIONS

In this work we have introduced new general algo-
rithms for the problem of searching in an unknown
graph. Under the absolute error model we design al-
gorithms which succeed in a broad class of graphs and
prove that these algorithms are optimal (Section 3).
We then move beyond the absolute error regime and
consider relative error; to the best of the authors’
knowledge, this work is the first to address the explo-
ration problem under this natural error model. Within
this setting we propose algorithms for the exploration
problem on weighted trees and show that their perfor-
mance is nearly-optimal (Section 4).

We complement our advances in the exploration set-
ting by expanding the landscape of results for the plan-
ning problem. We extend the work of Banerjee et al.
(2023) by providing alternative performance guaran-
tees which establish a linear–rather than quadratic–
dependency on the error parameter E0 in some graph
families, and which suggests that such a lower asymp-
totic dependency may be attainable in general (Theo-
rem 4). We also complete the results of Banerjee et al.
in the planning setting on integer-distance graphs by
proving one cannot improve the factor of E1 in their
upper bound and that achieving this linear dependence
on the error requires cost linear in the doubling con-
stant λ of the instance graph (Lemma 11).

The work in this paper directly suggests several av-
enues for further study. While our lower bounds
demonstrate the impossibility of uniformly improving
the results in Theorem 1, it is possible the bound
may be overly pessimistic in certain classes of graphs;
it would be interesting to consider whether making
stronger structural assumptions about the instance
graph would yield better guarantees. In the setting of
relative error, an immediate open problem is whether
the guarantees on Algorithms 2 and 3 can be extended
to more general graphs. In order to improve under-
standing of the planning problem, a complete charac-
terization of easily-tourable graphs would better con-
textualize Lemma 10. Finally, while the numerical re-
sults suggest the algorithms proposed in this paper
perform well under random errors, formal guarantees
studying this setting would be a valuable addition.

Acknowledgements

The authors wish to thank all the anonymous review-
ers for their thoughtful feedback.

A. DePavia is supported by NSF DGE 2140001.

While working on this project, E. Tani was supported
by the Institute for Data, Econometrics, Algorithms,
and Learning (IDEAL) with the NSF Grant ECCS-
2216912.

References

A. Aamand, P. Indyk, and A. Vakilian. Frequency esti-
mation algorithms under zipfian distribution. arXiv
preprint arXiv:1908.05198, 2019.

A. Aamand, J. Y. Chen, and P. Indyk. (Optimal)
Online Bipartite Matching with Degree Information.
In Advances in Neural Information Processing Sys-
tems, volume 35, 2022.

S. Alpern and S. Gal. The theory of search games and

Learning-Based Algorithms for Graph Searching Problems

rendezvous, volume 55. Springer Science & Business
Media, 2006.

K. Anand, R. Ge, and D. Panigrahi. Customizing ml
predictions for online algorithms. In International
Conference on Machine Learning, pages 303–313,
2020.

S. Angelopoulos, C. Dürr, S. Jin, S. Kamali, and
M. Renault. Online computation with untrusted ad-
vice. In 11th Innovations in Theoretical Computer
Science Conference (ITCS 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

A. Antoniadis, C. Coester, M. Eliáš, A. Polak, and
B. Simon. Online metric algorithms with untrusted
predictions. ACM Transactions on Algorithms, 19
(2):1–34, 2023.

E. Bamas, A. Maggiori, and O. Svensson. The primal-
dual method for learning augmented algorithms. Ad-
vances in Neural Information Processing Systems,
33:20083–20094, 2020.

S. Banerjee, V. Cohen-Addad, A. Gupta, and Z. Li.
Graph searching with predictions. In 14th Innova-
tions in Theoretical Computer Science Conference,
ITCS, volume 251 of LIPIcs, pages 12:1–12:24, 2023.

P. Berman. On-line searching and navigation. Online
Algorithms: The State of the Art, pages 232–241,
2005.

A. Bhattacharya, B. Gorain, and P. S. Mandal. Trea-
sure hunt in graph using pebbles. In International
Symposium on Stabilizing, Safety, and Security of
Distributed Systems, pages 99–113. Springer, 2022.

S. Bouchard, Y. Dieudonne, A. Labourel, and A. Pelc.
Almost-optimal deterministic treasure hunt in ar-
bitrary graphs. In International Colloquium on
Automata, Languages and Programming (ICALP)
2021, 2021.

J. Y. Chen, T. Eden, P. Indyk, H. Lin, S. Narayanan,
R. Rubinfeld, S. Silwal, T. Wagner, D. P. Woodruff,
and M. Zhang. Triangle and four cycle counting
with predictions in graph streams. In 10th Inter-
national Conference on Learning Representations,
ICLR, 2022.

E. Cohen, O. Geri, and R. Pagh. Composable sketches
for functions of frequencies: Beyond the worst case.
In Proceedings of the 37th International Conference
on Machine Learning, 2020.

R. Dechter and J. Pearl. Generalized best-first search
strategies and the optimality of A*. Journal of the
ACM (JACM), 32(3):505–536, 1985.

I. Diakonikolas, V. Kontonis, C. Tzamos, A. Vakilian,
and N. Zarifis. Learning online algorithms with dis-
tributional advice. In International Conference on
Machine Learning, pages 2687–2696, 2021.

S. Dobrev, R. Královič, and E. Markou. Online graph
exploration with advice. In International Collo-
quium on Structural Information and Communica-
tion Complexity, pages 267–278. Springer, 2012.

E. Du, F. Wang, and M. Mitzenmacher. Putting the
“learning" into learning-augmented algorithms for
frequency estimation. In Proceedings of the 38th In-
ternational Conference on Machine Learning, pages
2860–2869, 2021.

F. Eberle, A. Lindermayr, N. Megow, L. Nölke, and
J. Schlöter. Robustification of online graph explo-
ration methods. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 36, pages
9732–9740, 2022.

T. Eden, P. Indyk, S. Narayanan, R. Rubinfeld, S. Sil-
wal, and T. Wagner. Learning-based support esti-
mation in sublinear time. In 9th International Con-
ference on Learning Representations, ICLR, 2021.

T. Eden, P. Indyk, and H. Xu. Embeddings and label-
ing schemes for a. In 13th Innovations in Theoretical
Computer Science Conference (ITCS 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

P. Erdős, A. Rényi, et al. On the evolution of random
graphs. Publ. math. inst. hung. acad. sci, 5(1):17–
60, 1960.

D. Ferguson, M. Likhachev, and A. Stentz. A guide
to heuristic-based path planning. In Proceedings
of the international workshop on planning under
uncertainty for autonomous systems, international
conference on automated planning and scheduling
(ICAPS), pages 9–18, 2005.

P. Ferragina and G. Vinciguerra. Learned data
structures. In Recent Trends in Learning From
Data: Tutorials from the INNS Big Data and Deep
Learning Conference (INNSBDDL2019), pages 5–
41. Springer, 2020.

D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah,
and E. Gunawan. A systematic literature review of
A* pathfinding. Procedia Computer Science, 179:
507–514, 2021.

B. Gorain, K. Mondal, H. Nayak, and S. Pandit.
Pebble guided optimal treasure hunt in anonymous
graphs. Theoretical Computer Science, 922:61–80,
2022.

A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded
geometries, fractals, and low-distortion embeddings.
In 44th Annual IEEE Symposium on Foundations of
Computer Science, 2003. Proceedings., pages 534–
543. IEEE, 2003.

A. Gupta, D. Panigrahi, B. Subercaseaux, and K. Sun.
Augmenting online algorithms with ε-accurate pre-
dictions. Advances in Neural Information Processing
Systems, 35:2115–2127, 2022.

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

C. Hsu, P. Indyk, D. Katabi, and A. Vakilian.
Learning-based frequency estimation algorithms. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, 2019.

P. Indyk, A. Vakilian, and Y. Yuan. Learning-based
low-rank approximations. In Advances in Neural
Information Processing Systems, pages 7400–7410,
2019.

T. Jiang, Y. Li, H. Lin, Y. Ruan, and D. P. Woodruff.
Learning-augmented data stream algorithms. In
International Conference on Learning Representa-
tions, 2020.

B. Kalyanasundaram and K. R. Pruhs. Constructing
competitive tours from local information. Theoreti-
cal Computer Science, 130(1):125–138, 1994.

A. R. Karlin, N. Klein, and S. O. Gharan. A (slightly)
improved approximation algorithm for metric tsp.
In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 32–45,
2021.

D. Komm, R. Královič, R. Královič, and J. Smula.
Treasure hunt with advice. In Structural Informa-
tion and Communication Complexity: 22nd Inter-
national Colloquium, SIROCCO 2015, Montserrat,
Spain, July 14-16, 2015. Post-Proceedings 22, pages
328–341. Springer, 2015.

T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Poly-
zotis. The case for learned index structures. In
Proceedings of the 2018 International Conference on
Management of Data, pages 489–504, 2018.

Y. Li, H. Lin, S. Liu, A. Vakilian, and D. Woodruff.
Learning the positions in countsketch. In The
Eleventh International Conference on Learning Rep-
resentations, 2023.

H. Lin, T. Luo, and D. Woodruff. Learning augmented
binary search trees. In International Conference
on Machine Learning, pages 13431–13440. PMLR,
2022.

T. Lykouris and S. Vassilvitskii. Competitive caching
with machine learned advice. In International Con-
ference on Machine Learning, pages 3302–3311,
2018.

N. Megow, K. Mehlhorn, and P. Schweitzer. Online
graph exploration: New results on old and new al-
gorithms. Theoretical Computer Science, 463:62–72,
2012.

M. Mitzenmacher. A model for learned bloom filters
and optimizing by sandwiching. In Advances in Neu-
ral Information Processing Systems, pages 464–473,
2018.

M. Mitzenmacher and S. Vassilvitskii. Algorithms with
predictions. Communications of the ACM, 65(7):33–
35, 2022.

P. Paliwal. A survey of a-star algorithm fam-
ily for motion planning of autonomous vehicles.
In 2023 IEEE International Students’ Conference
on Electrical, Electronics and Computer Science
(SCEECS), pages 1–6. IEEE, 2023.

A. Pelc. Searching games with errors—fifty years of
coping with liars. Theoretical Computer Science, 270
(1-2):71–109, 2002.

I. Pohl. Bi-directional and heuristic search in path
problems. Technical report, Stanford Linear Accel-
erator Center, Calif., 1969.

M. Purohit, Z. Svitkina, and R. Kumar. Improving
online algorithms via ml predictions. In Advances
in Neural Information Processing Systems, pages
9661–9670, 2018.

L. H. O. Rios and L. Chaimowicz. A survey and clas-
sification of A* based best-first heuristic search al-
gorithms. In Brazilian Symposium on Artificial In-
telligence, pages 253–262. Springer, 2010.

A. Wei and F. Zhang. Optimal robustness-consistency
trade-offs for learning-augmented online algorithms.
Advances in Neural Information Processing Sys-
tems, 33:8042–8053, 2020.

A. C.-C. Yao. Probabilistic computations: Toward
a unified measure of complexity. In 18th Annual
Symposium on Foundations of Computer Science
(sfcs 1977), pages 222–227. IEEE Computer Soci-
ety, 1977.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes : These are included in the main body
of the paper when discussing the relevant re-
sults.]

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. [Yes : The summary results of the
analysis are in the body of the paper, the for-
mal proofs can be found in the supplementary
material.]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes: see uploaded code,
along with README.md file. README.md
outlines all dependencies.]

Learning-Based Algorithms for Graph Searching Problems

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes : These are in-
cluded in the main body of the paper.]

(b) Complete proofs of all theoretical results.
[Yes : These can be found in Section B of
the supplementary material.]

(c) Clear explanations of any assumptions. [Yes
: These are included in the main body of the
paper.]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes: we provide both the code used
to generate the figures, and data files for ex-
actly recreating figures.]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable : No model was trained for this
paper.]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes: this is discussed in
Section 6 and further detailed in Section D
of the supplementary material.]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes: See Section D in the
supplementary material.]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

Supplementary Material

A SURVEY OF RELATED WORKS

Graph search with distance-to-goal predictions The problem and prediction settings considered in this
work most closely correspond to those considered by Banerjee et al. (2023). Banerjee et al. (2023) study explo-
ration and planning under absolute error models. They consider two parametrizations of prediction error: the
first in terms of the number of nodes at which predictions are not equal to true distance-to-goal, denoted E0, and
the second in terms of the ℓ1 norm of the vector of errors, denoted E1 as in this work. They develop an algorithm
for exploration on unweighted trees, and prove guarantees on its performance in terms of E0. They also develop
algorithms for planning on graphs: on unweighted graphs, they establish guarantees parameterized by E0, while
in graphs with integer-valued distances their performance bounds are parameterized by E1.

Treasure Hunt In the treasure hunt problem, a mobile agent must traverse some unknown environment,
continuous or discrete, to locate a stationary hidden goal (Alpern and Gal, 2006). When the search environment
is a graph, this problem shares many features with the exploration problem considered in this paper. Bouchard
et al. (2021) study the graph treasure hunt problem when the searcher receives no additional information. They
establish lower bounds on the total cost incurred by any algorithm in terms of the number of edges in the ball
of radius OPT around the root node, and give algorithms with performance guarantees which asymptotically
exceed these lower bounds by at most a factor of log(OPT). Graph treasure hunt problems have also been
considered when the agent receives help with the task. Komm et al. (2015) study the case when the the searcher
receives generic advice, which can take the form of any bit string. They consider the advice complexity of the
treasure hunt task; they prove that there is an algorithm which achieves competitive ratio r by receiving O(n/r)
bits of advice along the search and moreover they establish that any algorithm achieving a competitive ratio of
r must receive Ω(n/r) bits of advice (see Theorems 4 and 5 in Komm et al. (2015)). In the setting where graph
vertices are anonymized, i.e. the searcher has no way to recognize whether a vertex has or has not previously
been visited, recent work has studied the task of graph treasure hunt with access to advice from an omniscient
oracle which marks vertices with binary labels (Bhattacharya et al., 2022; Gorain et al., 2022).

The exploration model studied in this paper can be viewed as a graph treasure hunt problem with specific kinds
of advice (predictions of distance-to-goal). One main contrast with this work is that the advice considered can
contain adversarial errors, and indeed the impact that different error models have on the graph exploration task
is a core topic investigated in this work.

Path-Planning and A∗ Search Distance-to-goal predictions have been the subject of study in many path-
planning and graph-traversal settings. Initialized with a root node and some known target node, path-planning
problems seek to learn a shortest path between the root and goal and common problem models assume access to
a set of distance-to-goal predictions, referred to as “heuristics” within this literature Pohl (1969); Ferguson et al.
(2005). A∗ search is a celebrated algorithm for the problem of path-finding and graph-traversal, designed for
cases when the entire graph G and all predictions f are accessible in memory, and has spawned many algorithmic
variants (Rios and Chaimowicz, 2010; Foead et al., 2021; Paliwal, 2023).

Much of the theory of A∗ search focuses on cases when predictions have particular structural properties: a
prediction function f : V → R is called admissible if the prediction at every node v is never greater than the
actual distance to the goal from v. A prediction function f : V → R is consistent (or monotone) if for every
node v and every neighbor u of v, f(v) ≤ f(u) + d(v, u) and f(g) = 0. Consistency is studied so heavily in part
because it implies admissibility. Admissible heuristics are well-motivated and occur in various other problems.
For example, Eden et al. (2022) consider access to an oracle that provides an underestimate for the probabilities
of any element in some discrete probability distribution. In addition to being well-motivated by applications,
admissibility is a focus of literature because A∗ search with admissible heuristics enjoys optimality properties
(Dechter and Pearl, 1985).

Learning-Based Algorithms for Graph Searching Problems

Figure 4: Comparing Algorithm 1 versus A∗ search on a random tree with randomly generated errors. The
same set of predictions is provided to both algorithms. While the set of nodes visited by the two algorithms
is comparable, the computational model in A∗ places no penalty on traversal distance so that algorithm has
a tendency to double-back on itself, leading to a more expensive tour. Nodes are colored by prediction value
and labeled with the order in which they are first visited by the relevant algorithm. Tour cost is taken to be∑

d(vi, vi+1) for indices i ordered according to when a node is first visited: the tour cost for A∗ omits costs
incurred by re-expanding a node within the execution of the algorithm.

While many of the problems and algorithms within path-planning may appear closely related to this work at
first-glance, we emphasize that the goals and cost models differentiate the graph searching problems considered
in this work from those in path-planning. In particular, the design and algorithmic guarantees on path-planning
algorithms like A∗ search implicitly assume that the full graph and predictions are available in memory upon
initialization of the algorithm. Performance guarantees and notions of optimality are proven in terms of compu-
tational procedures, rather than traversal distance. For example, when predictions are admissible A∗ is optimal
in the sense that the set of nodes expanded (an operation analogous to visiting a node) is minimal (Dechter and
Pearl, 1985). However, the sequence in which these nodes are expanded can incur high traversal distance, as
illustrated in Figure 4. More generally, the goals of algorithms for path-planning differ substantially from that in
the graph search problem: the path-finding problem seeks to learn and return a shortest path even if the process
required to find such a path is expensive in the sense of graph traversal, whereas the aim of a graph searching
problem is finding the goal node in an inexpensive manner and makes no demand that a shortest path from
the root node to the goal be in the set of visited nodes upon termination of the algorithm. These differences in
goals and algorithmic guarantees mean that in cases when the environment is unknown, i.e. when the graph and
predictions are not available in memory but must instead by accessed by traversal, path-planning algorithms
may incur much higher traversal cost than the graph search algorithms proposed in this paper.

Learning-Based Algorithms. Recent years have seen a marked increase in the integration of machine learning
techniques to enhance traditional algorithmic challenges. Such algorithms have been developed for various topics
including online algorithms Lykouris and Vassilvitskii (2018); Purohit et al. (2018); Angelopoulos et al. (2020);
Wei and Zhang (2020); Bamas et al. (2020); Aamand et al. (2022); Antoniadis et al. (2023); Anand et al. (2020);
Diakonikolas et al. (2021); Gupta et al. (2022), data structures Kraska et al. (2018); Mitzenmacher (2018);
Ferragina and Vinciguerra (2020); Lin et al. (2022), and streaming models Hsu et al. (2019); Indyk et al. (2019);
Aamand et al. (2019); Jiang et al. (2020); Cohen et al. (2020); Du et al. (2021); Eden et al. (2021); Chen et al.
(2022); Li et al. (2023). For an extensive collection of learning-based algorithms, refer to the repository at
https://algorithms-with-predictions.github.io/.

B MISSING PROOFS

In this section, we present detailed proofs of the results in the main body of the paper.

https://algorithms-with-predictions.github.io/

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

B.1 Proofs For Section 3

Proof of Theorem 1 and Corollary 5. Algorithm 1 follows a shortest path in Gi from vi−1 to vi. A simple
consequence of this is that:

ALG =
∑
i∈[T]

dGi
(vi−1, vi).

Let ∆i
def
= dG(vi−1, g) − dG(vi, g), and let T be the number of iterations of the while loop executed, so that

vT = g. We then have: ∑
i∈[T]

∆i = dG(v0, g)− dG(vT , g) = dG(v0, g)− dG(g, g) = OPT .

Consider any iteration i ∈ [T]. Let wi be the first vertex outside of Vi−1 encountered when traversing a shortest
path from vi−1 to g. Note that wi ∈ ∂Vi−1, and hence, by the update rule in Algorithm 1 we have:

f(vi) + dGi
(vi−1, vi) ≤ f(wi) + dGi

(vi−1, wi). (6)

Furthermore, by the definition of wi, we have:

dGi(vi−1, wi) = dG(vi−1, wi). (7)

The above follows from a simple contradiction argument, for the existence of a shorter path from vi−1 to wi in
G which is not in Gi, would contradict the definition of wi. We also have:

dG(vi−i, g) = dG(vi−1, wi) + dG(wi, g). (8)

We then have, for any i ∈ [T]:

dG(vi, g)− f(vi)
(6)
≥ dG(vi, g) + dGi

(vi−1, vi)− dGi
(vi−1, wi)− f(wi)

(7)
= dG(vi, g) + dGi

(vi−1, vi)− dG(vi−1, wi)− f(wi)

= dG(vi−1, g)−∆i + dGi
(vi−1, vi)− dG(vi−1, wi)− f(wi)

(8)
= dGi

(vi−1, vi)−∆i + dG(wi, g)− f(wi).

Note that the vertices in the sequence {vi}i∈[T]∪{0} are always distinct, while the vertices in the sequence {wi}i∈[T]

might not be. This also implies that T ≤ n. The above then implies:

ALG =
∑
i∈[T]

dGi
(vi−1, vi)

≤
∑
i∈[T]

∆i + dG(vi, g)− f(vi) + f(wi)− dG(wi, g)

=
∑
i∈[T]

∆i +
∑
i∈[T]

dG(vi, g)− f(vi) +
∑
i∈[T]

f(wi)− dG(wi, g)

≤ OPT+ E−1 + T · E+∞
≤ OPT+ E−1 + n · E+∞.

This completes the proof of Theorem 1. When predictions are admissible, E−1 = E1 and E+∞ = 0 so Corollary 5
follows.

Proof of Theorem 6. We begin by proving the first half of the theorem. Given E−1 > 0 one considers the
three-vertex graph path P3 where the two edges are weighted with weight w = E−/2, the start vertex / root is
chosen to be the middle vertex and the goal is one of the other two vertices (see left side of Figure 5). Note that
the value of OPT is dG(r, g) = w. When the predictions on the vertices are given by: f(v1) = 0 , f(v2) = w and

Learning-Based Algorithms for Graph Searching Problems

w w

v1 v2 v3

rg

w w

v1

v2 v3

rg

ww

v4

w

v5

w

v(n−1)

vn

· · ·

Figure 5: The construction in the proof of Theorem 6.

f(v3) = 0, the error is equal to E− and the graph looks completely symmetric to the searcher, and hence in the
worst case to find the goal, the searcher has to incur a cost of 3w = w + 2w = OPT+ E− as needed.

For the second part of the theorem, we construct a star on n vertices, where each edge has weight w = E+∞/2,
the starting vertex is at the center of the star, and the goal is chosen arbitrarily among the other vertices. The
prediction at the goal is then picked to equal E+∞ so that it equals the prediction in all other vertices, i.e. we set
the predictions to f(r) = w and f(v) = 2w for all w ̸= r. Every algorithm will then have to visit the entire star
in the worst case, incurring a cost of E+∞/2 + E+∞(n − 2) = OPT + E+∞(n − 2) as needed (See the right side of
Figure 5).

Proof of Proposition 7. We apply Yao’s minimax principle (Yao, 1977) to the same constructions used in the
proof of Theorem 6. For both constructions, we consider the distribution over instances produced by choosing
the goal node uniformly at random among the leaf nodes.

In particular, for the first statement, we consider the performance of any deterministic algorithm on the distri-
bution of instances given by taking the three-node path graph on the left-hand side of Figure 5, and placing
the goal g at either v1 or v3 with equal probability. We fix predictions f(v1) = f(v3) = 0 and f(v2) = w as
in the proof of Theorem 6. The expected cost incurred by any deterministic algorithm over this distribution of
instances is 2w = OPT + w = OPT + 1/2E−. Yao’s minimax principle then implies the stated lower bound for
all randomized algorithms.

The proof of the second result follows analogously by considering the second construction in the proof of Theo-
rem 6.

B.2 Proofs For Section 4

B.2.1 Algorithmic Guarantees Under Relative Error

We begin the analysis of Algorithm 2 by establishing the following properties of the set Sε,r defined in Equa-
tion (5). For G a tree, let PG(u, v) denote the (unique) shortest path between nodes u and v in G.

Lemma 14. For Sε,r as defined in (5) and G a weighted tree, then the following hold:

(i) ∀v ̸∈ Sε,r, dG(v, r) > OPT ,

(ii) ∀v ∈ Sε,r, dG(v, r) ≤ 1+ε
1−ε ·OPT ,

(iii) ∀v ∈ Sε,r, dG(v, g) ≤ 2
1−ε ·OPT ,

(iv) PG(r, g) ⊆ Sε,r,

(v) For any v ∈ Sε,r, PG(v, g) ⊆ Sε,r.

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

Proof. The properties follow immediately from the definition of the relative error model in Equation (1) and the
definition of Sε,r in Equation (5).

(i) ∀v ̸∈ Sε,r, f(v) > 1
1−εf(r) and by Equation (1), f(r) ≥ (1− ε)dG(r, g) = (1− ε)OPT.

(ii) ∀v ∈ Sε,r, dG(v, r) ≤ 1
1−εf(r), and by Equation (1), f(r) ≤ (1 + ε)OPT.

(iii) By triangle inequality, for any v ∈ G

dG(v, g) ≤ dG(v, r) + dG(r, g) = dG(v, r) + OPT

and so by property (ii) above, for any v ∈ Sε,r the result follows.

(iv) ∀v ∈ PG(r, g), dG(r, v) ≤ dG(r, g) = OPT. Thus property (i) above implies ∀v ∈ PG(r, g), v ∈ Sε,r.

(v) Consider v ∈ Sε,r, and let u
def
= argmin{dG(u, g) | u ∈ PG(v, r)}. Because G is a tree,

PG(v, g) = PG(v, u) ∪ PG(u, g).

In particular, PG(v, u) ⊆ PG(v, r); observe that because v ∈ Sε,r, ∀w ∈ PG(v, r), dG(w, r) ≤ dG(v, r) ≤
1

1−εf(r) and thus by the definition of Sε,r, PG(v, r) ⊆ Sε,r. We’ve thus concluded that PG(v, u) ⊆ Sε,r.

For the second portion of the path, PG(u, g), observe that by the definition of u = argmin{dG(u, g) | u ∈
PG(v, r)}, it must be that u ∈ PG(r, g). Thus PG(u, g) ⊆ PG(r, g) and so by property (iv), PG(u, g) ⊆ Sε,r.

With these properties, we now bound the distance travelled on the ith step of the algorithm:

Lemma 15. Let G be a weighted tree, with predictions satisfying Equation (1) with respect to parameter ε < 1.
Then, the distance travelled by Algorithm 2 on the ith iteration satisfies

(1− ε)dGi
(vi−1, vi) ≤ ∆i + 2εdG(vi, g). (9)

Additionally, if the predictions on G are multiplicative and decremental,

dGi
(vi−1, vi) ≤ ∆i + εdG(vi, g). (10)

Proof of Lemma 15. We observe that, by definition of Algorithm 2, for all iterations i, Vi−1 ⊂ Sε,r. Consider
wi the first vertex outside of Vi−1 encountered when traversing P (vi−1, g), the shortest path from vi−1 to g.
Note that wi ∈ ∂Vi−1, and that by property (v) of Lemma 14, wi ∈ Sϵ,r.

Thus, on iteration i, ∃wi ∈ ∂Vi−1 ∩ Sε,r ∩ P (vi−1, g), so by the definition of Algorithm 2 such wi satisfies

f(vi) + dGi
(vi−1, vi) ≤ f(wi) + dGi

(vi−1, wi).

In particular, because wi ∈ P (vi−1, g) ∩ ∂Vi−1 and by the tree properties of G, we have

dGi
(vi−1, wi) = dG(vi−1, wi) = dG(vi−1, g)− dG(wi, g).

We can thus upper bound

dGi
(vi−1, vi) ≤ dG(vi−1, g)− dG(wi, g) + f(wi)− f(vi)

= dG(vi−1, g)− dG(vi, g) +
(
dG(vi, g)− f(vi)

)
+
(
f(wi)− dG(wi, g)

)
= ∆i − εvidG(vi, g) + εwi

dG(wi, g)

where εvi , εwi
∈ [−ε, ε] are the constants whose existence is implied by Equation (1) such that

f(v) = (1 + εv)dG(v, g). (11)

Learning-Based Algorithms for Graph Searching Problems

Consider two cases: first, consider the case when εwi > 0. Because wi ∈ P (vi−1, g),

dG(wi, g) ≤ dG(vi−1, g) ≤ dG(vi−1, vi) + dG(vi, g).

Combining this bound and the fact that εvi , εwi
∈ [−ε, ε] yields:

−εvidG(vi, g) + εwidG(wi, g) ≤ 2εdG(vi, g) + εdG(vi−1, vi).

Thus in this case, the desired bound in (9) is satisfied.

In the second case, when εwi
≤ 0,

−εvidG(vi, g) + εwidG(wi, g) ≤ −εvidG(vi, g) ≤ εdG(vi, g)

which is trivially upper bounded by 2εdG(vi, g) + εdG(vi−1, vi). Thus, in both cases, the desired bound in (9) is
satisfied.

In the case of decremental errors, εv ≤ 0 ∀v ∈ V . Thus the latter case always applies, so we can bound

dGi
(vi−1, vi) ≤ ∆i − εvidG(vi, g) + εwi

dG(wi, g) ≤ ∆i + εdG(vi, g)

thus establishing the bound in (10).

We are now equipped to prove Theorem 2.

Proof of Theorem 2. We will show that Algorithm 2 achieves the desired competitive ratio. We begin by
establishing that the algorithm will terminate at the goal node g: by Property (iv) in Lemma 14, P (r, g) ⊆ Sε,r,
and further by definition P (r, g) is connected, so Algorithm 2 initialized at r will explore a connected subgraph
of G that contains g, and will thus terminate at g.

We now bound the total distance travelled by Algorithm 2. Consider the general case, when errors can be
incremental or decremental. Then, by Lemma 15,

ALG =
∑
i∈[T]

dGi
(vi−1, vi) =

∑
i∈[T]

(1− ε)dGi
(vi−1, vi) + εdGi

(vi−1, vi)

≤
∑
i∈[T]

∆i +
∑
i∈[T]

2εdG(vi, g) +
∑
i∈[T]

εdG(vi−1, vi) = OPT + 2ε

∑
i∈[T]

dG(vi, g)

+ εALG.

Because Vi ⊆ Sε,r for all iterations i, and by property (iii) in Lemma 14,

2ε
∑
i∈[T]

dG(vi, g) ≤ 2ε|Sε,r| ·
2

1− ε
OPT.

Thus, re-arranging,

(1− ε)ALG ≤ OPT

(
1 + |Sε,r|ε ·

4

1− ε

)
,

yielding the claimed competitive ratio from the trivial upper bound |Sε,r| ≤ n.

In the case of decremental errors, Lemma 15 and a similar argument give

ALG =
∑
i∈[T]

dGi
(vi−1, vi) ≤

∑
i∈[T]

∆i +
∑
i∈[T]

εdG(vi, g) ≤ OPT

(
1 + |Sε,r|ε ·

2

1− ε

)
,

yielding the claimed competitive ratio.

To prove Theorem 3, we’ll use the following lemmas: the first (Lemma 16) establishes that certain algorithms
never explore nodes too far from g. We emphasize that the below lemma makes use of distances in the full G,
not Gi. In the case of weighted trees, these two distances are always identical: on a tree, for all iterations i and
for any u, v ∈ Vi ∪ ∂Vi, dGi(u, v) = dG(u, v). The second lemma (Lemma 17) bounds the distance travelled by
these algorithms on any given iteration.

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

Lemma 16. Consider the exploration problem on G a weighted, undirected graph with predictions f satisfying
Equation (1). Consider the update rule used in Algorithm 3:

vi = argmin
v∈∂Vi−1

{βdG(vi−1, v) + f(v)} , (12)

and assume β > 0 satisfies β < 1− ε. Then, for every iteration i ∈ [T], the node vi visited by the algorithm on
the ith iteration satisfies

dG(vi, g) ≤
1 + ε+ β

1− (ε+ β)
OPT.

Proof of Lemma 16. Let ri be the first vertex outside of Vi−1 encountered when traversing PG(r, g) a shortest
path from the root r to g. Note that ri ∈ ∂Vi−1, and thus by Equation (12),

βdG(vi−1, vi) + f(vi) ≤ βdG(vi−1, ri) + f(ri).

In particular, by the triangle inequality we can bound

f(vi) ≤ β (dG(vi−1, ri)− dG(vi−1, vi)) + f(ri)

≤ βdG(ri, vi) + f(ri)

≤ β (dG(ri, g) + dG(vi, g)) + f(ri).

Given ri ∈ PG(r, g), dG(ri, g) ≤ dG(r, g) = OPT. Moreover, recalling that the predictions f must satisfy
Equation (1), let εvi and εri be the relative errors at vertex vi and ri respectively (defined as in Equation (11)).
Then we can rewrite the bound above as

(1 + εvi)dG(vi, g) ≤ β (dG(ri, g) + dG(vi, g)) + (1 + εri)dG(ri, g),

and hence:
(1 + εvi − β)dG(vi, g) ≤ (β + 1 + εri)OPT.

Using the fact that εvi , εri ∈ [−ε, ε] and the assumption that β satisfies β < 1− ε, we can use the above bound
to conclude

dG(vi, g) ≤
1 + ε+ β

1− (ε+ β)
OPT.

In particular, this holds on any iteration independently of i, so we obtain the desired result.

Lemma 17. Consider the exploration problem on G a weighted, undirected graph with predictions f satisfying
Equation (1). Assume β > 0 satisfies

1 + ε

2
< β < 1− ε. (13)

Then the distance traversed by Algorithm 3 on the ith iteration is bounded by

dGi
(vi−1, vi) ≤

β

2β − 1− ε
∆i +

2ε

2β − 1− ε
dG(vi, g).

Proof of Lemma 17. Let PG(u, v) denote an (arbitrary) shortest path between nodes u and v in G. Algo-
rithm 3 follows a shortest path in Gi from vi−1 to vi. Let wi be the first vertex outside of Vi−1 encountered
when traversing PG(vi−1, g). Note that as a consequence, wi ∈ ∂Vi−1, and hence by (12) we have

βdGi
(vi−1, vi) + f(vi) ≤ βdGi

(vi−1, wi) + f(wi).

Since wi ∈ PG(vi−1, g),
dGi(vi−1, wi) = dG(vi−1, wi) = dG(vi−1, g)− dG(wi, g).

Re-arranging and using the above fact, we obtain

βdGi
(vi−1, vi) ≤ βdGi

(vi−1, wi) + f(wi)− f(vi)

= β
(
dG(vi−1, g)− dG(wi, g)

)
+ f(wi)− f(vi)

Learning-Based Algorithms for Graph Searching Problems

= β
(
dG(vi−1, g)− dG(vi, g)

)
+

(
βdG(vi, g)− f(vi)

)
+

(
f(wi)− βdG(wi, g)

)
.

Let εvi , εwi be the relative prediction errors at vi and wi respectively (defined as in Equation (11)), and recall
the definition of ∆i in (3). Then we can rewrite the above as

βdGi
(vi−1, vi) ≤ β∆i + (β − 1− εvi)dG(vi, g) + (1 + εwi

− β)dG(wi, g).

Because wi ∈ PG(vi−1, g), we have that

dG(vi−1, wi) + dG(wi, g) = dG(vi−1, g) ≤ dG(vi−1, vi) + dG(vi, g).

Moreover, by upper bound on β in (13), (1 + εwi
− β) ≥ 0, so we can revise our upper bound:

βdGi
(vi−1, vi) ≤ β∆i + (β − 1− εvi)dG(vi, g) + (1 + εwi

− β)
(
dG(vi−1, vi) + dG(vi, g)

)
.

Re-arranging and recalling εvi−1
, εwi

∈ [−ε, ε] yields

(2β − 1− ε)dGi
(vi−1, vi) ≤ β∆i + 2εdG(vi, g)

Leveraging the lower bound on β in (13), we can divide to obtain the desired result.

Theorem 3 follows immediately from Lemmas 16 and 17:

Proof of Theorem 3. Observe that for ε ∈ (0, 1/3), β = 2/3 always satisfies Equation (13), independently of
the value of ε. Thus for this setting, Lemma 17 implies that the update cost on a single iteration of Algorithm 3
is bounded as

dGi
(vi−1, vi) ≤

2

1− 3ε
∆i +

6ε

1− 3ε
dG(vi, g). (14)

In particular, for G a weighted tree, on all iterations i, for all u, v ∈ Vi ∪ ∂Vi,

dGi(u, v) = dG(u, v).

This, in combination with the choice of β = 2/3 implies that Lemma 16 applies, so for all vertices vi visited by
the algorithm, we have

dG(vi, g) ≤
5 + 3ε

1− 3ε
OPT. (15)

We can then upper bound the last term in Equation (14) and obtain:

dGi
(vi−1, vi) ≤

2

1− 3ε
∆i +

6ε

1− 3ε
· 5 + 3ε

1− 3ε
OPT

Thus, letting T denote the total number of iterations made by Algorithm 3, summing over all iterations yields

ALG =
∑
i∈[T]

dGi(vi−1, vi) ≤
2

1− 3ε

∑
i∈[T]

∆i +
6ε

1− 3ε
· 5 + 3ε

1− 3ε
OPT · T.

In particular,
∑

i∈[T] ∆i = OPT, and as every iteration i must end at some distinct vi satisfying (15),

T ≤
∣∣∣∣B(

g,
5 + 3ε

1− 3ε
OPT

)∣∣∣∣ ≤ n.

We then have:

ALG ≤ 2

1− 3ε
OPT+

6ε

1− 3ε
· 5 + 3ε

1− 3ε
OPT · T

≤ OPT

(
2 +

6ε

1− 3ε
+

6ε

1− 3ε
· 5 + 3ε

1− 3ε
· n

)
.

Giving the result in the statement of the theorem.

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

B.2.2 Lower bounds For Exploration With Relative Error

Proof of Theorem 8. We consider a star in which every edge has weight w1, to this, we add a new vertex g
connected to one of the outside vertices by an edge of weight w2. We consider the case when the initial position
r is the central node of the star. In this case, the optimal algorithmic cost is

OPT = dG(r, g) = w1 + w2.

For the given ε ∈ (0, 1), consider choice of w1 and w2 such that

ε =
w1

w1 + w2
.

Note that in particular, such a setting of weights allows for the following predictions: every node except for the
root and the goal can have prediction

f(v) = (1− ε)(2w1 + w2).

For the above setting of w1 and w2, this satisfies Equation 1 with respect to ε. In particular, for a searcher
starting at the root, all neighbors of the root appear identical.

In this error regime, every algorithm for the exploration problem has to explore all branches of the star before
finding g in the worst-case. Thus any algorithm has to incur cost at least

ALG = 2w1 · (n− 3) + (w1 + w2) = w1(2(n− 3) + 1) + w2.

The competitive ratio in this instance is thus

ALG

OPT
= (2(n− 3) + 1)

w1

w1 + w2
+

w2

w1 + w2
= (2(n− 3) + 1) ε+ (1− ε) = Θ(1 + nε).

Proof of Proposition 9. Consider a distribution over instances obtained by taking the instance defined in the
proof of Theorem 8, selecting a neighbor v of the root vertex r uniformly at random, and replacing the edge
incident to the goal vertex g with an edge gv of weight w2.

Any deterministic algorithm for the exploration problem running on an instance sampled from this distributions
incurs expected cost at least:

ALG = (n− 3) · 1
2
2w2 +OPT = ((n− 3)ε+ 1)OPT ≥

(
1 +

nε

2

)
OPT.

The lower bound for randomized algorithms then follows from applying Yao’s minimax principle (Yao, 1977).

B.3 Proofs For Section 5

Throughout this subsection, we will use the following properties of ϕ0 and ϕ1 established by Banerjee et al.
(2023):

Lemma 18. Corollary 5.4 and Lemma 5.10 in Banerjee et al. (2023). Given G an unweighted graph, for any
u, v ∈ G,

ϕ0(u) + ϕ0(v) ≥ dG(u, v).

For G weighted,
ϕ1(u) + ϕ1(v) ≥ 2dG(u, v).

B.3.1 Planning Bounds Via Metric Embeddings

The distortion of an embedding can be related to its Lipschitz constant and that of its inverse: the Lipschitz
constant of τ is defined as:

∥τ∥Lip
def
= max

x1,x2∈X

dY (τ(x1), τ(x2))

dX(x1, x2)
.

Learning-Based Algorithms for Graph Searching Problems

Note that any map with non-trivial distortion must be injective, and thus considering τ−1 : Y → X,

dist(τ) = ∥τ∥Lip · ∥τ−1∥Lip.

To prove Lemma 10, we’ll use the following fact to relate tours in G to tours in some embedding.
Lemma 19. Consider an embedding τ : G→ G′ for G = (V,E) and G′ = (V ′, E′). Then for any S ⊆ V ,

tourG(S) ≤ ∥τ−1∥Lip · tourG′(τ(S)).

Proof of Lemma 19. Recall the definition of tourG(S) given in Equation (2):

tourG(S)
def
= max

v∈S
min

W∈W(v,S)
lengthG(W),

where W(v, S) is the set of walks in G starting at vertex v and visiting every vertex in S. Consider any walk
W = (u1, ..., uk) in G′ starting at some u1 ∈ τ(S) and visiting all of τ(S). Let W ′ = (u′

1, ..., u
′
k′) be the

subsequence of W containing only the points in τ(S). Note that W ′ contains all of the points in τ(S). We have:

lengthG′(W) =

k−1∑
i=1

dG′(ui, ui+1) ≥
k′−1∑
i=1

dG′(u′
i, u

′
i+1) (16)

≥
k′−1∑
i=1

1

∥τ−1∥Lip
· dG(τ−1(u′

i), τ
−1(u′

i+1)). (17)

So, letting W ′′ be the walk visiting the vertices (τ−1(u′
i))

k′

i=1 in order while walking the shortest path in G
between them. We then have:

lengthG′(W) ≥
k′−1∑
i=1

1

∥τ−1∥Lip
· dG(τ−1(u′

i), τ
−1(u′

i+1)) =
1

∥τ−1∥Lip
· lengthG(W

′′).

In particular, for any starting point v ∈ S and any walk in W ∈ W(τ(v), τ(S)) there exists some walk W ′′ ∈
W(v, S) such that:

lengthG(W
′′) ≤ ∥τ−1∥Lip · lengthG′(W),

so that, for every v ∈ S:

min
W∈W(v,S)

lengthG(W) ≤ ∥τ−1∥Lip min
W∈W(τ(v),τ(S))

lengthG′(W) ≤ ∥τ−1∥Lip max
u∈τ(S)

min
W∈W(u,τ(S))

lengthG′(W),

and hence:
max
v∈S

min
W∈W(v,S)

lengthG(W) ≤ ∥τ−1∥Lip max
u∈τ(S)

min
W∈W(u,τ(S))

lengthG′(W),

completing the proof.

We now use Lemma 19 to establish Lemma 10.

Proof of Lemma 10. Given a real-valued function f : V → R, we denote the sublevel set of f about threshold
c as

L−
f (c)

def
= {v ∈ V : f(v) ≤ c}.

For the first part of the result, let G be an unweighted graph and consider the sublevel set L−
ϕ0
(λ). By definition

of the Lipschitz constant of τ : G→ G′, for all u, v ∈ G

dG′(τ(u), τ(v)) ≤ ∥τ∥LipdG(u, v).

Thus by Lemma 18, the embedding of the sublevel set has bounded diameter: let u, v ∈ L−
ϕ0
(λ) such that

diam
(
τ(L−

ϕ0
(λ))

)
= dG′(τ(u), τ(v)). Then

diam
(
τ(L−

ϕ0
(λ))

)
= dG′(τ(u), τ(v)) ≤ ∥τ∥LipdG(u, v) ≤ ∥τ∥Lip(ϕ0(u) + ϕ0(v)) ≤ ∥τ∥Lip · 2λ.

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

Using this result along with the bound from Lemma 19 and the assumption that G′ is cG′ easily-tourable, we
can bound

tourG(L
−
ϕ0
)(λ) ≤ ∥τ−1∥Lip · tourG′

(
τ(L−

ϕ0
(λ)

)
≤ ∥τ−1∥Lip · cG′diam

(
τ(L−

ϕ0
(λ))

)
≤ ∥τ−1∥Lip · cG′ · 2λ∥τ∥Lip
= 2ρcG′λ.

We now use this bound to analyze the cost of Algorithm 4. Algorithm 4 sequentially visits sublevel sets of ϕ0.
On an iteration k corresponding to threshold λk, the algorithm visits each node in L−

ϕ0
(λk) ⊆ V by computing a

constant-factor approximation to the following problem: for {v1, . . . , v|L−
ϕ0

(λk)|} the nodes of L−
ϕ0
(λk) and Π(n)

the set of permutations on integers 1, . . . , n, the algorithm computes

σ∗
λk

def
= argmin

σ∈Π(|L−
ϕ0

(λk)|)

|L−
ϕ0

(λk)|∑
i=1

dG(vσ(i), vσ(i+1)).

The total distance travelled on the iteration k is thus

|L−
ϕ0

(λk)|∑
i=1

dG(vσ∗(i), vσ∗(i+1)) ≤ max
v∈L−

ϕ0
(λk)

min
W∈W(v,L−

ϕ0
(λk))

lengthG(W) = tourG(L
−
ϕ0
(λk)).

Algorithm 4 begins with λ0 = 1 and doubles the threshold on each iteration, such that λk = 2k. In particular,
ϕ0(g) = E0, so the algorithm is guaranteed to terminate by the time it has visited every node of L−

ϕ0
(λk) for the

first sufficiently large threshold λk ≥ E0. The algorithmic cost can thus be bounded as

ALG ≤ dG(r, L
−
ϕ0
(1)) +

⌈log2(E0)⌉∑
k=0

tourG(L
−
ϕ0
(2k))

≤ dG(r, L
−
ϕ0
(1)) + 2ρcG′

⌈log2(E0)⌉∑
k=0

2k

≤ dG(r, L
−
ϕ0
(1)) + 2ρcG′(4E0 − 1).

Using Lemma 18, we can bound the transition cost from r to the first sublevel set as

dG(r, L
−
ϕ0
(1)) ≤ dG(r, g) + dG(g, L

−
ϕ0
(1)) ≤ OPT+ (ϕ0(g) + 1) = OPT+ E0 + 1.

Combining these yields

ALG ≤ OPT+ E0(8ρcG′ + 1)− 2ρcG′ + 1 = OPT+O(ρcG′E0),

as desired.

For the second part of the result, let G be an graph with integer-valued distances consider the sublevel set L−
ϕ1
(λ),

and note that Lemma 19 holds for both weighted and unweighted graphs. The proof then follows analogously to
the above argument, using the appropriate bound relating ϕ1 to distances in G from Lemma 18.

Learning-Based Algorithms for Graph Searching Problems

B.3.2 Lower Bounds For Planning Problems

1 1
r

11

11

...

.

..

.

...

...

W

W W

W

W

W

W

WW

W

W

W

1

1

1

1

1

1

1

1

1

1

1

1

g

Figure 6: Reproduction of Figure 1. The lower bound construction for the proof of Lemma 11

Proof of Lemma 11. We construct a family of graphs with uniform predictions and analyze the worst-case
cost incurred by any algorithm for the planning problem.

For a given ∆ and W ∈ N let G∆,W be following graph: consider a root node r with ∆ child nodes v1, . . . , v∆.
Let every edge (r, vi) have edge weight 1. Each child node vi then has ∆− 1 descendants ui

1, . . . , u
i
∆−1 with edge

weights 1 for each edge (vi, u
i
j). Each of these descendants has a single child node wi

j to which ui
j is attached

with edge weight W . This construction is illustrated in Figure 1.

We consider the planning problem when the searcher is initialized at the root node r described above, and the
goal is the leaf node w1

1. We consider the case when error in the predictions is such that each subtree rooted
at vi appears to have the same predictions. In this construction, predictions are equal to true distance-to-goal
for all nodes which are descendents of v1 for i ̸= 1, and error is allocated only over descendents of v1. We first
calculate the total error in such predictions:

E1 = |f(v1)− dG(v1, g)|+ |f(g)|+
∆−1∑
j=2

|f(u1
j)− dG(u

1
j , g)|+ |f(w1

j)− dG(w
1
j , g)| = 2W + 6∆+ 4.

Under these predictions, all nodes on a given level from the root appear identical to the searcher. As a result, in
the worst-case any algorithm for this problem must visit every node and incur cost ALG at least as large as the
shortest tour of the graph starting at r and ending at g. Hence:

ALG ≥W (2∆2 − 2∆− 1) + 2(∆2 − 1).

On the other hand, we have OPT = dG(r, g) = W + 2. This gives:

ALG−OPT ≥ 2W (∆2 −∆− 1) + 2(∆2 − 2).

In order to understand how this cost scales with our parameters of interest, we now establish bounds on the
doubling constant of G that show that λ = Θ(∆2). Recall that the doubling constant is defined to be the

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

minimum value of λ such that for any radius R, any ball of radius R can be covered with at most λ many balls of
radius R/2. Observe that the number of nodes n always upper bounds the doubling constant, so λ ≤ 2∆2+∆+1.
To lower bound the doubling constant, consider the ball of radius W + 2 centered at the root node r, and note
that this ball contains the entire graph. For W large (W ≥ 4), ∆2 +1 many balls of radius W/2+1 are required
to cover the nodes of the graph, hence ∆2 − 1 ≤ λ.

The fact that a ≥ 1 then follows from observing that λ is independent of W while ALG−OPT = Ω(W∆2). The
fact that if a = 1, b ≥ 1 similarly follows from the above along with E1 = Θ(W +∆).

Proof of Lemma 13. To establish that a ≥ 1 and that a+ b ≥ 3, we consider the same construction outlined
in the proof of Lemma 11 above. The same argument implies a ≥ 1. Setting W = ∆ yields a family of problem
instances on integer-weighted trees for which ALG − OPT = Ω(∆3) where E1 = Θ(∆). Thus on this family of
instances any algorithm which is guaranteed to incur cost ALG−OPT = O(Ea1∆b) must have a+ b ≥ 3.

To establish that b ≥ 1, we consider a construction in which E1 scales independently of ∆. Consider the weighted
star with edge weights w, and assume the searcher is initialized at the central root node r and the goal node g is
a leaf node as illustrated on the right side of Figure 5. We consider the same predictions constructed in the proof
of Theorem 6: all nodes except for g have f(v) = dG(v, g), and f(g) = 2w so that predictions at all leaf nodes
appear uniform. Then in the worst case, the searcher must visit every node in the graph, incurring traversal cost

ALG = w(2∆− 1).

However, the total ℓ1 norm of the vector of errors is E1 = 2w independent of ∆, and OPT = w, so the result
follows.

Lemma 20. Let A be any algorithm for the planning problem on weighted trees which is guaranteed to incur cost:
OPT + O(Ea1 ρb) on graph searching instance I, where ρ is the minimum distortion of embedding the instance
graph into the path. Then a ≥ 1 and b ≥ 1.

Proof. The proof is entirely analogous to that of the second part of Lemma 13. For any value of E1, one can make
use of the same construction (the weighted star, with r the central node and g a leaf) with weights w = E1/2 on
each edge.

The result then follows from observing that for the family of constructed graphs, ρ = ∆ and the analogous
calculations.

B.4 Planning On Trees With Integer-Valued Distances

In this section, we prove Lemma 12. The result follows from arguments analogous to those outlined in Banerjee
et al. (2023) Section 5.1: we first state and prove three necessary lemmas.
Lemma 21 (Analogous to Lemma 5.3 in Banerjee et al. (2023)). Given G with positive integer distances d :
V × V → Z≥0, for any U ⊆ V

|S \M(U)| ≤
∑
u∈U

φ1(u),

where
M(U)

def
= {v ∈ V : d(v, u) = d(v, u′) ∀u, u′ ∈ U}.

Proof Lemma 21. Given d : V × V → Z≥0, for any U ⊆ V , ∀w ̸∈M(U) let uw, vw denote elements of U such
that dG(w, uw) ̸= dG(w, vw). In particular, because d(·, ·) is integer-valued, ∀w ̸∈M(U)

|dG(w, uw)− dG(w, vw)| ≥ 1.

In particular, for any S ⊆ V∑
u∈U

φ1(u) =
∑
u∈U

∑
w∈V

|f(w)− dG(w, u)|

≥
∑
u∈U

∑
w∈S\M(U)

|f(w)− dG(w, u)|

Learning-Based Algorithms for Graph Searching Problems

≥
∑

w∈S\M(U)

|f(w)− dG(w, uw)|+ |f(w)− dG(w, vw)|

≥
∑

w∈S\M(U)

|dG(w, uw)− dG(w, vw)|

≥ |S \M(U)|.

Lemma 22 (Generalization of Lemma 5.10 in Banerjee et al. (2023)). For any u, v ∈ V , we have:

φ1(u) + φ1(v) ≥ 2d(u, v) +
∑

w∈V \{u,v}

|d(u,w)− d(v, w)| .

Proof of Lemma 22. The proof is a straight-forward application of the triangle inequality:

φ1(u) + φ1(v) =
∑
w∈V

|d(u,w)− f(w)|+ |d(v, w)− f(w)|

≥
∑
w∈V

|d(u,w)− f(w)− d(v, w) + f(w)|

=
∑
w∈V

|d(u,w)− d(v, w)|

= 2d(u, v) +
∑

w∈V \{u,v}

|d(u,w)− d(v, w)| .

We also utilize the following bound on the size of the minimum Steiner tree of any sublevel set of ϕ1: recall that
for a real-valued function f : V → R, we denote the sublevel set of f about threshold c as

L−
f (c)

def
= {v ∈ V : f(v) ≤ c}.

Lemma 23. For G a connected tree with at least three nodes, integer edge weights, and maximum degree ∆, let
Cλ denote the set of vertices in the minimum Steiner tree containing all vertices in L−

ϕ1
(λ). Then

|Cλ| ≤ λ∆.

Proof of Lemma 23. By definition, L−
ϕ1
(λ) ⊆ Cλ. Let u1, u2 ∈ L−

ϕ1
(λ) such that

d(u1, u2) = diam(L−
ϕ1
(λ))

If ̸ ∃w ∈ Cλ such that d(u1, w) = d(u2, w), then Lemma 21 implies

|Cλ| = |Cλ \M(u1, u2)| ≤ φ1(u1) + φ1(u2) ≤ 2λ.

In particular, for G connected with at least three nodes, ∆ ≥ 2, so the desired bound holds.

We now consider the case when ∃w ∈ Cλ such that d(u1, w) = d(u2, w). Let q1, . . . , qk denote the neighbors of w
and let Ti ⊆ Cλ denote the subtree of descendants of w that contains qi. Assume without loss of generality that
T1 ∋ u1 and T2 ∋ u2. Note that, because Cλ is defined to be minimal, ∀i ∈ [k] L−

ϕ1
(λ) ∩ Ti ̸= ∅. Let u3, ..., uk

be points such that ui ∈ L−
ϕ1
(λ) ∩ Ti. Consider any x ∈ Cλ \ {w}. Then ∃j ∈ [k] such that x ∈ Tj . This case is

illustrated in Figure 7.

Assume without loss of generality that j ̸= 1 (this can be assumed WLOG because if x ∈ T1, then the below
argument can be carried out with respect to u2). Because G is a tree and x ̸∈ T1,

d(u1, x) = d(u1, w) + d(w, x)

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

Tj

qj

wu1 u2

x

uj

...

Figure 7: Visual aid for proof of Lemma 23, for the case when ∃w ∈ Cλ such that d(u1, w) = d(u2, w).

By choice of u1, u2, diam(L−
ϕ1
(λ)) = 2d(u1, w) so in particular d(u1, w) ≥ d(uj , w) ∀uj ∈ L−

ϕ1
(λ). Thus

d(u1, x) = d(u1, w) + d(w, x) ≥ d(uj , w) + d(w, x).

Moreover, for all v ∈ Tj , d(v, w) = d(v, qj) + d(qj , w) by definition of subtree Tj , so for non-zero weights,

d(uj , w) + d(w, x) > d(uj , qj) + d(x, qj) ≥ d(uj , x)

We thus conclude d(u1, x) > d(uj , x), which in particular implies x ̸∈M({u1, . . . , uk}).

Thus for all (Cλ \ {w}) ∩M({u1, . . . , uk}) = ∅, so

|Cλ| − 1 = |Cλ \M({u1, ..., uk}) ≤
k∑

i=1

φ1(ui) ≤ λ∆.

We have thus established the result in both cases (i.e. when Cλ ∩ M({u1, . . . , uk}) = ∅ and when
Cλ ∩M({u1, . . . , uk}) ̸= ∅).

Proof of Lemma 12. Consider the cost of visiting every node in Cλ, a minimum Steiner tree containing the
sublevel set L−

ϕ1
(λ). Because Cλ is minimal,

diam(Cλ) = diam(L−
ϕ1
(λ)) ≤ λ

where the last inequality follows from Lemma 22. In particular, traversing Cλ to visit every node incurs travel
cost at most diam(Cλ) · |Cλ|. Combining the above bound and Lemma 23 implies diam(Cλ) · |Cλ| ≤ λ2∆.

Algorithm 4 with objective ϕ1 proceeds by iteratively visiting every node in the sublevel set L−
ϕ1
(λ) by computing

and traversing a minimum Steiner tree Cλ that contains the sublevel set. Algorithm 4 begins with λ0 = 1 and
doubles the threshold on each iteration, such that λk = 2k. In particular, ϕ1(g) = E1, so the algorithm is
guaranteed to terminate by the time it has visited every node of L−

ϕ1
(λk) for the first sufficiently large threshold

λk ≥ E1. The algorithmic cost of Algorithm 4 with objective ϕ1 is thus bounded by

ALG = d(r, L−
ϕ1
(1)) +

⌈log2(E1)⌉∑
k=0

diam(C2k) · |C2k |

≤ d(r, L−
ϕ1
(1)) + ∆

⌈log2(E1)⌉∑
k=0

(2k)2

≤ d(r, L−
ϕ1
(1)) +

∆

3
(16E21 − 1)

Additionally, leveraging Lemma 22 and the fact that ϕ1(g) ≤ cE1,

d(r, L−
ϕ1
(1)) ≤ d(r, g) + d(g, L−

ϕ1
(1)) ≤ OPT+

1

2
(E1 + 1) .

Combining these bounds yields the desired result in the regime E1 ≥ 1.

Learning-Based Algorithms for Graph Searching Problems

C RELATION BETWEEN EMBEDDING DISTORTION AND DOUBLING
DIMENSION

We show that that every graph with a low-distortion embedding into the path also has small doubling dimension
/ doubling constant, as per the following lemma. Recall that the doubling constant of a metric space is the
smallest value λ such that, for any choice of radius R ∈ R, every ball of radius R can be covered with the union
of λ balls of radius R/2, and that the doubling dimension is given by log2 λ.

Lemma 24. Let G be an undirected graph on n vertices admitting an embedding into a path on n vertices with
distortion ρ and let λ be the doubling constant of G. Then:

λ ≤ ⌈8ρ⌉.

In contrast there exist graphs with constant doubling dimension that admit no embeddings into the unweighted
path of distortion independent of n. For example, the 2D planar grid graph on n vertices has constant doubling
dimension / doubling constant, but a simple argument shows that every embedding of the 2D planar grid into
the path has distortion Ω(

√
n).

Proof of Lemma 24. Let G = (V,E) be an undirected graph which embeds into [n] with distortion ρ. Let τ
be an embedding which achieves this distortion. For any R > 0, let BG(u,R) ⊆ V denote the ball in G centered
at u of radius R, and let B[n](τ(u), R) denote the ball of radius R in [n] centered at τ(u). Let τ(S) ⊆ [n] denote
the image of S ⊆ V under τ . For any radius R and any u ∈ V , by the definition of the Lipschitz constant we
can bound

d[n](τ(u), τ(v)) ≤ ∥τ∥LipdG(u, v) ≤ ∥τ∥LipR ∀v ∈ BG(u,R)

so τ(BG(u,R)) ⊆ B[n](τ(u), ∥τ∥LipR). In particular, for S1 ⊆ V , τ(S1) ⊆ S2 implies S1 ⊆ τ−1(S2), so we
conclude BG(u,R) ⊆ τ−1(B[n](τ(u), ∥τ∥LipR)).

Consider B[n](τ(u), ∥τ∥LipR). Fix ϵ and let kϵ denote the cardinality of an ϵ-covering of B[n](τ(u), ∥τ∥LipR).
Observe that for any c, ϵ > 0 and any v ∈ [n], B[n](v, c) admits an ϵ-covering of cardinality at most ⌈2c/ϵ⌉,
so kϵ ≤ ⌈2∥τ∥LipR/ϵ⌉. Let {x1, . . . , xkϵ

} ⊆ [n] denote the centers of the covering balls. Given BG(u,R) ⊆
τ−1(B[n](τ(u), ∥τ∥LipR)), we observe that

BG(u,R) ⊆
kε⋃
i=1

τ−1
(
B[n](xi, ϵ)

)
.

In particular, ∀i ∈ [kϵ], for any x, y ∈ B[n](xi, ϵ), the definition of the Lipschitz constant implies

dG(τ
−1(x), τ−1(y)) ≤ ∥τ−1∥Lipd[n](x, y) ≤ ∥τ−1∥Lip · 2ϵ.

Thus diam
(
τ−1

(
B[n](xi, ϵ)

))
≤ 2ϵ∥τ−1∥Lip. In particular, this implies that ∀i ∈ [kϵ] such that τ−1

(
B[n](xi, ϵ)

)
̸=

∅, ∃vi ∈ V such that τ−1
(
B[n](xi, ϵ)

)
⊆ BG(vi, 2ϵ∥τ−1∥Lip). Thus

BG(u,R) ⊆
kε⋃
i=1

τ−1
(
B[n](xi, ϵ)

)
⊆

kε⋃
i=1

BG(vi, 2ϵ∥τ−1∥Lip).

We have thus produced a covering of BG(u,R) using kϵ balls of radius 2ϵ∥τ−1∥Lip. We now choose ϵ so that
2ϵ∥τ−1∥Lip = R/2, namely let ϵ = R/(4∥τ−1∥Lip). The cardinality of the covering is then

kϵ ≤

⌈
2∥τ∥LipR

ϵ

⌉
=

⌈
2∥τ∥LipR ·

4∥τ−1∥Lip
R

⌉
= ⌈8∥τ∥Lip∥τ−1∥Lip⌉

Using the fact that ρ = ∥τ∥Lip∥τ−1∥Lip we conclude that the doubling constant of G is at most ⌈8ρ⌉.

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

D EXPERIMENTAL DETAILS

In this section, we provide a detailed descriptions of the experiments discussed in Section 6 of the main body of
the paper. We outline two sets of experiments: the first set of experiments is used to evaluate the performance of
Algorithm 1 in the presence of absolute error, the second set is used to evaluate the performance of Algorithm 2
in the presence of relative error. Both these sets of experiments focus on stochastic error.

All experiments in this section were run on a 2019 MacBook Pro with a 1.4 GHz Quad-Core Intel Core i5
Processor with 16 GB of RAM. No GPUs were used for this experiment.

Figure 8: A larger rendering of the left subfigure in Figure 2 in the main body of the paper.

Absolute Error The first set of experiments corresponds to the left side of Figure 2 (replicated above as
Figure 8). Here, we generate an error vector e⃗ ∈ Rn according to the following procedure: we fixed a value E1
representing the total desired ℓ1-norm of the vector of errors, and then we sampled a vector e⃗unsigned uniformly
at random from the scaled simplex with ℓ1-norm equal to E1, i.e.:

e⃗unsigned ∼ E1 ·∆n
def
= {x⃗ ∈ Rn | x⃗ ≥ 0, ∥x⃗∥1 = E1}.

We then assign a random sign to each entry of e⃗unsigned to obtain e⃗, this is done by multiplying each e⃗unsigned[v]
by a Rademacher random variable σv. Fixing a graph G, the predictions at each vertex v ∈ V are then given by
f(v) = dG(v, g)+σv · e⃗unsigned[v]. This is repeated over many instance graphs selected from four classes: Random
Tree, Random Lobster, Erdos-Rényi and Circular Ladder (See paragraph Graph Families below). Whenever
the family of graphs chosen is stochastic, as it is the case for all classes except for Circular Ladder, the graph
is also resampled from its family at each iteration, so that the expectation is taken over the sampling of the
graph topology as well as the random error. For each of these problem instances, we run Algorithm 1 and record
the difference between the total distance ALG travelled by the algorithm to find g, and the true shortest-path
distance OPT from the starting point to g, and we plot E1 against it. We report mean and standard deviation
of ALG−OPT over 2000 independent trials.

Learning-Based Algorithms for Graph Searching Problems

(A
L

G
-O

P
T

)/
O

P
T

Erdos-Renyi

Algorithm 1
Smallest Prediction

(A
L

G
-O

P
T

)/
O

P
T

Random Lobster

Algorithm 1
Smallest Prediction

(A
L

G
-O

P
T

)/
O

P
T

Circular Ladder

Algorithm 1
Smallest Prediction

Figure 9: A comparison of the performance of Algorithm 1 with the Smallest Prediction heuristic. Each sub-
figure represents one family of graphs: the top-left corresponds to random Erdös-Rényi graphs, the top-right
corresponds to Random Lobster, and the middle one at the bottom corresponds to circular ladder (See Graph
Families at the end of this section). In each figure, we plot the average and the standard deviation of the
performance of Algorithm 1 and that of the Smallest Prediction heuristic against the magnitude of the error
vector E1.

Comparison to Smallest Prediction Heuristic We then compare the performance of Algorithm 1 to the
Smallest Prediction heuristic defined in Section 6 (Figure 9). Recall that in Smallest Prediction, at each iteration
i, the agent travels to the an arbitrary vertex vi ∈ argminv∈Vi−1

f(v). We consider the same families of graphs
as in the previous section. For each family, we compare the performance of our algorithm with that of Smallest
Prediction for different values of the error magnitude E1. The instances, including the errors, are generated like
in the previous set of experiments. Performance is measured as the total distance travelled by the agent, minus
the true distance OPT from r to g, as a fraction of OPT. Just like in the previous experiments, we run 2000
trials for every value of E1 and report the average and standard deviation of the performance across those trials.

Adela Frances DePavia, Erasmo Tani, Ali Vakilian

Figure 10: A larger rendering of the right subfigure of Figure 2 in the main body of the paper.

Relative Error In the right subfigure of Figure 2, for each value of ε the predictions are generated by setting
f(v) = (1 + εv) · dG(v, g) where εv is sampled from a Gaussian distribution with mean 0 and standard deviation
ε/2 conditioned on the event: εv ∈ [−ε, ε]. We run Algorithm 3 and plot the value of the competitive ratio
ALG/OPT against the value of ε for ε ∈ [0, 0.3], and report the mean and standard deviation incurred over 2000
independent trials.

Scaling with Number of Nodes Finally, we plot the performance of Algorithm 3 as a function of n (Fig-
ure 11). For this experiment we generate instances with different numbers of vertices and plot report the average
and standard deviation of the respective empirical competitive ratios (ALG/OPT). We run 2000 trials for each
family of graphs and for each number n ∈ {50, 100, 500, 1000} of nodes. The error is generated as in the previous
section with ε = 0.2.

Graph Families In the above experiments we consider the four graph families described below. All the graphs
considered are undirected and unweighted. In Figure 2, we sample the below graphs on n = 100 nodes, and in
Table 2, we sample them on n = 300 nodes.

• Erdös-Renyi Random Graphs: Erdös-Rényi Gn,p graphs (Erdős et al., 1960) are a popular random graph
model in the literature. We sample from the distribution of Erdös-Rényi graphs with n nodes and edge
probability p = 0.1, conditioned on the graph being connected;

• Random Trees: Trees are just connected acyclic graphs. We sample trees on n vertices uniformly at random;

• Random Lobster Graphs: A lobster graph is a tree which becomes a caterpillar graph when its leaves are
removed, we sample random lobster graphs on n vertices;

• Circular Ladder Graphs: A circular ladder graph is a graph obtained by gluing the endpoints of a ladder
graph, i.e. it’s a graph on vertices {1, ..., 2k} where the edges are of the form (i, i+1) for i = 1, ..., k− 1 and
i = k + 1, ..., 2k, and (i, k + i) for i = 1, ..., k as well as (1, k), (k + 1, 2k). We consider the circular ladder
graph on n vertices.

Learning-Based Algorithms for Graph Searching Problems

A
L
G
/O
P
T

Number of Nodes

Figure 11: The empirical competitive ratio of Algorithm 3 for different graph families and for different values of
n. On the x-axis: the number of vertices n in the instance graphs considered. We consider n = 50, 100, 500, 1000.
On the y-axis: the ratio between the distance travelled by the agent, and the true distance OPT from r to g in
G.

	INTRODUCTION
	Summary Of Results

	TECHNICAL PRELIMINARIES AND NOTATION
	EXPLORATION UNDER ABSOLUTE ERROR
	EXPLORATION UNDER RELATIVE ERROR
	Planning With Relative Error

	PLANNING
	Planning Bounds Via Metric Embeddings
	Lower bounds For Planning

	NUMERICAL EXPERIMENTS: IMPACT OF RANDOM ERRORS
	CONCLUSIONS AND FUTURE DIRECTIONS
	SURVEY OF RELATED WORKS
	MISSING PROOFS
	Proofs For Section 3
	Proofs For Section 4
	Algorithmic Guarantees Under Relative Error
	Lower bounds For Exploration With Relative Error

	Proofs For Section 5
	Planning Bounds Via Metric Embeddings
	Lower Bounds For Planning Problems

	Planning On Trees With Integer-Valued Distances

	RELATION BETWEEN EMBEDDING DISTORTION AND DOUBLING DIMENSION
	EXPERIMENTAL DETAILS

