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Abstract

Quantifying the difference between two prob-
ability density functions, p and q, using avail-
able data, is a fundamental problem in Statis-
tics and Machine Learning. A usual approach
for addressing this problem is the likelihood-
ratio estimation (LRE) between p and q,
which -to our best knowledge- has been inves-
tigated mainly for the offline case. This pa-
per contributes by introducing a new frame-
work for online non-parametric LRE (OLRE)
for the setting where pairs of iid observations
(xt ∼ p, x′t ∼ q) are observed over time. The
non-parametric nature of our approach has
the advantage of being agnostic to the forms
of p and q. Moreover, we capitalize on the
recent advances in Kernel Methods and func-
tional minimization to develop an estimator
that can be efficiently updated online. We
provide theoretical guarantees for the perfor-
mance of the OLRE method along with em-
pirical validation in synthetic experiments.

1 INTRODUCTION

The likelihood-ratio between two probability density
functions (pdfs) is a quantity omnipresent in Statis-
tics. For instance, the likelihood-ratio test has opti-
mal statistical power and it is a core tool in statis-
tical hypothesis testing (Neyman and Pearson, 1933;
Casella and Berger, 2006). In one of the related prob-
lems, change-point detection, the most widely-used
methods, such as CUSUM (Page, 1954) or Sriryaev-
Roberts (Shiryaev, 1963), depend on the likelihood-
ratio (see also Tartakovsky et al. (2014); Xie et al.
(2021)). In Transfer Learning, it is possible to define
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a weighted cost function to solve a new problem tak-
ing into account prior knowledge provided by a differ-
ent dataset; interestingly, this weighting function coin-
cides with the likelihood-ratio (Fishman, 1996; Zhuang
et al., 2021).

ϕ-divergences are also ubiquitous in Statistics. Clas-
sical problems such as Maximum Likelihood Estima-
tion, Dimensionality Reduction, and Generative Mod-
eling, to mention just a few, can be restated as ϕ-
divergences minimization problems (Liese and Vajda,
2006; Nguyen et al., 2010; Sugiyama et al., 2012;
Agrawal and Horel, 2021).

From a Machine Learning perspective, the inter-
play between the likelihood-ratio and ϕ-divergences
has been described via its variational representation
(Nguyen et al., 2008). There were identified situations
where the ϕ-divergence estimation between two mea-
sures amounts to a likelihood-ratio estimation (LRE)
as an element in a functional space. This kind of result
has motivated a plethora of non-parametric methods,
based on Kernel Methods and Neural Networks (Mous-
takides and Basioti, 2019), which do not need any fur-
ther hypotheses regarding the functional form of p and
q and just depend on observations coming from both
those probability densities. These techniques have a
wide range of applications in different domains (Bas-
seville, 2013; Liu et al., 2013; Rubenstein et al., 2019;
Zhang and Yang, 2021).

Despite the aforementioned success of non-parametric
LRE methods for offline processing, to our best knowl-
edge, there has been hardly any investigation about
how the estimation of ϕ-divergence and likelihood-
ratio can be adapted to online settings and streaming
data. The motivation for covering this gap is to pave
the way so that non-parametric LRE-based methods
bring gains in online learning, hypothesis testing, or
various detection settings.

Contribution. To begin with, in this paper we in-
troduce the new Online LRE (OLRE) problem, where
one observes a stream of incoming pairs of observations
(xt ∼ p, x′t ∼ q), t = 1, 2, ..., and the likelihood-ratio
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needs to be estimated on the fly. Then, we present the
homonymous non-parametric OLRE framework, along
with a theoretical characterization of its convergence.
Our approach nurtures mainly from three elements:

• The formulation of the typical offline LRE prob-
lem as a functional minimization problem seeking a
solution among functions of a Reproducing Kernel
Hilbert Space (RKHS) (Nguyen et al., 2008).

• The adaptation of a first-order optimization
method, the stochastic functional gradient descent
(Kivinen et al. (2004)), combined with the frame-
work of regularized paths in Hilbert spaces (Tarrès
and Yao, 2014).

• The organic integration of up-to-date practices for
kernel-based LRE.

The OLRE framework combines the above elements,
and enjoys the following technical properties:

• It does not require to know in advance the sample
size, which can be even infinite.

• Our stochastic approximation aims to minimize the
generalization error by solving the original func-
tional minimization problem, instead of performing
empirical risk minimization, hence avoids over-fitting.

• Our analysis and the performance of the proposed
method, highlight the bias of existing offline ap-
proaches that are based on empirical risk minimiza-
tion, which rely on simple heuristics to manage large
amounts of data.

• The cost of the iteration at time t is O(t), hence in
total O(t2) for up to time t.

• Our convergence results provide guidelines on how
to select the hyperparameters of our method and its
sensibility to different configurations.

2 PROBLEM STATEMENT AND
BACKGROUND

In this section, we begin by presenting the likelihood-
ratio estimation (LRE) problem, and by defining the
Online LRE (OLRE) problem version. Then, we
present the main building blocks we use for developing
the homonymous OLRE framework.

2.1 Likelihood-ratio estimation

Let us denote the feature space X ⊂ Rd and consider
two probability measures P and Q which are abso-
lutely continuous with respect to the Lebesgue mea-
sure denoted by dx, with densities p and q respectively.
We also define the convex α-mixture of the probability
measures P and Q computed by Pα = (1−α)P +αQ,
and similarly for their densities p, q, where 0 ≤ α < 1
is user-defined parameter.

Relative likelihood-ratio. We focus on the approxi-
mation of the relative likelihood-ratio between the pdfs
q and p:

rα(x) =
q(x)

(1− α)p(x) + αq(x)
∈ R+, ∀x ∈ X , (1)

where 0 ≤ α < 1 acts as a user-defined regularization
parameter (Yamada et al., 2011). When α = 0, Eq. 1
recovers the usual likelihood-ratio rα=0

∗ (x) = r(x) =
q(x)
p(x) . The α-regularization addresses certain instability

issues appearing when approximating an unbounded
function. Specifically, when α > 0, it holds rα ≤ 1

α ,
which is an upper-bound that will be proven to be im-
portant when we later study theoretically the conver-
gence of the proposed method (see Sec. 4). Typically, α
should be close to 0 to ensure that the approximated
rα(x) will remain relevant for the intended applica-
tion of the likelihood-ratio, which is of course the core
quantity of interest.

Defining the Online LRE (OLRE) setting . The
online setting we introduce in this paper supposes that
a new pair of iid observations (xt ∼ p, x′t ∼ q) is ob-
served at every time t. Then, the objective is to ap-
proximate the relative likelihood-ratio rα through a
function ft, which is updated at every time t. The
function ft is an element of a non-parametric func-
tional space, so there is no need to make a hypothesis
about the nature of p nor q. We denote by Ξt the
minimum σ-algebra generated by the incoming obser-
vations up to time t, i.e. σ({(x1, x′1), ..., (xt, x′t)}).

Reproducing Kernel Hilbert Space. We aim to es-
timate rα(x) with regards to a Reproducing Kernel
Hilbert Space (RKHS) H containing as elements func-
tions f : X → R. H is equipped with the inner prod-
uct ⟨·, ·⟩H : H × H → R, which will be reproduced
by a Mercer Kernel; i.e. by a continuous symmetric
real function, which is the positive semi-definite ker-
nel function K(·, ·) : X × X → R. Then, the space H
satisfies the following properties:

• ⟨K(x, ·), f⟩H = f(x), for any f ∈ H;

• H = span({K(x, ·) : ∀x ∈ X}),
(2)

where span refers to the closure of all the linear com-
binations of the elements K(x, ·), ∀x ∈ X . The first
equality is known as the RKHS reproducing property.

2.2 Important notions for first-order
optimization

The main idea behind OLRE is to see rα as
the solution of the functional optimization problem
minf∈H L(f), where L(f) : H → R is a cost func-
tional representing the real risk (i.e. generalization er-
ror), with respect to an instantaneous loss-function
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ℓ(f) : H → R. Our optimization schema is based
on the functional gradient of the cost function ℓ(f),
and produces a stochastic approximation ft that ap-
proaches the relative likelihood-ratio rα at every time
t. The estimation of ft requires only the previous es-
timate ft−1 and the new observations (xt, x

′
t). The

geometry of H, and more precisely the reproducing
property of its elements, lead to an elegant closed-form
expression for ft.

Functional gradient (Bauschke and Combettes,
2011). Let L : H → R be a Gâteaux differentiable
functional, and [DL(f)](·) its Gâteaux derivative. By
∇fL(f) we denote the functional gradient of L at f ,
defined to be the element of H that satisfies:

[DL(f)](g) = ⟨∇fL(f), g⟩H, ∀g ∈ H. (3)

The Riesz representation theorem tells us that ∇fL(f)
exists and is unique. When L(f) is also Fréchet differ-
entiable at f , then the Gâteaux derivative and Fréchet
derivative coincide, but the latter has the advantage
that satisfies the chain rule in a more natural way.

Functional Stochastic Gradient (Kivinen et al.,
2004). Suppose that the cost function L(f) takes
values in an RKHS, i.e. f ∈ H, and it has the form
L(f) = Ex[ℓ(f(x)]. Given an independent realiza-
tion x ∈ X , we can compute the Fréchet derivative
of ℓ(f(·)) w.r.t. f as:

∇f ℓ(f(x))(·) =
∂ℓ(f(x))

∂f(x)

∂f(x)

∂f
(·) = ∂ℓ(f(x))

∂f(x)
K(x, ·).

(4)
The first equality is a consequence of the chain rule
for the Fréchet derivative; the second one is due to

H’s reproducing property that due to which ∂f(x)
∂f (·) =

∂⟨f,K(x,·)⟩H
∂f (·) = K(x, ·). The operator ∇f ℓ(f(x))(·) is

the functional stochastic gradient of L(f) at f .

3 ONLINE LRE

3.1 LRE via ϕ-divergence minimization

ϕ-divergence. Under the assumptions mentioned at
the beginning of Sec. 2.1 regarding P and Q, a ϕ-
divergence functional quantifies the dissimilarity be-
tween two probability measures that are described by
their pdfs p, q:

Dϕ(P∥Q) =

∫
ϕ

(
q(x)

p(x)

)
p(x) dx =

∫
ϕ(r∗)(x) dP (x), (5)

where ϕ : R → R is a convex and semi-continuous real
function with ϕ(1) = 0 (Csiszár, 1967). This definition
assumes absolute continuity between Q and P , that is
P ≪ Q.

The formulation of our optimization problem relies
mainly on the following variational representation for
ϕ-divergences.

Lemma 1. (Lemma 1 in Nguyen et al. (2008)). Con-
sider P and Q two probability measures satisfying the
assumptions listed in Sec. 2.1. Then, if P is absolutely
continuous with respect to Q, for any class of functions
F : X → R, the lower-bound for the similarity between
two probability measures is:

Dϕ(P∥Q) =

∫
ϕ

(
q

p

)
(x) dP (x) (6a)

≥ sup
g∈F

∫
g(x′)dQ(x′)−

∫
ϕ⋆(g)(x) dP (x) (6b)

where ϕ⋆ denotes the convex conjugate of ϕ : R → R.
The equality Eq. 6a holds if and only if the subdiffer-
ential ∇ϕ( qp ) contains an element of F .

The likelihood-ratio in terms of the solution to Prob-
lem6b, g∗ = supg∈F

∫
g(x′)dQ(x′) −

∫
ϕ⋆(g)(x)dP (x),

can be inferred by simply applying q
p = (∇ϕ)−1(g∗) =

∇ϕ⋆(g∗). For this to be possible, ϕ needs to be
continuously-differentiable and strictly convex. As
stated in the introduction, though, we will focus
on approximating the relative likelihood-ratio rα in-
stead of the usual likelihood-ratio. Then, by fixing

ϕ(y) = (y−1)2

2 for y ∈ R, whose convex conjugate is

ϕ⋆(y∗) = (y∗)2

2 + y∗ for y∗ ∈ R, we recover the χ2-
divergence (also known as Pearson-divergence):

PE(Pα∥Q) =

∫ [
(rα − 1)2

2

]
(x) dPα(x). (7)

Note that the factor 1
2 is only introduced to facilitate

later calculations. According to Lemma1, the latter
can be lower-bounded via its variational representa-
tion:

PE(Pα∥Q)

≥ sup
f∈H

∫
(f − 1)(x′) dQ(x′)

−
∫ [

(f − 1)2

2
+ (f − 1)

]
(x) dPα(x) (8a)

= sup
f∈H

∫
f(x′) dQ(x′)−

∫
f2(x)

2
dPα(x)− 1

2
(8b)

= sup
f∈H

∫ [
frα − f2

2

]
(x) dPα(x)− 1

2
. (8c)

Eq. 8b is explained by the change of measure iden-
tity Epα(y)[f(y)r

α(y)] = Eq(x′)[g(x
′)]. Then, thanks

to Lemma1, we can obtain an estimator of the rα by
solving the following quadratic functional optimization
problem defined in terms of the RKHS H:
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argmin
f∈H

LPE(f)

= argmin
f∈H

∫ [
f2(x)

2
− f(x)rα(x)

]
dPα(x) +

1

2
(9a)

= argmin
f∈H

∫
(f − rα)2(x)

2
dPα(x) + C (9b)

= argmin
f∈H

(1− α)

∫
f2(x)

2
dP (x) + α

∫
f2(x′)

2
dQ(x′)

−
∫
f(x′) dQ(x′) + C. (9c)

To get Eq. 9b, we used that Epα(y)[r
α(y)2] = C, where

C is some constant. For the final Eq. 9c, we used
Epα(y)[f(y)] = αEp(x)[f(x)] + (1− α)Eq(x′)[f(x

′)].

In the rest of this section, we present our online LRE
method. Later, in Sec. 5, we provide a discussion that
compares our approach with existing works that aim
to solve the LRE problem in an offline fashion.

3.2 Online LRE by χ2-divergence
minimization

In the previous section, we put forward our goal to
solve the functional optimization Problem9 as new
pairs of iid observations (xt ∼ p, x′t ∼ q) arrive over
time. The proposed homonymous algorithm, which is
called as well OLRE, makes use of the approach of
regularization paths.

Let us define next the regularized cost function with
the help of a time-dependent regularization parameter
λt > 0:

min
f∈H

(1− α)

∫
f2(x)

2
dP (x) + α

∫
f2(x′)

2
dQ(x′)

−
∫
f(x′) dQ(x′) +

λt
2

∥f∥H
(10)

The idea of stochastic approximation via regulariza-
tion paths is to use a decreasing regularization se-
quence {λt ∈ R+}t∈N in the regularized Problem10
in order to generate a sequence of estimated relative
likelihood-ratios {ft}t∈N that converges to the target:
ft → rα as λt → 0.

To describe precisely the stochastic approximation
strategy for the online setting, we first define the reg-
ularized instantaneous cost function ℓPE

t (f), f ∈ H,
based on Eq. 10:

ℓPE
t (f) = (1−α)

f2(xt)

2
+α

f2(x′t)

2
− f(x′t)+

λt
2

∥f∥2H .
(11)

The functional stochastic gradient ∇f (ℓ
PE
t (f))(·) gives

the random direction of the stochastic update. Thanks
to its properties listed in Sec. 2.2, we can compute it

easily by:

∇f (ℓ
PE
t (f))(·)

=
(1− α)

2
∇f

(
f2(xt)

)
(·) + α

2
∇f

(
f2(x′t)

)
(·)

−∇f (f(x
′
t))(·) + λtf(·)

= (1− α)f(xt)K(xt, ·) + (αf(x′t)− 1)K(x′t, ·) + λtf(·).
(12)

where the last equality is a consequence of Expr. 4.

Let us denote by SL(H) be the set of self-adjoint
bounded linear operators in H. Then, we can de-
fine the random variables At : X × X → SL(H) and
bt : X × X → H as:

At = (1− α)⟨·,K(xt, ·)⟩HK(xt, ·)
+ α⟨·,K(x′t, ·)⟩HK(x′t, ·) + λtIH

= A(xt, x
′
t) + λtIH

bt = K(x′t, ·),

(13)

where IH is the identity operator in H, and A : X ×
X → SL(H) is such that when applied to f ∈ H:

A(x, x′)f = (1−α)f(x)K(x, ·)+αf(x′)K(x′, ·). (14)

Then, the functional stochastic gradient can be rewrit-
ten in terms of At and bt as:

∇f (ℓ
PE
t (f))(·) = A(xt, x

′
t)f + λtf(·)− bt = Atf − bt,

(15)
and the stochastic update for Problem9 becomes:

ft(·) = ft−1(·)− ηt∇f (ℓ
PE
t (ft−1))(·)

= (1− ηtλt)ft−1(·)− ηt[A(xt, xt)ft−1 − bt]

= (1− ηtλt)ft−1(·)− ηt[(1− α)ft−1(xt)K(xt, ·)
+ (αft−1(x

′
t)− 1)K(x′t, ·)],

(16)
where ηt > 0 is a given step-size at time t. We will
discuss in Sec. 4 which are the conditions to be satis-
fied by the sequence {ηt}t∈N and {λt}t∈N so that ft
converges.

Suppose a dictionary Dt−1 made of Mt−1 basis func-
tions, {x1, ..., xMt−1

∈ H}, and a kernel function
K : X → RMt−1 that maps input data to vectors:
K(Dt−1, ·) = (K(x1, ·), ...,K(xMt−1

, ·))T. Then, if
we express ft−1(·) using Dt−1 and a weight vector
θt−1 ∈ RMt−1 :

ft−1(·) =
Mt−1∑
m=1

θt−1,mK(xm, ·) = K(Dt−1, ·)Tθt−1, (17)

we can also express the subsequent ft using the ex-
tended dictionary Dt = Dt−1 ∪ {K(xt, ·),K(x′t, ·)}. In
that case, the new weights come from the concate-
nation of the previous weights and two new terms
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Algorithm 1: Online LRE (OLRE)

Input : {xt∼p, x′
t∼q}t=1,...: stream of observation pairs;

t0: size of the warm-up period;
a ≥ 4, 1

2 ≤ β ≤ 1: fixed constants
0 < α < 1: prefixed regularization parameter;
K: predefined kernel (form and hyperparameters).

Output: {ft}T
t=1: set of estimated relative likelihood-ratios.

1 Initialize f0(·) = 0; D0 = [ ]; θ0 = [ ]
2 for t = 1, 2, ... do
3 Get the incoming iid pair of observations (xt, x

′
t)

4 Compute the step-size and the penalization parameter:

ηt = a

(
1

t0 + t

) 2β
2β+1

, λt =
1

a

(
1

t0 + t

) 1
2β+1

(18)

5 Update the dictionary:

Dt = Dt−1 ∪ {xt, x
′
t}

6 Update the weights:

θt = [(1−ηtλt)θt−1, ηt(α − 1)ft−1(xt), ηt(1−αft−1(x
′
t))]

7 Update the relative likelihood-ratio estimate:

ft(·) = K(Dt, ·)Tθt
8 end

9 return {ft}T
t=1

depending on ft−1 evaluated at xt and x′t: θt =
[(1− ηtλt)θt−1, ηt(α− 1)ft−1(xt), ηt(1− αft−1(x

′
t))] ∈

RMt−1+2.

The relationship between ft−1 and ft implies that the
cost per iteration is mainly for computing ft−1(xt),
which requires 2(t − 1) kernel function evaluations.
Therefore, the cost per iteration scales rate O(t), and
that the number of kernel function evaluations up to
time t is O(t2). A sketch of the OLRE algorithm is
shown in Alg. 1. The implementation of OLRE and the
experimental scenarios tested in this paper are publicly
available online1.

4 THEORETICAL GUARANTEES

Previous convergence analyses of LRE are restricted to
the offline setting where n pairs of observations from
p and n′ q are available at the time of estimation.
Works such as Sugiyama et al. (2007); Nguyen et al.
(2008, 2010); Yamada et al. (2011); Sugiyama et al.
(2012), capitalized over available theoretical results for
M -estimators (van de Geer, 2000). That framework
is successfully adapted to derive convergence rates as
most of the LRE rely on a penalized cost function
based on an empirical approximation of ϕ-divergences.
The metrics that were used to describe the conver-
gence of the likelihood-ratio estimates, which we will
denote by f̂λn

, depend on the ϕ-divergence that is used
for estimation. More precisely, it is common to de-
fine an estimator Dn(f̂λn) aiming to approximate the
real ϕ-divergence Dϕ(P∥Q) (Eq. 5) to then describe
the convergence of the method via an upper-bound of

the quantity
∣∣∣Dn(f̂λn)−Dϕ(P∥Q)

∣∣∣. It is common as

1https://github.com/AlejandrodelaConcha/OLRE

well to derive convergence rates in terms of a similar-
ity measure between f̂λn and the real likelihood-ratio
r; the similarity measure is chosen as well based on
the ϕ-divergence. For example, Sugiyama et al. (2007)
and Nguyen et al. (2008, 2010) study the LRE prob-
lem based on the Kullback-Leibler divergence, and the
convergence rates between f̂λn and r are given in terms
of the Hellinger distance.

The M -estimation approach requires further hypothe-
ses over the functional space F and the real likelihood-
ratio function r. For example, the convergence rates
depend on the complexity of F summarized in quan-
tities such as covering numbers or bracketing num-
bers. It is common to set unrealistic assumptions over
the real likelihood-ratios, such as a strictly positive
lower-bound and a finite upper-bound even when r is
unregularized (Nguyen et al., 2008, 2010; Sugiyama
et al., 2012). Moreover, although those existing ap-
proaches and theoretical results assume that all ob-
servations are used in the estimation process, their
associated numerical implementations require fixing a
finite-dimensional dictionary, whose impact on those
convergence rates has not been detailed.

Theorems 1 and 2 summarize the OLRE convergence
rates in terms of the L2

pα and the Hilbert norms. The
theoretical approach used to produce these results dif-
fers from previous works as we deal directly with the
functional optimization problem described in Lemma1
without using the empirical risk as a surrogate cost
function, nor the hypothesis of a fixed number of ob-
servations (i.e. fixed horizon). This implies that the
proofs of both theorems (see Appendix B) no longer
depend on M -estimation nor the required restrictive
hypotheses of that approach. Instead, we employ
stochastic approximation of regularized paths (Tarrès
and Yao, 2014), which deals with the online solution
of a linear operator equation defined in a Hilbert space
H. In fact, we show in the appendix how the Pearson-
based optimization of Problem9 is connected with the
regression problem in H as both can be written as lin-
ear operator equations in an RKHS. This stochastic
approach allows us to obtain for the first time con-
vergence rates in terms of the Hilbert norm and with
milder hypotheses. Furthermore, as we use all the ob-
servations in the numerical implementation, there is no
gap between theory and practice regarding the conver-
gence rates analyzed in both theorems.

4.1 Convergence guarantees for OLRE

Covariance operator . The covariance operator is
a key component for studying OLRE’s convergence
properties (see Appendix B). Let L2

pα be the space
of square integrable functions with respect to pα, and
L2
pα its quotient space, which is a Hilbert space whose

https://github.com/AlejandrodelaConcha/OLRE
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norm is denoted by ∥·∥L2
pα
. Notice that if pα has full

support on X , then we can do the usual identification
of the elements of L2

pα and its equivalent classes in L2
pα .

Let us denote by LK : L2
pα → L2

pα the linear operator
defined by the following integral transform:

LK(f)(t) =

∫
X
K(t, x)f(x) dPα(x). (19)

The operator LK has been studied in detail in
Dieuleveut and Bach (2016). LK is a bounded self-
adjoint semi-definite positive operator on L2

pα and it
is trace-class. Furthermore, it is possible to show that
there exists an orthonormal eigensystem {µk, ψk}k∈N
in L2

pα , where µk is a basis of H, and that the eigen-
values {µk}k∈N are strictly positive and arranged in
decreasing order (see Proposition 2.2 in Dieuleveut
(2017)). The eigen-elements can be used to define the

operator Lβ
K : L2

pα → L2
pα , for β ∈ R:

Lβ
K

(∑
k∈N

ckψk

)
=
∑
k∈N

ckµ
β
kψk. (20)

The operator Lβ
K is relevant as it encodes how well

the chosen kernel approximates the relative likelihood-
ratio. More precisely, the norm ∥Lβ

Kr
α∥H defines a

notion of smoothness of rα w.r.t. H. In particular,

for β = 1
2 , L

1
2

K defines an isometric isomorphism of
Hilbert spaces (see Proposition 3 in Dieuleveut and

Bach (2016)), that is ∥f∥L2
pα

=
∥∥∥L 1

2

Kf
∥∥∥
H
.

When LK is restricted to elements f ∈ H ⊂ L2
pα , we

recover the covariance operator, which is known to sat-
isfy that ∀f, g ∈ H, ⟨f,LK(g)⟩H = Epα(y)[f(y)g(y)].

Main convergence results

Assumption 1. The pairs of observations (xt, x
′
t), t =

1, 2, ... are iid in time and satisfy xt ∼ p and x′t ∼ q.

The independence hypothesis is present in Nguyen
et al. (2008, 2010) and in the general theoretical frame-
work for LRE of Sugiyama et al. (2012).

Assumption 2. The reproducing kernel map
can be upper-bounded by a constant C > 0:
supx∈X

√
K(x, x) ≤ C <∞.

This assumption allows to bound the functions f ∈ H
in terms of the ∥·∥H . It is satisfied by commonly used
kernels, such as the Gaussian and the Laplacian ker-
nels, and in general for any continuous K(·, ·) defined
in a compact input feature space X .

Assumption 3. pα has full support on the feature
space X .

This statement enhances the use of the covariance op-
erator (Dieuleveut and Bach, 2016) and it is an impor-
tant hypothesis for the framework presented in Tarrès
and Yao (2014).

Assumption 4. rα ∈ Lβ
K(L2

pα) for 1
2 ≤ β ≤ 1.

The parameter β controls the smoothness of rα in H.
Assumption 4 implies that the proposed model is well-
defined, in the sense that rα ∈ H, which is the usual
hypothesis made in the LRE literature (Sugiyama

et al., 2012). Moreover, as β increases, Lβ
K(L2

pα) de-
fines a sequence of decreasing subspaces of L2

pα , i.e.
higher β values assume a stronger smoothness of rα.

Theorem1 gives OLRE’s convergence with respect to
the space L2

pα . The norm ∥ft − rα∥2L2
pα

equals to the

real least-squared error Epα(y)[(ft − rα)2(y)]. More-
over, this convergence result can be easily applied to
describe the convergence with respect to the excess
risk LPE(f)− LPE(rα).

Theorem 1. (OLRE’s convergence in L2
pα) Given

Assumptions 1-4, a ≥ 4 and t0 ≥ (2 + 4C2a)
(2β+1)

2β .
Then if the learning rate sequence is fixed as ηt =

a
(
1
t̄

) 2β
2β+1 and λt = 1

a

(
1
t̄

) 1
2β+1 . Then for all t ∈ N

and δ ∈ (0, 1), with probability at least 1− δ:

∥ft − rα∥L2
pα

≤ C1

t̄
+

(
C2a

(−β) + C3

√
a log(

2

δ
)

)(
1

t̄

) β
2β+1

+
(
C4a

5
2 + C5a

7
2

√
log(t̄)

)
(log2(

2

δ
))

(
1

t̄

) 4β−1
4β+2

,

(21)

where:

C1 =
2t0
α

,C2 =
5β + 1

β(1 + β)

∥∥∥L(−β)
K rα

∥∥∥
L2

pα

, C3 =
16C

α

C4 =
32C3

α
, C5 =

8C3(10C + 3)

α
.

Notice that the convergence rate in L2
pα can be decom-

posed into three terms. The first depends on the ini-
tialization, and decreases at rate O(t−1). The second
one is related to the smoothness of the likelihood-ratio
in H and the noise in the observations, and decreases

at rate O(t−
2

2β+1 ). The third term is related to the
variance of the observations, and decreases at a rate

O(log
1
2 (t)t−

4β−1
4β+2 ). When β ∈ ( 12 , 1], the second term

becomes dominant, which implies a faster convergence
as the smoothness of rα increases. When β = 1

2 , the

convergence rate becomes O(log
1
2 (t)t−

1
4 ).

The convergence rate with respect to H is more re-
strictive than in L2

pα . For H, Assumption 4 needs to
be replaced by Assumption 5; the main difference is
that rα is required to be smoother with respect to H
for higher β values.

Assumption 5. rα ∈ Lβ
K(L2

pα) for 1
2 < β ≤ 3

2 .

Theorem 2. (OLRE’s convergence in H) Given

Assumptions 1-3 and 5, a ≥ 4 and t0 ≥ (aC2+1)
(2β+1)

2β .
Then if the learning rate sequence is fixed as ηt =



Alejandro de la Concha, Nicolas Vayatis, Argyris Kalogeratos

a
(

1
t+t0

) 2β
2β+1

and λt = 1
a

(
1

t+t0

) 1
2β+1

. Then for all

t ∈ N and δ ∈ (0, 1), with probability at least 1− δ:

∥ft − rα∥H ≤ C′
1

t̄
+

(
C′

2a
1
2
−β + C′

3a log

(
2

δ

))(
1

t̄

) 2β−1
4β+2

,

(22)

where t̄ = t+ t0 and,

C′
1 =

2
√
at

4β+1
4β+2

0

α
,C′

2 =
20β − 2

(2β − 1)(2β + 3)

∥∥∥L(−β)
K rα

∥∥∥
L2

pα

C′
3 = 6

(
(C + 1)2

Cα

)
.

We can see that the upper-bound appearing in Theo-
rem2 is made of two components. The first component
is related to the constant C ′

1 and summarizes the im-
pact of the initialization. This term converges at rate
O(t−1)). The second term, which is the leading term

of the expression, converges at rate O(t−
2β−1
4β+2 ) and it

mainly depends on the smoothness parameter β. The
bigger β , the faster the convergence. Notice that the
case β = 1

2 is not considered in this theorem, in fact,
the algorithm may not converge in H, as indicated by
Theorem A in Tarrès and Yao (2014).

Both Theorems 2 and 1 provide useful information on
how to fix the step sizes {ηt}t∈N and regularization
constants {λt}t∈N, and explain their its impact to the
convergence rates. Notice that there is an interplay be-
tween the selection of a and the smoothness parameter
β. The results suggest that OLRE converges faster in
L2
pα than in H if the hyperparameters are the same.

Both results shed light on the impact of the parame-
ter α, as values close to 1 will lead to better conver-
gence rates. Nevertheless, α = 1 render rα a constant,
which is meaningless for most applications. For this
reason, the value of α should take into account both
the convergence rate of the optimization schema and
the intended application.

Convergence results for likelihood-ratio estimates
based on the Pearson-divergence can be found in Ya-
mada et al. (2011). Those results are given in terms
of the difference between the real Pearson-divergence
LPE(rα) and an empirical approximation LPE

n (f̂λn).
It was shown that if the regularization constant de-

creases at speed λn = O(n−
2

2+γ ), where the parameter
γ ∈ (0, 2) quantifies the complexity of H, then RULSIF

could achieve a convergence rate LPE(rα)−LPE
n (f̂λ) ≤

O(n−
1

2+γ ) with high probability.

5 COMPARISON WITH PREVIOUS
WORKS

Previous LRE works based on Kernel Methods have
focused on the offline setting, which assumes the avail-
ability of two data samples for training: X = {xt ∼

p}nt=1 and X ′ = {xt ∼ q}n′

t=1. Within this context,
the LRE problem translates to a convex optimization
problem drawing upon the empirical approximation of
a specific ϕ-divergence.

To scale to large n and n′, most offline algorithms as-
sume the likelihood-ratio can be approximated by a
finite linear combination of the M elements of a fixed
dictionary DM = {K(xm, ·)}Mm=1, i.e. the approxima-

tion f̂ should belong to S = span({K(xm, ·) |xm ∈
DM}) and hence can be written in the form:

f̂(x) =

M∑
m=1

θ̂mK(xm, x) = K(DM , ·)Tθ̂. (23)

Two notable methods for offline LRE are the Rela-
tive Unconstrained Least-Squares Importance Fitting
(RULSIF) (Yamada et al., 2011) and the Kullback-
Leibler Importance Estimation Procedure (KLIEP)
(Sugiyama et al., 2007). To make the discussion about
the properties of these methods more precise, let us in-
troduce the following terms:

H =
1

n

∑
x∈X

K(DM , x)K(DM , x)
T

H ′ =
1

n′

∑
x′∈X′

K(DM , x
′)K(DM , x

′)T,

h =
∑
x∈X

K(DM , x)

n
, h′ =

∑
x′∈X′

K(DM , x
′)

n′
.

(24)

RULSIF capitalizes over the χ2-divergence to define a
penalized empirical risk minimization problem to esti-
mate rα. This formulation along with Expr. 23 leads to
an estimation that amounts to solving a linear system:

θ̂RULSIF =argmin
θ∈RM

(
1− α

2

)
θTHθ +

(α
2

)
θTH ′θ

− θTh′ +
λ

2
θTθ

=(
1− α

2
H +

α

2
H ′ + λIM )−1h′,

(25)

where λ > 0 is a fixed regularization constant.

On the other hand, KLIEP uses an empirical approx-
imation of the KL-divergence to estimate the unreg-

ularized likelihood-ratio rα=0(x) = q(x)
p(x) . More pre-

cisely, the authors propose to solve the following con-
strained convex problem:

θ̂KLIEP =argmin
θ∈RM

−
∑

x′∈X′

log(K(DM , x
′)Tθ)

such that θTh = 1, θi ≥ 0 ∀i ∈ {1, ...,m}.
(26)

There are mainly two differences between RULSIF and
KLIEP. First, KLIEP does not have a closed-form
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Figure 1: Each row presents results for one of the synthetic scenarios described in Sec. 6. The first column shows the
generated samples from p and q, and the second column illustrates the real relative likelihood-ratio rα. The third column
compares the different algorithms in terms of the expected L2

pα -distance of the likelihood-ratio estimates ft and the real

rα, as a function of the number of pairs of observations processed. The expected value Epα(y)[(ft − rα)2] is computed
by averaging over 10000 independent pairs of observations that were not used during the training phase. The empirical
convergence curve is the average of 100 experiment instances, and the error-bar indicates 1 standard deviation around the
average performance. A safer comparison between two methods can be made when they use the same α-regularization,
hence they optimize the same target likelihood-ratio functional.

solution, and the authors propose an iterative algo-
rithm similar to the projected gradient descent. Sec-
ond, the restrictions imposed in KLIEP aim at find-
ing an estimator where the properties rα=0 > 0 and
Ep(x)[r

α=0(x)] = 1 are enforced.

RULSIF and KLIEP are not suitable for the online
setting as observations are required to be known in ad-
vance. In order to compare their computational cost
to that of OLRE, we assume we have waited for as
long as we have accumulated T pairs of observations
{(xt, x′t)}Tt=1 and then we use all of them to estimate

θ̂RULSIF and θ̂KLIEP (i.e. M = 2T ). We compare the
different methods in terms of the number of multipli-
cations and additions (#MA) and kernel evaluations
(#KE) they perform. In this setting, RULSIF has
a complexity O(T 3) in #MA and O(T 2) in #KE.
KLIEP needs iKLIEP(T ) iterations before achieving
convergence, the cost per iteration being O(T 2) in
#MA and #KE. KLIEP’s final computational cost is
O(#KLIEP(T )T

2)in #MA and O(T 2) in #KE. Notice
that iKLIEP(T ) is a function of T , since the error made
by the optimization algorithm should not be bigger
than the approximation error made by KLIEP that

depends on the number of available observations. It
has been shown that the error made by KLIEP de-
creases at rate O(T− 1

2 ) (Sugiyama et al., 2008).

To reduce the dependency on T , it was suggested to
prefix a dictionary withM elements selected uniformly
at random from the observations. The computational
gains of this approach are summarized in Tab. 1. Al-
though this may seem an attractive approach, we will
see in the experiments that it leads to a bias that does
not disappear as the sample size increases. This re-
sult suggests that M should not be a fixed value, but
rather a function that depends on the complexity of
the LRE problem and the number of available obser-
vations. Nevertheless, this issue has not yet been ad-
dressed in the literature.

6 EXPERIMENTS

In this section, we carry out synthetic experiments to
evaluate the performance of OLRE (Alg. 1), as well
as its sensitivity to its hyperparameters. We compare
OLRE variants against two existing offline approaches,
more precisely RULSIF (Yamada et al., 2011, 2013)
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Table 1: Compared LRE methods. For each method included in our experimental evaluation, we report its computa-
tional cost of approximating the likelihood-ratio when T pairs of incoming observations {(xt, x

′
t)}Tt=1 are made available.

Method Reference Estimate ϕ-divergence
Cost per iteration Total cost
#MA #KE #MA #KE

KLIEP Sugiyama et al. (2007) l.-r. KL-divergence O(T 2) O(T 2) O(iKLIEP(T )T
2) O(T 2)

O(M2) O(MT ) O(iKLIEP(T )MT ) O(MT )
RULSIF Yamada et al. (2011) relative l.-r. χ2-divergence O(T 3) O(T 2) O(T 3) O(T 2)

O(M3) O(MT ) O(M3) O(MT )
OLRE this work relative l.-r. χ2-divergence O(T ) O(T ) O(T 2) O(T 2)

and KLIEP (Sugiyama et al., 2007, 2008). Since for
large datasets the use of all the available observations
becomes prohibitive for both methods, we follow the
recommendation to select a random subset of basis
functions for reducing their computational complexity;
e.g. Sugiyama et al. (2007) take 100 basis functions
associated to observations coming from q.

An important component of OLRE is the choice of the
kernel function and its hyperparameters. We choose a
Gaussian kernel, but other options are possible as men-
tioned in Sec. 4. To tune the kernel hyperparameters
we perform cross-validation over the first n = 100 ob-
servations using RULSIF, which, as mentioned, has a
closed-form and therefore allows for fast model selec-
tion. Following the results of Theorem1, we let the
learning rate and the penalization rate to depend on
the smoothness of the parameters a, t0, and β. We
fix a at the lower-bound provided by Theorem1, that
is a = 4 and the lower-bound for t0 is fixed as 100,
which is equal to the number of observations used for
identifying the hyperparameters at the beginning of
the procedure. The user needs to provide only two
parameters, α and β, which, according to Theorem1,
play an important role in OLRE’s convergence. We
report results with different values in order to show
the sensibility of the method to parametrization.

We run experiments that approximate the likelihood-
ratio between two pdfs p and q, using three setups:

• Experiment I: p is a uniform continuous distri-
bution with zero mean and unit variance (p =
U(−

√
3,
√
3)); q is a Laplace distribution with zero

mean and unit variance.
• Experiment II: p is a bivariate Gaussian distri-
bution with zero mean, and a covariance matrix
equal to the identity matrix (p = N (02×1, I2×2)); q
is a bivariate Gaussian distribution with zero mean
and covariance matrix such that Σ1,1 = Σ2,2 = 1,
Σ1,2 = 4

5 (q = N (02×1,Σ)).
• Experiment III: p is bivariate Gaussian distri-
bution with mean vector µ and covariance matrix
Σ1 = 10 × I2×2 (p = N (02×1,Σ1)), and q is a
mixture of 5 bivariate Gaussian distributions with
the same proportion and the same covariance ma-
trix Σ2 = 5 × I2×2 and µ vectors: µ1 = (0, 0), µ2 =

(0, 5), µ3 = (0,−5), µ4 = (5, 0), µ5 = (−5, 0).

We compare the algorithms in approximating the
relative likelihood-ratio rα with respect to the
norm ∥·∥L2

pα
, which is the real least-squared error

Epα(y)[(ft − rα)2], a quantity that we approximate by
averaging over 10000 testing pairs of observations that
were not used during training. For the offline setting,
ft stands for the estimated likelihood-ratio computed
at each time from scratch by minimizing an empir-
ical risk with respect to the first t pairs of training
observations. For OLRE, ft is the approximation to
the solution of the functional minimization Problem9
found via the functional stochastic gradient descent.

Fig. 1 reports our results that carry clear messages.
The first thing to notice is that OLRE achieves sub-
stantially faster convergence rates when compared
with available offline methods (when comparing for the
same α value). Furthermore, we can see how KLIEP’s
and RULSIF’s strategy of selecting a random dictio-
nary introduces a bias to their performance over time.
OLRE’s behavior with respect to the hyperparameter
α is well described by Theorem1. Higher values of α
lead to faster convergence. The value of β also impacts
the performance of OLRE. Recall that a higher β value
implies we assume rα to be smoother with respect to
the RKHS H. Fig. 1 suggest also that higher values of
β lead to a lower variance, but also a higher bias.

7 CONCLUSIONS

To the best of our knowledge, this is the first
work to introduce and addresse the problem of on-
line likelihood-ratio estimation (OLRE). We presented
the homonymous non-parametric framework that pro-
cesses a stream of pairs of observations coming from
two pdfs. Our approach leads to an easy implementa-
tion that, contrary to the existing methods for the of-
fline setting, does not require knowing the length of the
stream in advance. Moreover, our theoretical results
shed light on the limitations of previous convergence
analyses and may motivate further work on studying
the LRE problem with techniques used in functional
optimization that can optimize directly the real risk.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes. ( See Sec. 2 and Sec. 4)

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes. ( See Sec. 3)

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes. (The code is pro-
vided as supplementary material.)

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes. (See Sec. 4)

(b) Complete proofs of all theoretical results.
Yes. The proofs appear in the supple-
mentary materials.

(c) Clear explanations of any assumptions.

Yes. (See Sec. 4)

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental results.
Yes. (The code is provided as supple-
mental material.)

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes.
(See Sec. 6)

(c) A clear definition of the specific measure or
statistics and error bars. Yes. (See Sec. 6)

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Not Applicable, because
the algorithm doesn’t require a special
computing infrastructure.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Yes. The models we used
for comparisons are replicated by our-
selves, cited, and available as supple-
mentary material.

(b) The license information of the assets, if ap-
plicable. Not Applicable.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Yes

(d) Information about consent from data
providers/curators. Not Applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Appli-
cable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable.
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A TECHNICAL RESULTS

This section contains the technical details of the results presented in Sec. 4. First, we introduce the necessary
elements to define a linear operator equation in a Hilbert space, and then we present the regularized paths
framework proposed in Tarrès and Yao (2014) for solving this kind of problems. After that, we detail how the
likelihood-ratio estimation problem can be reformulated as a linear operator equation and its similarities with
the regression problem in Hilbert spaces. Finally, we provide detailed proofs of Theorem1 and 2.

A.1 Sequential stochastic approximations of regularization paths in Hilbert spaces

Tarrès and Yao (2014) consider the general case of minimizing a quadratic map defined over elements of a Hilbert
space via stochastic approximation. Let us begin by denoting SL(H) as the vector space of self-adjoint bounded
linear operators on H endowed with the canonical norm:

∥A∥ = sup
∥f∥H≤1

∥Af∥H , A ∈ SL(H).

Notice that we have used the convention that Af denotes linear operator A ∈ SL(H) applied to f ∈ H. We will
keep this notation for the rest of the section.

Let us denote by X and Y two topological spaces, and define Z = X ×Y as their Cartesian product. We define a
probability measure ρ on the Borel σ- algebra of Z. Let A : Z → SL(H) and b : Z → H be two random variables
defined in terms of the space Z whose expected values are denoted by:

A = Eρ[A], b = Eρ[b].

The goal in Tarrès and Yao (2014) is to find w ∈ H by solving the linear operator equation:

Aw = b.

where A and b are known, and A is a strictly positive operator with an unbounded inverse.

Alternatively, w can be defined as the solution to the quadratic optimization problem:

argmin
f∈H

Q(f) = argmin
f∈H

1

2
⟨A(f −w), (f −w)⟩H. (27)

The stochastic approximation approach proposed by Tarrès and Yao (2014) consists in defining a sequence
of random variables {At}t∈N and {bt}t∈N depending on the incoming observations zt = (xt, yt) such that the
sequence {ft}t∈N generated by the iterative algorithm:

ft(·) = ft−1(·)− ηt (At(zt)ft−1(·)− bt(zt)(·)) , (28)

converges toward the solution of Problem27.

In the same work, they study the required conditions to guarantee the convergence of Eq. 28 with respect to the
norms ∥·∥L2

pα
and ∥·∥H. Among these conditions, the authors assume the random variables {At}t∈N and {bt}t∈N

are such that their expected values At = Eρ[At] and bt = Eρ[bt] satisfy At → A and bt → b, as t → ∞, and
each of the elements of the sequence {At}t∈N has a bounded inverse. Finally, the authors provide the required
decreasing rate for the sequence of step-sizes {ηt}t∈N.

A.2 Application to the OLRE problem

The Online LRE described in Sec. 3 can be written in terms of the framework introduced in Tarrès and Yao
(2014). In this context, Z = X ×X = X 2 and the associated probability measure is given by the joint pdf ρ with
marginal pdfs p and q. The incoming data observations zt = (xt, x

′
t) are iid pairs such that xt ∼ p and x′t ∼ q.

The random variables A : Z → SL(H) and b : Z → H are defined based on the functional stochastic gradient:

A(x, x′) = (1− α)⟨·,K(x, ·)⟩HK(x, ·) + α⟨·,K(x′, ·)⟩HK(x′, ·) b(x, x′) = K(x′, ·). (29)



Alejandro de la Concha, Nicolas Vayatis, Argyris Kalogeratos

Given the reproducing property of H, we have that for f ∈ H :

A(x, x′)f = (1− α)f(x)K(x, ·) + αf(x′)K(x′, ·).

Under this configuration:

A = E(p(x),q(x′))[(1− α)⟨·,K(x, ·)⟩HK(x, ·) + α⟨·,K(x′, ·)⟩HK(x′, ·)]
= Epα(y)[⟨·,K(y, ·)⟩HK(y, ·)] = LK ,

(30)

where the second equality is given by the linearity of the integral with respect to the mixture measure Pα and
the definition of the covariance operator when restricted to elements of H (see Sec. 2.1).

b = E(p(x),q(x′))[K(x′, ·)] = Epα(y)[r
α(y)K(y, ·)] = LKr

α. (31)

The second equality is given by the change of measure expression Eq(x′)[g(x
′)] = Epα(y)[r

α(y)g(y)], and the last
one is due to the definition of the covariance operator and the hypothesis that rα ∈ H (see Eq. 19).

We can rewrite the LRE problem described in Eq. 9 as trying to minimize the quadratic function:

Q(f) = ⟨LK(f − rα), f − rα)⟩H =
1

2
Epα(y)[(f − rα)2(y)], (32)

where the last equality is a consequence of property:

⟨f,LK(g)⟩H = Epα(y)[f(y)g(y)] ∀f, g ∈ H. (33)

The sequence of random variables {At}t∈N and {b}t∈N are given by the updates described in Alg. 1.

At = A((xt, x
′
t)) + λtIH; bt = K(x′t, ·). (34)

We can easily corroborate that At and bt satisfy:

At = LK + λtIH and At → A as λt → 0;

bt = LKr
α.

(35)

Moreover, by the properties of the covariance operator stated in Sec. 2.1, At has a bounded inverse.

After putting together these elements, we arrive to the stochastic approximation schema with the form:

ft(·) = ft−1(·)− ηt [Atft−1(·)− b(xt, x
′
t)(·)]

= ft−1(·)− ηt [(1− α)ft−1(xt)K(xt, ·) + αft−1(x
′
t)K(x′t, ·) + λtft−1(·)−K(x′t, ·)] ,

(36)

which coincides with the functional stochastic gradient descent described in Eq. 16.

A term that will be important for studying the convergence of the online optimization schema is the solution to
the regularized optimization problem:

fλt = argmin
f∈H

1

2
⟨At(f − rα), f − rα⟩H = argmin

f∈H

1

2
Epα(y)[(f − rα)2(y)] +

λt
2

∥f∥2H . (37)

In fact, fλt can be written as:

fλt
= A

(−1)
t bt = (LK + λtIH)

(−1)bt. (38)

A.3 Similarities between OLRE and Online Regression Problem

The framework described in Sec.A.1 was originally proposed to solve a regression problem in H as data observa-
tions arrive. In that context, Z = (X ,Y), where X is the feature space and Y ⊂ R represents noisy observations
of the regression function to be approximated (fρ). ρ stands for the joint probability function of (x, y) whose
marginal in the first entry is ρX . The regression problem can be written as:

min
f∈H

LReg(f) = min
f∈H

∫
X×Y

(f(x)− y)2dρ.
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Given the previous problem, the random variables to be updated as (xt, yt) arrive take the form:

AReg(x, y) = ⟨·,K(x, ·)⟩HK(x, ·) bReg(x, y) = yK(x, ·)
AReg = Lρx

K bReg = Lρx

K fρ

AReg
t = AReg(xt, yt) + λtIH bReg

t = ytK(xt, ·)

AReg
t = Lρx

K + λtIH bReg
t = Lρx

K fρ

and fReg
λt

= (Lρx

K + λtIH)
(−1)bt.

As it can be seen, the main difference between Online Likelihood-Ratio Estimation and the Online Regression
Problem is the definition of the random variables {At}t∈N and {bt}t∈N, while the expected values of these random
variables as well as the regularized term fλt

take the same form. The covariance operator Lρx

K translates to LK

defined in terms of the measure Pα and the regression function fρ to the relative likelihood-ratio rα. These
similarities facilitate the convergence analysis as we can reuse the results provided in Tarrès and Yao (2014)
regarding the deterministic terms, and we only need to rework the terms involving the random variables {At}t∈N
and {bt}t∈N.

A.4 Required elements for convergence analysis

The proof of Theorems 1 and 2 depends mainly on two iterative decompositions of the residuals between the
solution to the approximation ft and the solution to the regularization problem fλt . A martingale decomposition
will lead to convergence rates with respect to the norm ∥·∥L2

pα
, while a reversed martingale decomposition will

be useful when analyzing the convergence rates associated with the norm ∥·∥H.

For convenience, we denote by E[·] the expected value with respect to the joint distribution E(p(x),q(x′))[·]. We
call Ξt the σ-algebra generated by the pairs of observations up to t, that is Ξt = σ((x1, x

′
1), (x2, x

′
2), ..., (xt, x

′
t)).

Bi denotes the sigma-algebra generated by the observation observed after i, Bi = σ((xi, x
′
i), (xi+1, x

′
i+1), , ...).

Martingale Decomposition. Let us denote by rest the difference between the stochastic approximation ft,
obtained via function stochastic gradient descent, and fλt the solution to the regularized Problem37:

rest := ft − fλt

= ft−1 − ηt [Atft−1 − bt]− fλt

= (IH − ηtAt)(ft−1 − fλt
) + ηt [(At −At) ft−1 + (bt −Atfλt

))]

= (IH − ηtAt)(ft−1 − fλt
) + ηt [(At −At) ft−1 + (bt − bt)]

= (IH − ηtAt)(ft−1 − fλt−1
)− (IH − ηtAt)(fλt

− fλt−1
) + ηt [(At −At) ft−1 + (bt − bt)]

= (IH − ηtAt) rest−1 −(IH − ηtAt)∆t + ηtϵt,

(39)

where we have used the iterative Alg. 28 and expression bt = Atfλt (Eq. 38). The term ∆t := fλt −fλt−1 denotes
the difference between the solution of adjacent solutions to the regularized problem. The path t→ fλt is known
as the regularization path. Finally, ϵt denotes the noise term:

ϵt := (At −At)ft−1 + (bt − bt)

= (LK − (1− α)⟨·,K(xt, ·)⟩HK(xt, ·) + α⟨·,K(x′t, ·)⟩HK(x′t, ·)) ft−1 +K(x′t, ·)− LKr
a

= Epα(y)[ft−1(y)K(y, ·)]− (1− α)ft−1(xt)K(xt, ·)− αft−1(x
′
t)K(x′t, ·)

+K(x′t, ·)− Epα(y)[r
α(y)K(y, ·)] (Eq. 19 and the first point of Expr. 2.)

= Epα(y)[ft−1(y)K(y, ·)]− (1− α)ft−1(xt)K(xt, ·)− αft−1(x
′
t)K(x′t, ·) +K(x′t, ·)− Eq(x′)[K(x′, ·)].

(40)

If we iterate Expr. 39 up to s ≤ t:

rest = Π̄t
s+1ress −

t∑
j=s+1

Π̄t
j∆j +

t∑
j=s+1

ηjΠ̄
t
j+1ϵj , (41)

Π̄t
j =

{∏t
i=j(IH − ηiAi) , if j ≤ t;

IH, otherwise.
(42)
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From Eq. 40 and the independence of incoming observations, it is easy to verify that the process {ηjΠ̄t
j+1ϵj}j∈N

defines a martingale difference with respect to the filtration {Ξt}t∈N. The decomposition of Eq. 41 was first
proposed in Yao (2010). The proof of Theorem2 consists in finding an upperbound for the norm of each of the
three terms in Eq. 41 and the residual difference fλt

− rα.

Reversed Martingale Decomposition.

Let us define the random operator in terms of the sample ((x1, x
′
1), (x2, x

′
2), ..., (xn, x

′
n)) indexed by j, t ∈ N:

Πt
j({(xi, x′i)}i∈N) =

{∏t
i=j(IH − ηiAi(xi, x

′
i)), if j ≤ t;

IH, otherwise.
(43)

We recover an alternative decomposition for the residual rest:

rest = ft − fλt

= ft−1 − fλt − ηt(Atft−1 − bt)

= (IH − ηtAt)(ft−1 − fλt−1)− (IH − ηtAt)(fλt − fλt−1)− ηt(Atfλt − bt)

= (IH − ηtAt)rest−1 − (IH − ηtAt)∆t − ηt(Atfλt − bt).

By iterating the last expression for s ≤ t, we recover the following equality:

rest = Πt
s+1ress −

t∑
j=s+1

Πt
j∆j −

t∑
j=s+1

ηjΠ
t
j+1(Ajfλj

− bj). (44)

This decomposition was first introduced in Tarrès and Yao (2014).

Let us show that {Πt
j+1(Ajfλj

− bj)}j∈N is a reversed martingale difference with respect to {Bj}{j∈N}.

Definition 1. Let {Bi}{i∈N} be a decreasing sequence of sub-σ-fields of A in the probability space (Z,A, ρ). A
sequence {ζi}i∈N integrable real random variables is called a reversed martingale difference if:

1. The real random variable ζi is Bi-measurable for all i ∈ N,

2. E [ζi | Bi+1] = 0 for all i ∈ N

The term ηjΠ
t
j+1(Ajfλj − bj) defines a reversed martingale with respect to the sequence Bj =

σ((xj , x
′
j), ..., (xt, x

′
t), ...). From its definition ηjΠ

t
j+1(Ajfλj − bj) is Bj measurable, moreover given the inde-

pendence of the observations we have:

E
[
ηjΠ

t
j+1(Ajfλj − bj) | Bj+1

]
= ηjΠ

t
j+1E

[
Ajfλj − bj | Bj+1

]
= ηjΠ

t
j+1

(
Ajfλj

− bj

)
(By the independence hypothesis )

= 0 (Eq. 38 ).

A.5 Convergence in L2
pα

The proof of Theorem1 mimics the proof of Theorem C in Tarrès and Yao (2014). This theorem is stated
in Online Linear Regression and built upon decomposition of Eq. 41. As explained in Sec.A.3, the regression
problem is similar to OLRE with the main difference being the operators At and bt. This difference requires us
to rework the bounds depending on the random processes {At}t∈N and {bt}t∈N.

Let us start by analyzing the L2
pα−norm of the residuals:

∥ft − rα∥L2
pα

≤ ∥fλt
− rα∥L2

pα
+ ∥ft − fλt

∥L2
pα

≤ ∥fλt
− rα∥L2

pα
+
∥∥Π̄t

1res0
∥∥
L2

pα
+

∥∥∥∥∥∥
t∑

j=1

Π̄t
j∆j

∥∥∥∥∥∥
L2

pα

+

∥∥∥∥∥∥
t∑

j=1

ηjΠ̄
t
j+1ϵj

∥∥∥∥∥∥
L2

pα

= Einit(t) + Edrift(t) + Eapprox + Esample(t),

(45)
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where the second line comes from the martingale decomposition of Eq. 41 applied to s=0. Each of the error
terms in Eq. 45 is defined as:

Einit(t) :=
∥∥Π̄t

1res0
∥∥
L2

pα
Eapprox(t) := ∥fλt

− rα∥L2
pα
,

Edrift(t) :=

∥∥∥∥∥∥
t∑

j=1

Π̄t
j∆j

∥∥∥∥∥∥
L2

pα

Esample(t) :=

∥∥∥∥∥∥
t∑

j=1

ηjΠ̄
t
j+1ϵj

∥∥∥∥∥∥
L2

pα

(46)

The first three terms have the same behavior in the OLRE and Regression Problem, as they depend solely
on equivalent deterministic terms, meaning we can reuse the upper bounds from Tarrès and Yao (2014). For
completeness of our presentation, we restate these results. The last term differs and an upperbound is derived
in Theorem6.

For the following statements t̄ = t+ t0, and t0 > 0 will be a given integer, a, b are two positive constants, β is the
parameter related to the smoothness of a function in H as it was explained in Sec. 2.1 and α is the regularized
parameter of the relative likelihood-ratio function rα.

Theorem 3. (Theorem VI.1 in Tarrès and Yao (2014)) Let tθ0 ≥ a(C2 + b). Then for all t ∈ N.

Einit(t) ≤
1

α

(
t0 + 1

t̄

)ab

≤ B1t̄
−ab, (47)

where B1 = (t0+1)ab

α .

Theorem 4. (Theorem VI.2 in Tarrès and Yao (2014)) For β ∈ (0, 1] and L(−β)
K rα ∈ L2

pα ,

Eapprox(t) ≤
bβ t̄(−β(1−θ))

∥∥∥L(−β)
K rα

∥∥∥
L2

pα

β
≤ B2b

β t̄(−β(1−θ)), (48)

where B2 =

∥∥∥L(−β)
K rα

∥∥∥
L2
pα

β .

Theorem 5. (Theorem VI.3 in Tarrès and Yao (2014)) Assume tθ0 = [a(C2 + b) ∨ 1]. Then, if β ∈ (0, 1]

and L(−β)
K rα ∈ L2

pα :

Edrift(t) =

{
B3b

β t̄−β(1−θ) if ab > β(1− θ);

B3b
β t̄−ab if ab < β(1− θ),

(49)

where B3 = 4(1−θ)
|ab−β(1−θ)|

∥∥∥L(−β)
K rα

∥∥∥
L2

pα

.

Theorem 6. Assume that L(−β)
K (rα) ∈ L2

pα for some β ∈ [ 12 , 1], θ ∈ [ 12 ,
2
3 ], ab = 1, a ≥ 4 and tθ0 ≥ 2 + 4C2a.

Then, for all t ∈ N, with probability at least 1− δ:

Esample(t) ≤
√
aB4

t̄
θ
2

log

(
2

δ

)
+
[
B5a

5
2 +B6a

7
2

√
log t̄

] log2 ( 2δ )
t̄
3θ−1

2

, (50)

where:

B4 =
16C

α
B5 =

32C3

α
B6 =

8C3(10C + 3)

α
.

The proof of the last theorem is given in Sec.A.7.

Proof of Theorem1

Proof. By putting together the conditions stated in the statement of Theorem1 and fixing θ = 2β
2β+1 , a ≥ 4,
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b ≤ 1
4 such that ab = 1 and tθ0 ≥ 4aC2 + 2 we can verify that the requirements of Theorems 3-6 are satisfied:

∥ft − rα∥L2
pα

≤ Einit(t) + Eapprox(t) + Edrift(t) + Esample(t)

≤ B1

t̄
+

(
(B2 +B3)a

−β +
√
aB4 log

(
2

δ

))(
1

t̄

) β
2β+1

+
(
B5a

5
2 +B6a

7
2

√
log(t̄)

) log2
(
2
δ

)
t̄
4β−1
4β+2

=
C1

t̄
+

(
C2a

−r + C3

√
a log

(
2

δ

))(
1

t̄

) β
2β+1

+
(
C4a

5
2 + C5a

7
2

√
log(t̄)

) log2
(
2
δ

)
t̄
4β−1
4β+2

(51)

where C1 = 2t0
α ≥ t0+1

α , C2 = B2 +B3 = 5β+1
β(1+β)

∥∥∥L(−β)
K rα

∥∥∥
L2

pα

, C3 = B4, C4 = B5 and C5 = B6.

A.6 Convergence in H

The study of the norm in H has a lot of similarities with the analysis of L2
pα , starting with the decomposition of

the norm into four terms that will be upper-bounded independently:

∥ft − rα∥H ≤ ∥ft − fλt
∥H + ∥fλt

− rα∥H

≤ ∥fλt
− rα∥H +

∥∥Πt
1res0

∥∥
H +

∥∥∥∥∥∥
t∑

j=1

Πt
j∆j

∥∥∥∥∥∥
H

+

∥∥∥∥∥∥
t∑

j=1

ηjΠ
t
j+1(Ajfλj

− bj)

∥∥∥∥∥∥
H

(Eq. 44)

= E ′
init(t) + E ′

drift(t) + E ′
approx(t) + E ′

sample(t),

(52)

where,
E ′
init(t) :=

∥∥Πt
jres0

∥∥
H E ′

approx(t) := ∥fλt
− rα∥H ,

E ′
drift(t) :=

∥∥∥∥∥∥
t∑

j=1

Πt
j∆j

∥∥∥∥∥∥
H

E ′
sample(t) :=

∥∥∥∥∥∥
t∑

j=1

ηjΠ
t
j+1(Ajfλj

− bj)

∥∥∥∥∥∥
H

(53)

As in the previous case, we will start by restating the required elements from Tarrès and Yao (2014) to upper-
bound the deterministic terms of Eq. 52.

Theorem 7. (Theorem V.1 in Tarrès and Yao (2014)) Let tθ0 ≥ a(C2 + b). Then, for all t ∈ N,

E ′
init(t) ≤ B′

1t̄
−ab, (54)

where B′
1 = (t0 + 1)ab ∥fλ0

∥H.

Theorem 8. (Theorem V.2 in Tarrès and Yao (2014)) For β ∈ ( 12 ,
3
2 ] and L(−β)

K rα ∈ L2
pα

E ′
approx(t) ≤ B′

2b
β− 1

2 t̄−(β− 1
2 )(1−θ), (55)

where B′
2 = (β − 1

2 )
−1
∥∥∥L(−β)

K rα
∥∥∥
L2

pα

.

Theorem 9. (Theorem V.3 in Tarrès and Yao (2014)) Let tθ0 ≥ max (a(C2 + b), 1). Then, for β ∈ ( 12 ,
3
2 ]

and L(−β)
K rα ∈ L2

pα ,

E ′
drift(t) =

{
B′

3b
β− 1

2 t̄−(β− 1
2 )(1−θ) if ab > (β − 1

2 )(1− θ);

B′
3b

β− 1
2 t̄−ab if ab < (β − 1

2 )(1− θ),
(56)

where B′
3 = 4(1−θ)

|ab−(β− 1
2 )(1−θ)|

∥∥∥L(−β)
K rα

∥∥∥
L2

pα

.

Theorem 10. Assume that tθ0 ≥ min{a(C2 + b), b, 1}, t1−θ
0 ≥ b and ab ̸= θ − 1

2 or ab ̸= 3θ−1
2 . Then, with

probability at least 1− δ (δ ∈ (0, 1)),

E ′
sample(t) ≤ ab−

1
2B′

4t̄
−(ab∧ 3θ−1

2 ) +B′
5at̄

−(ab∧(θ− 1
2 )), (57)

where

B′
4 =

2e

3

(
C + 1

α
+ C

)
log

(
2

δ

)
B′

5 = 2

√
1∣∣ab− θ + 1

2

∣∣eC log

(
2

δ

)
. (58)
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The proof of Theorem10 is provided in AppendixA.7 and it capitalizes over the properties of the operator At

and Lemma9.

Proof of Theorem2.

Proof. Let us fix θ = 2β
2β+1 , a ≥ 1,b ≤ 1 such that ab = 1 and we assume tθ0 ≥ aC2 + 1. These constants imply

that θ < 1 and t0 ≥ 1 which means t1−θ
0 ≥ b, ab = 1 ̸= θ− 1

2 , ab ̸=
(3θ−1)

2 and (β − 1
2 )(1− θ) = 2β−1

4β+2 ≤ 1. Then,
the hypothesis of Theorems 7-10 are satisfied and we can conclude:

∥ft − rα∥H ≤ B′
1t̄

−ab +B′
2b

β− 1
2 t̄−(β− 1

2 )(1−θ) +B′
3b

β− 1
2 t̄−(β− 1

2 )(1−θ) + ab−
1
2B′

4t̄
−(ab∧ 3θ−1

2 ) +B′
5at̄

−(ab∧(θ− 1
2 ))

≤ B′
1t̄

−ab +B′
2a

1
2−β t̄−

2β−1
4β+2 +B′

3a
1
2−β t̄−

2β−1
4β+2 + aa

1
2B′

4t̄
−θ t̄−

2β−1
4β+2 +B′

5at̄
− 2β−1

4β+2

= C ′
1t̄

−ab +

[
C ′

2a
1
2−β + C ′

3a log

(
2

δ

)]
t̄−

2β−1
4β+2 ,

(59)
where:

B′
1 = (t0 + 1) ∥fλ0

∥H ≤ t0 + 1

α
√
λ0

(Eq. 121)

≤ 2t0(t0)
θ−1
2

αb
1
2

=
2t

4β+1
4β+2

0

αb
1
2

:= C ′
1

C ′
2 := B′

2 +B′
3 =

(
(β − 1

2
)−1 +

4(1− θ)∣∣ab− (β − 1
2 )(1− θ)

∣∣
)∥∥∥L(−β)

K rα
∥∥∥
L2

pα

=

(
2

2β − 1
+

8

2β + 3

)∥∥∥L(−β)
K rα

∥∥∥
L2

pα

=
20β − 2

(2β − 1)(2β + 3)

∥∥∥L(−β)
K rα

∥∥∥
L2

pα

√
aB′

4t̄
−θ
0 +B′

5 ≤ 2e

3

(
1

α
+

1

αC
+ 1

)
log

(
2

δ

)
+ 2

√
1∣∣ab− θ + 1

2

∣∣eC log

(
2

δ

)
(The fact t

θ
0 ≥ aC

2
+ 1 implies

√
at

− θ
2

0 ≤
1

C
)

≤ e log

(
2

δ

)(
3C +

2

3

(
C + 1

Cα
+ 1

))
≤ 2 log

(
2

δ

)(
9C2α+ C(2 + α) + 2

3Cα

)
≤ 2 log

(
2

δ

)
(3C +

√
2)2

3Cα
≤ 6 log

(
2

δ

)
(C + 1)2

Cα
≤ C ′

3 log

(
2

δ

)
.

A.7 Upperbounds on the noise terms

The goal of this section is to detail the upper-bounds on the noise terms presented in Theorems 6 and 10.

For the remainder of the discussion we will fix the step-size and the regularization constant sequence as:

ηt =
a

(t+ t0)θ
=

a

t̄θ
λt =

b

(t+ t0)1−θ
=

b

t̄1−θ
, for some θ ∈ [0, 1], t0 > 0. (60)

Let us begin with the definition of the following stochastic processes:

Lt = ⟨·,K(xt, ·)⟩HK(xt, ·), L = E [Lt |Ξt−1]

Rt = ⟨·,K(x′t, ·)⟩HK(x′t, ·), R = E [Rt |Ξt−1]

LRt = (1− α)⟨·,K(xt, ·)⟩HK(xt, ·) + α⟨·,K(x′t, ·)⟩HK(x′t, ·) LR = E [(1− α)Lt + αRt |Ξt−1] .

(61)

Notice that the operator LR coincides with the covariance operator for f ∈ Ξt−1 (Expr. 19):

LR(f) = E [(1− α)f(xt)K(xt, ·) + αf(x′t)K(x′t, ·) |Ξt−1] = Epα(y)[f(y)K(y, ·)] = LK(f) (62)

Upper-bound for Esample(t) =
∥∥∥∑t

j=s+1 ηjΠ̄
t
j+1ϵj

∥∥∥
L2

pα

.

We can rewrite the residual between the approximation at time ft and the relative likelihood-ratio rα in terms
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of the stochastic processes defined in Eq. 61:

ft − rα = [IH − ηt ((1− α)Lt + αRt + λtIH)] (ft−1) + ηtK(x′t, ·)− rα

= [IH − ηt ((1− α)Lt + αRt + λtIH)] (ft−1 − rα) + ηt (K(x′t, ·)− [(1− α)Lt + αRt] r
α)− ηtλtr

α,
(63)

Let us define the sequences {gt}t∈N, {ht}t∈N:

g0 = −rα h0 = 0,

and
gt = [IH − ηt (LR+ λtIH)] gt−1 − ηtλtr

α

ht = [IH − ηt (LRt + λtIH)]ht−1 + ηt (K(x′t, ·)− LRtr
α) + ηt [LR− LRt] gt−1.

(64)

By induction over Expr. 64, we can verify:
ft − rα = gt + ht. (65)

Notice that {gt}t∈N is a deterministic sequence, while {ht}t∈N is a random one.

We can use the aforementioned variables to upperbound the Hilbert norm of the noise term as follows:

E
[
∥ϵt∥2H |Ξt−1

]
= E

[
∥K(x′t, ·)− (1− α)Ltft−1 − αRtft−1 − (LKr

α − LKft−1)∥
2
H |Ξt−1

]
(Eq. 40)

≤ E
[
∥K(x′t, ·)− (1− α)Ltft−1 − αRtft−1∥

2
H |Ξt−1

]
(After developing the norm and using Eq. 31 and Eq. 62 )

= E
[
∥K(x′t, ·)− (1− α)Lt (r

α + gt−1 + ht−1)− αRt (r
α + gt−1 + ht−1)∥

2
H |Ξt−1

]
(Eq. 65)

≤ 3

[
E
[
∥K(x′t, ·)− [(1− α)Lt + αRt] r

α∥2H |Ξt−1

]
+ E

[
∥[(1− α)Lt + αRt] gt−1∥2H |Ξt−1

]
+ E

[
∥[(1− α)Lt + αRt]ht−1∥2H |Ξt−1

] ]
(Inequality 2⟨a, b⟩H ≤ ∥a∥2H + ∥b∥2H).

(66)
For the rest of this section, we will focus on providing an upperbound for each of the terms in Eq. 66.

Let us start by analyzing the deterministic sequence in {gt}t∈N. We rewrite the following inequality shown in
Tarrès and Yao (2014) (Lemma B.3):

Lemma 2. Assume tθ0 ≥ a(C2 + b). Then, for all t ∈ N,

1. ∥gt∥L2
pα

≤ 1
α

2. ∥gt + rα∥H ≤ 3
α
√
λt
.

As a consequence of this result we can easily verify the following inequality:

Lemma 3. gt−1 satisfies the following inequalities:

∥LRgt−1∥2H ≤ C2

α2
. (67)

Proof. As gt−1 is Ξt−1− measurable we have that LR(gt−1) = LKgt−1 (see 62),then:

∥LR(gt−1)∥2H = ⟨LK(gt−1),LK(gt−1)⟩H = Epα(y)[LK(gt−1)(y)gt−1(y)] (Eq. 33 )

= Epα(y)[

∫
K(x, y)gt−1(x)gt−1(y)dP

α(x)] (Eq. 19 )

≤ C2
(
Epα(y)[gt−1(y)]

)2
(Assumption 2 )

≤ C2Epα(y)[g
2
t−1(y)] (Jensen’s inequality)

≤ C2

α2
(Lemma2 ).
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Now, let us continue with the random sequence {ht}t∈N. We will start by defining the following operators for
t ∈ N and Mt ∈ R+ ∪ {+∞}, which will allow us to upper-bound the norm of ht with respect to a random
variable with a bounded variance:

Lt = 1{|ht−1(xt)| ≤Mt}Lt L = E[Lt |Ξt−1]

Lt = 1{|ht−1(xt)| ≥Mt}Lt L = E[Lt |Ξt−1]

Rt = 1{|ht−1(x
′
t)| ≤Mt}Rt R = E[Rt |Ξt−1]

Rt = 1{|ht−1(x
′
t)| ≥Mt}Rt R = E[Rt |Ξt−1]

(68)

Notice that:
Lt = Lt + Lt Rt = Rt +Rt. (69)

For t ∈ N, define the following variables:

ht :=
[
IH − ηt

(
(1− α)Lt + αRt + λtIH

)]
ht−1 + ηt (K(x′t, ·)− LRtr

α) + ηt (LR− LRt) gt−1

= ht + ηt [(1− α)Lt + αRt]ht−1 (Eq. 64 and Eq. 69 )

kt := ht − (1− ηtλt)ht−1

= ht − [IH − ηt ((1− α)Lt + αRt + λtIH)]ht−1

= ηt
[
−
[
(1− α)Lt + αRt

]
ht−1 +K(x′t, ·) + LR(gt−1)− LRt (r

α + gt−1)
]

(Eq. 64 and Eq. 69 ).

(70)

Lemma 4. Assume tθ0 ≥ 2a
(
b+ 2C2

)
. For all t ∈ N, Mt ∈ R+ ∪ {+∞}, we have:

E
[∥∥ht∥∥2H |Ξt−1

]
≤ (1− ηtλt)

2 ∥ht−1∥2H + 2C2η2t

(
2 + α2

α2

)
. (71)

In particular, assume that 1
2 ≤ θ ≤ 1 and tθ0 ≥ max{2ab, 2γ, γ + 2θ−1

γ } where γ = ab − (θ − 1
2 ) > 0, and fix

B1 = aC

√
2
(

2+α2

α2γ

)
. Then ∥ht−1∥H ≥ B1t̄

1
2−θ implies:

t̄θ−
1
2E
[∥∥ht∥∥H |Ξt−1

]
≤ (t̄− 1)θ−

1
2 ∥ht−1∥H . (72)

Proof. For all t ∈ N, let us define the random variable:

ζt :=
[
(1− α)L+ αR−

(
(1− α)Lt + αRt)

)]
ht−1 + (LR− LRt)gt−1 + (K(x′t, ·)− LRtr

α).

Given the definition of ht in Eq. 70:

ht =
[
IH − ηt((1− α)L+ αR+ λtIH)

]
ht−1 + ηtζt. (73)

The independence of the incoming observations (xt, x
′
t) and the fact ht−1, gt−1 are Ξt−1-measurable lead to:

E[ζt |Ξt−1] = E[K(x′t, ·)− LRtr
α] = E[K(x′t, ·)− ((1− α)rα(xt)K(xt, ·) + αrα(x′t)K(x′t, ·)) |Ξt−1]

= Eq(x′)[K(x′, ·)]− Epα(y)[r
α(y)K(y, ·)] = 0.

(74)

Eq. 73 and the last observation implies:

E[
∥∥ht∥∥2H |Ξt−1] =

∥∥[IH − ηt((1− α)L+ αR+ λtIH)
]
ht−1

∥∥2
H + η2tE[∥ζt∥

2
H |Ξt−1]. (75)

The next step is to upperbound each of the terms in Eq. 75. For the first element of the sum we have:∥∥[IH − ηt((1− α)L+ αR+ λtIH)
]
ht−1

∥∥2
H

= (1− λtηt)
2 ∥ht−1∥2H − 2ηt(1− ηtλt)⟨

[
(1− α)L+ αR

]
ht−1, ht−1⟩H + η2t

∥∥[(1− α)L+ αR
]
ht−1

∥∥2
H

= (1− λtηt)
2 ∥ht−1∥2H − 2ηt(1− ηtλt)E

[
(1− α)h2t−1(xt)1{|ht−1(xt)| ≤Mt}+ αh2t−1(x

′
t)1{|ht−1(x

′
t)| ≤Mt} |Ξt−1

]
+ η2t

∥∥[(1− α)L+ αR
]
ht−1

∥∥2
H (Eq. 68 and the first point of Eq. 2).

(76)
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We can upper bound the last term in the previous expression by:

η2t
∥∥[(1− α)L+ αR

]
ht−1

∥∥2
H

≤ η2tE
[
∥(1− α)ht−1(xt)K(xt, ·)1{|ht−1(xt)| ≤Mt}+ αht−1(x

′
t)K(x′t, ·)1{|ht−1(x

′
t)| ≤Mt}∥

2
H |Ξt−1

]
(Jensen’s inequality)

≤ η2tE
[
(1− α)2K(xt, xt)h

2
t−1(xt)1{|ht−1(xt)| ≤Mt} |Ξt−1

]
+ 2η2t (1− α)αE

[
K(xt, x

′
t) |ht−1(xt)ht−1(x

′
t)|1{|ht−1(xt)| , |ht−1(x

′
t)| ≤Mt}

]
+ η2tα

2E
[
K(x′t, x

′
t)h

2
t−1(x

′
t)1{|ht−1(x

′
t)| ≤Mt} |Ξt−1

]
≤ η2tC

2E
[
(1− α)2h2t−1(xt)1{|ht−1(xt)| ≤Mt} |Ξt−1

]
+ 2η2t (1− α)αE

[
|ht−1(xt)ht−1(x

′
t)|1{|ht−1(xt)| , |ht−1(x

′
t)| ≤Mt} |Ξt−1

]
+ η2tα

2E
[
h2t−1(x

′
t)1{|ht−1(x

′
t)| ≤Mt} |Ξt−1

]
(Assumption 2 )

= η2tC
2E
[
((1− α)ht−1(xt)1{|ht−1(xt)| ≤Mt}+ αht−1(x

′
t)1{|ht−1(x

′
t)| ≤Mt})

2 |Ξt−1

]
≤ η2tC

2E
[
(1− α)h2t−1(xt)1{|ht−1(xt)| ≤Mt}+ αh2t−1(x

′
t)1{|ht−1(x

′
t)| ≤Mt} |Ξt−1

]
(Jensen’s inequality given 0 ≤ α ≤ 1)

(77)

Let us continue with the second term of Eq. 75. We start with an upperbound for the following:

E
[
∥LRtgt−1∥2H |Ξt−1

]
= E

[
⟨(1− α)K(xt, ·)gt−1(xt) + αK(x′t, ·)gt−1(x

′
t), (1− α)K(xt, ·)gt−1(xt) + αK(x′t, ·)gt−1(x

′
t)⟩H |Ξt−1

]
(Eq. 2)

= E
[
(1− α)2K(xt, xt)g

2
t−1(xt) + 2(1− α)αK(xt, x

′
t)gt−1(xt)gt−1(x

′
t)

+ α2K(x′t, x
′
t)g

2
t−1(x

′
t) |Ξt−1

]
(The first point of Eq. 2)

≤ C2E
[
[(1− α)gt−1(xt) + αgt−1(x

′
t)]

2 |Ξt−1

]
(Assumption 2 )

≤ C2E
[
(1− α)g2t−1(xt) + αg2t−1(x

′
t) |Ξt−1

]
(Jensen’s inequality given 0 ≤ α ≤ 1)

≤ C2Epα(y)[g
2
t−1(y)] ≤

C2

α2
(Lemma2 ).

(78)
Then, the second term of Eq. 75 satisfies the inequality:

E
[
∥ζt∥2H |Ξt−1

]
≤ 2E

[∥∥[((1− α)L+ αR
)
−
(
(1− α)Lt + αRt

)]
ht−1 + (LR− LRt)gt−1)

∥∥2
H |Ξt−1

]
+ 2E

[
∥K(x′t, ·)− LRtr

α∥2H |Ξt−1

]
(2⟨a, b⟩H ≤ ∥a∥2H + ∥b∥2H)

≤ 2E
[ ∥∥((1− α)Lt + αRt

)
ht−1 + LRtgt−1

∥∥2
H + ∥K(x′t, ·)∥

2
H |Ξt−1

]
(After developing the norms and taking conditional expectations)

≤ 2
[
2E
[ ∥∥((1− α)Lt + αRt

)
ht−1

∥∥2
H |Ξt−1

]
+ 2E

[
∥LRtgt−1∥2H |Ξt−1

]
+ C2

]
(2⟨a, b⟩H ≤ ∥a∥2H + ∥b∥2H and Assumption 2 )

≤ 2C2

[
2E
[
(1− α)h2t−1(xt)1{|ht−1(xt)| ≤Mt}+ αh2t−1(x

′
t)1{|ht−1(x

′
t)| ≤Mt} |Ξt−1

]
+

2

α2
+ 1

]
(Eq. 78).

(79)
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By putting together Expressions 75-79:

E[
∥∥ht∥∥2H |Ξt−1]

≤ (1− λtηt)
2 ∥ht−1∥2H

− ηt
(
2− 2ηtλt − 5C2ηt

)
E
[
(1− α)h2t−1(xt)1{|ht−1(xt)| ≤Mt}+ αh2t−1(x

′
t)1{|ht−1(x

′
t)| ≤Mt} |Ξt−1

]
+ 2C2η2t

(
2 + α2

α2

)
≤ (1− λtηt)

2 ∥ht−1∥2H + 2C2η2t

(
2 + α2

α2

)
.

(80)

The last is a consequence of the hypothesis tθ0 ≥ 2a(b+ 2C2), which implies 2− 2ηtλt − 5C2ηt ≥ 0 for all t ∈ N.
Therefore, we obtain the first inequality of Lemma4.

The second point of that lemma depends on the following inequality:

(1− 1

t̄
)1−2θ(1− ab

t̄
)2 ≤ (1− γ

t̄
), (81)

where θ ∈ [ 12 , 1] and t̄ = t+ t0 and t0 ≥ max{2ab, 2γ, γ + 2θ−1
γ }, where γ = ab− (2θ−1)

2 .

Inequality 81 can be verified as follows:

log

[
(1− 1

t̄
)1−2θ(1− ab

t̄
)2(1− γ

t̄
)−1

]
≤ −(2θ − 1) log

(
1− 1

t̄

)
+ 2 log

(
1− ab

t̄

)
− log

(
1− γ

t̄

)
≤ (2θ − 1)

t̄
+

(2θ − 1)

t̄2
− 2ab

t̄
+
γ

t̄
+
γ2

t̄2

= −γ
t̄
+

2θ − 1 + γ2

t̄2
=
γ

t

(γ
t̄
− 1
)
+

2θ − 1

t2
≤ 0,

where for the second equality we have used the inequalities log(1 − x) ≤ −x for all x ∈ [0, 1] and log(1 − x) ≥
−x− x2 for x ∈ [0, 12 ].

By using Inequalities 80 and 81, we can verify:

E

[(
1− 1

t̄

)1−2θ ∥∥h̄t∥∥2H − ∥ht−1∥2H
∣∣∣Ξt−1

]
≤
(
1− 1

t̄

)1−2θ

(1− ab

t̄
)2 ∥ht−1∥2H − ∥ht−1∥2H +

2a2C2

t̄2θ

(
2 + α2

α2

)
≤ −γ

t̄
∥ht−1∥2H +

2a2C2

t̄2θ

(
2 + α2

α2

)
(Thanks to the hypothesis on t0 and θ).

(82)

If ∥ht−1∥H ≥ B1t̄
1
2−θ, we can verify:

E

[(
1− 1

t̄

)1−2θ ∥∥h̄t∥∥2H ∣∣∣Ξt−1

]
≤
(
1− γ

t̄

)
∥ht−1∥2H +

2a2C2

t̄2θ

(
2 + α2

α2

)
≤
(
1− γ

t̄

)
∥ht−1∥2H +

B2
1γ

t̄2θ
≤ ∥ht−1∥2H .

(83)
After applying Jensen’s inequality, we obtain the desired result.

Lemma 5. Assume tθ0 ≥ a(C2 + b) and t1−θ
0 ≥ b(α(Mt + 1) + 3); then,

∥kt∥H ≤ Cab−1

αt̄2θ−1
and E

[
∥kt∥2H

∣∣∣Ξt−1

]
≤ 3η2tC

2

α2

[
α2(M2

t + 1) + 1
]
. (84)
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Proof. Let us start with the following inequality:∥∥((1− α)Lt + αRt

)
ht−1

∥∥2
H

≤ (1− α)2K(xt, xt)h
2
t−1(xt)1{|ht−1(xt)| ≤Mt}

+ 2α(1− α)K(xt, x
′
t) |ht−1(xt)| |ht−1(x

′
t)|1{|ht−1(x

′
t)| , |ht−1(x

′
t)| ≤Mt}

+ α2K(x′t, x
′
t)h

2
t−1(x

′
t)1{|ht−1(x

′
t)| ≤Mt} (First point of 2 and after developing the norm)

≤ C2 ((1− α)ht−1(xt)1{|ht−1(xt)| ≤Mt}+ αht−1(x
′
t)1{|ht−1(x

′
t)| ≤Mt})

2
(Assumption 2 )

≤ C2
[
(1− α)h2t−1(xt)1{|ht−1(xt)| ≤Mt}+ αh2t−1(x

′
t)1{|ht−1(x

′
t)| ≤Mt}

]
(Jensen’s inequality given 0 ≤ α ≤ 1)

≤ C2M2
t .

(85)
Moreover, by exploiting the hypothesis rα ∈ H and after following the same line of argumentation as in the
previous inequality, we verify:

∥LRt(r
α + gt−1)∥2H ≤ C2

(
(1− α)(rα + gt−1)

2(xt) + α(rα + gt−1)
2(x′t)

)
≤ C2(1− α)Ep(x)[(r

α + gt−1)
2(x)] + αEq(x′)[(r

α + gt−1)
2(x′)]

= C2 ∥rα + gt−1∥2L2
pα
,

(86)

which implies:

∥LRt(r
α + gt−1)∥H ≤ C ∥rα + gt−1∥L2

pα
≤ C

(
∥rα∥L2

pα
+ ∥gt−1∥L2

pα

)
≤ 2C

α
. (87)

The last line is a consequence of the first point of Lemma2 and the fact rα ≤ 1
α .

We can now upperbound the norm ∥kt∥H:

∥kt∥H = ηt
[∥∥((1− α)Lt + αRt

)
ht−1

∥∥
H + ∥K(xt, ·)∥H + ∥LRgt−1∥H + ∥LRt (gt−1 + rα)∥H

]
= ηt

[
C(Mt + 1 +

1

α
+

2

α
)

]
(Eq. 85, Assumption 2, Lemma3, Eq. 87 )

≤ Cηt
α

[α(Mt + 1) + 3]

≤ ηtC

αλt
(Hypothesis t

1−θ
0 ≥ b [α (Mt + 1) + 3] implies α(Mt + 1) + 3 ≤

1

λt
)

≤ Cab−1

αt̄2θ−1
.

On the other hand, we obtain for the expected norm:

E
[
∥kt∥2H

∣∣∣Ξt−1

]
≤ 3η2t

[
E
[∥∥((1− α)Lt + αRt

)
ht−1

∥∥2
H

∣∣∣Ξt−1

]
+ E

[
∥K(x′t, ·)− LRt (r

α)∥2H
∣∣∣Ξt−1

]
+ E

[
∥(LR− LRt) gt−1∥2H

∣∣∣Ξt−1

] ]
(2⟨a, b⟩H ≤ ∥a∥2H + ∥b∥2H)

≤ 3η2t

[
E
[∥∥((1− α)Lt + αRt

)
ht−1

∥∥2
H

∣∣∣Ξt−1

]
+ E

[
∥K(x′t, ·)∥

2
H

∣∣∣Ξt−1

]
+ E

[
∥LRtgt−1∥2H

∣∣∣Ξt−1

] ]
(After developing the norms and taking conditional expectations)

≤ 3η2tC
2
[
M2

t + 1 + ∥gt−1∥2L2
pα

]
(Eq. 85 and the same line of reasoning that in Eq. 86)

≤ 3η2tC
2

α2

[
α2(M2

t + 1) + 1
]

Lemma 6. For all t ∈ N, assume Mt ≥ 2C2ab−1 t̄1−2θ

α , tθ0 ≥ 2a(C2 + b) and t1−θ
0 ≥ b (α(Mt + 1) + 3), then

∥ht∥H ≤
∥∥ht∥∥H . (88)
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Proof. We start with the following inequality that relates h̄t−1 and kt, take x ∈ X such that ht−1(x) ≥Mt, then:

h̄t(x) = (1− λtηt)ht−1(x) + kt(x) (Eq. 70 )

≥ (1− λtηt)ht−1(x)−
C2ab−1

αt̄2θ−1
(Lemma5 )

≥ (1− λtηt)ht−1(x)−
1

2
ht−1(x) (As a consequence of Mt ≥

2C2ab−1 t̄1−2θ

α
)

≥ C2ηt
ht−1(x)

2
.

(89)

The last identity is a consequence of assumption tθ0 ≥ 2a(C2 + b) which implies 1− ηtλt − C2ηt

2 ≥ 1
2 .

Suppose we have ht−1(xt) ≥Mt and ht−1(x
′
t) ≥Mt, then we have:

ht = h̄t − ηt [(1− α)Lt + αRt]ht−1 (Eq. 70) (90)

∥ht∥2H = ⟨ht, ht⟩H =
∥∥h̄t∥∥2H − 2ηt⟨h̄t, [(1− α)Lt + αRt]ht−1⟩H + η2t ∥[(1− α)Lt + αRt]ht−1∥2H

≤
∥∥h̄t∥∥2H − 2ηt

(
(1− α)h̄t(xt)ht−1(xt) + αh̄t(x

′
t)ht−1(x

′
t)
)
+ η2t

[
(1− α)2 ∥Ltht−1∥2H

+α2 ∥Rtht−1∥2H + 2(1− α)αK(xt, x
′
t)ht−1(xt)ht−1(x

′
t)
]

≤
∥∥h̄t∥∥2H − η2tC

2
[
(1− α)h2t−1(xt) + αh2t−1(x

′
t)
]
+ 2η2tC

2α(1− α) |ht−1(xt)ht−1(x
′
t)|

+ η2t

[
(1− α)2 ∥Ltht−1∥2H + α2 ∥Rtht−1∥2H

]
(Eq. 90 and Eq. 89)

≤
∥∥h̄t∥∥2H − η2tC

2 [(1− α)ht−1(xt) + αht−1(x
′
t)]

2
+ 2η2tC

2α(1− α) |ht−1(xt)ht−1(x
′
t)|

+ η2t

[
(1− α)2 ∥Ltht−1∥2H + α2 ∥Rtht−1∥2H

]
(Jensen’s inequality given 0 ≤ α ≤ 1)

≤
∥∥h̄t∥∥2H − η2tC

2
[
(1− α)2h2t−1(xt) + α2h2t−1(x

′
t)
]
+ η2t

[
(1− α)2 ∥Ltht−1∥2H + α2 ∥Rtht−1∥2H

]
≤
∥∥h̄t∥∥2H + η2t (1− α)2h2t−1(xt)

[
K(xt, xt)− C2

]
+ η2tα

2h2t−1(x
′
t)
[
K(x′t, x

′
t)− C2

]
≤
∥∥h̄t∥∥2H (Assumption 2 ).

(91)

Let us continue with the case ht−1(xt) ≥Mt and ht−1(x
′
t) < Mt, then we have:

ht = h̄t − (1− α)ηtLtht−1 (Eq. 70).

Then by following the same line of argumentation than in the previous point, we get:

∥ht∥2H =
∥∥h̄t∥∥2H − 2(1− α)ηt⟨Ltht−1, h̄t⟩H + η2t (1− α)2 ∥Ltht−1∥2H

=
∥∥h̄t∥∥2H − 2(1− α)ηtht−1(xt)h̄t(xt) + η2t (1− α)2h2t−1(xt)K(xt, xt)

≤
∥∥h̄t∥∥2H + η2t (1− α)2h2t−1(xt)K(xt, xt)− (1− α)C2η2t h

2
t−1(xt) ( h̄t(xt) ≥ C

2
ηt

ht−1(xt)

2
)

≤
∥∥h̄t∥∥2H + η2t (1− α)2h2t−1(xt)K(xt, xt)− (1− α)2C2η2t h

2
t−1(xt)

=
∥∥h̄t∥∥2H + (1− α)2η2t h

2
t−1(xt)

(
K(xt, xt)− C2

)
≤
∥∥h̄t∥∥2H (Assumption 2).

The case ht−1(xt) < Mt and ht−1(x
′
t) ≥ Mt can be solve in a symmetric way. Finally, for ht−1(xt) < Mt and

ht−1(x
′
t) < Mt , the inequality follows directly.

Lemma 7. Assume θ ∈ [ 12 , 1],t0 ≥ 3, b = a−1 , tθ0 ≥ 2 + 4C2a and t1−θ
0 ≥ 8b, Then, with probability at least

1− δ:

sup
0≤k≤t

∥hk∥H (k + t0 + 1)θ−
1
2 ≤ aC

α

[
5at

1
2−θ
0 + (14Ca2 + 18)

√
log (t̄)

]
log

(
2

δ

)
:= Bt,δ. (92)
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Proof. Let us start by verifying that the hypothesis of Lemmas 4, 5, and 6.

First tθ0 ≥ 2+ 4C2a = 2a(b+2C2) and γ = ab−
(
θ − 1

2

)
∈ [ 12 , 1], where we we have used the assumption ab = 1.

The assumption t0 ≥ 3 implies t0 ≥ max
(
2ab, 2γ, γ + 2θ−1

γ

)
.

Finally, if we fix Mt =
2C2ab−1 t̄1−2θ

α , the fact that tθ0 ≥ 4C2a and t1−θ
0 ≥ 8b implies:

t1−θ
0 ≥ t1−θ

0

2
+
t1−θ
0

2
=
t1−θ
0

2
+
t1−2θ
0 (tθ0)

2
≥ b

(
4 + 2C2ab−1t1−2θ

0

)
≥ b (4 + αMt) ≥ b (3 + α(Mt + 1)) .

Then, the required assumptions are satisfied.

Take i ∈ N, if ∥hi−1∥H ≥ B1t̄
1
2−θ, where B1 = aC

√
2
(

2+α2

α2γ

)
, then:

∥hi∥H ≤
∥∥h̄i∥∥H (Lemma6 )

=
∥∥h̄i∥∥H − E

[∥∥h̄i∥∥H |Ξi−1

]
+ E

[∥∥h̄i∥∥H |Ξi−1

]
≤ ξi +

[
1− 1

i+ t0

]θ− 1
2

∥hi−1∥H (Second part of Lemma4 ),

(93)

where ξi :=
∥∥h̄i∥∥H − E

[∥∥h̄i∥∥H |Ξi−1

]
.

Notice that the stochastic process {ξk}k∈N defines a martingale difference sequence, which additionally satisfies
the following inequalities:

|ξi| ≤
∥∥h̄i − E

[
h̄i |Ξi−1

]∥∥
H

= ∥ki − E [ki |Ξi−1]∥H (Eq. 70 )

≤ ∥ki∥H + ∥E [ki |Ξi−1]∥H
≤ ∥ki∥H + E [∥ki∥H |Ξi−1] (Jensen’s inequality)

≤ 2Cab−1

α(i+ t0)2θ−1
(Lemma5).

(94)

In a similar manner, we can verify:

E
[
ξ2i |Ξi−1

]
= E

[
∥ki − E [ki |Ξi−1]∥2H |Ξi−1

]
≤ E

[
∥ki∥2H |Ξi−1

]
− ∥E [ki |Ξi−1]∥2H

≤ E
[
∥ki∥2H |Ξi−1

]
≤ 3η2iC

2

α2

[
α2(M2

i + 1) + 1
]

(Lemma5)

=
3η2iC

2

α2

(
α2(

4C4a2b−2(t+ i)2(1−2θ)

α2
+ 1) + 1

)
≤ 3η2iC

2

α2
(4C2a2b−2 + 2)

=
12η2iC

2

α2
(C2a2b−2 +

1

2
)

≤ 12η2iC
2

α2
(Cab−1 + 1)2

(95)

Notice that the sequence
{
(k + t0)

θ− 1
2 ξk

}
defines a difference martingale as well, which satisfies the inequalities:

∣∣∣(i+ t0)
θ− 1

2 ξi

∣∣∣ ≤ 2Ca2(i+ t0)
1
2−θ

α
(Eq. 94 )

≤ 2Ca2t
1
2−θ
0

α

(96)
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t∑
k=1

E
[(

(k + t0)
θ− 1

2 ξk

)2
|Ξk−1

]
≤ 12a2C2

α2
(Cab−1 + 1)2

t∑
k=1

(k + t0)
−1 (Eq. 95 )

≤ 12a2C2

α2
(Cab−1 + 1)2 log(1 +

t

t0
).

(97)

Let us define the term:

νi =

i∑
j=1

ξj(j + t0)
θ− 1

21{∥hj−1∥H ≥ B1(j + t0)
1
2−θ}. (98)

Inequalities 96 and 97 imply the hypothesis of Preposition A.3 in Tarrès and Yao (2014) (Lemma9) are satisfied.
Then, the probability of the event ∆, P (∆) ≥ 1− δ, where:

∆ =
{

sup
1≤i≤t

|νi| ≤ 2

(
2Ca2t

1
2−θ
0

3α
+

2
√
3aC

α
(Cab−1 + 1)

√
log(1 +

t

t0
)

)
log

(
2

δ

)

≤ 4aC

α

(
at

1
2−θ
0

3
+

√
3(Cab−1 + 1)

√
log

(
1 +

t

t0

))
log

(
2

δ

)

=
4aC

α

(
at

1
2−θ
0

3
+

√
3(Ca2 + 1)

√
log

(
1 +

t

t0

))
log

(
2

δ

)}
.

(99)

Assume that the event ∆ holds and let uk for all k ∈ N be:

uk = ∥hk∥ (k + t0)
θ− 1

2 . (100)

For all the elements k ≤ t, let:

m = max{j ≤ k : ∥hj∥H < B1(j + t0 + 1)
1
2−θ}. (101)

If m < k, then:

um+1 ≤

[(
m+ t0

m+ 1 + t0

)θ− 1
2

∥hm∥H + |ξm+1|

]
(m+ 1 + t0)

θ− 1
2 (Eq. 93 )

<

[(
m+ t0

m+ t0 + 1

)θ− 1
2

(m+ t0 + 1)
1
2−θB1 +

2Ca2

α
(m+ 1 + t0)

1−2θ

]
(m+ 1 + t0)

θ− 1
2 (Eq. 94 and Eq. 101 )

≤ aC

√
2

(
2 + α2

α2γ

)
+

2Ca2

α
t
1
2−θ
0 ≤ aC

√
4

(
2 + α2

α2

)
+

2Ca2

α
t
1
2−θ
0 ( γ ∈ [

1

2
, 1] )

≤ aC

α

(√
4(2 + α2) + 2at

1
2−θ
0

)
≤ 2aC

α

(√
3 + at

1
2−θ
0

)
.

(102)
Given Expr. 93, we can verify:

(i+ t0)
θ− 1

2 ∥hi∥H ≤ (i+ t0)
θ− 1

2 ξi + (i− 1 + t0)
θ− 1

2 ∥hi−1∥H (103)

Then by recursion and given by the definition of Expr. 98, we get:

uk ≤ um+1 + νk − νm+1. (104)
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For δ sufficiently small, we have:

uk ≤ um+1 + |νk|+ |νm+1|

≤ 2aC

α

[(
4

3
+ 1

)
at

1
2−θ
0 +

√
3 + 4

√
3(Ca2 + 1)

√
log

(
1 +

t

t0

)]
log

(
2

δ

)
(Eq. 99 and Eq. 102 )

=
aC

α

[(
14

3

)
at

1
2−θ
0 + 2

√
3 + 8

√
3(Ca2 + 1)

√
log

(
1 +

t

t0

)]
log

(
2

δ

)
(Eq. 99 )

≤ aC

α

[
5at

1
2−θ
0 + 4 + 14(Ca2 + 1)

√
log

(
t̄

t0

)]
log

(
2

δ

)
≤ aC

α

[
5at

1
2−θ
0 + (14Ca2 + 18)

√
log (t̄)

]
log

(
2

δ

)
,

(105)

where the fact that t0 ≥ 3 implies
√
log (t+ t0) ≥ 1, meaning 4 + 14(Ca2 + 1)

√
log
(

t̄
t0

)
≤ (14Ca2 +

18)
√
log (t̄) log

(
2
δ

)
.

Proof of Theorem6.

Proof. Let us start with a basic inequality that will be useful during the proof; suppose f is Ξj−1-measurable,
then we have:

E
[
∥LRjf∥2H |Ξj−1

]
= E

[
⟨(1− α)f(xj)K(xj , ·) + αf(x′j)K(x′j , ·), (1− α)f(xj)K(xj , ·) + αf(x′j)K(x′j , ·)⟩H |Ξj−1

]
= E

[
(1− α)2K(xj , xj)f

2(xj) + 2(1− α)αK(xj , x
′
j)f(xj)f(x

′
j) + α2K(x′j , x

′
j)f

2(x′j) |Ξj−1

]
≤ C2E

[(
(1− α)f(xj) + αf(x′j)

)2 |Ξj−1

]
(Assumption 2 )

≤ C2E
[
(1− α)f2(xj) + αf2(x′j) |Ξj−1

]
(Jensen’s inequality )

= C2 ∥f∥2L2
pα
.

(106)
Notice that for f ∈ H:

∥LRjf∥H ≤ (1− α) |⟨K(xj , ·), f⟩H| ∥K(xj , ·)∥H + α
∣∣⟨K(x′j , ·), f⟩H

∣∣ ∥K(xj , ·)∥H
≤
[
(1− α) ∥K(xj , ·)∥2H + α

∥∥K(x′j , ·)
∥∥2
H

]
∥f∥H (Cauchy–Schwarz inequality)

≤ C2 ∥f∥H ,

(107)

which implies ∥LRj∥ ≤ C2.

Fix t ∈ N, δ ∈ [0, 1], and let

Bt,δ =
aC

α

[
5at

1
2−θ
0 + (14Ca2 + 18)

√
log (t̄)

]
log

(
2

δ

)
(108)

and the following stochastic process:

Υj = ηjΠ̄
t
j+1ϵj1{∥hj−1∥H (j + t0)

θ− 1
2 ≤ Bt,δ}. (109)

Verifying that the sequence {Υj}j∈N is a difference martingale is easy. The idea to finish the proof is to apply
Lemma9 to the sequence Υj , this means, we should show the existence of M > 0 and σ2 > 0 such that

∥Υj∥L2
pα

≤M and
∑t

j=1 E
[
∥Υj∥2L2

pα
|Ξj−1

]
≤ σ2.

Let us start by identifying σ2. Suppose ∥hj−1∥H ≤ Bt,δ(j + t0)
1
2−θ, then by using the decomposition fj =
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rα + gj + hj and the inequalities stated in Lemma2 we have:

E
[
∥ϵj∥2H |Ξj−1

]
= E

[∥∥(LK − LRj)fj−1 +K(x′j , ·)− LKr
α
∥∥2
H |Ξj−1

]
≤ E

[∥∥K(x′j , ·)− LRjfj−1

∥∥2
H |Ξj−1

]
(After developing the norm and taking conditional expectations)

≤ E
[∥∥K(x′j , ·)− LRjr

α − LRjgj−1 − LRjhj−1

∥∥2
H |Ξj−1

]
≤ 4E

[∥∥K(x′j , ·)
∥∥2
H + ∥LRjr

α∥2H + ∥LRjgj−1∥2H + ∥LRjhj−1∥2H |Ξj−1

]
(2⟨a, b⟩H ≤ ∥a∥2H + ∥b∥2H)

≤ 4

[
C2 +

C2

α2
+
C2

α2
+ E

[
∥LRj∥2 ∥hj−1∥2H |Ξj−1

]]
(Assumption 2 , Lemma2 and Eq. 106)

≤ 4C2

[
1 +

2

α2
+ C2(j + t0)

1−2θB2
t,δ

]
( Eq. 107)

:= B′
j,t,δ.

(110)

If we use the isometry of the operator L
1
2

K : L2
pα → H, and the fact that it is a compact operator, then there exists

an orthonormal eigensystem (µk, ϕk)k∈N of LK , where {µk}k∈N are strictly positive and arranged in decreasing
order (see Proposition 2.2 in Dieuleveut (2017)).

Let us define ai = ηiλi + ηiµj . First notice that for j ≤ t, given Eq 42:

∥∥Π̄t
j+1

∥∥ ≤

∥∥∥∥∥∥
t∏

i=j+1

(IH − ηiAi)

∥∥∥∥∥∥ ≤
t∏

i=j+1

(1− ηi(λi + µj)) =

t∏
i=j+1

(1− ai). (111)

Then, we can verify the following inequality:

t∑
j=1

E
[
∥Υj∥2L2

pα
|Ξj−1

]
=

t∑
j=1

E
[∥∥∥L 1

2

KΥj

∥∥∥2
H
|Ξj−1

]
=

t∑
j=1

η2jE
[∥∥∥L 1

2

KΠ̄t
j+1ϵj

∥∥∥2
H
|Ξj−1

]

=

t∑
j=1

(
η2j
∥∥Π̄t

j+1LKΠ̄t
j+1

∥∥)E [∥ϵj∥2H |Ξj−1

]
≤

t∑
j=1

η2jB
′
j,t,δ

∥∥Π̄t
j+1LKΠ̄t

j+1

∥∥ (Eq. 110)

≤ sup
{µk:k∈N}

t∑
j=1

η2jB
′
j,t,δµk

t∏
i=j+1

(1− ai)
2 (Eq. 111)

= sup
{µk:k∈N}

sup
j
ηjB

′
j,t,δ

t∏
i=j+1

(1− ai)

 t∑
j=1

ηjµk

t∏
i=j+1

(1− ai)

 .
(112)

For a large value of t0 we can verify for the first element of the product:

sup
j
ηjB

′
j,t,δ

t∏
i=j+1

(1− ai) ≤ sup
j
ηjB

′
j,t,δ

t∏
i=j+1

(1− ηiλi)

≤ sup
j
ηjB

′
j,t,δ

t∏
i=j+1

(1− ηiλi)

≤ 4aC2 sup
j

j + t0
t̄

(
1 + 2

α2

(j + t0)θ
+

C2B2
t,δ

(j + t0)3θ−1

)

≤ 4aC2

t̄θ

(
1 +

2

α2
+
C2B2

t,δ

t̄(2θ−1)

)
.

(113)

For the second element of the product, we can verify:

t∑
j=1

ηjµk

t∏
i=j+1

(1− ai) ≤
t∑

j=1

(1− (1− ηjµk))

t∏
i=j+1

(1− ηiµk) = 1−
t∏

i=1

(1− ηiµk) ≤ 1. (114)
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By combining both bounds 113 and 114 we obtain:

t∑
j=1

E
[
∥Υj∥2L2

pα
|Ξj−1

]
≤ 4aC2

t̄θ

(
1 +

2

α2
+
C2B2

t,δ

t̄2θ−1

)
(115)

Now we will identify M . Let us start by upperbounding the following term via Lemma2:∥∥K(x′j , ·)− LRj(fj−1)
∥∥
H =

∥∥K(x′j , ·)− LRj(r
α + gj−1 + hj−1)

∥∥
H

≤
∥∥K(x′j , ·)

∥∥
H + ∥LRj(r

α + gj−1)∥H + ∥LRj(hj−1)∥H
≤ C + ∥LRj∥ ∥(rα + gj−1)∥H + ∥LRj∥ ∥hj−1∥H

≤ C +
3C2

α
√
λj−1

+ C2Bt,δ(j + t0)
1
2−θ (Lemma2, Assumption 2 and Eq. 107)

= Cj,t,δ.

(116)

By using the fact that fj−1 is Ξj−1 measurable we have:

ϵj = (LK − LRj)fj−1 +K(x′j , ·)− LKr
α

= (LK − LRj)fj−1 +K(x′j , ·)− Epα(y)[K(y, ·)rα(y)] (Expr. 19 )

= K(x′j , ·)− LRj(fj−1)− E
[
K(x′j , ·)− LRj(fj−1) |Ξj−1

]
.

(117)

where the last inequality is due to the definition of the likelihood-ratio and the fact that the observations are
independent in time.

We upperbound the norm ∥ϵj∥H by:

∥ϵj∥H =
∥∥K(x′j , ·)− LRj(fj−1)− E

[
K(x′j , ·)− LRj(fj−1) |Ξj−1

]∥∥
H (Eq. 117))

≤
∥∥K(x′j , ·)− LRj(fj−1)

∥∥
H +

∥∥E [K(x′j , ·)− LRj(fj−1) |Ξj−1

]∥∥
H

≤
∥∥K(x′j , ·)− LRj(fj−1)

∥∥
H + E

[∥∥K(x′j , ·)− LRj(fj−1)
∥∥
H |Ξj−1

]
(Jensen’s inequality)

≤ 2

(
C +

3C2√
λj−1

+ C2Bt,δ(j + t0)
1
2−θ

)
(Eq. 116) = 2Cj,t,δ.

(118)

Therefore by using the hypothesis tθ0 ≥ 2 + 4C2a, we can deduce C
√
a

t̄
θ
2

≤ 1 and:

∥Υj∥L2
pα

=
∥∥∥L 1

2

KΥj

∥∥∥
H
≤ ηj

∥∥∥L 1
2

KΠt
j+1ϵj

∥∥∥
H
≤ 2ηjCj,t,δ

∥∥Πt
j+1LKΠt

j+1

∥∥ 1
2 (Eq. 118)

≤ 2C sup
j
ηjCj,t,δ

t∏
i=j+1

(1− ηjλj) (As ∥LK∥ ≤ C
2)

= 2aC2 sup
j

j + t0
t̄

(
1

(j + t0)θ
+

3C
√
a

α(j + t0)
( 3θ−1

2 )
+

CBt,δ

(j + t0)2θ−
1
2

)
(Eq. 116)

≤ 2aC2

(
1

t̄θ
+

3C
√
a

αt̄(
3θ−1

2 )
+
CBt,δ

t̄2θ−
1
2

)
≤ 2aC2

t̄θ

(
1 +

3C
√
a

αt̄(
θ−1
2 )

+
CBt,δ

t̄θ−
1
2

)
≤ 2

√
aC

t̄
θ
2

(
1 +

3C2a

αt̄(θ−
1
2 )

+
CBt,δ

t̄θ−
1
2

)
(The hypothesis t

θ
0 ≥ 2 + 4C

2
a implies

t
θ
2
0

C
√
a

≥ 1)

(119)

Both Inequalities 115 and 119 imply that the hypothesis of Proposition A.3 is satisfied. Then the inequality holds
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with a probability at least 1− δ for δ ∈ (0, 1) we have:

sup
1≤k≤t

∥∥∥∥∥∥
k∑

j=1

Υj

∥∥∥∥∥∥
L2

pα

≤ 4

√
aC

t̄
θ
2

(
1

3
+

C2a

αt̄(θ−
1
2 )

+
CBt,δ

3t̄(θ−
1
2 )

+ 1 +

√
2

α
+
CBt,δ

t̄(θ−
1
2 )

)
log

(
2

δ

)

= 4

√
aC

t̄
θ
2

(
4

3
+

√
2

α
+

(
4C

3

)
Bt,δ

t̄(θ−
1
2 )

+
C2a

αt̄(θ−
1
2 )

)
log

(
2

δ

)
≤ 8

√
aC

t̄
θ
2

(
1 + α

α

)
log

(
2

δ

)
+

(
16C3

3α

)[
5a

5
2 + a

3
2 (14Ca2 + 18)

√
log (t̄)

] log2 ( 2δ )
t̄
3θ−1

2

+

(
4a

3
2C3

α

)
log
(
2
δ

)
t̄
3θ−1

2

≤ 8

√
aC

t̄
θ
2

(
1 + α

α

)
log

(
2

δ

)
+

(
16C3

3α

)[
5a

5
2 + a

7
2 (14C + 2)

√
log (t̄)

] log2 ( 2δ )
t̄
3θ−1

2

+

(
4a

7
2C3

α

)
log
(
2
δ

)
t̄
3θ−1

2

(The hypothesis a ≥ 4)

≤ 8

√
aC

t̄
θ
2

(
1 + α

α

)
log

(
2

δ

)
+

[
32a

5
2C3

α
+

4a
7
2C3

α
(20C + 4)

√
log (t̄)

]
log2

(
2
δ

)
t̄
3θ−1

2

+

(
4a

7
2C3

α

)
log
(
2
δ

)
t̄
3θ−1

2

≤ 8

√
aC

t̄
θ
2

(
1 + α

α

)
log

(
2

δ

)
+

[
32a

5
2C3

α
+

4a
7
2C3

α
(20C + 4 +

1

log(2)
)
√
log (t̄)

]
log2

(
2
δ

)
t̄
3θ−1

2

≤ 8

√
aC

t̄
θ
2

(
1 + α

α

)
log

(
2

δ

)
+

[
32a

5
2C3

α
+

8a
7
2C3

α
(10C + 3)

√
log (t̄)

]
log2

(
2
δ

)
t̄
3θ−1

2

≤
√
aB4

t̄
θ
2

log

(
2

δ

)
+
[
B5a

5
2 +B6a

7
2

√
log t̄

] log2 ( 2δ )
t̄
3θ−1

2

.

Where we have used the assumption t0 ≥ 3 and the constants B4, B5, B6.

8C

(
1 + α

α

)
≤ 16C

α
= B4 B5 =

32C3

α
B6 =

8C3(10C + 3)

α
.

Upperbound for E ′
sample(t) =

∥∥∥∑t
j=1 ηjΠ

t
j+1(Ajfλj − bj)

∥∥∥
H
.

In this section, we focus on developing the required components for proving Theorem10.

Lemma 8. We have:

1. ∥Atfλt − bt∥H ≤ 1√
λt

(
C+1
α + C

)
, if t1−θ

0 ≥ b;

2. E
[
∥Atfλt

− bt∥2H
]
≤ 2C2

(
1+α2

α2

)
.

Proof. By the definition given of fλt in Eq. 37, we have that for any λ > 0:

Epα(y)[(fλ − rα)2(y)] + λ ∥fλ∥2H ≤ Epα(y)[(r
α)2(y)] ≤ 1

α2
, (120)

which implies:

∥fλ∥H ≤ 1

α
√
λ
. (121)
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On the other hand, using the close-form solution of fλ we get:

∥fλ∥L2
pα

=
∥∥∥(LK + λI)(−1)LKr

α
∥∥∥
L2

pα

≤
∥∥∥(LK + λI)(−1)LK

∥∥∥ ∥rα∥L2
pα

≤ 1

α
. (122)

Moreover, we know:

E
[
∥LRtfλt

∥2H
]
= E [⟨(1− α)fλt

(xt)K(xt, ·) + αfλt
(x′t)K(x′t, ·), (1− α)fλt

(xt)K(xt, ·) + αfλt
(x′t)K(x′t, ·)⟩H]

= E
[
(1− α)2K(xt, xt)f

2
λt
(xt) + 2(1− α)αK(xt, x

′
t)fλt

(xt)fλt
(x′t) + α2K(x′t, x

′
t)f

2
λt
(x′t)

]
≤ C2E

[
((1− α)fλt(xt) + αfλt(x

′
t))

2
]

(Assumption 2 )

≤ C2E
[
(1− α)f2λt

(xt) + αf2λt
(x′t)

]
(Jensen’s inequality)

= C2 ∥fλt∥
2
L2

pα
≤ C2

α2
.

(123)
By putting these elements together, we can proove the first point of Lemma8:

∥Atfλt
− bt∥H ≤ (1− α) ∥K(xt, ·)fλt

(xt)∥H + α ∥K(x′t, ·)fλt
(x′t)∥H + λt ∥fλt

∥H + ∥K(x′t, ·)∥H

≤ C(
1

α
√
λt

+ 1) +

√
λt
α

(Eq. 121 )

≤ 1√
λt

(
C

α
+ C

√
λt +

λt
α
)

≤ 1√
λt

(
C + 1

α
+ C

)
,

where in the last equality we have used the hypothesis t1−θ
0 ≥ b, which implies λt ≤ 1.

Given the definition of fλ, we have LKfλ + λfλ = LKr
α, which leads to:

Atfλt
− bt = LRtfλt

−K(x′t, ·) + λtfλt
= (LRt − LK)fλt

+ LKr
α −K(x′t, ·), (124)

Then, we verify the second point of Lemma8:

E
[
∥Atfλt − bt∥2H

]
= E

[
∥(LRt − LK)fλt

+ LKr
α −K(x′t, ·)∥

2
H

]
≤ 2

[
E
[
∥(LRt − LK)fλt

∥2H + ∥LKr
α −K(x′t, ·)∥

2
H

]]
(2⟨a, b⟩H ≤ ∥a∥2H + ∥b∥2H)

≤ 2
[
E
[
∥LRtfλt

∥2H + ∥K(x′t, ·)∥
2
H

]]
(After developing the norm and taking expectations)

≤ 2C2

(
1 + α2

α2

)
(Eq. 123 and Assumption 2 ).

Proof Theorem10.

Proof. The idea of the proof is to use Lemma9 to generate a probabilistic bound for the quantity:

E ′
sample(t) =

∥∥∥∥∥∥
t∑

j=1

ηjΠ
t
j+1(Ajfλj − bj)

∥∥∥∥∥∥
H

.

We have shown in Sec.A.4 that the process {ηjΠt
j+1(Ajfλj

− bj)}tj=1 is a reversed martingale difference with
respect to the sequence of sigma algebras Bj = σ((xj , x

′
j), ..., (xt, x

′
t), ...). The only element to finish the proof is

to identify M and σ2.

Given the definition of the random variables {At}t∈N, then for t > 1 we can verify At is a positive linear operator:

⟨Atf, f⟩H = (1− α)f2(xt) + αf2(x′t) + λt ∥f∥2H ≥ 0 for f ∈ H. (125)
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Moreover as ∥At∥ ≥ λt we have:

∥IH − ηtAt∥ ≤ (1− ηtλt). (126)

Let us consider the following group of expressions:

ηj
∥∥Πt

j+1

∥∥ = ηj

t∏
i=j+1

(1− ηiλi) ≤ ηj exp

−
t∑

i=j+1

ηiλi


= ηj exp

−
t∑

i=j+1

ab

t0 + i


≤ ηj exp

(
−ab log

(
t̄

t0 + j + 1

))
=

a

(j + t0)θ

(
t0 + j + 1

t̄

)ab

= a
(t0 + j)ab−θ

t̄ab
(1 +

1

t0 + j
)ab

≤ a
(t0 + j)ab−θ

t̄ab
(1 +

1

t0
)ab

≤ ea(t0 + j)ab−θ

t̄ab
.

(127)

This implies:

E
[
∥ζj∥2H | Bj+1

]
= E

[∥∥ηjΠt
j+1(Ajfλj

− bj)
∥∥2
H | Bj+1

]
≤ η2j

∥∥Πt
j+1

∥∥2 E [∥∥Ajfλj
− bj)

∥∥2
H | Bj+1

]
≤ 2(eaC)2(t0 + j)2ab−2θ

t̄2ab

(
1 + α2

α2

)
(Lemma8, Eq. 127 and Assumptions 1, 2).

(128)

If t0 ≥ 2, we will find:

t∑
j=1

E
[
∥ζj∥2H | Bj+1

]
≤

t∑
j=1

2(eaC)2(t0 + j)2ab−2θ

t̄2ab

(
1 + α2

α2

)

≤ 2(eaC)2

t̄2ab

(
1 + α2

α2

)∫ t

1

(t0 + s)2ab−2θds

≤ 2(eaC)2

t̄2ab

(
1 + α2

α2

)(
1

2ab− 2θ + 1

)
t̄2ab−2θ+1

=


(eaC)2

ab−θ+ 1
2

t̄−2θ+1 , if ab > θ − 1
2

(eaC)2

θ− 1
2−ab

t̄−2ab , if ab < θ − 1
2

≤ (eaC)2∣∣ab− θ + 1
2

∣∣ t̄−2(ab∧(θ− 1
2 ))

(129)
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On the other hand, if t1−θ
0 ≥ b we have:

∥ζj∥H =
∥∥ηjΠt

j+1(Ajfλj
− bj)

∥∥
H

≤ 1√
λt

ea(t0 + j)ab−θ

t̄ab

(
C + 1

α
+ C

)
(Lemma8 and Eq. 127)

=
ea(t0 + j)ab−

(3θ+1)
2

√
bt̄ab

(
C + 1

α
+ C

)
=

{
ea√
b

(
C+1
α + C

)
t̄−

(3θ+1)
2 , if ab > 3θ−1

2
ea√
b

(
C+1
α + C

)
t̄−2ab , if ab < 3θ−1

2

=
ea√
b

(
C + 1

α
+ C

)
t̄−(ab∧

3θ−1
2 )

(130)

Then by Lemma9 we get with probability 1− δ:

E ′
sample(t) ≤ 2

(
ea

3
√
b

(
C + 1

α
+ C

)
t̄−(ab∧

3θ−1
2 ) +

√
1∣∣ab− θ + 1

2

∣∣eaCt̄−(ab∧(θ− 1
2 ))

)
log

(
2

δ

)
= ab−

1
2B′

4t̄
−(ab∧ 3θ−1

2 ) +B′
5at̄

−(ab∧(θ− 1
2 )),

(131)

where

B′
4 =

2e

3

(
C + 1

α
+ C

)
log

(
2

δ

)
B′

5 = 2

√
1∣∣ab− θ + 1

2

∣∣eC log

(
2

δ

)
. (132)

B AUXILIARY RESULTS

The following result is frequently used in Appendix A. It was first proved by the Proposition A.3 in Tarrès and
Yao (2014). We include the result for completeness.

Lemma 9. (Proposition A.3 (Pinelis-Bernstein) Tarrès and Yao (2014) ) Let ζi be a martingale difference

sequence in a Hilbert space. Suppose that almost surely ∥ζi∥ ≤ M and
∑t

i=1 E
[
∥ζi∥2H |Ξi−1

]
≤ σ2

t . Then the

following holds with probability at least 1− δ (with δ ∈ (0, 1)),

sup
1≤k≤t

∥∥∥∥∥
k∑

i=1

ζi

∥∥∥∥∥ ≤ 2

(
M

3
+ σt

)
log(

2

δ
).

The last inequality can be as well be applied for ζi being a reversed martingales difference sequence in a Hilbert

space. With a small change where
∑t

i=1 E
[
∥ζi∥2H |Ξi−1

]
≤ σ2

t is replaced by
∑t

i=1 E
[
∥ζi∥2H | Bi+1

]
≤ σ2

t , where

Bi+1 is the sigma-algebra generated by observations after index i.
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