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Abstract

Gromov-Wasserstein distance has many ap-
plications in machine learning due to its abil-
ity to compare measures across metric spaces
and its invariance to isometric transforma-
tions. However, in certain applications, this
invariant property can be too flexible, thus un-
desirable. Moreover, the Gromov-Wasserstein
distance solely considers pairwise sample simi-
larities in input datasets, disregarding the raw
feature representations. We propose a new
optimal transport formulation, called Aug-
mented Gromov-Wasserstein (AGW), that al-
lows for some control over the level of rigidity
to transformations. It also incorporates fea-
ture alignments, enabling us to better lever-
age prior knowledge on the input data for
improved performance. We first present theo-
retical insights into the proposed method. We
then demonstrate its usefulness for single-cell
multi-omic alignment tasks and heterogeneous
domain adaptation in machine learning.

1 INTRODUCTION

Optimal transport (OT) theory provides a fundamental
tool for comparing and aligning probability measures
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omnipresent in machine learning (ML) tasks. Follow-
ing the least effort principle, OT and its associated
metrics offer many attractive properties that other
divergences, such as the popular Kullback-Leibler or
Jensen-Shannon divergences, lack. For instance, OT
borrows key geometric properties of the underlying
“ground” space on which the distributions are defined
(Villani, 2008) and enjoys non-vanishing gradients when
measures have disjoint support (Arjovsky et al., 2017).
OT theory has also been extended to the challenging
case of comparing probability measures supported on
different metric-measure spaces. In this scenario, the
Gromov-Wasserstein (GW) distance seeks an optimal
matching between points in the supports of the consid-
ered distributions that will minimize the distortion of
intra-domain distances upon such matching.

Since its proposal by Memoli (2011) and further exten-
sions by Peyré et al. (2016), GW distance has been suc-
cessfully used in a wide range of applications, including
domain adaptation (Yan et al., 2018), computational
biology (Nitzan et al., 2019; Cao et al., 2021; Cang
and Nie, 2020; Demetci et al., 2020, 2022a), genera-
tive modeling (Bunne et al., 2019), and reinforcement
learning (Nakagawa et al., 2022).

1.1 Limitations of Prior Work

Successful applications of GW distance are often at-
tributed to its invariance to distance-preserving trans-
formations (also called “isometries”) of the input do-
mains. Since GW formulation considers only intra-
domain distances, it is naturally invariant to any trans-
formation that does not alter them. While this is a
blessing in many applications, for example, comparing
graphs with the unknown ordering of nodes, it may
become a curse when one has to choose the “right” isom-
etry among many that yield the same GW distance.
How could one break such ties while keeping the at-
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tractive properties of the GW distance? This question
remains to be addressed in the field.

Additionally, GW distances are often used in tasks
where one may have some a priori knowledge about
the mapping between the two considered spaces. For
example, in single-cell applications, mapping a group of
cells in similar tissues across species helps understand
the evolutionarily conserved and diverging cell types
and functions (Kriebel and Welch, 2022). When per-
formed using OT, this cross-species cell mapping may
benefit from the knowledge about an overlapping set
of orthologous genes 3. GW formulation does not offer
any straightforward way to incorporate this knowledge,
which may lead to suboptimal performance.

1.2 Our Contributions

In this paper, we introduce a new OT formulation that
addresses the drawbacks of the GW distance mentioned
above. We summarize our contributions as follows:

1. We propose Augmented Gromov-Wasserstein
(AGW), a new formulation that leverages both
pairwise sample similarities in input datasets and
their raw data representations;

2. We demonstrate that AGW allows for tighter con-
trol over the isometric transformations of the GW
distance and helps break isometric ties;

3. We show that AGW can incorporate prior knowl-
edge to guide how the two metric spaces should
be compared, which improves object comparisons;

4. We provide a theoretical analysis of the properties
of the proposed formulation and examples that
concretely illustrate its unique features;

5. Our empirical results show that AGW outperforms
previously proposed cross-domain OT methods in
several downstream tasks and tends to converge
in fewer iterations than GW distance. We first
focus on real-world applications in computational
biology, namely the single-cell data integration
tasks. Then, we also illustrate its generalizability
to the heterogeneous domain adaptation in ML.

The paper is organized as follows. Section 2 presents
key notions from the OT theory utilized in the rest
of the paper. Section 3 presents our proposed AGW
formulation and analyzes its theoretical properties. In
Section 4, we present several empirical studies for the

3Genes in two different species that originated from a
common ancestor and largely maintained their function and
sequence during speciation.

single-cell alignment task and demonstrate the appli-
cability of our method to the heterogeneous domain
adaptation task. We conclude our paper in Section 5
with a discussion of potential future work.

2 TECHNICAL BACKGROUND

This section briefly presents some background knowl-
edge, including the Kantorovich’s formulation of the
OT problem and two relevant OT-based distances pro-
posed to match samples across incomparable spaces.

In what follows, we denote by ∆n = {w ∈ (R+)
n :∑n

i=1 wi = 1} the simplex histogram with n bins. We
use ⊗ for tensor-matrix multiplication, i.e., L ⊗ B
is the matrix (

∑
k,l Li,j,k,lBk,l)i,j for a tensor L =

(Li,j,k,l)i,j,k,l and a matrix B = (Bi,j)i,j . We use ⟨·, ·⟩
for the matrix scalar product associated with the Frobe-
nius norm ∥ · ∥F . We write 1d ∈ Rd for a d-dimensional
vector of ones. We use the terms “coupling matrix”,
“transport plan” and “correspondence matrix” inter-
changeably. A point in the space can also be called
“an example” or “a sample”. Given an integer n ≥ 1,
denote [n] := {1, ..., n}.

2.1 Kantorovich’s Problem and Wasserstein
Distance

Let X ∈ Rn×d and Y ∈ Rm×d be two input matrices,
C ∈ Rn×m be a cost (or ground) matrix. Given two
discrete probability measures µ ∈ ∆n and ν ∈ ∆m,
Kantorovich’s formulation of OT seeks a coupling γ
minimizing the following quantity:

WC(µ, ν) = min
γ∈Π(µ,ν)

⟨C,γ⟩, (1)

where Π(µ, ν) is the set of probability distributions on
∆n×m with marginals µ and ν. When Cij = ||xi−yj ||p,
for p ≥ 1, such an optimization problem defines a
proper metric on the space of probability distributions
called the Wasserstein distance.

2.2 Gromov-Wasserstein Distance

Samples of input matrices in different spaces, i.e., X ∈
Rn×d and Y ∈ Rm×d′

with d ̸= d′, are incomparable
since it is not possible to define a cost function as the
distance between points across the input spaces. To
circumvent this limitation of the Wasserstein distance,
Memoli (2011) proposed the Gromov-Wasserstein (GW)
distance, defined as follows:

GW(X,Y, µ, ν, dX , dY ) := min
γ∈Π(µ,ν)

LGW (γ),
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where

LGW(γ) :=
∑
i,j,k,l

(
dX(xi, xk)− dY (yj , yl)

)2
γi,jγk,l

= ⟨L(DX ,DY )⊗ γ,γ⟩.

Here,
(
L(DX ,DY )

)
i,j,k,l

=
(
dX(xi, xk)− dY (yj , yl)

)2,
where (xi, xk) ∈ Rd × Rd and (yj , yk) ∈ Rd′ × Rd′

are
tuples of samples in X and Y, respectively. dX and
dY are distances on Rd and Rd′

, respectively, so that
(DX)i,k = dX(xi, xk) and (DY )j,l = dY (yj , yl).

CO-Optimal transport Redko et al. (2020) intro-
duced an alternative to GW distance, termed CO-
Optimal transport (COOT). Instead of relying on the
intra-domain distance matrices DX and DY , COOT
uses the raw feature information (i.e., the coordinates of
the samples) and jointly learns two couplings, one corre-
sponding to sample alignments (denoted by γs below),
and the other corresponding to feature alignments (γv

below). More precisely, COOT assigns two histograms
µ′ ∈ ∆d and ν′ ∈ ∆d′ to the features (columns) of X
and Y, respectively, and defines the distance between
two matrices X and Y as
COOT(X,Y, µ, ν, µ′, ν′) := min

γs∈Π(µ,ν)
γv∈Π(µ′,ν′)

LCOOT(γ
s,γv),

where

LCOOT(γ
s,γv) :=

∑
i,j

∑
a,b

L(xi,k, yj,l)γ
s
i,jγ

v
a,b

= ⟨L(X,Y)⊗ γv,γs⟩.

In what follows, we consider L(xi,a, yj,b) = (xi,a−yj,b)
2

and write simply GW(X,Y) and COOT(X,Y) when
µ, ν, µ′, ν′ are uniform and when the choice of dX and
dY is of no importance.

3 AUGMENTED
GROMOV-WASSERSTEIN (AGW)

Here, we start by outlining the motivation for our
proposed formulation, highlighting the different invari-
ance properties of GW distance and COOT. Then,
we detail our AGW method that interpolates between
the two, followed by a theoretical study of its prop-
erties. Our implementation is available at https:
//github.com/pinardemetci/AGW-AISTATS24, along
with examples and demonstrations.

3.1 Motivation

Our motivation for this work comes from leveraging
different invariance properties of the GW distance and
COOT in order to have a tighter control over isometric
transformations when comparing objects across differ-
ent metric spaces.

3.1.1 Invariants of GW distance

GW distance remains unchanged under isometric trans-
formations of the input data as it compares intrado-
main pairwise distances. This property has contributed
much to the popularity of GW distance, as isometries
naturally appear in many applications. However, not
all isometries are equally desirable. For instance, a
rotation of the handwritten digit 6 seen as a discrete
measure can lead to its slight variation for small angles
or to a digit 9 when the angle is close to 180 degrees.
In both cases, however, the GW distance remains un-
changed, making it insufficient to distinguish the two
digits apart, unable to break such isometric ties

3.1.2 Invariants of COOT

Unlike GW distance, COOT has fewer degrees of free-
dom in terms of invariance to global isometric trans-
formations as it is limited to permutations of rows and
columns of the two matrices, and not all isometric trans-
formations can be achieved via such permutations. For
example, Figure S1 shows the effect of the sign change
and image rotation in a handwritten digit matching
task, to which GW distance is invariant while COOT
is not. Additionally, COOT is strictly positive for any
two datasets of different sizes either in terms of features
or samples, making it much more restrictive than GW
distance. It thus provides a finer-grained control when
comparing complex objects, yet it lacks the robustness
of GW distance to frequently encountered transforma-
tions between the two datasets. Further, unlike GW
distance, it is invariant to local isometries that can be
achieved via permutations of a subset of features.

3.2 AGW Formulation

Given the above discussion on the invariants of COOT
and GW distance, interpolating between them will
restrict each other’s invariants. Additionally, interpo-
lating with COOT is a natural way to introduce raw
feature alignments in GW formulation, which allows for
leveraging priors on them. We call this interpolation
Augmented GW (AGW) and define it as follows:

AGWα(X,Y) := min
γs∈Π(µ,ν)
γv∈Π(µ′,ν′)

Lα(γ
s,γv), (2)

where

Lα(γ
s,γv) = α LGW(γs) + (1− α) LCOOT(γ

s,γv)

= α ⟨L(DX ,DY )⊗ γs,γs⟩
+ (1− α) ⟨L(X,Y)⊗ γv,γs⟩,

for 0 ≤ α ≤ 1. The AGW problem always admits a
solution. Indeed, as the objective function is continuous

https://github.com/pinardemetci/AGW-AISTATS24
https://github.com/pinardemetci/AGW-AISTATS24
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Figure 1: Aligning Digits from MNIST and USPS Datasets. (A) Confusion matrices of GW, AGW with α = 0.5
and COOT.(*) denote pair alignments ; (B) Feature coupling γv of AGW compared to COOT; (C) Illustration
of a case from where GW’s and COOT’s invariants are detrimental for obtaining a meaningful comparison, while
AGW remains informative. (D) Example showing improved digit alignment with feature-level supervision that
restricts reflections (E) Feature coupling recovered by AGW (α = 0.5) in the supervised setting of (D).

and the sets of admissible couplings are compact, the
existence of minimum and minimizer is guaranteed.

Our interpolation offers several important benefits.
First, COOT term ensures that AGW will take dif-
ferent values for any two isometries whenever d ̸= d′.
Intuitively, AGW’s value will then depend on how “far”
a given isometry is from a permutation of rows and
columns of the inputs. Thus, we restrict a broad class
of (infinitely many) transformations that GW distance
cannot distinguish and we tell them apart by assessing
whether they can be approximately obtained by simply
swapping 1D elements in input matrices.

Second, combining the objective functions of COOT
and GW distance allows us to effectively influence the
optimization of γs by introducing priors on feature
matchings through γv and vice versa. This can be
achieved by penalizing the costs of matching certain
features in the COOT term to influence the optimiza-
tion of γv. This prior knowledge guides how the two
metric spaces should be compared and improves em-
pirical performance. These key properties explain our
choice of calling it “augmented”: we equip GW dis-
tance with an ability to provide finer-grained object
comparisons by breaking isometric ties and/or guiding
the matching using available prior knowledge.

3.3 Illustrations

We illustrate AGW’s properties on a task of aligning
handwritten digits from MNIST (LeCun et al., 2010)
(28×28 pixels) and USPS datasets (16×16 pixels) (Hull,
1994) in Figure 1, where AGW with α = 0.5 outper-

forms both GW distance and COOT in alignment ac-
curacy (Panel A). The black asterisks show some digit
pairs that significantly benefit from AGW interpolation,
which are 6− 2 for GW distance and 3− 5 for COOT.
Panel C visualizes examples from these digit pairs that
are misaligned by GW distance and COOT but not
by AGW 4. Here, we observe that 6-2 misalignment
by GW optimal transport is likely because one is a
close reflection of the other across the y-axis. Similarly,
COOT mismatches 3 and 5 as one can obtain 3 from 5
by a local permutation of the upper half of the pixels.
Panel B visualizes the feature couplings obtained by
AGW (on the left) and COOT (on the right). The
feature coupling by COOT confirms that COOT allows
for a reflection across the y-axis on the upper half of
the image but not on the lower half. With AGW, both
of these misalignments partially improve, likely because
(1) the correct feature alignments in the lower half of
the images prevent 6 and 2 from being matched and
(2) GW distance is non-zero for 5-3 matches since the
transformation is not applied to the whole image. In
Panels D and E, we also show that providing supervi-
sion on feature alignments to restrict local reflections
further improves AGW’s performance.

Similar improvement can be seen for aligning cells (sam-
ples) for two different single-cell measurements (i.e.,
measurements generating different types of features)
(Chen et al., 2019) in Figure S2: Panel A shows that
AGW consistently maps the 4 cell types in the data
better than GW alignment (a popular method for this

4Here, we define “aligned pairs” as pairs of digits with
the highest coupling probabilities.
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Algorithm 1 BCD Algorithm to Solve AGW
Initialize γs and γv

repeat
Calculate Lv = L(X,Y)⊗ γs.
For fixed γs, solve the OT problem: γv ∈
argminγ∈Π(µ′,ν′)⟨Lv,γ⟩.
Calculate Ls = L(X,Y)⊗ γv.
For fixed γv, solve the fused GW problem: γs ∈
argminγ∈Π(µ,ν) α LGW(γs) + (1− α)⟨Ls,γ

s⟩.
until convergence

task (Cao et al., 2021; Demetci et al., 2020, 2022a; Cao
et al., 2022)) over 50 random subsampling of cells. The
2D projection of alignments in Panel B shows that GW
distance sometimes completely swaps the cell type clus-
ters when they have a similar number of cells, whereas
AGW is more robust to this phenomenon.

3.4 Optimization

For simplicity, let n = m and d = d′. With the squared
loss in both GW and COOT terms, the computational
trick by Peyré et al. (2016) can be applied, which re-
duces the complexity of AGW from O(n4 + n2d2) to
O(n3 + dn2 + nd2). For optimization, we use the block
coordinate descent (BCD) algorithm, where we alterna-
tively fix one coupling and minimize AGW with respect
to the other (Algorithm 1). Each iteration then con-
sists of solving two OT problems. To further accelerate
the optimization, entropic regularization (Cuturi, 2013)
can be used on either γs, γv, or both. In practice, we
rely on the built-in functions of the Python Optimal
Transport package (Flamary et al., 2021).

3.5 Theoretical Analysis

Intuitively, we expect that AGW interpolates between
GW distance and COOT, and satisfies a relaxed tri-
angular inequality since COOT and GW distance are
both metrics, similarly to Fused Gromov-Wasserstein
(FGW) distance (Vayer et al., 2019) . The following
result summarizes these observations, with proofs pre-
sented in Appendix A.
Proposition 1. For every α ∈ [0, 1], given two input
matrices X and Y,

1. When α → 0 (or 1), one has AGWα(X,Y) →
COOT(X,Y) (or GW(X,Y)).

2. AGW satisfies the relaxed triangle inequal-
ity: for any input matrices X,Y,Z, one has
AGWα(X,Y) ≤ 2

(
AGWα(X,Z)+AGWα(Z,Y)

)
.

A more intriguing question is about the invariants that
AGW exhibits. Od and Pd denote the sets of orthogonal

and permutation matrices of size d, respectively. Given
a matrix X ∈ Rn×d, we assume that
Assumption 1. X is full-rank and has exactly
min(n, d) distinct singular values.

The full-rank assumption is not uncommon in the ma-
chine learning literature (Kawaguchi, 2016) and can
be easily met in practice. Additionally, not only the
Hermitian matrices with repeated eigenvalues are rare
(see page 56 in (Tao, 2012)), but we can also show that

Corollary 1. The set of Hermitian matrices with re-
peated eigenvalues has zero Lebesgue measure.

Since the singular values of X are determined by the
symmetric matrix XXT , Corollary 1 assures that it
is reasonable to exclude all symmetric matrices with
repeated eigenvalues. With these, we present:
Theorem 1.

1. Given matrices X and Y, if µ = ν and Y is ob-
tained by permuting columns of X via the permuta-
tion σc (so ν′ = (σc)#µ

′), then AGWα(X,Y) = 0.

2. Suppose X ∈ Rn×d satisfies Assumption 1. For
any 0 < α < 1, if n ≥ d and AGWα(X,Y) = 0,
then there exist a symmetric orthogonal matrix
O ∈ Od and a permutation matrix P ∈ Pd such
that Y = XOP .

Despite the simplicity of the interpolation structure,
the invariants induced by AGW present novel and non-
trivial challenges for theoretical analysis. While sharing
basic invariants, such as feature swaps, AGW covers
much fewer isometries than GW distance. Unlike GW
distance, AGW is not fully invariant under translation.
However, only its minimum is shifted by a constant
under translation, while the feature and sample align-
ments remain unchanged (discussed in Appendix A.4).
Similar to COOT, AGW only has at most finitely many,
whereas GW has infinitely many isometries. Under mild
conditions, when AGW vanishes, only transformations
with a particular structure (compositions of a permuta-
tion and a symmetric orthogonal transformation) are
eligible. Given the superior empirical performance of
AGW over GW and COOT, such isometries appear
meaningful and relevant in real-world tasks.

3.6 Related Work

Most related work to our interpolation structure is the
Fused Gromov-Wasserstein (FGW) divergence (Vayer
et al., 2019) that compares structured objects. Its ob-
jective function is a convex combination of the GW
term defined based on the pairwise intra-domain dis-
tances and the Wasserstein term defined over auxiliary
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features that live in the same space for both input
matrices. Despite the structural resemblance to FGW;
however, AGW and FGW fundamentally differ in sev-
eral crucial ways:

1. Structure of input data: FGW needs two dif-
ferent views of data: relational and auxiliary in-
formation for the GW and Wasserstein terms, re-
spectively. To illustrate this, assume that the
node embeddings of two graphs are X ∈ Rn×d

and X ′ ∈ Rn′×d′
. FGW requires not only intra-

graph structure (e.g., adjacency matrices com-
puted based on X and X ′) in the GW term, but
also auxiliary data (independent of X and X ′,
e.g.node colors) for the Wasserstein term. For
many datasets, including in the applications pre-
sented in this paper, such auxilary data is not
available. AGW, on the other hand, can directly
operate on the embeddings X and X ′ without any
auxiliary information, even when comparing ob-
jects across metric spaces. Moreover, the “features”
in AGW refer to the columns of X and X ′, while
FGW refers to the auxiliary information as “fea-
tures”. As such, the notion of “features” also differs
between AGW and FGW.

2. Control over isometries: The above difference
implies that the invariants induced by FGW are
guided by both structural and auxiliary informa-
tion. As demonstrated by Vayer et al. (2020),
for example, FGW is invariant to rotations. By
contrast, since AGW operates on the raw feature
space, its invariants are only controlled by (and
their corresponding structural information or “in-
tradomain distance matrices”, e.g. adjacency ma-
trix computed on node embeddings from the pre-
vious example). Section 3.3 demonstrates that
AGW leverages interpolation with COOT to pro-
vide some explicit control over the invariants of
GW distance, for example under rotations (Fig-
ure S1) and leads to more meaningful cross-domain
matchings. As such, Theorem 1 is the first result
of its kind aiming at characterizing the invariances
resulting from such interpolation.

3. Use of transport plans: FGW only uses one
common sample coupling for computing (sample-
level) alingments based on both structural and aux-
iliary feature spaces. By contrast, AGW learns two
different couplings, one for sample-level and one
for raw feature-level correspondences/alignments.

4 EXPERIMENTAL EVALUATIONS

To test its empirical performance, we apply AGW to
the single-cell multi-omics alignment and heterogeneous

domain adaptation (HDA) tasks. Overall, we aim to
empirically answer: (1) Does tightening the invariances
improve upon GW’s performance in tasks where it
was previously used? and (2) Does prior knowledge
introduced in AGW help in obtaining better cross-
domain matchings?

We pick other cross-domain OT methods as baselines,
namely COOT, GW, and their unbalanced counter-
parts, UCOOT (Tran et al., 2023) and UGW (Sejourne
et al., 2021). Note that we leave extending AGW to
unbalanced scenarios for future work.

In semi-supervised HDA tasks (Table 2), we also con-
sider the KPG-RL and KPG-GW-RL methods Gu et al.
(2022), which were developed specifically for leveraging
prior information on keypoints in HDA applications.
We consider entropic regularization for all methods on
both sample and (when applicable) feature couplings.
We keep the hyperparameter values considered for all
regularization coefficients consistent across all methods.
We report the results of the best-performing hyperpa-
rameter combination after tuning on a validation set for
each method in each experiment. We report empirical
runtimes in Appendix E and detail our experimental
setup in Appendix F.

4.1 Integrating Single-Cell Multi-omics
Datasets

Integrating data from different single-cell sequencing
experiments is an important biological task for which
OT has proven useful (Cao et al., 2021, 2022; Demetci
et al., 2020). Single-cell experiments measure vari-
ous genomic features at the individual cell resolution.
Jointly studying these can give scientists insight into
the mechanisms regulating cells. However, experimen-
tally combining multiple measurement types for the
same cell is challenging. For a limited combination
of measurement types (or “measurement modalities”) ,
there are experimental protocols (termed “co-assays”)
that jointly profile them on the same cells. For others,
scientists rely on the computational integration of multi-
modal data taken on different but related cells (e.g.,
by cell type or tissue) to study the relationships and
interactions between different aspects of the genome.

We particularly focus on this task for two reasons. First,
GW distance was previously used as a state-of-the-art
method for this task (Cao et al., 2021; Demetci et al.,
2022a; Cao et al., 2022), so it is important to see if AGW
improves upon it. Second, several single-cell benchmark
datasets provide ground-truth matchings on the feature-
and the sample-level alignments. This information
allows us to assess the effect of guiding cross-domain
matching with partial or full prior knowledge of these
relationships.
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Table 1: Single-Cell Alignment Error, as Quantified by the Average ‘Fraction of Samples Closer Than True Match’
(FOSCTTM) Metric. Lower values are better. For each dataset, the size of the two domains they contain are
expression in the format (number of samples x number of features) in the second row. Note that for GW, we use
the SCOT implementation by Demetci et al. (2020) and similarly for UGW, we use the SCOTv2 implementation
by Demetci et al. (2022a).

Simulation 1 Simulation 2 Simulation 3 Simulated RNA-seq scGEM SNARE-seq CITE-seq
(300x1000,
300x2000)

(300x1000,
300x2000)

(300x1000,
300x2000)

(5000x50,
5000x500)

(177x28,
177x34)

(1047x1000,
1047x3000)

(1000x25,
1000x24)

AGW 0.0730 0.0041 0.0082 0.0 0.183 0.132 0.091
GW 0.0866 0.0216 0.0084 7.1e-5 0.198 0.150 0.121
COOT 0.0752 0.0041 0.0088 0.0 0.206 0.153 0.132
UGW 0.0838 0.0522 0.0105 0.096 0.175 0.160 0.116
UCOOT 0.0850 0.0081 0.0122 0.115 0.181 0.188 0.127
bindSC N/A N/A N/A 3.8e-4 N/A 0.242 0.144
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Figure 2: Feature Alignments for the CITE-Seq Dataset. Green boxes indicate where we expect matches (a
notion of “ground-truth”) based on domain knowledge.

4.1.1 Single-Cell Alignment

We follow the first GW application in this domain
(Demetci et al., 2020, 2022b) and align samples (i.e.,
cells) of simulated and real-world datasets from dif-
ferent measurement types. Note that this work
adapted the GW optimal transport framework for
single-cell data integration tasks with their implementa-
tion (named SCOT), which uses shortest path distances
on nearest neighbor graphs constructed with low di-
mensional embeddings of genomic data. SCOT shows
performance improvement over classic choices of in-
tradomain distance metrics, such as Euclidean distances
or correlations (Demetci et al., 2022b). Therefore, only
in the single-cell multi-omic integration tasks, we use
the SCOT implementation when benchmarking GW
optimal transport, and the subsequent SCOTv2 imple-
mentation Demetci et al. (2022a) when benchmarking
UGW optimal transport.

Since we use simulations and real-world co-assayed
datasets (datasets where mutliple measurements are
jointly profiled on the same set of cells), we have ground-
truth information on cell-cell alignments for all datasets.
However, we perform unsupervised alignment, and only

use this information for benchmarking alignments and
hyperparameter tuning. We demonstrate in Table 1
that AGW consistently yields higher quality cell align-
ments (with lower alignment error) compared to the
state-of-the-art baselines, including GW, COOT, and
their unbalanced counterparts.

We include bindSC as an additional baseline, which
performs bi-order canonical correlation analysis to align
single-cell datasets. Unlike other single-cell alignment
methods, it internally computes a feature correlation
matrix that users can extract. So, we include it as a
baseline to compare its feature alignment performance
against AGW in the next section. However, bindSC us-
age is limited to a few measurement types as it requires
an input matrix that relates features across domains to
bring the datasets into the same space at initialization.
We do not have this information for most datasets, thus
the “N/A” entries in Table 1.

4.1.2 Aligning Genomic Features

AGW augments GW formulation with a feature cou-
pling matrix. Therefore, we jointly align features and
see whether AGW reveals relevant biological relation-
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ships. All current single-cell alignment methods only
align samples (i.e., cells), except for bindSC as dis-
cussed above. We emphasize that the main goal of fea-
ture alignment for our single-cell multi-omic integration
applications is to leverage priors to yield higher quality
sample alignments, as demonstrated later. Cross-modal
genomic relationships are complex and our algorithm
has not been extensively benchmarked on recovering
such relationships. Nevertheless, improving upon fea-
ture matching capabilities of approaches such as COOT
and bindSC will also help improve sample alignment
quality. These experiments also provide a straightfor-
ward way to evaluate whether feature couplings can
generate meaningful hypotheses.

Among the real-world datasets in Table 1, CITE-seq
(Stoeckius et al., 2017) is the only one with ground-
truth information on feature correspondences. This
dataset has paired single-cell measurements on the
abundance levels of 25 antibodies and activity (i.e.,
“expression”) levels of genes, including the genes that
encode these 25 antibodies. So, we first present un-
supervised feature alignment results on the CITE-seq
dataset. For completion, we also report the biologi-
cal relevance of our feature alignments on SNARE-seq
(Chen et al., 2019) and scGEM (Cheow et al., 2016b)
datasets in Appendix C. However, note that these
datasets (unlike CITE-seq) do not have clear ground-
truth feature correspondences. We compare our feature
alignments with bindSC, COOT, and UCOOT in Fig-
ure 2. Note that due to the size of the CITE-seq
dataset (∼ 60, 000 human and mouse cells in total), we
first subsample it by randomly selecting 1000 human
cells. Then, we transform the data by computing the
log2-fold change compared to dataset median. We find
that this improves the feature alignment performance
of all methods. The entries in Figure 2 matrices are
arranged such that the “ground-truth” correspondences
lie in the diagonal, marked by green squares. While
AGW correctly assigns 19 out of 25 antibodies to their
encoding genes with the highest alignment probability,
this number is 16 for UCOOT, 15 for COOT and 13 for
bindSC (which yields correlation coefficients instead of
alignment probabilities). Additionally, the OT meth-
ods yield more sparse alignments than bindSC thanks
to the “least effort” requirement in their formulation.

4.1.3 Leveraging Prior Knowledge

Finally, we show the advantage of providing priors
by aligning a multi-species gene expression dataset
containing measurements from the adult mouse pre-
frontal cortex (Bhattacherjee et al., 2019) and pallium
of bearded lizard (Tosches et al., 2018). Since mea-
surements come from two different species, the feature
space (i.e., genes) differs, and there is no 1-1 corre-

spondence between the samples (i.e., cells). However,
there is a shared subset within the features, i.e., orthol-
ogous genes that descend from a common ancestor and
maintain similar biological functions in both species.
We also have domain knowledge on cells that belong
to similar cell types across the two species. Thus, we
expect AGW to recover these relationships.

Figure 3A visualizes the cell-type alignment probabili-
ties yielded by AGW when full supervision is provided
on the 10, 816 orthologous genes. The green boxes in-
dicate alignment between similar types of cells. This
matrix is obtained by averaging the sample alignment
matrix (i.e., cell-cell alignments) into cell-type groups.
We observe that AGW yields biologically plausible
alignments, as all the six cell types that have a natural
match across the two species are correctly matched.
We also show in Figure 3B that providing supervision
on one alignment level (e.g., features) improves the
quality on the other alignment level (e.g., samples).
The supervision scheme is detailed in Appendix F.2.

4.2 Heterogeneous Domain Adaptation

Finally, we demonstrate the generalizability of our ap-
proach on a popular ML task, heterogeneous domain
adaptation, where COOT and GW distance were previ-
ously successfully used. Domain adaptation (DA) refers
to the problem in which a classifier learned on one do-
main (called source) can generalize to the other (called
target). Here, we apply AGW to unsupervised and
semi-supervised heterogeneous DA (HDA) tasks, where
the source and target samples live in different spaces,
and we have as few as zero labeled target samples.

We mostly follow the experimental setup by Redko et al.
(2020) and use source-target pairs from the Caltech-
Office dataset (Saenko et al., 2010). We consider all
possible pairs between three domains: Amazon (A),
Caltech-256 (C), and Webcam (W), whose image em-
beddings are obtained from the penultimate layers in
the GoogleNet (Szegedy et al., 2015) (vectors in R4096)
and CaffeNet (Jia et al., 2014) (vectors in R1024) neu-
ral network architectures. We randomly choose 20
samples per class and perform adaptation from Caf-
feNet to GoogleNet and repeat it 10 times. Differently
than Redko et al. (2020), we (1) unit normalize the
dataset prior to alignment as we empirically found it to
boost all methods’ average performance compared to
using unnormalized datasets, (2) use cosine distances
when defining intra-domain distance matrices for GW
and AGW, as we found them to perform better than
Euclidean distances, and (3) report results after hyper-
parameter tuning all methods for each pair of datasets
based on a validation set (see Section F.3).

As in Redko et al. (2020), for semi-supervised settings,
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Table 2: Heterogeneous Domain Adaptation Results (Unsupervised). Best results are bolded, and second-bests
are underlined. For AGW, the α values used are respectively 0.6, 0.9, 0.7, 0.9, 0.3, 0.8, 0.7, 0.2, 0.6.

A → A A → C A → W C → A C → C C → W W → A W → C W → W

AGW 93.1±1.6 68.3±14.1 79.8±3.5 55.4±7.1 76.4±5.6 57.7±14.3 60.1±9.1 60.9±13.3 97.3±0.9
GW 86.2±2.3 64.1±6.2 77.6±11.1 53.0±13.2 81.9±10.5 53.5±15.9 50.4±22.1 54.3±14.7 92.5±2.6
COOT 50.3±15.9 35.0±6.4 39.8±14.5 40.8±15.8 33.5±10.7 37.5±10.4 44.3±14.0 27.4±10.2 57.9±13.4
UGW 90.6±6.5 67.2±12.7 75.4±3.1 56.3±14.6 69.2±8.7 51.2±13.1 66.7±9.9 58.4±4.7 94.7±1.5
UCOOT 65.4±2.1 44.6±3.8 36.4±1.2 55.1±8.6 52.1±3.8 41.8±14.9 63.2±4.0 59.7±6.3 80.3±2.1

Figure 3: Aligning cross-species dataset. A. AGW’s cell-type alignments. B. Providing supervision on one
level of alignment (e.g., features) boosts alignments on the other. Standard errors computed over 10 random runs.
Dashed line indicates the sample alignment performance of GW and bindSC (orthologous gene used in input).

we incorporate prior knowledge on a few target labels
by adding an extra cost matrix to the training of sample
coupling, so that a source sample will be penalized if
it transfers mass to the target samples from different
classes . Once the sample coupling γs is learned, we
obtain the final prediction using label propagation:
ŷt = argmaxk Lk·, where L = Dsγ

s and Ds denotes
one-hot encodings of the source labels ys. .

Table 2 presents the performance of each method aver-
aged across ten runs in the unsupervised setting, where
AGW yields favorable results in 6 out of 9 cases. In two
cases, UGW, and in one case, UCOOT, outperform
AGW despite the lower performance of their balanced
counterparts. In these cases, unbalanced formulations
prove beneficial, and support extending AGW to unbal-
anced scenarios as future work. Appendix D presents
the semi-supervised experiments, which show the same
trend where AGW tends to outperform other baselines.

4.3 Empirical Runtime

As described in Section 3.2, the theoretical complexity
of AGW is O(n3 + dn2 + nd2). When d < n, the domi-
nating term of n3 is due to the computational burden
of computing the GW distance. However, in practice,
we observe that AGW converges in much fewer itera-
tions than GW distance (about 1/5 of the number of

iterations on average) thanks to the further refinement
of the sample coupling per iteration as facilitated by
the interpolation with COOT, thus having a shorter
runtime (see Appendix E). To further speed up opti-
mization, one can consider low-rank coupling and cost
matrix (Scetbon et al., 2022) or use the divide and con-
quer strategy (Chowdhury et al., 2021), which allows
one to scale the GW distance up to a million points.

5 CONCLUSION AND DISCUSSION

We present Augmented Gromov-Wasserstein (AGW),
a new OT-based divergence for incomparable spaces.
It interpolates between GW distance and CO-Optimal
transport and allows to narrow down the choices of
isometries induced by GW distance, while efficiently
exploiting the prior knowledge on the input data. We
study its basic properties and empirically show that
such restrictions result in better performance for single-
cell multi-omic alignment tasks and transfer learning.
Future work will focus on refining the theoretical anal-
ysis of the AGW invariants to better understand their
performance in practice. We will also extend AGW to
the unbalanced and/or continuous setting, and other
tasks where feature supervision by domain experts may
be incorporated in OT framework.
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A Proofs

A.1 Proposition 1

Proof. The proof of this proposition can be adapted directly from (Vayer et al., 2019). For self-contained purpose,
we give the proof here. Denote

• (γs
α,γ

v
α) the optimal sample and feature couplings for AGWα(X,Y).

• (γs
0 ,γ

v
0 ) the optimal sample and feature couplings for COOT(X,Y).

• γs
1 the optimal sample coupling for GW(X,Y).

Due to the suboptimality of γs
α for GW and (γs

1 ,γ
v
0 ) for AGW, we have

α⟨L(DX ,DY )⊗ γs
1 ,γ

s
1⟩ ≤ α⟨L(DX ,DY )⊗ γs

α,γ
s
α⟩+ (1− α)⟨L(X,Y)⊗ γv

α,γ
s
α⟩ (3)

≤ α⟨L(DX ,DY )⊗ γs
1 ,γ

s
1⟩+ (1− α)⟨L(X,Y)⊗ γv

0 ,γ
s
1⟩, (4)

or equivalently

αGW(X,Y) ≤ AGWα(X,Y) ≤ αGW(X,Y) + (1− α)⟨L(X,Y)⊗ γv
0 ,γ

s
1⟩. (5)

Similarly, we have

(1− α)COOT(X,Y) ≤ AGWα(X,Y) ≤ (1− α)COOT(X,Y) + α⟨L(DX ,DY )⊗ γs
0 ,γ

s
0⟩. (6)

The interpolation property then follows by the sandwich theorem.

Regarding the relaxed triangle inequality, given three triplets (X, µsx, µfx), (Y, µsy, µfy) and (Z, µsz, µfz),
let (πXY , γXY ), (πY Z , γY Z) and (πXZ , γXZ) be solutions of the problems AGWα(X,Y),AGWα(Y,Z) and
AGWα(X,Z), respectively. Denote P = πXY diag

(
1

µsy

)
πY Z and Q = γXY diag

(
1

µfy

)
γY Z . Then, it is not

difficult to see that P ∈ Π(µsx, µsz) and Q ∈ Π(µfx, µfz). The suboptimality of (P,Q) implies that

AGWα(X,Z)

2
(7)

≤ α
∑
i,j,k,l

|DX(i, j)−DZ(k, l)|2

2
Pi,kPj,l + (1− α)

∑
i,j,k,l

|Xi,j − Zk,l|2

2
Pi,kQj,l (8)

= α
∑
i,j,k,l

|DX(i, j)−DZ(k, l)|2

2

(∑
e

πXY
i,e πY Z

e,k

(µsy)e

)(∑
o

πXY
j,o πY Z

o,l

(µsy)o

)
(9)

+ (1− α)
∑
i,j,k,l

|Xi,j − Zk,l|2

2

(∑
e

πXY
i,e πY Z

e,k

(µsy)e

)(∑
o

γXY
j,o γY Z

o,l

(µfy)o

)
(10)

≤ α
∑

i,j,k,l,e,o

|DX(i, j)−DY (e, o)|2
πXY
i,e πY Z

e,k

(µsy)e

πXY
j,o πY Z

o,l

(µsy)o
+ (1− α)

∑
i,j,k,l,e,o

|Xi,j −Ye,o|2
πXY
i,e πY Z

e,k

(µsy)e

γXY
j,o γY Z

o,l

(µfy)o
(11)

+ α
∑

i,j,k,l,e,o

|DY (e, o)−DZ(k, l)|2
πXY
i,e πY Z

e,k

(µsy)e

πXY
j,o πY Z

o,l

(µsy)o
+ (1− α)

∑
i,j,k,l,e,o

|Ye,o − Zk,l|2
πXY
i,e πY Z

e,k

(µsy)e

γXY
j,o γY Z

o,l

(µfy)o
(12)

= α
∑
i,j,e,o

|DX(i, j)−DY (e, o)|2πXY
i,e πXY

j,o + (1− α)
∑
i,j,e,o

|Xi,j −Ye,o|2πXY
i,e γXY

j,o (13)

+ α
∑

k,l,e,o

|DY (e, o)−DZ(k, l)|2πY Z
e,k π

Y Z
o,l + (1− α)

∑
k,l,e,o

|Ye,o − Zk,l|2πY Z
e,k γ

Y Z
o,l (14)

= AGWα(X,Y) + AGWα(Y,Z). (15)

where the second inequality follows from the inequality: (x+ y)2 ≤ 2(x2 + y2). ■
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A.2 Corollary 1

Proof. First, let us recall the Schwartz-Zippel lemma. Denote F (x1, ..., xn) a multivariate polynomial. Its total
degree is the maximum of the sums of the powers of the variables in any monomial. The Schwartz-Zippel lemma
states that: let F (x1, ..., xn) be a nonzero multivariate polynomial of total degree d and S be a finite subset of R.
Denote ZS := {(x1, ..., xn) ∈ Sn : F (x1, ..., xn) = 0} the zero set of F on Sn. Then |ZS | ≤ d|S|n−1.

Note that, the set of Hermitian matrices of size n forms a finite-dimensional real vector space. In particular, it is
isomorphic to the Euclidean space Rn2

. Denote I set of Hermitian matrices of size n with repeated eigenvalues. It
is enough to show that I has measure zero. We have I ≃ E, for some E ⊂ Rn2

. Since I is closed (see page 56 in
(Tao, 2012)), it is measurable, by Proposition 4 in (Stein and Shakarchi, 2005). If I does not have zero measure,
then the intersection E ∩ [0, 1]n

2

has positive measure p > 0. If, for each i ∈ [n2], we sample m i.i.d coordinates
uniformly in [0, 1], then we have mn2

points uniformly distributed in [0, 1]n
2

. So, the expected number of points
lying in E is pmn2

.

On the other hand, recall that a (Hermitian) matrix has repeated eigenvalues if and only if the discriminant of its
characteristic polynomial is zero. Moreover, the discriminant of the characteristic polynomial is a polynomial in
n2 entries of the matrix. Thus, the measure of I (or, equivalently E) is the measure of the set of values of these
n2 variables which make a certain polynomial of total degree d vanish. By Schwartz-Zippel lemma, on average,
there are at most dmn2−1 points in E. By choosing m > d/p, we obtain a contradiction. Thus E (or equivalently
I) must have zero measure. ■

A.3 Theorem 1

Proof. Regarding the first claim, note that Y = XQ, where Q is a permutation matrix corresponding to the
permutation σc. Since Y is obtained by swapping columns of X, it is easy to see that GW(X,Y) = 0 and the
optimal plan between X and Y is γs = 1

n2 Idn. Similarly, COOT(X,Y) = 0 and γs,γv = 1
nQ are the optimal

sample, feature couplings, respectively. In other words, ⟨L(DX ,DY )⊗ γs,γs⟩ = 0 and ⟨L(X,Y)⊗ γv,γs⟩ = 0.
We deduce that AGWα(X,Y) = 0.

Now, for 0 < α < 1, if AGW(X,Y) = 0, then GW(X,Y) = COOT(X,Y) = 0. In particular, X and Y must have
the same shape, so X,Y ∈ Rn×d. As GW(X,Y) = 0, there exists an isometry from X to Y. Note that every
isometry from Rd to Rd is a composition of at most d+ 1 reflections (see, for example, Corollary A.7 in (Conrad,
2019)). So, Y = XO, for some O ∈ Od. As COOT(X,Y) = 0, there exist two permutations σr and σc such that
Xi,j = Yσr(i),σc(j), or equivalently two permutation matrices P ∈ Pn, Q1 ∈ Pd such that Y = PXQ1. We deduce
that XO = PXQ1, or equivalently X = PXQ, for Q = Q1O

T ∈ Od. We will show that Q is symmetric.

Indeed, consider the singular value decomposition of X, i.e. X = UΣV T , where U ∈ Rn×d such that UTU = Id,
V ∈ Od and Σ ∈ Rd×d is a diagonal matrix whose diagonal contains d strictly decreasing singular values (since
n ≥ d). As X = PXQ, we have UΣV T = (PU)Σ(V TQ). For i ∈ [d], let ui ∈ Rn and vi ∈ Rd be columns of
U and V , respectively. As the singular values are positive and distinct, the columns are unique up to the sign
change of both columns in U and V . This means ui = ±Pui and vi = ±QT vi. In other words, ±1 are eigenvalues
of P and QT , and ui, vi are their corresponding eigenvectors, respectively. Denote D ∈ Rd×d any diagonal matrix
whose diagonal values are in {±1}, then QT = V DV −1 = V DV T = Q. So, Q is symmetric. Theorem 1 then
follows by observing that O = QTQ1. ■

A.4 Weak invariance to translation

While enjoying the interpolation and metric properties, AGW does not inherit the invariance to the translation of
the GW distance. However, we find that it satisfies a relaxed version of this invariant defined as follows.
Definition 1. We call D = infπ∈Π F (π,X,Y), where X,Y are input data and Π is a set of feasible couplings
and F is a real-valued functional, an OT-based divergence. Then D is weakly invariant to translation if for
every a, b ∈ R, we have infπ∈Π F (π,X,Y) = C + infπ∈Π F (π,X+ a,Y + b), for some constant C depending on
a, b,X,Y and Π.

Here, we denote the translation of X as X+ a, whose elements are of the form Xij + a. Intuitively, an OT-based
divergence is weakly invariant to translation if only the optimal transport plan is preserved under translation, but
not necessarily the divergence itself. In practice, we would argue that the ability to preserve the optimal plan
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under translation is much more important than preserving the distance itself. In other words, the translation
only shifts the minimum but has no impact on the optimization procedure, meaning that the minimizer remains
unchanged. Now, we can show that

Corollary 2. COOT is weakly invariant to translation.

Proof of Corollary 2. Given γs ∈ Π(µ, ν),γv ∈ Π(µ′, ν′), for any c ∈ R, we have∑
ijkl

(Xik −Yjl − c)2γs
ijγ

v
kl =

∑
ijkl

(Xik −Yjl)
2γs

ijγ
v
kl − 2c

∑
ijkl

(Xik −Yjl)γ
s
ijγ

v
kl + c2 (16)

Now, ∑
ijkl

(Xik −Yjl)γ
s
ijγ

v
kl =

∑
ijkl

Xikγ
s
ijγ

v
kl −

∑
ijkl

Yjlγ
s
ijγ

v
kl (17)

=
∑
ik

Xik

∑
j

γs
ij

(∑
l

γv
kl

)
−
∑
jl

Yjl

(∑
i

γs
ij

)(∑
k

γv
kl

)
(18)

=
∑
ik

Xikµiµ
′
k −

∑
jl

Yjlνjν
′
l (19)

= µTXµ′ − νTYν′. (20)

So, COOT(X,Y + c) = COOT(X,Y)− 2c
(
µTXµ′ − νTYν′

)
+ c2. This implies that COOT is weakly invariant

to translation. ■

AGW inherits the weak invariant to translation from COOT.

Proposition 2. For any α ∈ [0, 1], AGW is weakly invariant to translation.

Proof of Proposition 2. Note that the GW term in AGW remains unchanged by translation. By adapting the
proof of Corollary 2, we obtain

AGWα(X,Y + c) = AGWα(X,Y) + (1− α)
[
c2 − 2c

(
µTXµ′ − νTYν′

)]
.

The result then follows. ■

B Supplementary Illustrations

Figure S1: Examples of Isometric Transformations to which COOT is not invariant, unlike GW distance, which
yields a consistent alignment accuracy of 48.13%.
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Figure S2: (A) Confusion matrix showing GW distance tends to mismatch H1 and BJ clusters more often than
GW over 50 random subsampling of cells in the SNARE-seq dataset. (B) An example where GW distance
mismatches these clusters (H1 cells being matched to the BJ cluster) when their local geometries look similar
upon downsampling while AGW yields more accurate results.

C Supplementary results on single-cell multi-omic integration

Figure S3: AGW’s Feature Alignments for (A) SNARE-Seq, and (B) scGEM Datasets. A. The Sankey plot
presents the four cell-type marker genes and their top correspondences in the open chromatin regions. B. visualizes
the feature coupling matrix for the scGEM dataset. C is borrowed from the publication for scGEM dataset
(Cheow et al., 2016a), which shows how the genomic features in the gene expression and DNA methylation
domains vary during cellular differentiation. D is a heatmap borrowed from Welch et al. that shows empirical
correlations between the features of the two measurement domains, which we use for comparison with Panel B.

For completeness of results, we visualize the feature alignments AGW obtains for the SNARE-seq and scGEM
datasets in Figure S3 despite the lack of ground-truth information on these. Due to the high number of features
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in the SNARE-seq dataset (1000 genes and 3000 chromatin regions), we only show the four cell-type marker
genes and their top correspondences from the accessible chromatin regions in Panel A. For the scGEM dataset,
we visualize the full feature coupling matrix in Panel B, which can be interpreted in light of the information
presented in Panels C and D. We detail the significance of the inferred correspondences below.

SNARE-seq feature correspondences To validate the correspondences in Figure S3 Panel A, we consult the
biological annotations on the UCSC Genome Browser (Navarro Gonzalez et al., 2020), as well as gene regulatory
information databases, such as GRNdb (Fang et al., 2020) and RepMap Atlas of Regulatory Regions (Hammal
et al., 2021). Most of these correspondences agree with either experimentally validated or computationally
predicted regulatory relationships.

Three of the alignments are between marker genes and their own chromatin regions. The first is the PRAME
and Chr22: 22.520-22.521 Mb region alignment, which is a region upstream of the PRAME gene body that is
rich with predicted transcription factor (TF) binding sites based on the RepMap Atlas of Regulatory Regions
(Hammal et al., 2021) annotations on UCSC Genome Browser (Human hg38 annotations) (Navarro Gonzalez
et al., 2020). Among the predicted TF bindings, some are K562-specific predictions, and are previously reported
regulators of PRAME, such as E2F6, HDAC2, CTCF (based on GRNdb database (Fang et al., 2020) of TF-gene
relationships). Then COL1A2 and HLA-DRB1 also have recovered correspondences with their own chromosomal
region, “Chr7:94.395-94.396 Mb” and “Chr6:32,578-32,579 Mb”, respectively. Both these genes are also additionally
aligned with “Chr1: 58,780 - 58,781 Mb” region, which corresponds to the gene body of JUN transcription factor.
Indeed, Chen et al. (2019) identify JUN as a TF differentially expressed in the K562 and BJ cells, but more
strongly in the latter. GRNdb also lists JUN as a regulator of COL1A2 gene.

PRAME has another region abundant in predicted TF binding sites among its top correspondences: “Chr6:
7.974-7.975 Mb”. This region is annotated with an H3K27Ac mark on the UCSC Genome Browser, which
is an acetylation mark that is often found near gene regulatory elements on the genome (Navarro Gonzalez
et al., 2020). Furthermore, this region contains multiple predicted binding sites of TFs GRNdb identifies as
regulators of PRAME, such as IRF1, HDAC2, HOXC6 and POU2AF1. The HLA-DRB1 gene is also aligned
with a chromosomal region rich in GM12878-specific predictions of TF bindings, such as IRF4, IRF8, ETV6, and
CREM, which GRNdb lists as potential regulators of HLA-DRB1. Lastly, although we could not find a biological
relationship reported between the EPCAM gene (marker gene for the H1 cell-line) and the chromatin region for
the CLYBL gene, this region indeed appears to be differentially accessible in H1 cells in the SNARE-seq dataset.

scGEM feature correspondences In the absence of ground-truth data, we consult the publication that
introduced the scGEM dataset (Cheow et al., 2016a) to interpret the feature coupling yielded by AGW in Panel
B. Figure S3 Panel C presents a plot from this paper, which shows how the expression of genes that drive
pluripotency during cell differentiation correlate or anti-correlate with the methylation of the genes in the “DNA
methylation” domain. We observe B that AGW’s coupling also recovers an alignment between the expression
profiles of pluripotency-driving genes and the methylation levels of associated genes. Panel D visualizes the
underlying correlations between the gene expression and DNA methylation domains computed by Welch et al.
AGW’s feature coupling reflects the structure in this ground-truth correlation matrix. Note that the rows and
columns are ordered identically in Panel B to aid with the visual comparison.
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D Supplementary results on heterogeneous domain adaptation (HDA)

We present the results for the semi-supervised heterogeneous domain adaptation (HDA) experiments below.
Differently than the unsupervised HDA experiments, we consider two additional baselines that were specifically
developed for semi-supervised HDA, namely the “KeyPoint-Guided model by ReLational preservation” (KPG-RL)
and the “KPG-RL with Gromov-Wasserstein” (KPG-RL-GW) (Gu et al., 2022). For these baselines, we use
the implementation provided at https://github.com/XJTU-XGU/KPG-RL. Both KPG-RL and KPG-RL-GW
create a "guidance matrix" to supervise the coupling such that the coupling probabilities between keypoints and
their match (points selected for supervision) are set to 1 while all other possible matches for these keypoints
are assigned 0. Therefore, their supervision scheme assumes there is 1− 1 correspondence between keypoints.
We note that, however, the datasets in our HDA experiments contain images from the same classes but they
don’t necessarily contain the same image (e.g. in the Caltech10 vs Amazon datasets). As such, an image here
realistically has multiple possible correspondences.

Table S1: Heterogeneous Domain Adaptation Results in the Semi-Supervised Case with t = 1 Sample Used for
Supervision. Best results are bolded and second best results are underlined. For AGW, the α values used are:
0.6, 0.2, 0.2, 0.9, 0.4, 0.5, 0.9, 0.3, 0.1 from left to right.

A → A A → C A → W C → A C → C C → W W → A W → C W → W
AGW 93.1±1.6 90.2±5.1 90.3±3.5 78.8±7.7 84.2±2.3 77.3±4.2 92.8±3.8 90.3±3. 98.5±0.8
COOT 87.1±4.9 44.4±4.9 54.5±9.8 74.5±3.1 45.4±12.2 40.8±12.2 86.9±2.3 39.7±3.6 76.1±13.5
GW 92.4±1.8 90.6±5.5 85.7±3.9 77.6±8.6 82.8±3.0 73.3±6.9 91.9±7.9 81.9±9.6 97.2±1.4
UCOOT 85.3±5.2 49.0±5.0 63.5±1.5 76.6±3.5 62.8±4.6 68.2±3.0 80.3±5.6 66.2±4.5 85.3±2.1
UGW 91.9±3.7 90.9±4.6 84.3±2.1 78.7±8.2 77.5±5.4 72.8±4.9 88.3±6.0 80.9±5.2 98.7±1.5
KPG-RL 85.0±7.1 85.5±5.0 85.4±5.2 73.5±5.6 70.3±4.2 73.4±4.8 86.7±4.3 84.0±4.6 88.1±3.6
KPG-GW-RL 86.1±2.6 79.2±4.3 84.0±3.8 71.9±6.6 69.4±6.0 71.1±3.1 83.8±5.2 78.8±4.7 87.5±3.4

Table S2: Domain Adaptation Results in the Semi-Supervised Case with t = 3 Samples Used for Supervi-
sion. Best results are bolded and second best results are underlined. For the AGW, the α values used are
0.2, 0.1, 0.2, 0.7, 0.2, 0.9, 0.8, 0.9, 0.4 from left to right.

A → A A → C A → W C → A C → C C → W W → A W → C W → W
AGW 96.0±0.8 93.5±1.8 93.8±0.7 85.6±1.2 86.5±2.0 83.2±2.4 97.1±0.8 94.7±1.1 98.7±0.5
COOT 91.1±2.0 59.7±3.6 72.6±4.4 83.1±5.1 59.3±8.4 64.6±6.2 94.3±2.2 55.0±7.1 87.4±4.4
GW 93.2±0.9 92.8±2.1 91.6±1.8 81.2±1.2 85.3±2.8 79.7±2.5 93.4±5.2 90.9±3.5 97.4±2.6
UCOOT 90.0±3.2 67.3±2.9 80.3±1.8 84.6±2.3 64.9±4.1 68.7±3.4 83.6±4.1 69.9±6.2 89.9±1.8
UGW 92.6±2.8 93.2±3.0 88.5±2.9 82.5±6.2 81.8±5.6 77.3±7.0 91.2±3.8 88.9±8.2 98.8±3.2
KPG-RL 89.9±3.8 89.7±2.1 90.3±1.8 82.2±2.9 78.4±2.2 79.6±3.4 93.1±2.3 91.5±3.2 95.1±2.1
KPG-GW-RL 86.6±4.3 83.0±3.6 87.9±2.8 78.7±3.4 75.2±5.0 78.8±5.8 90.1±2.7 84.9±5.1 93.6±2.3

Table S3: Heterogeneous Domain Adaptation Results in the Semi-Supervised Case with t = 5 Samples Used for
Supervision. Best results are bolded and second best results are underlined. For the AGW, the α values used are
0.3, 0.1, 0.7, 0.1, 0.5, 0.8, 0.9, 0.2, 0.9 from left to right.

A → A A → C A → W C → A C → C C → W W → A W → C W → W
AGW 96.4±1.3 96.4±1.7 93.1±2.9 86.2±2.3 86.6±1.9 83.9±1.4 96.7±1.1 95.7±2.1 98.7±0.9
COOT 93.6±1.5 66.1±3.8 75.7±3.5 85.2±2.1 64.7±7.2 67.0±7.5 96.3±1.9 60.5±5.3 90.3±1.9
GW 93.8±2.1 91.9±2.2 93.3±1.2 85.2±3.6 84.5±2.7 81.9±3.6 96.6±1.1 94.5±3.1 98.4±0.9
UCOOT 91.3±4.3 70.1±5.5 88.8±1.6 85.1±4.2 70.8±3.4 76.3±1.7 91.5±3.6 73.6±6.4 92.4±2.0
UGW 93.2±1.7 93.4± 3.0 90.8±1.9 85.8±2.6 82.7±2.2 80.6±3.2 95.1±0.8 92.9±2.4 98.9±0.7
KPG-RL 92.6±1.9 90.5±2.9 91.9±2.1 83.9±2.7 82.0±2.8 84.4±4.2 94.7±3.8 93.3±2.5 97.0±2.3
KPG-GW-RL 89.9±1.9 85.0±1.8 91.9±2.3 81.0±4.4 79.9±3.1 82.1±2.4 91.9±2.9 88.5±3.9 97.1±1.5

https://github.com/XJTU-XGU/KPG-RL
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E Empirical Runtime Analysis

For runtime comparisons, we present AGW, GW and COOT runtimes in Table S4 on HDA experiments. We ran
all algorithms on an Intel Xeon e5-2670 CPU with 16GB memory. To ensure consistency in comparisons, we kept
the regularization coefficients the same across all runs, with the coefficient of entropic regularization over sample
coupling as 5e− 4 and the coefficient of entropic regularization over the feature couplings (in COOT and AGW)
as 1e− 3. These were the values most often picked by hyperparameter tuning.

Table S4: Runtime per Iteration and Number of Iterations Before Convergence of AGW, GW and COOT
Algorithms on HDA Experiments. The same convergence criteria are used across all methods.

Number of Iterations Runtime per Iteration

COOT AGW (α=0.5) GW COOT AGW (α=0.5) GW
A → A 2.1 ± 0.5 13.9 ± 1.8 42.7 ± 17.3 0.18 ± 0.02 0.22 ± 0.05 0.22 ± 0.04
A → C 1.9 ± 0.7 13.7 ± 2.5 56.4 ± 21.4 0.16 ± 0.01 0.21 ± 0.07 0.26 ± 0.02
A → W 2.3 ± 0.8 13.4 ± 1.0 41.3 ± 14.8 0.18 ± 0.03 0.20 ± 0.01 0.23 ± 0.06
C → A 2.0 ± 0.0 15.7 ± 3.5 62.4 ± 14.5 0.23 ± 0.05 0.26 ± 0.09 0.28 ± 0.03
C → C 2.0 ± 0.4 12.0 ± 1.9 54.1 ± 12.0 0.21 ± 0.04 0.24 ± 0.07 0.22 ± 0.04
C → W 2.4 ± 0.8 11.6 ± 2.2 72.5 ± 19.7 0.20 ± 0.02 0.21 ± 0.01 0.24 ± 0.05
W → A 2.0 ± 0.0 14.5 ± 1.4 32.7 ± 17.8 0.20 ± 0.06 0.22 ± 0.01 0.27 ± 0.04
W → C 2.2 ± 0.6 11.8 ± 2.3 48.3 ± 8.2 0.17 ± 0.02 0.19 ± 0.01 0.20 ± 0.09
W → W 2.0 ± 0.0 13.6 ± 1.1 52.7 ± 7.2 0.20 ± 0.03 0.21 ± 0.02 0.23 ± 0.02

Table S4 shows that AGW tends to converge in fewer iterations than GW. We observe that this is thanks to
the further refinement of the sample coupling matrix and quicker drop in GW cost as influenced by the feature
coupling (after feature optimization step of the COOT term in the same iteration, as all else remains the same
between the two algorithms).

F Experimental Set-up Details

F.1 MNIST Illustrations

We align 1000 images of hand-written digits from the MNIST dataset with 1000 images from the USPS dataset.
Each dataset is subsampled to contain 100 instances of each of the 10 possible digits (0 through 9), using the
random seed of 1976. We set all marginal distributions to uniform, and use cosine distances for GW and AGW. We
consider both the entropically regularized and non-regularized versions for all methods. For entropic regularization,
we sweep a grid of ϵ1, ϵ2( =if applicable) ∈ [5e − 4, 1e − 3, 5e − 3, 1e − 2, 5e − 2, 1e − 1, 5e − 1]. For AGW, we
consider [0.1, 0.2, 0.3, ..., 0.9], and present results with the best-performing hyperparameter combination of each
method, as measured by the percent accuracy of matching images from the same digit across the two datasets.

F.2 Single-cell multi-omic alignment experiments

As a real-world application of AGW, we align single-cell data from different measurement domains. Optimal
transport has recently been applied to this problem in computational biology by multiple groups (Demetci
et al., 2020; Cao et al., 2021, 2022). To briefly introduce the problem: Biologists are interested in jointly
studying multiple genomic (i.e., “multi-omic”) aspects of cells to determine biologically relevant patterns in their
co-variation. Such studies reveal how the different molecular aspects of a cell’s genome (e.g., its 3D structure,
chemical modifications it undergoes, activity levels of its genes, etc) interact to regulate the cell’s response to
its environment. These studies are of interest for both fundamental biology research, as well as drug discovery
applications. However, as Liu et al. (2019) describe, combining multiple measurements on the same cells is
experimentally difficult. Consequently, computational approaches are developed to integrate data from different
measurement modalities using biologically relevant cell populations. In this paper, we apply AGW to jointly
align both cells and genomic features of single-cell datasets. This is a novel direction in the application of optimal
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transport (OT) to single-cell multi-omic alignment tasks, as the existing OT-based algorithms only align cells.

Datasets We largely follow the first paper that applied OT to single-cell multi-omic alignment task (Demetci
et al., 2020) in our experimental set-up and use four simulated datasets and three real-world single-cell multi-omic
datasets to benchmark our cell alignment performance.

Three of the simulated datasets have been generated by Liu et al. (2019) by non-linearly projecting 600 samples
from a common 2-dimensional space onto different 1000- and 2000-dimensional spaces with 300 samples in each.
In the first simulation, the data points in each domain form a bifurcating tree structure that is commonly seen in
cell populations undergoing differentiation. The second simulation forms a three-dimensional Swiss roll. Lastly,
the third simulation forms a circular frustum that resembles what is commonly observed when investigating the
cell cycle. These datasets have been previously used for benchmarking by other cell-cell alignment methods (Liu
et al., 2019; Singh et al., 2020; Cao et al., 2020, 2021; Demetci et al., 2020). We refer to these datasets as “Sim 1”,
“Sim 2”, and “Sim 3”, respectively.

We include a fourth simulated dataset generated by Demetci et al. (2020) using a single-cell RNA-seq data
simulation package in R, called Splatter (Zappia et al., 2017). We refer to this dataset as “Synthetic RNA-seq”.
This dataset includes a simulated gene expression domain with 50 genes and 5000 cells divided across three cell
types and another domain created by non-linearly projecting these cells onto a 500-dimensional space. As a result
of their generation schemes, all simulated datasets have ground-truth 1-1 cell correspondence information. We
use this information solely for benchmarking. We do not have access to ground-truth feature relationships in
these datasets, so we exclude them from feature alignment experiments.

Additionally, we include three real-world single-cell sequencing datasets in our experiments. To have ground-
truth information on cell correspondences for evaluation, we choose three co-assay datasets which have paired
measurements on the same individual cells: a scGEM dataset (Cheow et al., 2016a), a SNARE-seq dataset (Chen
et al., 2019), and a CITE-seq dataset (Stoeckius et al., 2017) (these are exceptions to the experimental challenge
described above). These first two datasets have been used by existing OT-based single-cell alignment methods
(Cao et al., 2020; Singh et al., 2020; Demetci et al., 2020; Cao et al., 2021; Demetci et al., 2022a), while the last
one was included in the evaluations of a non-OT-based alignment method, bindSC (Dou et al., 2022). The scGEM
dataset contains measurements on gene expression and DNA methylation states of 177 individual cells from the
human somatic cell population undergoing conversion to induced pluripotent stem cells (iPSCs) (Cheow et al.,
2016a). We accessed the pre-processed count matrices for this dataset through the following GitHub repository:
https://github.com/caokai1073/UnionCom. The SNARE-seq dataset contains gene expression and chromatin
accessibility profiles of 1047 individual cells from a mixed population of four cell lines: H1(human embryonic stem
cells), BJ (a fibroblast cell line), K562 (a lymphoblast cell line), and GM12878 (lymphoblastoid cells derived from
blood) (Chen et al., 2019). We access their count matrices online from the Gene Expression Omnibus platform
with the accession code GSE126074. Finally, the CITE-seq dataset has gene expression profiles and epitope
abundance measurements on 25 antibodies from 30,672 cells from human bone marrow tissue, which we randomly
downsample to 1000 cells (Stoeckius et al., 2017). The count matrices for this dataset were downloaded from the
Seurat website 5. We use these three real-world single-cell datasets for both cell-cell (i.e., sample-sample) and
feature-feature alignment benchmarking.

In addition to these three datasets, we include a fourth single-cell dataset, which contains data from the same
measurement modality (i.e., gene expression) but from two different species: mouse (Bhattacherjee et al., 2019)
and bearded lizard (Tosches et al., 2018). Our motivation behind including this dataset is to demonstrate the
effects of both sample-level (i.e., cell-level) and feature-level (i.e., gene-level) supervision on alignment qualities.
We refer to this dataset as the “cross-species dataset”, which contains 4,187 cells from lizard pallium (a brain
region) and 6,296 cells from the mouse prefrontal cortex. The two species share a subset of their features: 10,816
paralogous genes. Each also has species-specific genes: 10,184 in the mouse dataset and 1,563 in the lizard dataset.
The data comes from different species, so there is no 1–1 correspondence between cells. However, the two species
contain cells from similar cell types. Unlike the other single-cell dataset, there is a subset of the features (the
paralogous genes) that have 1–1 correspondences across the two domains (domains are defined by species in this
dataset).

5https://satijalab.org/seurat/v4.0/weighted_nearest_neighbor_analysis.html

https://github.com/caokai1073/UnionCom
https://satij alab.org/seurat/v4.0/weighted_nearest_neighbor_analysis.html
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Baselines and hyperparameter tuning We benchmark AGW’s performance on single-cell alignment tasks
against three algorithms: (1) COOT (Redko et al., 2020), (2) SCOT (Demetci et al., 2020), which is a Gromov-
Wasserstein OT-based algorithm that uses k-nearest neighbor (kNN) graph distances on dimensionality reduced
datasets (top 30 principal components for gene expression domains and simulated domains, 15-25 topics with
latent Dirichlet allocation for other measurement domains) as intra-domain distance matrices. This choice of
distances has been shown to perform better than Euclidean distances, cosine distances by Demetci et al. (2020)),
and bindSC (Dou et al., 2022). For consistency, we keep the intra-domain distance computations the same for
AGW and UGW, too. Among all baselines, bindSC is not an OT-based algorithm: It employs bi-order canonical
correlation analysis to perform alignment. We include it as a benchmark as it is the only existing single-cell
alignment algorithm that can perform feature alignments (in addition to cell alignments) for a few limited types
of measurement modalities.

When methods share similar hyperparameters in their formulation (e.g., entropic regularization constant, ϵ for
methods that employ OT), we use the same hyperparameter grid to perform their tuning. Otherwise, we refer
to the publication and the code repository for each method to choose a hyperparameter range. For SCOT, we
tune four hyperparameters: k ∈ {20, 30, . . . , 150}, the number of neighbors in the cell neighborhood graphs,
ϵ ∈ {5e−4, 3e−4, 1e−4, 7e−3, 5e−3, . . . , 1e−2}, the entropic regularization coefficient for the optimal transport
formulation. Similarly, for both COOT, UCOOT, UGW (SCOTv2 Demetci et al. (2022a)) and AGW, we sweep
ϵ1, ϵ2 ∈ {5e− 4, 3e− 4, 1e− 4, 7e− 3, 5e− 3, . . . , 1e− 2} for the coefficients of entropic regularization over the
sample and feature alignments. We use the same intra-domain distance matrices in AGW as in SCOT (based on
kNN graphs). For AGW, we consider the interpolation coefficient of α ∈ {0.1, 0.2, ..., 0.9}.For the unbalanced
formulations, namely UGW and UCOOT, we sweep lambda1 ∈ {1e − 3, 5e − 3, ..., 100}, corresponding to the
mass conservation relaxation coefficient over samples (i.e.cells). In UCOOT, we sweep the same interval for λ2,
the same relaxation parameter over features. For all OT-based methods, we perform barycentric projection to
complete the alignment.

For bindSC, we choose the coupling coefficient that assigns weight to the initial gene activity matrix α ∈
{0, 0.1, 0.2, . . . 0.9} and the coupling coefficient that assigns a weight factor to multi-objective function λ ∈
{0.1, 0.2, . . . , 0.9}. Additionally, we choose the number of canonical vectors for the embedding space K ∈
{3, 4, 5, 10, 30, 32}. For all methods, we report results with the best-performing hyperparameter combinations.

Evaluation Metrics When evaluating cell alignments, we use a metric previously used by other single-cell
multi-omic integration tools (Liu et al., 2019; Singh et al., 2020; Cao et al., 2020; Demetci et al., 2020; Cao et al.,
2021; Demetci et al., 2022a; Dou et al., 2022) called “fraction of samples closer than the true match” (FOSCTTM).
For this metric, we compute the Euclidean distances between a fixed sample point and all the data points in the
other domain. Then, we use these distances to compute the fraction of samples that are closer to the fixed sample
than its true match and then average these values for all the samples in both domains. This metric measures
alignment error, so the lower values correspond to higher-quality alignments.

We investigate the accuracy of feature correspondences recovered to assess feature alignment performance. We
mainly use two real-world datasets for this task - CITE-seq, and the cross-species scRNA-seq datasets (results
on SNARE-seq and scGEM datasets are qualitatively evaluated due to the lack of ground-truth information).
For the CITE-seq dataset, we expect the feature correspondences to recover the relationship between the 25
antibodies and the genes that encode them. To investigate this, we simultaneously align the cells and features of
the two modalities using the 25 antibodies and 25 genes in an unsupervised manner. We compute the percentage
of 25 antibodies whose strongest correspondence is their encoding gene.

For the cross-species RNA-seq dataset, we expect alignments between (1) the cell-type annotations common to
the mouse and lizard datasets, namely excitatory neurons, inhibitory neurons, microglia, OPC (Oligodendrocyte
precursor cells), oligodendrocytes, and endothelial cells and (2) between the paralogous genes. For this dataset, we
generate cell-label matches by averaging the rows and columns of the cell-cell alignment matrix yielded by AGW
based on these cell annotation labels. We compute the percentage of these six cell-type groups that match as their
strongest correspondence. For feature alignments, we compute the percentage of the 10,816 shared genes that
are assigned to their corresponding paralogous gene with their highest alignment probability. For this dataset,
we consider providing supervision at increasing levels on both sample and feature alignments. For feature-level
supervision, 20% supervision means setting the alignment cost of ∼ 20% of the genes with their paralogous pairs
to 0. For sample-level supervision, 20% supervision corresponds to downscaling the alignment cost of ∼ 20% of
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the mouse cells from the aforementioned seven cell types with the ∼ 20% of lizard cells from their corresponding
cell-type by 1

# lizard cells in the same cell-type .

F.3 Heterogeneous domain adaptation experiments

For each pair of domains (A)-(C), (A)-(W), (C)-(C) etc, we sweep a hyperparameter grid over 5 runs of random
selecting 10 samples in each class to form a validation dataset, and choose the hyperparameter combination that
best performed on average. We then randomly select 20 other samples per class and perform adaptation from
CaffeNet to GoogleNet, report average performance along with standard deviations over 10 repetitions. For all
methods that allow for entropic regularization, we consider their version with no entropic regularization (either
on the sample-level alignments, feature-level alignments, or both), along with various levels of regularization.
Similarly to other experiments, for entropic regularization over sample alignments, we consider ϵ1 ∈ [5e− 4, 1e−
3, 5e− 3, 1e− 2, 5e− 2, 0.1] in the hyperparameter grid. For entropic regularization over feature alignments in
COOT and AGW, we also consider ϵ2 ∈ [5e− 4, 1e− 3, 5e− 3, 1e− 2, 5e− 2, 0.1]. For unbalanced formulations, we
consider the mass relaxation constants of λ1, (and if applicable)λ2 ∈ {1e− 3, 5e− 3, 1e− 2, ..., 100}. We consider
α ∈ [0.1, 0.2, ..., 0.9] for interpolation coefficient of AGW.
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