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Abstract

We study the problem of sequential learning
of the Pareto front in multi-objective multi-
armed bandits. An agent is faced with K pos-
sible arms to pull. At each turn she picks one,
and receives a vector-valued reward. When
she thinks she has enough information to
identify the Pareto front of the different arm
means, she stops the game and gives an an-
swer. We are interested in designing algo-
rithms such that the answer given is correct
with probability at least 1—4. Our main con-
tribution is an efficient implementation of an
algorithm achieving the optimal sample com-
plexity when the risk § is small. With K arms
in d dimensions p of which are in the Pareto
set, the algorithm runs in time O(Kp?) per
round.

1 INTRODUCTION

Stochastic multi-armed bandits have emerged as a fun-
damental framework for studying sequential learning.
In the classic setting of scalar rewards, the UCB algo-
rithm solves the regret minimization problem and the
Track-and-Stop algorithm solves the best arm identi-
fication problem. In this paper we are interested in
the extension to vector-valued rewards, which is the
arena for multi-criterion optimization. Here the prob-
lem of identifying the best arm generalizes to identi-
fying the subset of arms with Pareto optimal means
[Auer et al., 2016]. We study this problem in the
fixed confidence setting. That is, the learner is given a
confidence parameter. She sequentially collects noisy
vector-valued rewards from a finite-armed bandit. Af-
ter having collected enough data, the learner stops and
outputs a subset of arms. The goal of the learner is
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to identify with high probability the correct Pareto
set. Our approach is based on instantiating the Track-
and-Stop framework [Garivier and Kaufmann, 2016] to
the Pareto front identification problem so as to obtain
an algorithm with optimal sample complexity 8. The
Track-and-Stop framework has recently seen tremen-
dous success across pure exploration problems in ban-
dits and RL. Examples include best arm identification
in Spectral [Kocdk and Garivier, 2021]. Stratified [Rus-
sac et al., 2021]. Lipschitz [Degenne et al.. 2019], Lin-
ear [Degenne et al., 2020.Jedra and Proutiere, 2020],
Dueling [Haddenhorst et al., 2021], Contextual [[Tirin-
zoni et _al., 2020, Hao et al., 2020] and Markov ban-
dits [Moulos, 2019]. Other objectives include Top-m
identification [Chen et al., 2017b. Chen et al., 2017a],
MaxGap identification [Katariya et al., 2019], Thresh-
olding [Garivier et al., 2017], Monte Carlo Tree Search
[Garivier et al., 2016], optimal policy identification in
MDPs [Al Marjani and Proutiere, 2021], and minimiz-
ing Tail-Risk [Agrawal et al., 2021]. The framework
has also been instantiated to Pareto front identifica-
tion [Kone et al., 2023]. The Track-and-Stop tem-
plate is in some sense universal: the starting point
is an information-theoretic, instance-dependent sam-
ple complexity lower bound of min-max form (see our
Proposition [ll below). The learning algorithm is de-
signed to match this lower bound by solving (an esti-
mate of) that min-max problem. For that, in turn, it
suffices to calculate a certain gradient [Degenne et al.,
2019]. Yet here the details become problem-specific,
in the sense that the tractability of this gradient com-
putation varies across problems. Some identification
objectives have closed-form solutions, some have effi-
cient special-purpose optimizers, some can leverage a
reduction to generic convex optimization, and for oth-
ers nothing much is known. An overarching method-
ology remains elusive, and as such it is important to
extend our toolbox by solving particular hard cases,
of which Pareto front identification is a prime exam-
ple. Our contribution is, at its core, an efficient im-

Ipreferred capitalization
2This can be either asymptotic optimality as in the orig-
inal [Garivier and Kaufmann, 2016], or sqgme later finite

confidence refinement [Degenne et al., 2019].
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plementation i of the gradient computation required
for executing Track-and-Stop for Pareto front identifi-
cation. With that problem-specific computational ker-
nel implemented, the general scheme instantiates and
we obtain an instance-optimal fixed confidence learner.
Our combinatorial and algorithmic innovations reduce
the run-time in p from the naive exponential O(KdP*1)
to polynomial O(Kp?) per round. This is a reasonable
computation cost for instances with a large number of
arms and a small number of objectives.

We conclude here by mentioning extensions and al-
ternative versions. [Kone et al., 2023] study approxi-
mate Pareto front identification. Skyline identification
is a special case of Pareto front identification [Cheu
et al., 2018]. Multi-objective optimization is also stud-
ied from a regret minimization perspective. Achiev-
ing a vector-valued expected reward not too far from
the Pareto front (in some distance metric) is stud-
ied, both in stochastic and adversarial bandits [Busa-
Fekete et al., 2017, Xu and Klabjan, 2023]. [Zuluaga
et al., 2013] motivates the relevance of studying multi-

ojective optimization.

1.1 Setting

We use the setting of multi-objective multi-armed ban-
dits, which is the following: given K independent prob-
ability distributions on RY, v = (Vi) keg) €V, with re-
spective means p = (ui)ke[K]Je[d], at every time step
t € N an agent gets to pick an arm A, € [K] and
receives an independent reward X, € R? drawn from
v4,- The objective here is not to maximize cumulative
reward over time but to identify as fast as possible (un-
der a correctness constraint) the best performing arms.
However, since we are in a multi-objective setting, we
have no way of identifying a single best performing arm
as we could do in a single objective framework: an arm
might perform really well on one objective j € [d] but
get poor results on another one, or an arm could rank
averagely but on all the objectives. We have no way
of discriminating one against the other.

For that reason, we are interested in identifying all
the Pareto optimal arms. To be Pareto optimal, an
arm must not be dominated by another one which
means having its performance on all of the objectives
be poorer than a single other arm. An arm which
would have another one dominating it, is one about
which we are sure that it has a better counter part,
whereas an arm which as no one dominating it is opti-
mal since we have no way of comparing how different

3The source code wused to run all ex-
periments included in the paper is avail-
able at https://github.com/elise-crepon/

sequential-pareto-learning-experiments.

objective compare with each other. We are then in-
terested in identifying all of the Pareto optimal arms
as fast as possible. Letting F, = o(Xy,--+, X,) be the
sigma-field generated by the observations up to time
t. A strategy is then defined by a sampling rule (A,),
where A, € [K] is #,_, measurable, a stopping rule T,
which is a stopping time with respect to (), and an
answer rule P, C [K] that is & -measurable, which is
the set of arm indices the learner assumes to be the
Pareto set.

Given a risk & > 0, we call a strategy J-PAC if it en-
sures that the answers it gives at the end of its runs are
correct with a confidence §, i.e. P(P, is wrong) < 9.
This family of problem is called pure exploration and
has already been well studied, in particular in the
case where a single answer is correct which is our
case. We apply the results from the literature to
our specific problem. Also notice that while our set-
ting is mainly focused on multi-objective, it includes
the single-objective framework within the special case
d = 1. This well-studied case of best-arm identifica-
tion will serve as a reference throughout the paper,
some of the difficulties that we present having their
(degenerated) equivalent in dimension 1.

1.2 Pareto optimality

To formalize the definition of the Pareto set, we intro-
duce the following binary relation. An arm with dis-
tribution  on R? and mean ;. € R? is said to be domi-
nated by an arm v’ with mean u’, which we denote by
v <XV (or equivalently p < p) iff Vj € [d], pu; < pj.
This means that v’ performs better than v on all the
d different objectives. For a specific u, we create a
partial order between the indices of the arms given
by ko X, k1 < py, = py, - This comparison is a
partial order but is not connected, hence within a fi-
nite set it may have multiple maxima. We call these
maxima the (strict) Pareto set and we denote it by
p(p) = max_ [K] = argmax_ (k) ft- The Pareto
set is defined as the indices of the points rather than
the points directly because while our leaner has access
to the indices, it doesn't have access to the points di-
rectly.

In this paper, we give an algorithm based on Track-
and-Stop to identify the Pareto set of multi-variate
Gaussians. We provide a careful analysis of its com-
plexity. We also tackle the special case of dimension
two and give an improved complexity in this case. In
the first section of this paper, we give a formal def-
inition of Pareto optimality. In Section 2, we recall
the Track-and-Stop framework and motivate why it
applies to our problem. In Section 3, we detail our
algorithm and analyze its complexity.
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2 LOWER BOUND ON THE
SAMPLE COMPLEXITY AND
ALGORITHM

This section uses the results of [Garivier and Kauf
mann, 2016] to derive a lower bound on the sample
complexity and to find an efficient algorithm to solve
our problem.

We use the formalism of active sequential hypotheses
learning. We let M be a set of K arms bandit models
and K = {J,;|i € [n]} a finite set of disjoint hy-
potheses (which is a partition of M). We introduce
h : M — X which is the function that associates to
any v € M the only A, that contains v. We are in-
terested in algorithms that can identify the hypothesis
that contains v. The sampling, stopping and answer
rules defined in the introduction still holds only the
final answer given is H_ the hypothesis the learner as-
sumes the models they are interacting with is in. In
this context, a 0-PAC strategy is any strategy that can
ensure that P, (v € H )(=P,(h(v) = H,)) < for all
vebM.

We denote by Alt(v) = {v/ € M|h(v') # h(v)} =
—h(v) the subset of our model space M which contains
all the models that have a different answer than the
one of v. This set of models is important because for
a player to make a mistake they need to confuse the
model they get samples from with a model in Alt(v).
Hence for any algorithm to stop, it needs to get enough
information to distinguish the current model from all
models in Alt(v) with risk at most 4.

[Garivier and Kaufmann, 2016] introduce the follow-
ing lower bound for the number of samples needed
for active sequential hypotheses testing with a unique
valid hypothesis in the bandit framework.

Proposition 1 (Sample complexity lower bound).
Given a set of models M, a finite set of disjoint hy-
potheses H = (H;);epn) which is a partition of M and
a risk parameter 6 > 0, any 0-PAC strategy is such
that for every v € M:

EV(T(S) > k1(57 1-— 5) : T*(V) ’
where

T (v) "' 2 su inf w, KL(vp,, Ay .
(v) weAPK N k;(] ) KLV, Ag)

Our task of Pareto set identification is an instance of
this problem: our hypotheses are for each subset of
arms [K] the set of models for which this set is the
Pareto set. For a given model, the only correct hy-
pothesis is the one associated with its Pareto set and
the models in Alt(v) are such that their Pareto set is

not the same as that of v.
Alt(v) = (v € V|p(') #p(v)} . (1)

As noted in the same paper, this lower bound hints
us toward an efficient sampling rule. If we were to
know v, then the maximizer w* of the optimization
problem T™(v) gives us the fastest sampling rule that
is able to make the difference between v and the mod-
els in Alt(v). However, we don't know v upfront. The
Track-and-Stop algorithm proposes to solve the opti-
mization problem with estimates of the model and to
correct for possible bias with some forced exploration.
The algorithm also comes with a stopping and recom-
mendation rule that we import from the literature.

However, using this algorithm requires us to be able to
solve the optimization problem behind 7*(v). For best
arm identification, [Garivier and Kaufmann, 2016] pro-
pose a clever yet special-purpose algorithm. However,
that approach does not work for Pareto set identifica-
tion making the problem much harder. Since, for

Dw(Vv)‘) £ Z Wy, KL(VIw)‘IQ )
ke[K]

the function w € A g = infyc py(,) D, (v, A) is concave
with respect to w, we can learn it using gradient ascent.
Moreover, as we are refining our estimates at each time
step, we can do an online gradient ascent and do only
one step of the gradient ascent per time step. In order
to perform gradient ascent, we need to be able to solve
and find the minimizer of

min D, (v,\). @)

wrt. A€ Alt(v)

However, the computation of the minimal transporta-
tion cost from v to a A € Alt(v) that changes the
Pareto set is not a convex function and requires a spe-
cific solving procedure. Because it carries more geo-
metric intuition, we tackle here the case of Gaussian
random variables with identity covariance (i.e. the ob-
jectives are independent from one another). Hence,
our models are fully parametrized by their means pu,
which we use as a stand-in for v when talking about
them. Our main contribution is to propose an effi-
cient algorithm to solve this optimization problem in
the case of Gaussian random variables. We provide a
general analysis for higher dimensions and refine it for
the case of dimension two. Under these assumptions,
the w-weighted transportation cost D,, between two
models equals:

A w
D, (pu,A) = Z 7k\|ﬂk = Nll? - (3)
ke[K]

Though we will focus only on solving this specific op-
timization problem for the rest of the paper without
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delving in the inner workings of the Track-and-Stop al-
gorithm, we give here a few details on how we instanti-
ate it. Once we obtain a gradient in w from solving (P))
at a specific w, we do a single step of the Hedge algo-
rithm using the gradient-norm-adaptive tuning. Both
taking a single optimization step and this specific gra-
dient_ascent algorithm are detailed in the literature.
See [Degenne et al., 2019, Degenne et al., 2020, Wang
et al., 2021] for references.

3 MINIMIZING THE
TRANSPORTATION COST

We give in this section a general procedure to compute
the minimal transportation cost between p and a A
that changes the Pareto front. We show that the com-
putation of this cost can be split in two sub-procedures
that are independent from each other. We analyze the
complexity of each of these algorithms.

Theorem 1 (Algorithmic complexity of the minimal
transportation cost). The minimal transportation cost
(B) to change the Pareto front of our multi-variate
Gaussians model (B) and its minimizer can be com-
puted in

0 ((K(p+d) +d°p) (pgif)) ,

where p is the number of Pareto optimal points in our
model.

We introduce the following lemma, with proof in Ap-
pendix [Al, to help us find the solution to (E) by split-
ting Alt as defined in ([lf) in subpieces on which the
optimization will be more easily done.

Lemma 1 (Splitting the domain). Let p, A € RE*d

p(p) #p(\) = ko, ki} Cpp) kg 25 Ky
V 3ko & p(n)Vk € p(p) < kg £y k.

In words, for A to have a different Pareto set than p it
is necessary and sufficient that either a point from the
Pareto set of p is dominated in A by another point from
the Pareto set of i, or that a point that is on the Pareto
set of p is no longer dominated in A by any of the
points from the Pareto set of u. Splitting the problem
this way allows us to design efficient procedures to find
the minimum transportation cost from p to a A that
changes its Pareto set.

Given p € RE*? we define

A™ : {ko, k1) Cp(p) = {N € RF* | kg <, K} and
AL s ky & p(p) = ) € R VE € p(p) ko £ K} -

Lemma m allows us to say that Altadd(ko) for all
ko & p(p) and Alt™ (ko, k) for all {ko,k1} C p(u)
provide a covering of Alt(u). We can thus solve the
minimization independently for each of them and then
take the minimal value of these as our minimal trans-
portation cost:

Alt(p) = ( U AlE™ (Ko, kl))
{ko,k1}Cp(1)

u( U Altadd(ko)) .

ko #p(1)

(4)

We will now refer to the first case as removing a point
from the Pareto set and to the second one as adding a
point on the Pareto set, but we want to emphasize that
the first case won't necessary yield the smallest cost
to remove the given point from the Pareto set and the
second one will not necessarily add the focused point
to the Pareto set.

3.1 Removing a point from the Pareto set

In this section we prove the following lemma:

Lemma 2 (Cost of removing a point from the Pareto
set). Given {ky,k;} C p(n), the minimal transporta-
tion cost for

min Dy (p; A) (5)
w.rt. A€ Al (ky, ky)
8
1 Wy, W,

> (max{0,f, — i})

2 W, + Wy, jeld]

This cost and the associated minimizer can be computed
in O(d) and then the algorithmic complexity for all
Alt™ is O(p2d).

Proof. Let {ky,k;} C p(u), we are interested in com-
puting the smallest transportation cost from p to A
such that in A the point k; now dominates k,. Mov-
ing any other point than k, and %, in A doesn't affect
whether &k, dominates k, hence this is superfluous and
would only cost us more, so we can restrict our analy-
sis to A that only moves k, and k;. Now, let J be the
set of dimensions alongside which uio > ﬂi . Since
our transportation cost is separable alongside each di-
mension, then moving our points alongside any other
axis that the ones in J would not help create the dom-
ination and would bear some extraneous cost. As such
we can restrict ourselves to A that only move ky and k;
alongside J. Using again that the transportation cost
separability, we can split our analysis along the dif-
ferent axis independently. Now, the cost of inverting
u{co and ufcl for j € 7 is a known problem from best
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arm identification. We compute the value here but it
is possible to see [Garivier and Kaufmann, 2016] for a
reference. So our optimization problem boils down to

. 1 2 1 2
b a5 (@ = @) w5 (e = )"

The inf will be reached at a point where z, = y, = s.
Taking the derivative in s of the cost function, we
get w,(s — x,) + w,(s —y,) which is null at s* =
Wy Xy +wy+Yy,
Wy W,

portation cost

yielding the following minimum trans-

1 WaWy
2w, +w,,

(z#—y#)z. Now summing along-
side the axis of J yields

1 wkowkl

2wy + wy,

J J \2
>y — w2

jeld]

where ()2 : u (max{O,u})2 stands for the squared
positive part.

Computing the cost of shadowing a point by another
and conversely is then done in O(d) operations, which
we need to do for each pair of points in the Pareto set
leading us to a computation cost of O(p%d) for remov-
ing a point. We highlight the difference between K
and p as for large values of K, p might be significantly
lower than K. O

We present in Appendix E a speed-up for the dimen-
sion two from time O(p?) to time O(p), and we discuss
why this speed-up is not possible in higher dimensions
d> 2.

3.2 Adding a point to the Pareto set

The cost of adding a point to the Pareto set doesn't
have a closed expression as was the case for removing
a point. It is a more tedious procedure, which shows
in the final algorithmic complexity.

Lemma 3 (Cost of adding a point to the Pareto set).
Consider the minimum transportation cost to add any
point to the Pareto set

min D, (1, \) - (©)
w.r.t. A€ Uko%ﬁ(u) AlL™ (ky)

The value and minimizer can be computed in time
+d—-1
00K@+@+&@Gd_l>>.

To prove this lemma, we start by looking at how, given
a target location A, for a point k; ¢ p(u), points from
the Pareto set should move to ensure that they are no
longer dominating A,. We then provide an algorithm

to range over all the different possible ways points from
the Pareto set can move. Then, given a way the points
from the Pareto set move, we compute the minimal
transportation cost and the associated minimizer co-
herent with this way of moving points from the Pareto
set.

Let ky ¢ p(n). We want to find a A such that in A,
all points from p(u) are no longer dominating k, as
outlined before. For ease of notation, we use 0 as a
stand-in for k; in our subscripts.

We study for now a weaker version of our problem, see
Figure [ll. Given a point A, to which we will transport
g, what is the minimal cost to move the points from
p(p) to break their domination of kj. This question
is independent for all points in the Pareto set as they
are not interacting with each others costs, so we can
treat them one by one. For a given point k of the
Pareto set, we are only interested in making one of its
coordinates below the corresponding entry of ;. Now,
either moving p, to A, already pushed g, outside of
the upper orthant of k, or we need to get it outside
of the way. In the first case, the transportation cost
is zero, in the other one, as our transportation cost is
separable alongside every dimension, we only need to
find the dimension alongside which the transportation

cost is the smallest i.e. 3 min;(u),—\))?. We can put

the two expressions together as % minje[d](ui — )\6)3
where (-)2 is the square of the positive part which is
a convex, non-decreasing and differentiable function.
Putting all of the points back together, we get that
given )y, the minimal transportation cost to move ev-
eryone from p(u) outside of its top right orthant is

wO 2 wk . j 3\2
9 (M) = —2|pg — N l|? + — min(uy, — Ap)7-
ko( 0) B) |40 oll k;p(m 5 je[d]( k )t

Finding the smallest transportation cost is then equiv-
alent to finding the minimal value of g which we
now set out to do. First, it is possible to move
all of the min; out to the start of the function giv-

j
ing us gko(/\o) = min gko,w(’\o) where g, has

e:p(p)—[d] . ‘
the same expression as g, ~but with min;u; — Xj

replaced by uf'™ — A?™_ Hence infy cga g, (Ao) =
min,, infycga gy, ,(Ag).  The gy ., are differentiable
strictly convex functions, which makes them quite easy
to minimize.

The idea is now to range over all different ¢ : p(u) —
[d], to compute the minimizer of g, ., and to take the
minimum over all of those. However following this
procedure would lead to a computation cost in £2(dP)
which is exponential in the number of arms in the
Pareto set and thus would for most use case represent
to high of a computation cost to reasonably use the
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Figure 1: The original model is drawn in turquoise
(circle). We start by moving the point 0 to a new
location. Then we move the points that are still in
its all-positive orthant outside of it with respect to
the dimension where the move is the shortest (brown
stars).

algorithm. Our main insight and the key to tractabil-
ity is that it is not necessary to consider all elements
in [d]P"). Instead, it turns out that we need only look
at a subset (which depends on the bandit u) of size
O(p®') polynomial in the number of arms. To under-
stand why, let A\, and let ¢ : p(u) — [d], the mapping
from k € p(u) to argmin; ,ui — A%. The set S(p) of Ay
that yield the same ¢ map is given by the following
linear system

vkep(p)Vield, uf™ " <pl -

For all ky ¢ p(p), Ny € S(v), we know that V¢’ :
[p] = [d], gr,.o(Ao) < Gry o (Xo)- Given a ¢, S(yp) is
called the cell associated with ¢. However, while for
any point A\, there is a cell S(p) that contains it, the
converse is not the case and a cell associated with a ¢
might well be empty. A cell is empty if

VA0 30"+ Gry o (A0) < Gy o (Ao) -

A ¢ map associated with a non-empty cell is called
valid. Ranging over the ¢ with an empty cell is useless,
thus, we can restrict our min,, to valid .

We highlight the fact that while S(¢) is the subset of
R? is the set of points where Ghy o 18 lower than all
other Giy o' the minimizer in A, of Iiy .o might not
leave with S(¢). However, this is not a cue to consider
the constrained problem where ), is restricted to live
in S(¢p) as studying the unconstrained problem would
still yield the correct overall minimizer.

Also, note that S(p) doesn't depend on k;, neither
through py, or wy ~but only on Ay as such a cell be-
ing empty or not doesn't depend on the point that we
might be currently considering. Hence, we can start
by enumerating all non-empty cells and then for each
of them we compute the minimizer of Ghy 0 for every
different k, € p(p), which avoids us enumerating K
different times the non-empty cells. We thus introduce

g, = min g and g= min g
2 kogpln) 0¥ oS(e)20” ¢

and we get that

inf g(A\g) = min min inf
Ag€ER? ©:5(p)#0 ko Ep(1) Ao ER?

gk0,¢(>‘0) .

In the next section, we give an algorithm to find non-
empty cells and we provide an analysis on the number
of them and the algorithmic complexity of our algo-
rithm to range over non-empty cells.

3.2.1 Constructing cells

Using the observations from the previous section, to
know if a cell is empty or not, we could just range over
all possible ¢ : p(u) — d and when one of them has
a non-empty S(yp) we compute the minimizer of g,,.
Let U CV Cp(u) and ¢" : U — [d] and ¢ : V —
[d]. First, we provide a new altered definition for S(¢)
which is still compatible with the first one, but which
now works with maps with a restricted domain:

Vk € dom(yp), Vj € [d],
7N <

S(p) = {/\0 € R4

We know assume that ¢|,, = ¢", we have that S(¢) C
S(¢") as we only further constrain the set of equations
that defines S(¢") to construct S(p). This leads to
some important results for us as if ¢” is not valid then
0 is . This prompts us to think of the different ¢ as
leaves of tree for which internal nodes are restricted ¢
maps.

More formally, given an order on the points from the
Pareto set {k;|i € [p]} = p(u), the root of our tree is
the empty map, ¢ : ) — [d]. It has d possible children
vk € {k} > jforall j €[d. For any of these
children ¢, € [d]{F1}] they themselves have d possible
children given by | () = P1 and the different pos-
sible value for ¢,(ky). We continue this process until
all the points are exhausted and the leafs of this tree
are the element of [d]P).

Given this construction and the observation made pre-
viously that S is decreasing along the branches of this
tree, we propose a recursive backtracking algorithm
to enumerate non-empty cells. We start from the root
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and operate a depth-first search algorithm. When visit-
ing any internal node, we check whether S(¢) is empty
or not. If it is not empty, we go on with our search
until we hit a leaf yielding a non-empty ¢ map. Oth-
erwise, we know that any leaves below it will be asso-
ciated with an empty cell, as such there is no use in
visiting this subtree at all and we can backtrack one
level up and continue our search in a different subtree.

i
Sl hd g

CELL CELL CELL

Figure 2: An example of cell construction in 2d with
three valid cells and an empty one

Ezample. Let py = (1,2) and py = (2,1). The root of
our tree is the point p; and we try to move it alongside
dimension 1 by walking the leftmost edge from the root.
There, we check that our linear system still admits
solutions

pi— A< pi—A = A - <pi-p=1

which it does so we can go on. Now, we add the sec-
ond point alongside the first coordinate which adds
A2 — A} < pZ —pd = —1 to our set of equations, which
still admits a solution. Since this was the last point,
this means that ¢ : 1;2 = 1 was a non-empty cell and
we can go on. We now backtrack to try and add the
second point alongside the second coordinate. This
adds A} — A3 < ud — p3 =1 to our set of linear equa-
tions. This gives us —1 < /\(2) — )\(1) < 1 which admits a
solution and thus we found a new non-empty cell. We
now backtrack all the way to our root resetting our list
of inequalities and we add the first point alongside the
second coordinate (A — A% < pu} —u? = —1). But then
when we want to add the second point alongside the
first coordinate, we end up with the infeasible system
A=A < —1AN —A2 > 1. We can thus discard that
sub-tree and backtrack one step. Here the tree has a
small depth meaning we are not discarding much, but
for a bigger tree it could lead to removing a lot of pos-
sible empty cells from our exploration. After that, we
continue try to add the second point alongside its sec-
ond coordinate which leads to a new cell. So in this
example, there are four possible ¢ of which three are
a non-empty cell.

Moreover, if we consider the d possible children of a
node ¢" (we assume that the mapping of k € p(u) is
decided at this point in the tree, and we label ¢; the
children), the cell of each ¢; can be obtained by adding
constraints to ¢". If we denote by

Cjé{xeuad‘we[d],ﬂiijgu{—w"} ,

then S(p,) = S(¢") N C;. But, since the C; provide a
tesselation of R? (a tesselation being a set of closed sets
whose union is R? and whose interiors are disjoints; it
is a partition of the space up to the boundaries of the
parts), the (S(¢;));ciq are themselves a tesselation of
S(¢"). When iterating this result, we get that, first a
valid internal node will have a valid internal child and
thus a valid internal leaf within its subtree, and that
all (valid) leafs provide a tesselation of R? (this is true
for any maximal anti-chain of nodes within the tree)
since the root has a cell spanning over all of R?. This
will be useful later for bounding the number of valid
nodes within the intersection.

The following lemma is proved in Appendix E

Lemma 4. Checking whether any node ¢" € [d]" is
valid, i.e. whether its cell S(¢") is non-empty, can be
done in time O(r + d®). Moreover, by sharing compu-
tation we can check each of the d extensions to ¢"**
in time O(d?) each.

In Appendix B we prove the following upper bound for
the number of non-empty cells:

Lemma 5. The number of cells is bounded by (p;ﬁ;l)

where p is the number of points from the Pareto set.

3.2.2 Finding the optimum within a cell

We now assume that we reached a leaf of our tree and
thus found a valid ¢ map and we set out to minimize
9k, for each different kj. This means that we fixed
the direction in which each point from the Pareto set
will move and given this, we want to find the smallest
transportation cost to add the point k; to the Pareto
set. We recall that Iky o has the following expression:

A W w i 2
rol0) 2 Rlh-dol 5 e (42 <25
kep(u)

Since the (go_l(j))je[d] partitions [K], this function can

be rewritten as a sum of d different function (h;);cq)

such that h; only depends on )\6.
hys X E R Mg =X+ Y g — )3
ke 1(4)

Thus minimizing each h; independently is equivalent
to minimizing g, . Moreover, each h; is a strongly
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differentiable function thus it is minimized at )\Sj which
is such that h(Ay’) = 0. For the rest of this section, we
will assume that = 1(j) = [pj] and that pj < - < pp..

We label for k € [p;], ©; = p, and x5 =
+o0. For k € {0,-+,p; + 1}, for x € [z}, 444],

—00,T), 11 =

12

hj(x) = wo(z — 1) + Z w;(z — pl) .
ikl

As the function admits a unique minimizer, there is
only one k € {0,-+,p;} such that

J Pj J
Wofty + Zi:k+1 Wi [

Pj
Wy + Zi:k+1 w;

T = S Ty -

The function h; is minimized at this point and finding
this k£ is done by dynamic programming with O(pj)
operations. This is faster than trying a binary search
approach as this would require O(p, log p;) operations.
As we need to compute the minimizer of h; for each j,
the computational complexity to add a point to the
Pareto set is of order O(p + d). This needs to be
done for all non-Pareto optimal points, for a total of
O(K(p + d)) operations.

We now come back to the assumption we made that
the . are sorted and filtered with respect to =1 (j).
Doing this for each k, within each cell would incur a
multiplicative cost of O(p+p,logp;). However sorting
can be performed prior to building our tree by sorting
(13, kep(yy for each j. This has a cost of O(dplogp)
which is negligible when compared to the rest of our
algorithm. Within a cell we can then filter the sorted
array to only get (1)gc,1(;) sorted in O(p). As this
sequence is common for all points k, that we might
want to add in a cell this doesn't incur a cost every
time we would like to add a point to the Pareto front,
but just once per cell. This means that for one cell, the
complexity to compute the cost to add each point to
the Pareto set is O(pd+ K (p+d)) which is just O(K (p+
d)). Pulling from Lemma [ our upper bound on the
number of cells, we get that this operation is done at

most (¥ Zf{l) times, and building the tree yields a final

cost of
0 ((K(p+d) +pd?) (p;il 1))

as we had set out to prove in Theorem m

As most of the settings we aim to tackle can have a
large number of arms but only a few dimensions, this
algorithmic complexity boils down to O(Kd3p?).

We present in Appendix E a speed-up for the dimen-
sion two from time O(Kp?) to time O(Kp + plogp).

4 EXPERIMENTS

We check the performance of our algorithm against the
real-world scenario proposed by [Kone et al., 2023]. We
revisit one of their experiment which is based on the
study by [Munro et al., 2021] about immunogenicity
of a Covid vaccine third dose (see the reference for de-
tails on the dataset). The setting is a bandit model v of
K = 20 Gaussian arms in dimension d = 3 represent-
ing three different immunogenicity responses. There
are p(v) = 2 Pareto optimal arms that we need to iden-
tify. The means of the arms and the variance of each
immunogenicity trait can be found in Appendix .

For this instance, the instance-dependent factor in the
sample complexity lower bound is T*(v) = 2103.78.
The associated optimal weights are included in Ap-
pendix [E.

We use a risk of § = 0.1 and tested the sample complex-
ity average over 2000 runs of the algorithm. Our aver-
age sample complexity is 17909. This is significantly
lower than the 39000 sample complexity from 0-APE-
20 which is the one corresponding to our setting. We
use the stylized exploration rate 5(¢,d) = In (%)
as our threshold for the stopping statistic. This is stan-
dard in experiments. and though less rigorous than the
choice made in [Kone et al., 2023], it is still overly pru-
dent: though the risk parameter 0 is set to 0.1, the
real risk is much smaller as we obtained no identifi-
cation mistake over the 2000 runs. This conservative
behaviour of pure exploration algorithms has been fre-
quently reported. To speed up the running time of
our algorithm, we throttle the number of minimum
transportation cost computations. While we perform
a gradient ascent step for every sample, we only update
the gradient every ten samples and we check the stop-
ping statistic every 25 samples. The experiment took
5 hours to run on 16 (of 20) cores of a dual Intel(R)
Xeon(R) CPU E5-2630 v4 machine.

In Figure E, we show the empirical distribution of the
stopping time of our algorithm. We highlight that
there is a significative difference between [E,(7,) and
log (%) T*(#), whereas we could have expected them
to be closer to each other. Several factors contribute
to this gap. We chose a too large value of § to ex-
hibit the expected asymptotic behaviour. The analy-
sis shows the presence of a second-order term that is
not neglictible on such experiments. It is all the more
significant that we chose not to update the gradient at
every round but only every few rounds.

This experiment is representative of a real edge of
Track-and-Stop in terms of sample complexity. This
advantage can be theoretically understood by compar-
ing the complexity bounds when § goes to 0. For ex-
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Figure 3: Empirical distribution of the number of sam-

ples used to identify the two Pareto optimal points

ample, in the scenario when one arm dominates a large
number of other identical arms, Track-and-Stop can be
proved to be more data efficient by a factor almost 2.

We also ran experiments on random instances to eval-
uate the computation time of the minimization solver
and its dependency on d and p. The random instances
on which we ran our algorithm consisted of p points
sampled from the all-positive quadrant of a d dimen-
sion sphere (as such they are all easily part of the
Pareto set) and an additional point at 0. We only
ran the minimzation solver of our algorithm on these
points and estimated the time it took for each pair of
(p,d) on 100 samples. The result of this experiment is
represented in Figure Y. In the Figure, we can see that
given a fixed d there is a linear dependency between
the log of the time taken and the log of the number
of point on the Pareto set. The slope of each line is
proportional to d. This matches the theorical result
obtained in Theorem [l| as for a given d and K =p+1
the complexity of our solver should be O(p@*1).

5 CONCLUSION

We tackled the problem of Pareto front identification
in a Gaussian multi-armed bandit. To this end, we
studied efficient implementation of the core oracle re-
quired by the Track-and-Stop framework, namely the
gradient of the information-theoretic lower bound. To
solve the associated non-convex optimization problem,
we split the domain in convex parts, discussed enumer-
ating the parts and solving the convex problem on the
parts in closed form.

For future work we are interested in relaxing the as-
sumptions. In particular, we aim to study the prob-
lem under dependent coordinates, with Gaussians of
unknown variances, in other exponential families, in
non-parametric classes, and in the approximate ¢ > 0
case. It would be interesting, challenging and reward-
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Figure 4: Time to solve the minimization problem on
a random point cloud with p Pareto points in dim. d

ing to pin down the computational complexity of the
transportation problem (E), already in the spherical
Gaussian case. Can one find and exploit additional
structure in the problem to solve it in time at most
a fixed and dimension independent degree polynomial
in the number of arms K?_Or can one prove a lower
bound matching Theorem [I|?
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A Proof of Lemma EI: Splitting the domain

Proof of Lemma H ) We assume p(u) # p(A). Then either p(u)\p(A) or p(A)\p(u) is not empty. We assume
the first for now. And we let ky € p(u)\p(N). Since k, ¢ p()), then its set of dominators in A is not empty. If
any of its dominators in A belongs to p(u), then we have found kg, k; € p(u) such that k, <, k;. Otherwise let
k{ from ky's set of dominators in A since it is not empty. We know that kj does not belong to p(x) and since
all of its dominators in A is included in k,'s one (by transitivity), then none of its dominators belongs to p(yu).
Thus, we found k(| ¢ p(p) such that it is not dominated in A by any point from p(u).

We now assume that p(A)\p(r) is not empty. Then there exists k, € p(\) such that k, ¢ p(u). Let k, be such
an index and since it belongs in p(A) no one dominates it and in particular points from p(pu).

<=) We first assume that there exists kg, k; € p(u) such that k, <, kq. Let kg, ky such indices. Since ky <y &
then ky ¢ p(A). Hence p(u) # p(N).

We now assume that there exists ky ¢ p(u) such that no points in p(u) dominates it in A. Let k; such an index.
Either k; is now on the Pareto set and we are done or there exists a point k£ from the Pareto set of A that
dominates it. But then this point is not within p(y) (because no points in from p(u) dominates ky in A) and is

in p(A). Hence p(u) # p(A). O

B Proof of Lemma @: An efficient algorithm for our linear system of equations

To check whether our system of equations admits a solution, we could invoke a linear programming solver to get
an answer. Here we leverage the particular structure of our set of inequalities to decide feasibility more efﬁmently.
First note that any of the inequalities that we might add to our system is of the form )\]2 — )\Jl < ,uk — Nk .
Thus our system of inequalities might be viewed as a sequence of upper bounds for dlfferences of coordinates of
Ag- To check whether this system admits a solution we introduce a directed multi-graph G' with nodes labeled
by the j € [d] For each constraint of the form A2 = A < g2 — ! we add an edge going from j; to j, which
has value uk — uk We use a multi-graph representation because it has a one to one mapping with our system
of equation.

We recall a well-known [Erickson, 2019] equivalence between the existence of a solution for a set of equations
that can be encoded thusly.

Lemma 6. Let G = (V, E) be a finite directed graph where E CV x V x R. The system
ANER? st V(i,j,v) EE:N—A <vw

has a solution iff G has no negative cycle.

Proof. We assume that G contains a negative cycle j, —, - =, Jj, = jo. Then, we know that for all i € [n)]
the equation A, —A; < v, is present in our linear system. Summing these inequalities gives us

0=2j, =, =D A=A, <> <0,
i€[d) i€[d]

Hence our system does not admit solutions.

Now we assume that the graph doesn't contains a negative cycle and we introduce a source point s which we
connect to every vertex of G with an edge of length 0. This updated graph still doesn't contain negative cycles
because no new cycles have been created. Thus we can define § : j € [d] — R the function that gives the length
of the shortest path from s to j. We claim that setting )\é to &(j) respects every inequality and thus is a solution
to our linear system of equations. This is due to the fact that for every edge j; —, j, the triangular inequality
gives us that 0(j,) < 0(j,) + v. O

As such, we could, at each internal node of our tree, create the graph associated with the set of equations
encountered so far and check the presence of negative cycles. If there are any we backtrack, otherwise we go on.
If we do that, to check for presence of negative cycle we don't have a much better choice than the Bellman-Ford
algorithm [Schrijver, 2003] because of the presence of negative edges. This would yield a algorithmic complexity
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of O(V E) which in our case more often than not would look like d3. We can reduce that to a d* by noting
that when we make our choice of (k,j) when going down the tree, the graph at the parent and the child node
only differ by a few edges, the one stemming from node j. Thus if we already know the shortest path in the
original graph (which is assumed to not contain negative cycles), we can leverage that knowledge to speed up
our negative cycle detection at the child node, which we state in the next lemma.

Lemma 7. Let G = (V, E) a directed weighted graph with no negative cycles and such that v:V xV — R is the
length of the shortest path between every pair of points. Let {u,},cy some new edges between 0 and = such that
G = (V,En{u,},ev). Negative cycle detection and updated shortest paths can be performed in time O(d?).

Proof. If the graph G’ now contains a negative cycle, it is going through an updated edge as G' doesn't contain
a negative cycle. By induction the minimal value of a cycle going from and back to 0 without visiting any other
nodes more than once is min, o u, + s(z,0) where s(x,y) is the length of the shortest simple path (a path that
never goes twice through the same vertex) from z to y in G’. But that simple path from z to 0 don't go through
any updated edge, hence s(x,0) = v(z,0). Thus if all u, + v(x,0) > 0 there is no negative cycle in our updated
graph and if any u(x) + v(x,0) is negative, we found a negative cycle. This can be checked in O(d).

We now assume that there is no negative cycle in G’ and set out to compute s(x,y) for all x,y € V. First as
stated earlier, paths that go to 0 haven't changed cost as they cannot go through any of the updated edges. We
now update edges going from 0 and claim that s(0,2) = min B where B = {,u, +v(y,z)|y € V} U {v(0,2)}.

First, we show that s(0,z) € B. Let p =0 —e, Y — - = x, then either e, is an edge that was present in G and
thus 5(0,2) = v(0,z) or e; was not and then it has weight u,.. We call [ the length of the path z — -+ — y* in
G’. Since the path p is the shortest between 0 and x and that there is no negative cycle, the part of p between
y* and x doesn't go through 0 and as such any new edges. Since it is the shortest path between y* and z and it
stays in common part of G and G’, we get that [ = v(y,z). Hence the length of this path is Uy + v(y*, ).

The shortest path between 0 and z in G is still a path in G’ thus s(0,2) < v(0,z). Now for all y € V, either
the shortest path from y to z in G’ doesn't goes though 0 or it goes through it. In the first case, the path
0 =y — - — xin G’ has value u, + v(y,z) and since it is the length of a path from 0 to z, we know that
s(0,z2) < u(y) + v(y,z). In the second case, we know that the shortest path from y to z in G’ goes exactly
once through 0 (otherwise there would be a negative cycle), and using the optimality of subpath, we know that
the part of the path from y to x after going through 0 is the shortest path between 0 and z, thus the next
point visited is y* and this part of the path has length s(0,z), which is such that s(0,2) < v(0,z). Similarly
since the part between y and 0 is the shortest path between these points in G’ and that it doesn't go through
an edge stemming from 0, we know that it has length v(y,0) giving us the final length from this path to be
u(y) +v(y,0) + s(0,2). Since there is no negative cycles we know that u(y) + v(y,0) > 0. Since all path from y
to z in G are still path in G' we have that v(y,0) + s(0,z) = s(y,z) < v(y,x). This gives us that

s(0,2) < u(y) +v(y,0) + 5(0,z) < u(y) +v(y, =) .

Hence for all b € B, b > s(0,z) and s(0,z) € B, which give us that s(0,2) = min B. Hence all shortest path
from 0 to other nodes can be updated in O(d?).

To conclude, we only need to update all distances going neither from nor to 0. We claim that for z and y which
are not 0, s(x,y) = min{v(z,y)s(z,0) + s(0,y)}. First, we highlight that s(x,0) + s(0,y) is the length of the
shortest path from x to y going through 0 in G’ and that v(x,y) is the length of the shortest path from x to
y in G which is still present in G’. Thus both of them are path length in G’ from z to y and we just need to
show that either of them has an optimal length. The shortest path from x to y in G’ either goes through an
edge stemming from 0 or it doesn't. In the first case, it has value v(z,y) otherwise it has value s(x,0) + s(0,y).
Hence s(z,y) = min{v(x,y); s(z,0) + s(0,4)}. All these distances can be updated in O(d?) which concludes our
proof. O

C Proof of Lemma E: Counting cells

As stated earlier, the number of possible ¢ maps is dP but of these, quite a lot don't lead to a cell. To better
estimate the complexity of our algorithm, we would like, with p and d known, to give a tighter estimate of the
number of cells. In this section, we start by showing for small dimensions how to derive explicitly the number of
cells. Then we provide an upper bound for arbitrary dimension.
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Dimension 1: Though it might feel a bit dull, we will start by tackling the case of best arm identification. As
there is only one dimension to choose from, the number of cells is exactly one.

For higher dimensions, we first start by noting that cells are invariant to translation by the all-ones vector, as
adding the same offset to A}, in every dimension will not change the comparison between the pj, — X for different
j. Thus, even though cells live in R?, they can be reduced to the orthogonal space of the all-ones vector which
has dimension d — 1.

In dimension 2, the direction toward which a point yu,;, should go are given by whether A, is above or below the
diagonal line stemming from ;. In the reduced space this is equivalent to being right or left of the projected
ty- As such there is p + 1 different cells: one to the right of every point, one to the left of the rightmost point
and one to the right of all the other points and so on until all points are on the left.

In dimension 3, all points shatter the space (original and reduced) in three distinct parts: one where the
distance to the first, second or third dimension is the smallest. In the reduced space, they are delimited by three
lines stemming from the projected point and going to infinity. Using this representation (shown in Figure p, it
is possible to use Euler's formula to count the number of different cells. To do so, we will count the number of
cells iteratively by adding the p; one by one. We start with no points, which means we have 1 cell, 0 edges and
0 vertices. When we add the k + 1" point, for all the previously added points, one of its edge will cross one of
the previously added edges adding 1 point and 2 edges per point. This makes the total number of edges and
vertices added by adding a new point be 3 4+ 2k for the edges and 1 + k. Using Euler's formula, we get that the
number of added cells is given by 3 4+ 2k — (k4 1) = k + 2. Hence the number of cells for k£ points in the Pareto

set is
k
1+Z(i—1)+2=@. (7)

i=1

<>3

2 2
1 1
(a) Initial setting with two points. (b) An additional third point is (c) For every previously added point,
added, adding a vertex and three one of the added edges intersects
edges. with an old edge adding one vertex

and two edges.

Figure 5: Example of a point being added in dimension 3

Proof of Lemma B To show this lemma, we reuse our graph representation from the previous section. For a
specific (jy, j,), the list of edges going from j; to j, in our multi graph G is given by {2 — p* |k € ¢~ *(j)} and
for a specific node k such that j; = (k) an edge is created between j; and every other j, # j; € [d] with value
e —

First, let v(yp) = (Card(sﬁfl(]’)))je[d].
possible ¢ which leads to a valid cell. To do that, we show that for ¢, ¢’ such that v(p) = v(¢’), there exists
a particular permutation 7 such that ¢’ = ¢ o 7. Then we show that if there were no negative cycles in G, the
multi-graph associated with ¢, then the transformation of G to G’ after having applied the permutation creates

a negative cycle. We conclude by saying that the cardinality of the image of v is (P ;f;l).

We want to show that for a specific value of v(p), there is at most one
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Let ¢, ¢" such that v(p) = v(¢’) but ¢ # ¢’. For each j € [d] we let 7; : "' (j) = ¢~ '(j) be a bijection between
its domain and its image (there exists one since they have the same cardinal v(p); = v(¢");). We now define
7+ k€ p(p) = Ty (k). Let ko, ky such that w(ky) = m(k;), since the ¢~ (j) we know that there exists a unique
j such that 7(kg) € ¢~ '(j), thus ko, k; € ¢ 7'(j) and m;(kg) = W](k ) but since 7 is a bijection between "' (j)
and ¢~ 1(j) we get that k, = k;. Hence r is injective. And since m's domain and image has the same cardinal, it
is bijective. Now, for all k € p(u) with j = ¢’(k), n(k) € ¢ 1(j) hence ¢ o (k) = j = ¢’(k). Thus, for all ¢, ¢’
such that v(y) = v(y’) there exists a permutation 7 such that ¢ = po.

We now decompose 7 in disjoints cycles. If a cycle ¢ = (kq,--,k,,) is such that ¢(k;) = -+ = ¢(k,,) then this
cycle can be omitted from the permutation and it would yield the same ¢’. If all cycles were to be removed this
way, we would end up with ¢ = ¢’ o I'd = ¢’, thus we can conclude that at least one cycle as to be such that
Card (p{k;, -, k,}) > 1. We now restrict ourselves to 7 with only such cycles as other can be safely deleted
without changing the resulting ¢’. We now focus on a cycle ¢ = (ky,-+, k,,) such that there exists x < y € [n]
such that ¢(k,) = ¢(k,) and we prove that there exists two cycles c,,c, by which ¢ can be replaced in m which
yields the same ¢’. Since ¢(k,) = p(k,) then p o7 = o (k,k,)om, and (k,k,) o 7 is permutation that has the
same cycle than 7 except for ¢ which has been split in two disjoints cycles (they are disjoint from each other and
from cycles in 7 which are not ¢): ¢, = (k;,,k,_) and ¢, = (ky,-,k,_;). Thus 7 and (k,k,) o 7 yield the
same ¢, and we can restrict ourselves to permutation such that all p(k;) are distinct within each different cycle.

We let 7 be such a permutation and we introduce G, the multi-graph associated with ¢ and G’ the one for
¢ = ¢ om. We now assume that ¢ is a valid map and we will restrict the rest of our study on the changes
operated on G by a specific cycle ¢ = (k;);c,- Let i € [n],5; = o(k;) and j2 = go’(ki) = ¢(k;,1). Since j; # jo,
we know that there exists an edge in G between j1 and j, of value v; = /% — uk , respectively in G’ we know

that there is an edge between j, and j; of value ,u o ,uff = —v,. As ¢ is assumed to be a valid map, the cycle

from G
(p(kl) _>'U1 _>vn,1 (p<kn> %vn (p(kl)

is not negative. As such, the cycle from G’ given by

@/(kn) <_7v1 @l(kl) %7112 <_7Un @l(kn)
is a negative cycle. Thus there is at most one valid map for every point of the image of v.

The image of v is the set of vectors of length d whose entries are natural numbers that sum to p. It is a well-known
result that this set has cardinality (p“l 1) which concludes the proof. O

We believe that this bound is in fact the exact cell count (as seen for dimensions up to 3, cf Eq.H and by
simulations for p,d up to 11) but we settle for this upper bound in the analysis of the complexity. What this tells
us is that the number of leaves within the tree is at most (¥ ;ﬁ;l). Using the observation that if an internal node
is not empty there always exists a non-empty leaf below it, we know that the number of valid internal nodes at a
given depth is bounded by (P}¢ - 1) Thus, the number of non-empty internal nodes is bounded by p(*}¢ - 1) Each
of these non-empty internal nodes may have at most d children which can be non-empty or empty mternal or
non-empty or empty leaves. As we run our cell elimination procedure for each child of each non-empty internal
node, we run our procedure at most dp(erd 1) times. Since this procedure has complexity d? we end up with a
p("3ty)

complexity of d3 to construct our tree.

D Speed-up for Dimension 2

In this section we present a speed-up in run time available for dimension d = 2. The transportation cost
computations both for removing a point from the front and for adding a point to the front are presented next.

D.1 Removing a point

We present an update of Lemma B for dimension 2. Here, we can leverage the geometry of our problem to
disregard most of the pairs (kg, k;). Let's assume that we are considering the pair (k,, ky) and that there exists
an arm k; in the Pareto set between ko and ky (L.e. py >y >y and pf < pi < pf, ). Now the inf reached

at Ay = A}, will be either above or below . . If it is reached below then p = Aj > A} which means the cost
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of shadowing k, with k, is higher than the cost of shadowing k, with &, and if it is above then u}ﬁ = )\,1€1 < )\,1C2
which means the cost of shadowing k, with k5 is higher than the cost of shadowing k; with k,. Hence by ordering
the Pareto set, we can restrict ourselves to only look at adjacent points within the Pareto set as these will yield
the smallest transportation cost. This means that the number of pair that we need to examine is just O(p) giving
us the reduced computation cost O(p) for removing a point.

However, this technique doesn't scale well with hlgher dlmensmns Given three pomts (ko, kq, k:z) a similar result
can be obtained if there exists j, such that u)° hy = > e e and for all j # j,, ,uk < Mk < uk In this setting
the minimizer A of the transportation cost to shadow ko by kq is such that either )\i"; < uk2 and then A =< p,
or /\i‘; (= )\{c‘; ) > ,ufcz and then p, < Ay . As previously, we found that computing the value for the pair kg, k;
was unnecessary because either the pair (kg ky) or (ky, k) would have yielded a smaller value. But this was

done in a pretty constrained way, removing the constraint that there is at most one direction alongblde which
“ko > uk won't lead to any results. To see that, let j,,j, such that Vj € {j,, 7}, “ko > N/g > uk , then we

might end up with )‘?5; < u,jc‘; and )\?fo > ukz, leading to no claim of the shape A, = fu,, or py,, <Ay .

D.2 Adding a point

Here we present an update of Lemma E for dimension 2. Again, the geometry of the Pareto front allows us to
speed up the computation of the minimal transportation cost to add a point to the Pareto set.

We recall the definition of the function 9r, Which, given a new location A for the point Pk, (labeled g for ease
of notation) gives the smallest transportation cost to add this point to the Pareto set while moving it to the new
location.
wo wk . . .
9k, (M) = 2 llmo = Aol P+ D < min (41, — XF)
kep(u)

And given a map ¢ : p(u) — [d], we also recall the function

w w k k
Grye o) = Lllmg = Mol + 3 2 (uf™ =AW

kep(p)

The functions g, and gy, , are equal on a set .S (¢) which consists of the solutions of the following linear system:

Ao € R st. Vk € p(u), Vj € [d], pf™ — X2 < pd — NI

and outside of this set, g, < gj, . We highlight here that for any A, € S(¢), the line generated by A + t1
is included in S(¢) where "1 consists of the all-one vector. Hence the geometry of cells can be reduced to the
orthogonal space to R1. Thus from now on, we will decompose )\, in an s part which lives in R*! and a t part
which lives in R, such that \j = Ms+t1, where M is a d x d — 1 matrix such that its columns are all orthogonal
to each others and to 1, and of norm 1. We apply the analogous decomposition to p, and (uy,) leading to
S0sto and (s, tg) kep(,) and we redefine the functions g, and g, ., accordingly:

kep(u)

w w 2
Oty o (5:1) = 52 (lso = sl2 +dlto —0)%) + D= FE (M= 5) 0y +10—t) -
kep(p)

For a given s and ¢, we are interested in finding the ¢ that minimizes g, (s,t). We label t{,(s) and g, . (s)
(resp. t*(s) and gy, (s) for the minimizer and the minimal value of g, (s,t) with respect to ).

Now that we introduced this reparametriaztion of the problem, we want to show that the function ¢*(s) is
piecewise linear and that in dimension d = 2 it is possible to enumerate its pieces and minimize i, With a lower
complexity than before.

In dimension 2, the constraints on matrix M leaves us only two choice: either [—% %] or [% —%] We

can pick either without loss of generality. We settle for [% —%] . We assume for the rest of this section that

2
S1 S...Ssk
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It is also possible to enumerate the valid ¢ maps in dimension 2. There are p 4+ 1 different cells given by:
(—00, 81], [s1,89),++ [5, 1, 8,], [8,, +00). And the ¢ map associated with the '™ cell of this list is

e {2 RS
v P 1 otherwise
This is due to the fact that M(s, —s) = %(Sk —s)[1 —1]. So when s < s;, My(s, —s) < M;(s;, —s) and
M, (s, — s) < My(s;, — s) when s > s,.

We let ¢, , : 5 M, (s, — 8)) + 1. It is a linear function of s.

Lemma 8. The function t,(-) such that Vo, Y € S(p), t),(s) =ty ,(s) is well-defined and piecewise linear of
slope % before s, and —% after.

Proof. Since the S(y) provide a tesselation of the space, we only need to check that given two maps ¢, and @,
the value at the intersection of their cell boundaries is equal. The only points at which cells have a non empty
intersect are the s,'s. These cells are associated with the map ¢, that maps every index stricly below & to 2
and the other ones to 1 and ¢, the one that maps every index below or equal to k to 2 and the other ones to 1.
But t;, , (sy) =t =ty (s;), hence t;(-) is well defined and on each of the S(¢) it is linear thus it is piecewise
linear. Moreover, using the cells described earlier, we have that for s < s, (resp. s > s;), the ¢ map associated

with the cell in which s lives maps k to 2 (resp. 1), thus ¢,(-) is linear on s < s, (resp. s > s;) with slope %@
(resp. —%) O

The Figure E gives an example of a construction of ¢* and the ¢,(-). The red dashed line represent here each
individual ¢,(-) where we can easily see the increasing part up to s, followed by a decreasing part.

Lemma 9. t, and t* are well-defined and piecewise linear.

o
Proof. gy, ., is differentiable hence, ¢, is such that gg‘z'“" (s,t5,(s)) = 0. The partial derivative of g, . with

respect to its second argument is

09y,
o (5,0) = dwo(t — 1) + D wilt — o (5)
kep(u)

Since gy, (s, ") is strongly convex it admits exactly one minimizer, thus, there exists ¢, (s) such that ¢7,(s) is the

minimizer of g, . However, the negative part in the sum makes it so we cannot solve easily for aggg’“’ (s,t5,(s)) =
0. But, since g, is convex, ¢, is continuous and then K(s) 2 1{t},(-) <ty ,(-)} is piecewise constant and only
jumps when ¢, meets one of the t; ,. Thus, if we know K(s) and ¢,(s) is different from all the ¢, ,(s) we can
differentiate ¢7, in s giving us the following expression:

ot:,

oty B Zkel{(s) Wy M)
0s

dwg + ZkeK(s) Wk

(s) =

which is constant while K(s) stays the same, meaning that t;,(s) is actually piecewise linear. Also its slope is
always in (—%, %)

t* is equal to t7, on S(¢) meaning that t* is also piecewise linear and witth slopes in (—%, %) This means that
t* will only meet ¢,(-) twice, once in its ascending part and once in its descending part at which point its slope

changes. The only other points at which the slope changes are the boundaries of cell, meaning at the s;'s.
o Let s < s, such that t*(s) = t,(s), then K(s*) = K(s7) W {k}
2

o ot _ Ot* [ —
o Lets= s, 5001 = 5067) ~ B qmry

o Let s > s, such that t*(s) = ¢,(s), then K(s*) = K(s7)\{k}
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Moreover, because the (sy,t,) are Pareto points, t* will meet the ascending part in ascending order, the s;, in
ascending order and the descending part in ascending order.

Also, at —oo, t*(s) = 0 and it has null derivative. Using that and the rules above, we can track t*(s) in an
efficient way. An example is provided in Figure f. O

S1 S2 S3

Figure 6: Example of t* tracking

We can also compute the minimizer and the minimal value of g, _(s,*(s)) on a linear part of ¢*(s) by differentiating
Ik, (8:t) In s with K(s) held constant. This gives rise to an algorithm which has complexity of order plogp
where you need plogp operations to sort the Pareto front and then with complexity p you can range over the
s-space keeping track of some sums and of t* and computing the minimal value of gko(s,t* (s)) along with its
minimizer. This reduces the run-time cost of the transport cost computation for adding a point from p? to plogp
and for any point to Kp + plogp as the sorting cost can be dampened.

Moreover, while running Track-and-Stop, only a single point is ever updated between two subsequent minimal
transportation cost computations meaning that the sort can be updated in linear time.

D.3 Experiments

We made some experiments to highlight the gain from using the improved algorithm for 2d rather than the
generic one. For that, we picked p points forming a Pareto set in a 10 x 10 square and we added a unique non
Pareto optimal point at 0 in our point cloud. Then we measured the time used by each algorithm to compute
the minimum transportation cost against a random vector of weights. We repeated the operation a thousand
times for each tested p. We then reported t, the average time taken by the improved algorithm for an iteration,
t,, the average time taken by the generic algorithm for an iteration and r the ratio between ¢,, and t,. These
experiments were done on a single core of an Intel(R) Core(TM) i5-6300U CPU.

Table 1: Comparison between the improved and generic algorithm

P ty (s) t, (3) r
2 733%x10% | 1.01x103 | 1.38
41 1.05x1073 | 1.97 x 1072 | 1.88
8 | 1.69 x 1073 | 447 x 1072 | 2.65
16 | 3.00 x 1072 | 1.25 x 1072 | 4.17
32 | 5.68x 1073 | 3.47x 1072 | 6.11
64 | 1.02x1072 | 1.16 x 107! | 114
128 | 2.25 x 1072 | 4.48 x 107! | 19.9
256 | 4.91 x 1072 1.77 36.0
512 | 8.77 x 1072 7.66 87.3
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E Experiments

In this Appendix, we give additional details about the experiments we ran. The first round of experiments was

based on resampling real life data from the study [Munro et al., 2021]. We report in_Table E

from the study that we used to generate the data. Moreover the last column of Table
associated with each arm obtained by solving the optimization problem of Proposition [Il. Lines written in a bold
font correspond to the Pareto optimal arms and the underlined entry highlights a non-Pareto optimal arm that

needs a lot of samples.

Table 2: Means and optimal weights of the different arms

and

*

Dose 1/Dose 2 Dose 3 (booster) | Anti-spike IgG | NT.5, | cellular response w
ChAd 9.5 6.86 4.56 0.0077
NVX 9.29 6.64 4.04 0.0016
NVX Half 9.05 6.41 3.56 0.0007

BNT 10.21 7.49 4.43 0.023
. BNT Half 10.05 7.2 4.36 0.0048

Prime BNT/BNT VLA 8.34 5.67 3.51 0.00066
VLA Half 8.22 5.46 3.64 0.00079

Ad26 9.75 7.21 4.71 0.018

ml273 10.43 7.61 4.72 0.14
CVn 8.94 6.19 3.84 0.0011
ChAd 7.81 5.26 3.97 0.0014

NVX 8.85 6.59 4.73 0.021
NVX Half 8.44 6.15 4.59 0.0089

BNT 9.93 7.39 4.75 0.025

. BNT Half 8.71 7.2 491 0.35
Prime ChAd/ChAd VLA 7.51 5.31 3.96 0.0014
VLA Half 7.27 4.99 4.02 0.0015

Ad26 8.62 6.33 4.66 0.013

ml1273 10.35 7.7 5.0 0.38
CVn 8.29 5.92 3.87 0.0012

Table 3: Pooled variance for each immunogenicity trait

Anti-spike IgG | NT.5,

cellular response

Variance 0.70

0.83

1.54

, the value
gives the optimal weight
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