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Abstract

We consider the problem of finding second-
order stationary points of heterogeneous fed-
erated learning (FL). Previous works in FL
mostly focus on first-order convergence guar-
antees, which do not rule out the scenario
of unstable saddle points. Meanwhile, it
is a key bottleneck of FL to achieve com-
munication efficiency without compensating
the learning accuracy, especially when local
data are highly heterogeneous across differ-
ent clients. Given this, we propose a novel
algorithm PowerEF-SGD that only commu-
nicates compressed information via a novel
error-feedback scheme. To our knowledge,
PowerEF-SGD is the first distributed and
compressed SGD algorithm that provably
escapes saddle points in heterogeneous FL
without any data homogeneity assumptions.
In particular, PowerEF-SGD improves to
second-order stationary points after visiting
first-order (possibly saddle) points, using ad-
ditional gradient queries and communication
rounds only of almost the same order re-
quired by first-order convergence, and the
convergence rate exhibits a linear speedup in
terms of the number of workers. Our the-
ory improves/recovers previous results, while
extending to much more tolerant settings on
the local data. Numerical experiments are
provided to complement the theory.

1 INTRODUCTION

The prevalence of large-scale data and enormous model
size in modern machine learning problems give rise to
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an increasing interest in distributed machine learning,
where a number of clients cooperate to handle the ex-
tremely heavy computation in the learning task with-
out the need to move data around.

We consider a distributed server-client setting. Sup-
pose that each client i ∈ [n] has access to a local
dataset W(i) distributed over an unknown space Ω,
and a central server maintains a model parameterized
by x ∈ Rd. Given a cost function F : Rd×Ω→ R that
evaluates the performance of a model x on an input
data sample ω ∈ Ω, the i-th local objective function fi
is defined by fi(x) := Eω(i)∼W(i) [F (x, ω(i))]. We would
like to find a model parameter x that minimizes the
local objectives in an averaged manner, which leads to
a finite-sum minimization problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where the local objective functions {fi}ni=1 and the
global objective function f = 1

n

∑n
i=1 fi are in gen-

eral nonconvex, especially in machine learning appli-
cations.

Heterogeneous federated learning. Assump-
tions on data homogeneity across the clients can be
deployed to underplay this problem to a certain ex-
tent, since intuitively, there are less disagreements
across the local objectives to reconcile. For example,
each local dataset W(i) may take similar distributions,
or may be uploaded to a data center that maintains
global knowledge (Konečný et al., 2016). However,
in many real applications such as Internet of Things
(IoT) (Nguyen et al., 2021; Savazzi et al., 2020), smart
healthcare (Xu et al., 2021), and networked model de-
vices (Kang et al., 2020), such assumptions become
impractical in that local datasets display a strongly
heterogeneous pattern, while they should not be ex-
changed or exposed to a third party due to privacy sen-
sitivity or communication infeasibility (Konečný et al.,
2016). These thorny scenarios of data heterogeneity
correspond to a framework for distributed learning,
namely federated learning (FL) (Kairouz et al., 2019),
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which is now accumulating special attention from both
academia and industry. The heterogeneous data con-
stitute a major challenge in the distributed optimiza-
tion problem under federated settings, which we refer
to as heterogeneous FL.

Distributed SGD with communication compres-
sion. A prevalent approach to solve (1) is by dis-
tributed stochastic gradient descent (SGD) (Koloskova
et al., 2020), a family of algorithms following the es-
sential idea that each client computes its local stochas-
tic gradient and then sends the gradient (or a care-
fully designed surrogate for the gradient) to the central
server for parameter update. Distributed SGD has to
take good care of communication efficiency: due to the
large client number n (Savazzi et al., 2020) and model
scale d (Brown et al., 2020) in modern machine learn-
ing tasks, the communication cost from the clients to
the server becomes the main bottleneck of optimiza-
tion. Moreover, many resource constraints in real com-
munication systems, such as limited bandwidth and
stringent delay requirements, also highlight the impor-
tance of establishing efficient communication for the
distributed training procedure.

A natural method to attain communication efficiency
is (lossy) compression: one can deploy a compres-
sor C : Rd → Rd in distributed SGD, which com-
presses any message x ∈ Rd the client would like to
send to the server, so that the traffic C(x) takes up a
smaller bandwidth. In literature, a randomized oper-
ator C : Rd → Rd is said to be a µ-compressor if the
(expected) relative distortion of the compressed out-
put is bounded by µ (Fatkhullin et al., 2021; Huang
et al., 2022; Richtárik et al., 2021; Stich et al., 2018),
which helps quantify the information loss due to com-
pression.

Motivation. It has been a recent interest to estab-
lish convergence results for distributed SGD with com-
munication compression. Many among these works
(Huang et al., 2022; Koloskova et al., 2019a; Stich
et al., 2018; Xie et al., 2020) assume bounded local
gradients ‖∇fi(x)‖2 ≤ G2, or bounded dissimilarity
of local gradients 1

n ‖
∑n

i=1∇fi(x)−∇f(x)‖
2 ≤ G2,

reflecting a reliance on data homogeneity that fails to
hold in heterogeneous FL. Another body of the works
(Fatkhullin et al., 2021; Richtárik et al., 2021, 2022;
Zhao et al., 2022), although allowing heterogeneous
data, only ensures first-order optimality, i.e. conver-
gence to an ϵ-optimal first-order stationary point x
with ‖∇f(x)‖ ≤ ϵ, which does not suffice to justify
the goodness of the solution in the nonconvex setting
where saddle points are abundant and do not nec-
essarily lead to generalizable performance (Dauphin
et al., 2014). It is then important to obtain second-

order convergence guarantees that ensure the algo-
rithm escapes the saddle points and converges to an
ϵ-optimal second-order stationary point, with an addi-
tional control on the Hessian positive-definiteness that
says −λmin(∇2f(x)) ≤ O (

√
ϵ). Despite the growing

literature of saddle-point escaping algorithms in the
centralized setting (Daneshmand et al., 2018; Ge et al.,
2015; Jin et al., 2021; Li, 2019), to the best of our
knowledge, no existing distributed SGD algorithms
succeed with second-order guarantees in the presence
of both communication compression and data hetero-
geneity. In summary, the current research sparked a
natural question as the primary concern of this paper:

On heterogeneous data, is there a distributed SGD
algorithm with communication compression that at-
tains second-order convergence guarantees for noncon-
vex problems?

1.1 Our contribution

To the best of our knowledge, this work is the first to
answer the above question affirmatively. Our specific
contributions are as follows.

• A novel error-feedback mechanism: we pro-
pose PowerEF-SGD, a new distributed SGD algo-
rithm that contains a novel error-feedback mech-
anism for communication compression.

• First-order convergence: we prove that, with
high probability, PowerEF-SGD converges to
ϵ-optimal first-order stationary points within
Õ
(

1
nϵ4 + 1

µ1.5ϵ3 + 1
µ2ϵ2

)
stochastic gradient

queries and communication rounds. The algo-
rithm shows a linear speedup pattern in that the
convergence rate benefits from the number of
workers n.

• Second-order convergence: we prove
that, with high probability, PowerEF-SGD
escapes the saddle points and converges to
ϵ-optimal second-order stationary points within
Õ
(

1
nϵ4 + 1

µ1.5ϵ3 + µn+1
µ3ϵ2.5

)
stochastic gradient

queries and communication rounds. This sug-
gests that PowerEF-SGD finds second-order
stationary points with almost the same order of
gradient and communication complexities as it
takes to for first-order convergence.

• Convergence under arbitrary data hetero-
geneity: importantly, the theory of PowerEF-
SGD does not require assumptions on data sim-
ilarity between different clients, thus allowing ar-
bitrary heterogeneity in federated learning tasks.

See also Table 1 and 2 for a detailed comparison be-
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tween our proposed method and existing algorithms.

1.2 Related works

Communication compression. A communication
operator, or a compressor, is deployed to reduce the
communication cost in distributed SGD. Various in-
stances of compressors include Quantized SGD (Alis-
tarh et al., 2017) that rounds real-valued gradient vec-
tors to discrete buckets, Sign SGD (Bernstein et al.,
2018) that represents the gradient with the sign of
each coordinate, Top-k (Stich et al., 2018) that selects
k coordinates out of the total dimension d with the
largest magnitudes, and Random-k (Stich et al., 2018)
that performs the above selection uniformly at random,
among others. Regardless of the specific design, a gen-
eral biased compressor is characterized by a parameter
µ ∈ (0, 1] that controls the aforementioned distortion
of the operator.

With a compressor at hand, one also needs a mech-
anism that specifies what message should be com-
pressed and transmitted between clients. A naive,
prototypical mechanism is to directly replace the gra-
dient with its compressed version in the regular rou-
tine of SGD or its momentum variants. This mecha-
nism underpins Alistarh et al. (2017); Bernstein et al.
(2018), among others. However, error may accumulate
in this simple replacement due to the lossy compres-
sion and menace its convergence. Various works pro-
pose new mechanisms to properly handle the error to
boost the convergence performance, including Error-
Feedback (Avdiukhin and Yaroslavtsev, 2021; Karim-
ireddy et al., 2019; Li and Chi, 2023; Li et al., 2022;
Seide et al., 2014; Stich et al., 2018) and its variants
(Fatkhullin et al., 2021; Huang et al., 2022; Richtárik
et al., 2021), with adaptations to decentralized opti-
mization (Koloskova et al., 2019a,b; Zhao et al., 2022).
Most of the works guarantee first-order convergence
subject to different levels of assumptions on data ho-
mogeneity, cf. Tables 1 and 2.

Second-order convergence of gradient methods.
It is well-known that gradient methods converge to
first-order stationary points (Nesterov, 2004). In non-
convex problems, however, first-order convergence can
be easily attacked by saddle points that may trap the
GD trajectory. It is therefore important to investi-
gate whether the algorithm is capable of escaping sad-
dle points and converging to second-order stationary
points. Asymptotically, Lee et al. (2016) proved that
GD with random initialization converges to a local
minimum almost surely. However, the algorithm may
still have to take an exponential time to escape the
saddle points (Du et al., 2017).

As to the polynomial-time guarantees, it is known that

perturbing the gradient with isotropic noise helps GD
converge to local minimizers (Ge et al., 2015; Jin et al.,
2017). The perturbation technique gives rise to similar
guarantees for other gradient methods, from SGD (Jin
et al., 2021) to SVRG (Ge et al., 2019) and stochas-
tic recursive gradient descent (Li, 2019). On the other
hand, instead of gradient perturbation, Daneshmand
et al. (2018) establishes the saddle-escaping property
of SGD under an additional Correlated Negative Cur-
vature (CNC) assumption regarding the statistical
property of the stochastic gradient oracle.

Recently, Avdiukhin and Yaroslavtsev (2021) leverages
the perturbation technique to analyze the second-order
stationarity of SGD with communication compression.
The theoretical derivation is based on single-node im-
plementation, which does not directly extend to the
distributed settings. Further, it requires a conditional
reset procedure in each iteration to achieve second-
order convergence, at the expense of high communica-
tion cost as the server has to collect and maintain the
local error terms using uncompressed channel. There-
fore, it remains obscure if the results therein still ap-
ply to the distributed setting with communication ef-
ficiency demands.

1.3 Notation

Throughout, we use lowercase boldface letters to de-
note vectors, and uppercase boldface letters to de-
note matrices. Let I be the identity matrix. Let
〈u,v〉 := u⊤v denote the standard Euclidean inner
product of two vectors u and v. The operator ‖·‖
denotes the Euclidean norm when exerted on a vec-
tor, i.e. ‖x‖ :=

√
〈x,x〉 =

√
x⊤x, and denotes the

spectral (operator) norm when exerted on a matrix,
i.e. ‖A‖ := supx ‖Ax‖ / ‖x‖. In addition, we use
the standard order notation O(·) to hide absolute con-
stants, and Õ(·) to hide polylog factors.

2 PROBLEM FORMULATION

This paper is primarily concerned with solving the non-
convex finite-sum minimization problem in a federated
setting, while each client should only query a local
stochastic gradient oracle, and communicate their in-
formation with the server in an efficient manner using
compression. We detail this formulation in the follow-
ing.

2.1 Nonconvex finite-sum minimization

Recall that we consider a federated optimization prob-
lem of finding an optimal parameter x to minimize the
local objectives {fi}ni=1 in an averaged manner, which
is stated as an unconstrained finite-sum minimization
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Table 1: Comparison of algorithms using stochastic gradients for nonconvex problems. Stochastic gradient
complexity refers to the number of stochastic gradient queries required to converge to ϵ-optimal first-order or
ϵ-optimal second-order stationary points, and µ refers to the parameter of the compressor.

Algorithm Stochastic gradient
complexity

Result
guarantee

Data homogeneity
assumption Distributed? Compression?

SGD
(Ghadimi et al., 2016) O

(
1
ϵ4

)
1st-order not applicable NO NO

Compressed SGD
(Avdiukhin and Yaroslavtsev, 2021) O

(
1
ϵ4 + 1

µϵ3

)
1st-order not applicable NO YES

CHOCO-SGD
(Koloskova et al., 2019a) O

(
1

nϵ4 + 1
µϵ3

)
1st-order bounded gradient YES YES

CSER
(Xie et al., 2020) O

(
1

nϵ4 + 1
µϵ3

)
1st-order bounded gradient YES YES

NEOLITHIC
(Huang et al., 2022) Õ

(
1

nϵ4 + 1
µϵ2

)
1st-order gradient similarity YES YES

EF21-SGD
(Fatkhullin et al., 2021) O

(
1

µ3ϵ4 + 1
µϵ2

)
1st-order NONE YES YES

PowerEF-SGD
(Algorithm 1) Õ

(
1

nϵ4 + 1
µ1.5ϵ3 + 1

µ2ϵ2

)
1st-order NONE YES YES

Noisy SGD
(Ge et al., 2015) poly( 1ϵ ) 2nd-order not applicable NO NO

CNC-SGD
(Daneshmand et al., 2018) Õ

(
1
ϵ5

)
2nd-order not applicable NO NO

Perturbed SGD
(Jin et al., 2021) Õ

(
1
ϵ4

)
2nd-order not applicable NO NO

Compressed SGD
(Avdiukhin and Yaroslavtsev, 2021) Õ

(
1
ϵ4 + 1

µϵ3 + 1
µ2ϵ2.5

)
2nd-order not applicable NO YES

PowerEF-SGD
(Algorithm 1) Õ

(
1

nϵ4 + 1
µ1.5ϵ3 + µn+1

µ3ϵ2.5

)
2nd-order NONE YES YES

Table 2: Comparison of distributed and compressed algorithms using stochastic gradients for nonconvex problems.
Communication rounds refers to the number of compressed messages transmitted between clients and the server.

Algorithm Communication rounds Result guarantee Data homogeneity assumption
CHOCO-SGD

(Koloskova et al., 2019a) O
(

1
nϵ4 + 1

µϵ3

)
1st-order bounded gradient

CSER
(Xie et al., 2020) O

(
1

nϵ4 + 1
µϵ3

)
1st-order bounded gradient

NEOLITHIC
(Huang et al., 2022) Õ

(
1

nϵ4 + 1
µϵ2

)
1st-order gradient similarity

EF21-SGD
(Fatkhullin et al., 2021) O

(
1

µ3ϵ4 + 1
µϵ2

)
1st-order NONE

PowerEF-SGD
(Algorithm 1) Õ

(
1

nϵ4 + 1
µ1.5ϵ3 + 1

µ2ϵ2

)
1st-order NONE

PowerEF-SGD
(Algorithm 1) Õ

(
1

nϵ4 + 1
µ1.5ϵ3 + µn+1

µ3ϵ2.5

)
2nd-order NONE

problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x),

where {fi}ni=1’s are the local objective functions, and
n is the number of clients.

We focus on the case where the objective functions are
nonconvex, subject to the following assumptions.
Assumption 2.1. There exists some fmin > −∞ such
that f(x) ≥ fmin for all x ∈ Rd.

We will leverage the boundedness in Assumption 2.1
to establish first-order convergence results. For second-
order results, similar to Avdiukhin and Yaroslavtsev
(2021), the following alternative is required.
Assumption 2.1*. There exists some fmax <∞ such
that |f(x1)− f(x2)| ≤ fmax for all x1,x2 ∈ Rd.

Besides boundedness, we also assume the smoothness
of f .
Assumption 2.2. f is differentiable and L-smooth,
i.e.
‖∇f(x1)−∇f(x2)‖ ≤ L ‖x1 − x2‖ , ∀x1,x2 ∈ Rd.
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In the same spirit as what we do for the bounded-
ness assumption, we need to further assume a Lipschitz
property of the Hessian to prove second-order results.
Assumption 2.3. f is twice differentiable and ρ-
Hessian Lipschitz, i.e.,∥∥∇2f(x1)−∇2f(x2)

∥∥ ≤ ρ ‖x1 − x2‖ , ∀x1,x2 ∈ Rd.

We emphasize that no assumption is made on the
boundedness of, or similarity between, the local gra-
dients.

2.2 Local stochastic gradient oracle

Each client i is allowed to query a local stochastic gra-
dient oracle ∇̃fi.
Assumption 2.4. Each ∇̃fi is L̃i-Lipschitz, i.e.∥∥∥∇̃fi(x1)− ∇̃fi(x2)

∥∥∥ ≤ L̃i ‖x1 − x2‖ , ∀x1,x2 ∈ Rd.

Based on Assumption 2.4, it is straightforward to ver-
ify that the global stochastic gradient ∇̃f is L̃-smooth
with L̃ :=

√
1
n

∑n
i=1 L̃

2
i .

Besides smoothness, the stochastic gradients should
also approximate the true gradients.
Assumption 2.5. For any x ∈ Rd, the mutually in-
dependent stochastic gradient oracles ∇̃fi satisfy

E
[
∇̃fi(x)

]
= ∇fi(x),

Pr
(∥∥∥∇̃fi(x)−∇fi(x)∥∥∥ ≥ t

)
≤ 2 exp

(
− t2

2σ2

)
for all t ≥ 0 and some σ > 0.

Assumption 2.5 is a high-probability variant of the
commonly-used bounded variance assumption, stated
in expectation. Switching to such a high-probability
variant is again necessary for second-order analysis
(Jin et al., 2021; Li, 2019) because we aim at a con-
vergence guarantee with probability bounds.

Gradient accumulation. For an integer k, let
∇̃f (1)

i (x), ..., ∇̃f (k)
i (x) be the k independent queries to

the stochastic oracle at x. The accumulated gradient
is defined as their average, i.e.

∇̃kfi(x) =
1

k

k∑
j=1

∇̃f (j)
i (x).

We shall stick to the accumulated gradient in our al-
gorithm design.

2.3 Communication compression

To enable efficient communication over bandwidth-
limited scenarios, our setting demands that the com-
munication between the clients and the server should
be compressed according to a possibly randomized
scheme C. Specifically, for any input x ∈ Rd, the
scheme should compute a surrogate C(x) ∈ Rd so that
the transmission of C(x) between machines would take
up a smaller bandwidth than the direct transmission
of x.
Definition 2.6. A possibly random mapping C : Rd →
Rd is said to be a µ-compressor for some µ ∈ (0, 1] if

‖x− C(x)‖2 ≤ (1− µ) ‖x‖2 , ∀x ∈ Rd.

In literature, the definition of a compresssor is usually
stated in the expectation sense, i.e., E[‖x− C(x)‖2] ≤
(1 − µ) ‖x‖2. Here, we use the deterministic ver-
sion only to comply with our high-probability analysis
framework. Technically, it is not hard to adapt our
entire theory to the language of expectations, where
the expected version of Definition 2.6 comes into use.
Examples of compressors that satisfy Definition 2.6
include Top-k (Stich et al., 2018) and a family of com-
pressors named general biased rounding (Beznosikov
et al., 2020).

3 PROPOSED ALGORITHM

This section introduces our proposed algorithm
PowerEF-SGD that is suitable to heterogeneous FL
with communication compression.

3.1 Fast Compressed Communication

We first introduce the Fast Compressed Communica-
tion (FCC) module proposed by Huang et al. (2022),
which is deployed at each client in their compressed
SGD algorithm NEOLITHIC. For input x ∈ Rd, the
FCC module with parameter p ∈ Z+ recursively com-
putes the residual {vi}pi=1 for p rounds, where

v1 = x; vi = x−
i−1∑
j=1

C(vj), i = 2, ..., p.

It then outputs FCCp(x) =
∑p

i=1 C(vi). To transmit
the output to the server efficiently, the client transmits
the set of compressed vectors {C(vi)}pi=1 through the
channel, and the exact output is assembled by summa-
tion on the server side.

Defining D : x 7→ x − C(x), one can observe that
FCCp(x) = x − Dp(x). In fact, the FCC module
is able to refine the compression loss by harnessing
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the contraction property of D. Specifically, D is a
contraction because ‖D(x)‖2 ≤ (1 − µ) ‖x‖2 due to
Definition 2.6. Hence, the error of the FCC module
‖x− FCCp(x)‖2 ≤ (1 − µ)p ‖x‖2 enjoys a geometric
decay with p.

3.2 PowerEF-SGD

We integrate the FCC module into our algorithm
PowerEF-SGD, as summarized in Algorithm 1. The
algorithm takes as input an initial model x0, step size
η, FCC parameter p, perturbation radius r, and the
number of iterations T . After a simple initialization
procedure, PowerEF-SGD iteratively produces a se-
quence {xt}Tt=0 to gradually update the initial model
by SGD-type descent. In each iteration, we use the
accumulated gradient ∇̃pfi to balance the number of
communication rounds and stochastic gradient com-
plexity. Each iteration of PowerEF-SGD contains four
conceptual stages interpreted as follows.

• Feedback the local gradient estimate. We
intend to use e(i)t , the error up to the last itera-
tion, to feedback our estimate of the local gradient
g
(i)
t for the current round. Firstly, based on the

error, the client invokes FCC module to compute
the feedback term w

(i)
t + c

(i)
t (Lines 9–10). Then

each client i gets its current gradient estimate g(i)t

by complementing the existing estimate g(i)t−1 with
the feedback term (Line 11).

• Update the error. Upon completion of the feed-
back, we increase the error term by the discrep-
ancy between the real stochastic gradient (after
artificial perturbation) and our local estimate g(i)t

(Line 12). In this way, the error term essentially
stores the cumulative estimation discrepancy of
g
(i)
t , which is ready for feedback again on the next

run.

• Prepare the global gradient estimate. The
update of global gradient estimate is conducted on
a par with the local update method in an averaged
manner (Line 16), so that we always have gt =
1
n

∑n
i=1 g

(i)
t .

• Update the model. Finally, the server updates
the current model xt by a descending step along
our global gradient estimate gt (Line 17).

3.3 Discussion

General design. At its core, PowerEF-SGD bene-
fits from the power contraction underlying the FCC
module to upgrade the classical error-feedback mecha-
nism (Avdiukhin and Yaroslavtsev, 2021; Stich et al.,

2018), hence the name. Specifically, our algorithm in-
herits the classical design of error term to track the
cumulative discrepancy of gradient estimation (Line
12), but refines the way errors are used to feedback
the current gradient estimation by the FCC module.
Technically, the design of w(i)

t and c(i)t helps us con-
nect PowerEF-SGD steps towards Definition 2.6, giv-
ing rise to a recurrence on e(i)t which can be manip-
ulated by theory. Moreover, while still guarantee-
ing second-order results, PowerEF-SGD manages to
remove from the prior work (Avdiukhin and Yaroslavt-
sev, 2021) an expensive procedure of conditional reset
that inevitably occupies the uncompressed bandwidth.

Data heterogeneity. Mathematically, our mecha-
nism is able to induce an error term recurrence ir-
relevant to local gradients, thus circumventing from
data similarity assumptions. This favorable property
originates from our design of PowerEF-SGD, which is
nontrivially different from the existing NEOLITHIC
(Huang et al., 2022) algorithm where FCC module also
plays a part. For example, NEOLITHIC inputs the
gradient estimate to FCC while we input the estima-
tion discrepancy, and error terms are also computed
distinctly. As a notable result, contrary to our algo-
rithm, the theory of NEOLITHIC still has to assume
local gradient similarity.

Gradient perturbation. We add an isotropic Gaus-
sian noise to each stochastic gradient to help the model
escape from saddle points. Intuitively, around sad-
dle points, the isotropic perturbation ensures that the
SGD trajectory can traverse a sufficient distance along
the descending direction, i.e. the eigenvector of Hes-
sian ∇2f(xt) with a negative eigenvalue, thus escap-
ing the saddle region and gaining an objective decrease.
The perturbation is not required for first-order conver-
gence, in which case one can safely set r = 0.

4 PERFORMANCE GUARANTEES

In this section, we state the theoretical guarantees for
PowerEF-SGD, where the proofs are deferred to the
appendix. To begin, we first define the first-order and
second-order approximate stationarity conditions.
Definition 4.1. x ∈ Rd is said to be an ϵ-optimal
first-order stationary point (ϵ-FOSP) if ‖∇f(x)‖ ≤ ϵ.
Definition 4.2. Suppose that x ∈ Rd is an ϵ-FOSP.
Then, x is said to be an ϵ-optimal second-order sta-
tionary point (ϵ-SOSP) if

∇2f(x) � −√ρϵ · I.

Otherwise, x is said to be an ϵ-strict saddle point.

Moreover, we denote χ2 := σ2 log d + r2 the effective
variance of stochastic gradient and perturbation, and
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Algorithm 1 PowerEF-SGD
1: Input: x0, step size η, contraction exponent p, perturbation radius r, number of iterations T
2: Initialization: e(i)0 ← 0, e(i)−1 ← 0, g(i)−1 ← 0, g−1 ← 0
3: for t = 0, 1, 2, ..., T − 1 do
4: for parameter server do
5: sample ξt ∼ N (0, r2

npdI)
6: broadcast ξt to every client
7: end for
8: for client i = 1, 2, ..., n in parallel do
9: w

(i)
t ← FCCp(e

(i)
t − e

(i)
t−1)

10: c
(i)
t ← C(e

(i)
t + ∇̃pfi(xt) + ξt − g(i)t−1 −w

(i)
t )

11: g
(i)
t ← g

(i)
t−1 +w

(i)
t + c

(i)
t {Feedback the local gradient estimate}

12: e
(i)
t+1 ← e

(i)
t + ∇̃pfi(xt) + ξt − g(i)t {Update the error}

13: upload c(i)t and w(i)
t (as a sum of p compressed vectors) to server

14: end for
15: for parameter server do
16: gt ← gt−1 +

1
n

∑n
i=1w

(i)
t + 1

n

∑n
i=1 c

(i)
t {Prepare the global gradient}

17: xt+1 ← xt − ηgt {Update the model}
18: broadcast xt to every client
19: end for
20: end for

introduce the initialization quality

Φ =
1

n

n∑
i=1

∥∥∥∇̃pfi(x0) + ξ0

∥∥∥2 + L̃[f(x0)− fmin].

We are now ready to state the main theorems. Theo-
rem 4.3 establishes that PowerEF-SGD converges with
high probability to ϵ-FOSP.
Theorem 4.3 (Convergence to ϵ-FOSP). Suppose
that Assumptions 2.1, 2.2, 2.5 hold, and the param-
eters T, η, p, r satisfy

T = κT ·max

{
f(x0)− fmin

ηϵ2
,
χ2ι

npϵ2

}
,

η = κη ·min

µ

L̃
,

µϵ

L
√

µΦ+ χ2ι
np

,
npϵ2

χ2L

 ,

p = κp ·
1

µ
log

(
1

µ

)
for some constants κT , κη, κp > 0, and the parameter ι
controlling the tightness of the probability bound. Then,
with probability at least 1 − 7e−ι, at least 3/4 of the
iterates {xt}Tt=0 generated by Algorithm 1 are ϵ-FOSPs.

In words, first-order convergence is guaranteed with
high probability (controlled by ι), under an appropri-
ate choice of the algorithm parameters. Note that the
theorem does not specify a choice for the perturbation
radius r, resonating with Section 3.3 in that perturba-
tion is not required for first-order convergence.

Regarding the second-order convergence, we have the
following theorem.
Theorem 4.4 (Convergence to ϵ-SOSP). Suppose
that Assumptions 2.1*, 2.2, 2.3, 2.5 hold, and the pa-
rameters T, η, p, r satisfy

T = κT ·max

{
ι5fmax

ηϵ2
,
χ2ι

npϵ2

}
,

η = κη ·min


µ

L̃
, µϵ

ι5L
√

µΦ+χ2ι
np

,

npϵ2

ι5χ2L ,
ισ2√ρϵ log d

L2
(
npΦ+χ2ι

µ2

)
 ,

p = κp ·
1

µ
log

(
1

µ

)
,

r = κr · σ
√

ιd log d

for some constants κT , κη, κp, κr > 0, and the pa-
rameter ι controlling the tightness of the probability
bound. Set I = ι

η
√
ρϵ . Then, with probability at least

1−8T 2(I2+dI+I+T )e−ι, at least half of the iterates
{xt}Tt=0 generated by Algorithm 1 are ϵ-SOSPs.

Unlike Theorem 4.3, perturbing the local stochastic
gradient with an appropriate radius plays a vital part
in the second-order guarantee by assisting the iteration
to escape the saddle points.

Based on Theorem 4.3 and 4.4, it is now immediate
to compute the gradient complexity and communica-
tion rounds of PowerEF-SGD to attain first-order and
second-order optimality, respectively.
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Table 3: Test accuracy achieved by different algorithms at epoch 100 under two levels of data heterogeneity.

algorithm EF EF21 PowerEFp=1 PowerEFp=4

heterogeneity level ℓ1 84.58± 0.43 56.80± 1.26 84.87± 0.32 85.85± 0.40
heterogeneity level ℓ2 76.91± 0.85 43.56± 1.62 77.18± 0.59 78.86± 0.65

(a) ℓ1 test accuracy (b) ℓ2 test accuracy (c) loss (d) gradient norm

Figure 1: (a–b) Test accuracy curves of different algorithms in CIFAR-10 training tasks under two heterogeneity
levels. (c–d) Loss and gradient norm curves in the synthetic experiments.

Corollary 4.5 (ϵ-FOSP complexity). Under the same
setting of Theorem 4.3, Algorithm 1 requires Õ

(
1

nϵ4 +

1
µ1.5ϵ3 + 1

µ2ϵ2

)
queries to the stochastic gradient oracle

and communication rounds.
Corollary 4.6 (ϵ-SOSP complexity). Under the same
setting of Theorem 4.4, Algorithm 1 requires Õ

(
1

nϵ4 +

1
µ1.5ϵ3 +

µn+1
µ3ϵ2.5

)
queries to the stochastic gradient oracle

and communication rounds.

According to the corollaries, PowerEF-SGD improves
to second-order stationary points after visiting first-
order (possibly saddle) points, using additional gra-
dient queries and communication rounds only of al-
most the same order required by first-order conver-
gence when ϵ is typically small to be the dominant
parameter. Contrary to another work allowing hetero-
geneous data (Fatkhullin et al., 2021), our convergence
rate exhibits a linear speedup in terms of n, implying
that our algorithm significantly benefits from the dis-
tributed framework.

5 EXPERIMENTS

In this section, we conduct two types of experiments to
evaluate the performance of PowerEF-SGD in hetero-
geneous FL tasks, and its capability of escaping saddle
points using the gradient perturbation technique.

5.1 Heterogeneous federated learning

We experiment on distributed deep learning tasks
with heterogeneous data to demonstrate the advan-
tage of PowerEF-SGD over the baseline algorithms

EF (Avdiukhin and Yaroslavtsev, 2021) and EF21
(Richtárik et al., 2021).

We train a ResNet18 model on CIFAR10 dataset
(Krizhevsky and Hinton, 2009) using 4 clients and 1
server, optimized by different methods. To simulate
heterogeneity, we sample local data from CIFAR10 so
that the local distributions of y-class are imbalanced
and heterogeneous across workers. We experiment on
2 heterogeneity levels: (ℓ1) min class size / max class
size ≈ 0.08; (ℓ2) min class size / max class size ≈ 0.01.
In both settings, we train EF, EF21, PowerEFp=1 and
PowerEFp=4 3 times each, deploying Top-k compres-
sor that keeps top 1% coordinates of the largest mag-
nitudes. All the training procedures take 100 epochs
with a step size of 10−2 and weight decay of 10−4.
The algorithms are implemented on PyTorch (Paszke
et al., 2019) 2.0.0 and the experiments are conducted
on NVIDIA Tesla P100 GPU.

In Figure 1(a–b) we plot the test accuracy curves of
each algorithm in both settings, and the accuracy at
the final epoch is reported in Table 3 for compari-
son. Although the increase of heterogeneity level hin-
ders the performance of each algorithm, it is clear
that PowerEFp=4 consistently outperforms the base-
lines in both tasks, and an increase of FCC contraction
p effectively facilitates learning when heterogeneity is
present.

5.2 Escaping saddle points

We conduct synthetic experiments to show the saddle-
escaping property of PowerEF-SGD. Consider the fol-
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lowing finite-sum matrix factorization problem

f(U ,V ) =
1

n

n∑
i=1

fi(U ,V ) =
1

n

n∑
i=1

‖Mi −UV ⊤‖2F ,

where Mi are given data matrices generated from
Gaussian distribution. Initialized around a saddle
point, PowerEF-SGD is tested under 5 different levels
of gradient perturbation variance, starting from level 0
(no noise). We experiment on each noise level 3 times,
and plot the curve of loss and gradient norm with re-
spect to the number of iterations t in Figure 1(c–d).
Increasing the perturbation level, it takes shorter time
to observe the drop of loss and increase of gradient
norm, suggesting that the algorithm can escape from
saddle points more efficiently with the help of gradient
perturbation.

6 CONCLUSION

In this paper, we propose and analyze PowerEF-SGD,
which is the first distributed SGD algorithm with com-
munication compression that provably attains second-
order optimality under heterogeneous data, to the best
of our knowledge. Specifically, subject to mild and
standard assumptions, we show that PowerEF-SGD
converges to ϵ-SOSPs with high probability, which is
almost on par with the gradient and communication
complexity it takes to find ϵ-FOSPs, and the conver-
gence rate shows a linear speedup with respect to n.
Our theory is complemented by the performance of
PowerEF-SGD in the distributed learning experiments.
For future work, it will be of great interest to develop
privacy-preserving distributed SGD algorithms that
can escape saddle points with communication compres-
sion.
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Escaping Saddle Points in Heterogeneous Federated Learning
via Distributed SGD with Communication Compression:

Supplementary Materials

A TECHNICAL PREPARATION

Throughout, we adopt notations similar to Avdiukhin and Yaroslavtsev (2021) to define several important quan-
tities that bring convenience to our theoretical analysis. We define

1. local stochastic gradient noise ζ(i)t := ∇̃pfi(xt)−∇fi(xt),

2. local aggregate noise ψ(i)
t := ζ

(i)
t + ξt,

3. local compression error e(i)t as in Line 12, Algorithm 1.

Their global versions are defined by averaging all the nodes as

ζt :=
1

n

n∑
i=1

ζ
(i)
t , ψt :=

1

n

n∑
i=1

ψ
(i)
t , et :=

1

n

n∑
i=1

e
(i)
t = et−1 +∇f(xt−1) +ψt−1 − gt−1.

Finally, we denote
χ2 := σ2 log d+ r2

the effective variance of the stochastic system consisting of stochastic gradients and artificial perturbations, and
Φ the initialization quality by

Φ =
1

n

n∑
i=1

∥∥∥∇̃pfi(x0) + ξ0

∥∥∥2 + L̃ [f(x0)− fmin] .

We define the sequence of corrected iterates {yt} as yt := xt − ηet. It is easy to verify the sequence {yt} is
updated by

yt+1 = yt − η(∇f(xt) +ψt). (2)

Now, we introduce the definitions of norm-subGaussian random vectors and norm-subGaussian martingale dif-
ference sequences. Then we briefly state, without proof, several concentration inequalities for norm-subGaussian
martingale difference sequences that underpin our theoretical derivation. Readers are referred to Jin et al. (2021)
for detailed exposition.
Definition A.1 (Definition 32, Jin et al. (2021)). A random vector X ∈ Rd is norm-subGaussian or nSG(σ),
if there exists σ so that

Pr (‖X − EX‖ ≥ t) ≤ 2 exp

(
− t2

2σ2

)
∀t ≥ 0.

Moreover, X is zero-mean nSG(σ) if EX = 0 holds as well.
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Definition A.2 (Condition 35, Jin et al. (2021)). The sequence of random vectors X1, ...,Xn ∈ Rd is a norm-
subGaussian martingale difference sequence with respect to the filtration {Fi}ni=1, ifXi|Fi−1 is zero-mean nSG(σi)
for each i ∈ [n], i.e.,

E[Xi|Fi−1] = 0, Pr (‖Xi‖ ≥ t|Fi−1) ≤ 2 exp

(
− t2

2σ2
i

)
∀t ≥ 0, i ∈ [n]

for some σ1, ..., σn.

Regarding Algorithm 1, a natural choice of filtration {Ft} is given by the σ-algebra generated by all the random
variables – all the artificial noise, stochastic gradient noise, and random operators – up to time t. Now, {ζ(i)t } and
{ξt} are norm-subGaussian martingale difference sequences with respect to {Ft}, due to the mutual independence
between any two random variables.

In our analysis, we will make use of three concentration inequalities for such sequences.
Proposition A.3 (Lemma 36, Jin et al. (2021)). Let {X1, ...,Xn} be a norm-subGaussian martingale difference
sequence with σ1 = ... = σn = σ. Then, there exists a constant c such that for any ι > 0,∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
2

≤ cσ2nι

with probability at least 1− 2de−ι.

With this, we can show that the global, accumulated stochastic gradient is a better estimator of the global true
gradient, compared with each local stochastic gradient estimating its own true gradient.
Corollary A.4 (Global stochastic gradient noise). Under Assumption 2.5, there exists a constant c such that
the global stochastic gradient noise ζt is a zero-mean nSG

(
cσ
√

log d
np

)
random vector.

Proof. Recall that ∇̃pfi(xt) =
1
p

∑p
j=1 ∇̃f

(j)
i (xt), the average of p independent stochastic gradient queries. Now,

defining ζ(i,j)i = ∇̃f (j)
i (xt) − ∇fi(xt), we have ζ(i)t = 1

p

∑p
j=1 ζ

(i,j)
t , and each ζ(i,j)t is zero-mean nSG(σ) by

Assumption 2.5. Using Proposition A.3, there exists some constant c such that

Pr
(
‖ζt‖2 ≥ s2

)
= Pr


∥∥∥∥∥∥

n∑
i=1

p∑
j=1

ζ
(i,j)
t

∥∥∥∥∥∥
2

≥ n2p2s2

 ≤ 2d exp

(
−nps2

cσ2

)
= 2 exp

(
−nps2

cσ2
+ log d

)
.

For s2 ≥ cσ2

np log 2d,

Pr
(
‖ζt‖2 ≥ s2

)
≤ 2 exp

(
−nps2

cσ2
+ log d

)
≤ 2 exp

(
−nps2

cσ2
+

nps2

cσ2

log d

log 2d

)
= 2 exp

− nps2

cσ2
(
1 + log d

log 2

)
 .

For s2 < cσ2

np log 2d,

Pr
(
‖ζt‖2 ≥ s2

)
≤ 1 < 2 exp

− nps2

cσ2
(
1 + log d

log 2

)
 .

The above two combined establish the norm-subGaussian result.

Proposition A.5 (Lemma 38, Jin et al. (2021)). Let {X1, ...,Xn} be a norm-subGaussian martingale difference
sequence with σ1 = ... = σn = σ. Then, there exists a constant c such that for any ι > 0,

n∑
i=1

‖Xi‖2 ≤ cσ2(n+ ι)

with probability at least 1− e−ι.
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Proposition A.6 (Lemma 39, Jin et al. (2021)). Let {X1, ...,Xn} be a norm-subGaussian martingale difference
sequence with σ1, ..., σn, and let random vectors {u1, ...,un} satisfy ui ∈ Fi−1 for all i ∈ [n]. Then, for any
ι > 0, λ > 0, there exists a constant c such that

n∑
i=1

〈ui,Xi〉 ≤ cλ

n∑
i=1

‖ui‖2 σ2
i + λ−1ι

with probability at least 1− e−ι.

Since Algorithm 1 is iterative, ∇f(yt) ∈ Ft−1 for all t. This explains the validity of Proposition A.6 when applied
to our Lemma B.3 to be presented momentarily.

B PROOF OF FIRST-ORDER CONVERGENCE

In this section we detail the proof of Theorem 4.3, a first-order convergence guarantee for PowerEF-SGD. To this
end, we first provide a bound for the compression error ‖et‖2 (Lemma B.2), which supports an argument (Lemma
B.3) that controls the true gradient norm of the iterates produced by PowerEF-SGD. Finally, an appropriate
choice of parameters leads Lemma B.3 to the desired Theorem 4.3.

B.1 Compression error bound

We will use the following two lemmas to bound ‖et‖2. The first lemma controls ‖xt+1 − xt‖2, that is the
difference between two consecutive iterates; the second technical lemma upper bounds a useful linear recurrence
relation.
Lemma B.1. Suppose that Assumption 2.2 holds, and η ≤ 1

2L . Then, the iterates {xt}Tt=0 generated by Algorithm
1 satisfy

‖xt+1 − xt‖2 ≤ 4η[f(xt)− f(xt+1)] + 4η2

(
1

n

n∑
i=1

∥∥∥e(i)t+1 − e
(i)
t

∥∥∥2 + ‖ψt‖2
)
∀t < T.

Proof. Recall that Algorithm 1 updates the iterates by xt+1 = xt−ηgt (see Line 17). Since f is L-smooth under
Assumption 2.2, Lemma 2 of Li et al. (2021) gives

f(xt+1) ≤ f(xt)−
η

2
‖∇f(xt)‖2 −

(
1

2η
− L

2

)
‖xt+1 − xt‖2 +

η

2
‖∇f(xt)− gt‖2 .

According to Line 12 of Algorithm 1, ∇f(xt)− gt = et+1 − et −ψt. Hence, for η ≤ 1
2L ,

f(xt+1) ≤ f(xt)−
η

2
‖∇f(xt)‖2 −

1

4η
‖xt+1 − xt‖2 +

η

2
‖et+1 − et −ψt‖2 .

Rearranging the terms,

‖xt+1 − xt‖2 ≤ 4η[f(xt)− f(xt+1)] + 2η2 ‖et+1 − et −ψt‖2 − 2η2 ‖∇f(xt)‖2

≤ 4η[f(xt)− f(xt+1)] + 4η2
(
‖et+1 − et‖2 + ‖ψt‖2

)
≤ 4η[f(xt)− f(xt+1)] + 4η2

(
1

n

n∑
i=1

∥∥∥e(i)t+1 − e
(i)
t

∥∥∥2 + ‖ψt‖2
)
,

where the last step is due to Jensen’s inequality.

Lemma B.2 (Sum of compression error). Suppose that Assumptions 2.1, 2.2, 2.4, 2.5 hold, and η, p satisfy

η ≤ min

{
µ

24L̃
,
1

2L

}
, p ≥ log(µ2/144)

log(1− µ)
.
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Fix any t ≤ T . Then, there exists a constant c, such that the sum of compression error produced by Algorithm 1
prior to iteration t is bounded by

t−1∑
τ=0

‖eτ‖2 ≤ c

[
Φ

µ
+

χ2(t+ ι)

µ2np

]
with probability at least 1− 3e−ι.

Proof. By Lines 10, 11, 12 of Algorithm 1,

e
(i)
τ+1 = e(i)τ + ∇̃pfi(xτ ) + ξτ − g(i)τ−1 −w(i)

τ − C
(
e(i)τ + ∇̃pfi(xτ ) + ξτ − g(i)τ−1 −w(i)

τ

)
.

Hence, ∥∥∥e(i)τ+1

∥∥∥2 =
∥∥∥e(i)τ + ∇̃pfi(xτ ) + ξτ − g(i)τ−1 −w(i)

τ − C
(
e(i)τ + ∇̃pfi(xτ ) + ξτ − g(i)τ−1 −w(i)

τ

)∥∥∥2
≤ (1− µ)

∥∥∥e(i)τ + ∇̃pfi(xτ ) + ξτ − g(i)τ−1 −w(i)
τ

∥∥∥2 (3)

≤ (1− µ)(1 + ν)
∥∥∥e(i)τ

∥∥∥2 + (1− µ)(1 + ν−1)
∥∥∥∇̃pfi(xτ ) + ξτ − g(i)τ−1 −w(i)

τ

∥∥∥2 , (4)

where (3) is due to the compression property of C (cf. Definition 2.6), and we invoke Young’s inequality with
arbitrary ν > 0 in (4). Moreover, note the identity

∇̃pfi(xτ ) + ξτ − g(i)τ−1 −w(i)
τ

= ∇̃pfi(xτ )− ∇̃pfi(xτ−1) + ξτ − ξτ−1 + (∇̃pfi(xτ−1) + ξτ−1 − g(i)τ−1)−w(i)
τ

= ∇̃pfi(xτ )− ∇̃pfi(xτ−1) + ξτ − ξτ−1 + e
(i)
τ − e

(i)
τ−1 −w(i)

τ (5)

= ∇̃pfi(xτ )− ∇̃pfi(xτ−1) + ξτ − ξτ−1 +Dp(e(i)τ − e
(i)
τ−1), (6)

where Line 12 and 9 of Algorithm 1 imply (5) and (6), respectively. Plugging (6) into (4) yields∥∥∥e(i)τ+1

∥∥∥2 = (1− µ)(1 + ν)
∥∥∥e(i)τ

∥∥∥2 + (1− µ)(1 + ν−1)
∥∥∥∇̃pfi(xτ )− ∇̃pfi(xτ−1) + ξτ − ξτ−1 +Dp(e(i)τ − e

(i)
τ−1)

∥∥∥2 .
Now, simply take ν = µ

2(1−µ) ,∥∥∥e(i)τ+1

∥∥∥2 ≤ (1− µ

2

)∥∥∥e(i)τ

∥∥∥2 + 6

µ

(∥∥∥Dp(e(i)τ − e
(i)
τ−1)

∥∥∥2 + ∥∥∥∇̃pfi(xτ )− ∇̃pfi(xτ−1)
∥∥∥2 + ‖ξτ − ξτ−1‖2

)
≤
(
1− µ

2

)∥∥∥e(i)τ

∥∥∥2 + 6

µ

(
(1− µ)p

∥∥∥e(i)τ − e
(i)
τ−1

∥∥∥2 + L̃2
i ‖xτ − xτ−1‖2 + ‖ξτ − ξτ−1‖2

)
, (7)

where (7) follows from the contraction property of operator Dp and Lipschitz property of ∇̃fi in Assumption 2.4.
Now, averaging (7) over all the nodes and setting Qτ = 1

n

∑n
i=1

∥∥∥e(i)τ

∥∥∥2,
Qτ+1 ≤

(
1− µ

2

)
Qτ +

6

µ

(
(1− µ)p

1

n

n∑
i=1

∥∥∥e(i)τ − e
(i)
τ−1

∥∥∥2 + L̃2 ‖xτ − xτ−1‖2 + ‖ξτ − ξτ−1‖2
)

≤
(
1− µ

2

)
Qτ +

6

µ

[(
(1− µ)p + 4L̃2η2

) 1

n

n∑
i=1

∥∥∥e(i)τ − e
(i)
τ−1

∥∥∥2
+ 4L̃2η[f(xτ−1)− f(xτ )] + 4L̃2η2 ‖ψτ−1‖2 + ‖ξτ − ξτ−1‖2

]
. (8)

Here, we obtain (8) as a direct consequence of Lemma B.1. Due to our choice of η and p, we can proceed from
(8) to

Qτ+1 ≤
(
1− µ

2

)
Qτ +

µ

12

1

n

n∑
i=1

∥∥∥e(i)τ − e
(i)
τ−1

∥∥∥2 + L̃[f(xτ−1)− f(xτ )] +
µ

24
‖ψτ−1‖2 +

6

µ
‖ξτ − ξτ−1‖2
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≤
(
1− µ

3

)
Qτ +

µ

6
Qτ−1 + L̃[f(xτ−1)− f(xτ )] +

µ

24
‖ψτ−1‖2 +

6

µ
‖ξτ − ξτ−1‖2 . (9)

Applying (9) for τ = 1, 2, ..., t− 2 respectively, we have

t−1∑
τ=0

Qτ ≤ Q0 +Q1 +
(
1− µ

3

) t−2∑
τ=1

Qτ +
µ

6

t−3∑
τ=0

Qτ + L̃[f(x0)− f(xt−2)] +
µ

24

t−3∑
τ=0

‖ψτ‖2 +
6

µ

t−2∑
τ=1

‖ξτ − ξτ−1‖2

≤ Q0 +Q1 +
(
1− µ

3

) t−1∑
τ=0

Qτ +
µ

6

t−1∑
τ=0

Qτ + L̃[f(x0)− fmin] +
µ

24

t−1∑
τ=0

‖ψτ‖2 +
6

µ

t−1∑
τ=0

‖ξτ − ξτ−1‖2 ,

where the last step uses the non-negativity of terms and Assumption 2.1. After rearranging,

t−1∑
τ=0

Qτ ≤
6

µ

(
Q0 +Q1 + L̃[f(x0)− fmin]

)
+

1

4

t−1∑
τ=0

‖ψτ‖2 +
36

µ2

t−1∑
τ=0

‖ξτ − ξτ−1‖2

≤ 6

µ

(
Q0 +Q1 + L̃[f(x0)− fmin]

)
+

1

2

t−1∑
τ=0

‖ζτ‖2 +
1

2

t−1∑
τ=0

‖ξτ‖2 +
36

µ2

t−1∑
τ=0

‖ξτ − ξτ−1‖2 .

The first term is bounded by 6Φ/µ, as one can verify that

Q0 = 0; Q1 ≤
1

n

n∑
i=1

∥∥∥∇̃pfi(x0) + ξ0

∥∥∥2 .
Moreover, by Corollary A.4 as well as Proposition A.5, with probability at least 1− 3e−ι, there exists a constant
c such that

1

2

t−1∑
τ=0

‖ζτ‖2 +
1

2

t−1∑
τ=0

‖ξτ‖2 +
36

µ2

t−1∑
τ=0

‖ξτ − ξτ−1‖2 ≤
c

µ2

(
σ2 log d+ r2

np

)
(t+ ι) =

cχ2(t+ ι)

µ2np
.

This completes the proof.

B.2 Convergence

Lemma C.2 results in the following argument, which is essential for showing the first-order convergence.
Lemma B.3 (Descent lemma). Suppose that Assumptions 2.1, 2.2, 2.5 hold, and η, p satisfy

η ≤ min

{
µ

24L̃
,

1

12L

}
p ≥ log(µ2/144)

log(1− µ)
.

Then there exists some constant c such that for any t ≤ T ,

t−1∑
τ=0

‖∇f(xτ )‖2 ≤
8[f(y0)− f(yt)]

η
+ cη2L2

(
Φ

µ
+

χ2ι

µ2np

)
+ c(ηL+ 1)

χ2ι

np
+ cηL

(
ηL

µ2
+ 1

)
χ2T

np

with probability at least 1− 7e−ι.

Proof. Under Assumption 2.2, the L-smoothness of f implies

f(yt+1) ≤ f(yt) + 〈∇f(yt),yt+1 − yt〉+
L

2
‖yt+1 − yt‖2

= f(yt)− η 〈∇f(yt),∇f(xt) +ψt〉+
Lη2

2
‖∇f(xt) +ψt‖2 (10)

≤ f(yt)− η ‖∇f(xt)‖2 − η 〈∇f(yt)−∇f(xt),∇f(xt)〉 − η 〈∇f(yt), ζt〉 − η 〈∇f(yt), ξt〉

+
3Lη2

2

(
‖∇f(xt)‖2 + ‖ζt‖2 + ‖ξt‖2

)
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≤ f(yt)− η ‖∇f(xt)‖2 +
η

2
‖∇f(yt)−∇f(xt)‖2 +

η

2
‖∇f(xt)‖2 − η 〈∇f(yt), ζt〉 − η 〈∇f(yt), ξt〉

+
3Lη2

2

(
‖∇f(xt)‖2 + ‖ζt‖2 + ‖ξt‖2

)
,

where (10) is due to (2). Sum up and rearrange the terms, we have

f(yT )− f(y0) ≤ −η
(
1

2
− 3Lη

2

) T−1∑
τ=0

‖∇f(xτ )‖2 +
η

2

T−1∑
τ=0

‖∇f(yτ )−∇f(xτ )‖2

+
3Lη2

2

T−1∑
τ=0

(
‖ζτ‖2 + ‖ξτ‖2

)
− η

T−1∑
τ=0

〈∇f(yτ ), ζτ 〉 − η

T−1∑
τ=0

〈∇f(yτ ), ξτ 〉 . (11)

According to Proposition A.5 and A.6 as well as union bound, there exist constants c1 and c2 such that

3Lη2

2

(
T−1∑
τ=0

‖ζτ‖2 +
T−1∑
τ=0

‖ξτ‖2
)
≤ c1

Lη2χ2(T + ι)

np
(12)

and

−η

(
T−1∑
τ=0

〈∇f(yτ ), ζτ 〉+
T−1∑
τ=0

〈∇f(yτ ), ξτ 〉

)
≤ η

8

T−1∑
τ=0

‖∇f(yτ )‖2 + c2
ηχ2ι

np
(13)

hold simultaneously with probability at least 1− 4e−ι. Plugging (12) and (13) back into (11) gives

f(yT )− f(y0) ≤ −η
(
1

2
− 3Lη

2

) T−1∑
τ=0

‖∇f(xτ )‖2 +
η

2

T−1∑
τ=0

‖∇f(yτ )−∇f(xτ )‖2

+
η

8

T−1∑
τ=0

‖∇f(yτ )‖2 + c1
Lη2χ2(T + ι)

np
+ c2

ηχ2ι

np

≤ −η
(
1

2
− 3Lη

2

) T−1∑
τ=0

‖∇f(xτ )‖2 +
η

2

T−1∑
τ=0

‖∇f(yτ )−∇f(xτ )‖2

+
η

4

T−1∑
τ=0

(
‖∇f(yτ )−∇f(xτ )‖2 + ‖∇f(xτ )‖2

)
+ c1

Lη2χ2(T + ι)

np
+ c2

ηχ2ι

np

= −η
(
1

4
− 3Lη

2

) T−1∑
τ=0

‖∇f(xτ )‖2 +
3η

4

T−1∑
τ=0

‖∇f(yτ )−∇f(xτ )‖2

+ c1
Lη2χ2(T + ι)

np
+ c2

ηχ2ι

np

≤ −η
(
1

4
− 3Lη

2

) T−1∑
τ=0

‖∇f(xτ )‖2 +
3ηL2

4

T−1∑
τ=0

‖yτ − xτ‖2 + c1
Lη2χ2(T + ι)

np
+ c2

ηχ2ι

np
(14)

= −η
(
1

4
− 3Lη

2

) T−1∑
τ=0

‖∇f(xτ )‖2 +
3η3L2

4

T−1∑
τ=0

‖eτ‖2 + c1
Lη2χ2(T + ι)

np
+ c2

ηχ2ι

np

≤ −η

8

T−1∑
τ=0

‖∇f(xτ )‖2 +
3η3L2

4

T−1∑
τ=0

‖eτ‖2 + c1
Lη2χ2(T + ι)

np
+ c2

ηχ2ι

np
(15)

with probability at least 1 − 4e−ι. In the above derivation, we make use of L-smoothness of f in (14) and our
appropriate choice of η in (15). Finally, by Lemma B.2 and union bound, with probability at least 1− 7e−ι we
have

f(yT )− f(y0) ≤ −
η

8

T−1∑
τ=0

‖∇f(xτ )‖2 +
3c3η

3L2

4

(
Φ

µ
+

χ2(T + ι)

µ2np

)
+ c1

Lη2χ2(T + ι)

np
+ c2

ηχ2ι

np
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T−1∑
τ=0

‖∇f(xτ )‖2 ≤
8[f(y0)− f(yt)]

η
+ 6c3η

2L2

(
Φ

µ
+

χ2ι

µ2np

)
+ 8(c1ηL+ c2)

χ2ι

np
+

(
6c3η

2L2

µ2
+ 8c1ηL

)
χ2T

np

≤ 8[f(y0)− f(yt)]

η
+ cη2L2

(
Φ

µ
+

χ2ι

µ2np

)
+ c(ηL+ 1)

χ2ι

np
+ cηL

(
ηL

µ2
+ 1

)
χ2T

np

for an appropriate constant c.

We are now ready to establish the desired result regarding the convergence to ϵ-FOSPs.

Proof of Theorem 4.3. Otherwise, at least a quarter of the iterates have gradient norm larger than ϵ. Hence
T−1∑
τ=0

‖∇f(xτ )‖2 >
T

4
ϵ2.

However, taking our choice of η and T into Lemma B.3, the following holds with probability at least 1− 7e−ι:
T−1∑
τ=0

‖∇f(xτ )‖2 ≤ Tϵ2
(

8

κT
+ 2cκ2

η + 2cκη +
c

κT

)
. (16)

When we set κT ≥ 8(c+8) and κη ≤ 1
32c , (16) implies

∑T−1
τ=0 ‖∇f(xτ )‖2 ≤ Tϵ2/4, which produces a contradiction.

C PROOF OF SECOND-ORDER CONVERGENCE

The core idea for establishing the second-order convergence result (Theorem 4.4) is to show that, when PowerEF-
SGD encounters a saddle point, the objective can still descend sufficiently after finitely many additional iterations
(Lemma C.10).

Two arguments are developed to support this favorable property of PowerEF-SGD dynamics. Firstly, we show
an improve-or-localize behavior of PowerEF-SGD (Lemma C.3): if the iterations {yt} escape (move far enough)
from a saddle point, the objective must descend sufficiently.

Secondly, we claim that the iterations do escape from saddle points (Corollary C.9). This nontrivial claim is
obtained using the coupling sequences technique. To be specific, we craft another sequence {y′

t} mirroring the
original iterations {yt} along the escape direction of a saddle point. We show that the gap between the coupling
sequences ‖yt − y′

t‖ expands sufficiently after finitely many iterations (Lemma C.8), which implies {yt} travels
far from the saddle point.

This workflow of establishing second-order convergence guarantees finds similar applications in several prior
works on plain GD and SGD (Jin et al., 2017, 2021), recursive SGD (Li, 2019), and compressed SGD (Avdiukhin
and Yaroslavtsev, 2021). While the theory in Avdiukhin and Yaroslavtsev (2021) entails respective discussions
on the large-gradient case and small-gradient case, PowerEF-SGD avoids such intricacies due to the technical
fact that our bound for et does not involve gradient norm terms.

For conciseness, we presume the following parameter setting for our theory and do not restate them therein.

r = κrσ
√
ιd log d,

η = κη ·min

 µϵ

ι5L
√
µΦ+ χ2ι

np

,
ισ2√ρϵ log d

L2(npΦ+ χ2ι
µ2 )

,
npϵ2

ι5Lχ2

 ,

T = κT ·max

{
ι5fmax

ηϵ2
,
χ2ι

npϵ2

}
,

I =
ι

η
√
ρϵ

,

R = κR

√
ϵ

ι3ρ
,
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F =
κF

ι4

√
ϵ3

ρ
.

Here, κr, κη, κT , κR, κF are numerical constants to be determined in the detailed proofs.

C.1 Uniform Error Bound

With the aid of Assumption 2.1*, we can develop a strengthened error bound that not only controls the sum of
compression errors Lemma B.2, but also uniformly controls each individual error term. We begin with a technical
result regarding a recurrence relation.
Lemma C.1. Consider a real sequence {rt} such that rt+1 ≤ Art + Brt−1 + C for some positive constants
A,B,C and the initial values r0 = 0, r1 ≥ 0. If A+B < 1, then for any t ≥ 0 we have

rt ≤
2r1
A

+
6C

A(1−A−B)
.

Proof. Consider another real sequence {pt} with pt+1 = Apt + Bpt−1 + C and p0 = 0, p1 = r1. Clearly, rt ≤ pt.
Solving the recurrence about {pt} yields

pt = c1

(
A−
√
A2 + 4B

2

)t

+ c2

(
A+
√
A2 + 4B

2

)t

+
C

1−A−B

≤ (|c1|+ |c2|)

(
A+
√
A2 + 4B

2

)t

+
C

1−A−B
,

where c1, c2 are determined by the initial values. Since A + B < 1, we have A+
√
A2+4B
2 < 1, hence pt ≤

|c1|+ |c2|+ C
1−A−B for any t ≥ 0. It remains to bound |c1| and |c2|, which is straightforward.

Now we have
Lemma C.2 (Uniform error bound). Suppose that Assumptions 2.1*, 2.2, 2.5 hold, and η, p satisfy

η ≤ min

{
µ

24L̃
,

χ2ι

4npL̃2fmax

}
, p ≥ log(µ2/144)

log(1− µ)
.

Fix any t ≤ T . Then, there exists a constant c such that the compression error terms produced by Algorithm 1
prior to iteration t are uniformly bounded by

‖eτ‖2 ≤ c

(
Φ+

χ2ι

µ2np

)
∀τ ≤ t

with probability at least 1− 6te−ι.

Proof. Starting from (8), by |f(xτ ) − f(xτ−1)| < fmax and the norm-subGaussian properties of ψτ and ξτ , we
have

Qτ+1 ≤
(
1− µ

3

)
Qτ +

µ

6
Qτ−1 +

24L̃2ηfmax

µ
+

24c(L̃2η2 + 1)

µ

χ2ι

np

for some constant c1, with probability at least 1 − 6e−ι. Due to our choice of η, there exists some constant c2
such that

Qτ+1 ≤
(
1− µ

3

)
Qτ +

µ

6
Qτ−1 +

c2χ
2ι

µnp
. (17)

By union bound, (17) holds for all τ < t with probability 1 − 6te−ι, thus a recurrence relation taking the form
in Lemma C.1 with

Q0 = 0, Q1 ≤ (1− µ)
1

n

n∑
i=1

∥∥∥∇fi(x0) +ψ
(i)
0

∥∥∥2 ≤ Φ.
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Following Lemma C.1, for all τ ≤ t

‖eτ‖2 ≤ Qτ ≤ c

(
Φ+

χ2ι

µ2np

)
for some constant c, which completes the proof.

C.2 Improve-or-localize behavior

Lemma C.3 (Improve or localize). Suppose that Assumptions 2.1*, 2.2, 2.5 hold. Let t0 and t be given arbitrarily.
There exists a constant c such that with probability at least 1− 7te−ι,

f(yt0)− f(yt0+t) ≥
1

16ηt
·max

τ≤t
‖yt0+τ − yt0‖

2 − cκηϵ
2(ηt+ ι).

Proof. For any τ ≤ t,

‖yt0+τ − yt0‖
2
=

∥∥∥∥∥∥
τ−1∑
j=0

(yt0+j+1 − yt0+j)

∥∥∥∥∥∥
2

= η2

∥∥∥∥∥∥
τ−1∑
j=0

[∇f(xt0+j) +ψt0+j ]

∥∥∥∥∥∥
2

(18)

≤ 2η2τ

τ−1∑
j=0

‖∇f(xt0+j)‖2 + 2η2

∥∥∥∥∥∥
τ−1∑
j=0

ψt0+j

∥∥∥∥∥∥
2

≤ 2η2t

t−1∑
j=0

‖∇f(xt0+j)‖2 + 2η2

∥∥∥∥∥∥
t−1∑
j=0

ψt0+j

∥∥∥∥∥∥
2

≤ 2η2t

[
8[f(yt0)− f(yt0+t)]

η
+ 6cη2L2

(
Φ

µ
+

χ2ι

µ2np

)
+ 8(c1ηL+ c2)

χ2ι

np

+

(
6cη2L2

µ2
+ 8c1ηL

)
χ2t

np

]
+

2η2c1χ
2(t+ ι)

np
(19)

with probability at least 1−7e−ι, as we use (2) in (18) and Lemma B.3 in (19). Rearranging the terms, for some
constant c we have

f(yt0)− f(yt0+t) ≥
‖yt0+τ − yt0‖

2

16ηt
−
[
cηt

χ2

np

(
η2L2

µ2
+ ηL

)
+ cη3L2

(
Φ

µ
+

χ2ι

µ2np

)
+ cη

χ2ι

np

]
≥ ‖yt0+τ − yt0‖

2

16ηt
−

[
cηt

(
κη

ι10
ϵ2 +

κ2
η

ι5
ϵ2

)
+ cηκη

ϵ2

ι5
+ cκη

ϵ2

Lι5
ι

]

≥ ‖yt0+τ − yt0‖
2

16ηt
− c1κη

ι5
ϵ2(ηt+ ι), (20)

where we take an appropriate c1 depending on c. By a union bound on (20) for all τ ≤ t, we simply take
maximum over all ‖yt0+τ − yt0‖

2 to finish the proof.

According to the result above, when the iterates move a long distance over a finite period (when
maxτ≤t ‖yt0+t − yt0‖ is large), the objective must receive a sufficient descent. On the contrary, if Algorithm 1
fails to significantly improve the objective, we conclude that maxτ≤t ‖yt0+t − yt0‖ must be small and the iterates
get stucked. This depicts an improve-or-localize behavior of Algorithm 1.

C.3 Escaping saddle points

Now, we consider an arbitrary t0 such that xt0 is an ϵ-strict saddle point (see Definition 4.2), and denote
H = ∇2f(xt0) for simplicity. Let v be the unit eigenvector corresponding to the eigenvalue −γ := λmin(H).
Recall that L-smoothness of f gives rise to a double-sided bound of the spectrum of H, i.e. any eigenvalue
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λ(H) ∈ [−L,L]. Hence, when xt0 is an ϵ-strict saddle point, H satisfies ‖H‖ = |λmax(H)| ≤ L and λmin(H) ∈
[−L,−√ρϵ).

We now define the concept of coupling sequences: the iterations generated by a pair of running instances of
PowerEF-SGD, with identical history information and symmetric randomness.
Definition C.4 (Coupling sequences). Let xt0 be an ϵ-strict saddle point, and denote H = ∇2f(xt0). Run two
instances A, A′ of Algorithm 1. Using the prime symbol ( ′ ) to distinguish the quantities generated by A′ from
those in A, we suppose the two instances satisfy

(i) the history information prior to t0 in A and A′ is identical, i.e.

x′
t0 = xt0 , e′t0 = et0 , e′t0−1 = et0−1, g′t0−1 = gt0−1;

(ii) A and A′ run with symmetric randomness after t0, in that for each client i and iteration t,

FCC′
p = FCCp, C′ = C, ∇̃pf

′
i = ∇̃pfi, ξ′t0+t = (I − 2vv⊤)ξt0+t,

where v is the unit eigenvector corresponding to λmin(H). Now, we say that {x′
t0+t}, {xt0+t} are coupling

sequences of iterates, and {y′
t0+t}, {yt0+t} are coupling sequences of corrected iterates. Moreover, we use the

hat symbol ( ˆ ) to denote the difference between a pair of quantities generated by A and A′, for example
x̂t0+t := x

′
t0+t − xt0+t.

In our defined symmetry, ξ′t0+t reverts the component of ξt0+t along the direction of v, and keep other components
intact. The symmetry of N (0, r2

d I) guarantees that their distributions are still identical. Combined with all the
other symmetries in Defition C.4, we conclude that the distributions of the coupling sequences are identical.

The difference between the coupling sequences of corrected iterates, ŷt0+t, admits a useful decomposition.
Proposition C.5 (Proposition B.12, Avdiukhin and Yaroslavtsev (2021)). For any t, it holds that

ŷt0+t = −(∆t + (Et + ηêt0+t) +Zt +Ξt),

where

∆t := η

t−1∑
τ=0

(I − ηH)t−τ−1δτ x̂t0+τ , δτ :=

∫ 1

0

∇2f(αx′
t0+τ + (1− α)xt0+τ )dα−H,

Et := η

t−1∑
τ=0

(I − ηH)t−τ−1(êt0+τ − êt0+τ+1),

Zt := η

t−1∑
τ=0

(I − ηH)t−τ−1ζ̂t0+τ ,

Ξt := η

t−1∑
τ=0

(I − ηH)t−τ−1ξ̂t0+τ .

According to Proposition C.5, ŷt0+t decomposes into a sum of four terms, each showing the effect of one type of
quantity that acumulates with time. Actually one can observe that ∆t reflects a cumulative dynamics of {xt0+t}
and {x′

t0+t}, Et + ηêt0+t a cumulative compression error, Zt a cumulative stochastic gradient noise, and Ξt a
cumulative artificial perturbation.

In order to bound ŷt0+t, it is then a natural choice to bound each of the components respectively.
Lemma C.6 (Cumulative error bound). Suppose that Assumptions 2.1*, 2.2, 2.5 hold. There exists a constant
c such that with probability at least 1− 12te−ι,

‖Et + ηêt0+t‖ ≤
cLη

γ

√
Φ+

χ2ι

µ2np
(1 + ηγ)t.
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Proof. Expand the definition of Et,

Et = η

(
t−1∑
τ=0

(I − ηH)t−1−τ êt0+τ −
t∑

τ=1

(I − ηH)t−τ êt0+τ

)

= η

(
t∑

τ=1

(I − ηH)t−1−τ (I − ηH − I)êt0+τ + (I − ηH)t−1êt0 − êt0+t

)

= −ηêt0+t − η2H

t∑
τ=1

(I − ηH)t−1−τ êt0+τ + η(I − ηH)t−1êt0

= −ηêt0+t − η2H

t∑
τ=1

(I − ηH)t−1−τ êt0+τ , (21)

where (21) is due to the initialization of coupling sequence, i.e. et0 = e′t0 . Hence

‖Et + ηêt0+t‖ ≤

∥∥∥∥∥η2H
t∑

τ=1

(I − ηH)t−1−τ êt0+τ

∥∥∥∥∥
≤ η2L

t∑
τ=1

(1 + ηγ)t−1−τ ‖êt0+τ‖ (22)

≤ η2L

t∑
τ=1

(1 + ηγ)t−1−τ ·max{‖et0+τ‖+
∥∥e′t0+τ

∥∥}
≤ c

√
Φ+

χ2ι

µ2np
η2L

2(1 + ηγ)t

ηγ
with prob. 1− 12te−ι (23)

≤ 2cηL

γ

√
Φ+

χ2ι

µ2np
(1 + ηγ)t with prob. 1− 12te−ι.

where we apply the spectral bound ‖H‖ ≤ L to (22) and apply Lemma C.2 to (23) respectively. Finally, 2c is
picked as the constant.

Lemma C.7 (Artificial noise dynamics). For any t, there exists a constant c such that

‖Ξt‖ ≤
c
√
ιηr

√
2npγd

(1 + ηγ)t

with probability at least 1− 2e−ι. Moreover, for t ≥ 2
ηγ ,

‖Ξt‖ ≥
√
ηr

3
√
6npγd

(1 + ηγ)t

with probability at least 2
3 .

Proof. This is a direct extension of Lemma 30, Jin et al. (2021).

Lemma C.8 (Coupling sequence dynamics). Suppose that Assumptions 2.1*, 2.2, 2.3, 2.5 hold, and

max{‖yt0+t − yt0‖ ,
∥∥y′

t0+t − yt0
∥∥} ≤ R ∀t ≤ I.

Then, for any t ≥ 2
ηγ , with probability at least 2

3 − 2t(6t+ 2d+ 1)e−ι, we have

‖ŷt0+t‖ ≥
√
ηr

6
√
6npγd

(1 + ηγ)t.



Sijin Chen, Zhize Li, Yuejie Chi

Proof. We will use induction to prove for all t ≥ 0 that

‖∆t + (Et + ηêt0+t) +Zt‖ ≤
√
ηr

6
√
6npγd

(1 + ηγ)t

with probability at least 1 − 2t(6t + 2d + 1)e−ι. With this at hand, we can then invoke Proposition C.5 and
Lemma C.7 to establish the desired lower bound for ‖ŷt0+t‖.

The claim holds trivially at t = 0. Now, suppose it holds as of t− 1.

Step 1: Bounding ‖∆t‖. Consider any τ ≤ t− 1. Under the assumption

max{‖yt0+τ − yt0‖ ,
∥∥y′

t0+τ − y′
t0

∥∥} ≤ R,
we have

max{‖xt0+τ − xt0‖ ,
∥∥x′

t0+τ − xt0

∥∥}
≤ max{‖yt0+τ − yt0‖ ,

∥∥y′
t0+τ − y′

t0

∥∥}+ ηmax{‖et0+τ‖+ ‖et0‖ ,
∥∥e′t0+τ

∥∥+ ∥∥e′t0∥∥}
≤ R+ 2cη

√
Φ+

χ2ι

µ2np
(24)

≤ R+
2cκηϵ

ι5L
≤ 2R, (25)

where Lemma C.2 yields (24), and (25) holds by setting κη ≤ κR
2c . Combined with Assumption 2.3, (25) implies

‖δτ‖ ≤ 2ρR. Now, by the inductive hypothesis and Lemma C.7,

‖x̂t0+τ‖ ≤ ‖ŷt0+τ‖+ η ‖êt0+τ‖ ≤ ‖∆τ + (Eτ + êt0+τ ) +Zτ‖+ ‖Ξτ‖+ η ‖êt0+τ‖

≤
√
ηr

6
√
6npγd

(1 + ηγ)τ +
c1
√
ιηr

√
2npγd

(1 + ηγ)τ + 2cη

√
Φ+

χ2ι

µ2np
(26)

≤ 2c
√
3ι

√
ηr

6
√
6npγd

(1 + ηγ)τ , (27)

where (26) is again an application of Lemma C.2, and (27) holds if we set r2

np ≥
24c2Ld

c21ι

(
Φ+ χ2ι

µ2np

)
η, which is

implied by κr ≥
2c
√

6κη

c1
. Then

‖∆t‖ = η

∥∥∥∥∥
t−1∑
τ=0

(I − ηH)t−1−τδτ x̂t0+τ

∥∥∥∥∥
≤ η

t−1∑
τ=0

(1 + ηγ)t−1−τ · 2ρR · 2c
√
3ι

√
ηr

6
√
6npγd

(1 + ηγ)τ

≤ 4c
√
3ιηIρR

√
ηr

6
√
6npγd

(1 + ηγ)t ≤ 4
√
3cκR

√
ηr

6
√
6npγd

(1 + ηγ)t

≤
√
ηr

18
√
6npγd

(1 + ηγ)t, (28)

where we set 4
√
3cκR ≤ 1

3 for (28).

Step 2: Bounding ‖Et + ηêt0+t‖. By Lemma C.6, with probability at least 1− 12te−ι,

‖Et + ηêt0+t‖ ≤
cLη

γ

√
Φ+

χ2ι

µ2np
(1 + ηγ)t ≤

√
ηr

18
√
6npγd

(1 + ηγ)t,

where the last inequality holds if we set r2

np ≥
1944c2L2d√

ρϵ

(
Φ+ χ2ι

µ2np

)
η, which is implied by κr ≥ 18c

√
6κη.
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Step 3: Bounding ‖Zt‖. By Lemma 31, Jin et al. (2021), with probability at least 1 − 4de−ι, there exists a
constant c2 such that

‖Zt‖ ≤
c2σ
√
ηι log d√
2npγ

(1 + ηγ)t ≤
√
ηr

18
√
6npγd

(1 + ηγ)t,

where the last inequality holds by setting κr ≥ 18
√
3c2.

Step 4: Completing the induction. By union bound, we have

‖∆t + (Et + ηêt0+t) +Zt‖ ≤ ‖∆t‖+ ‖Et + ηêt0+t‖+ ‖Zt‖ ≤
√
ηr

6
√
6npγd

(1 + ηγ)t

with probability at least

1− 2(t− 1)(6(t− 1) + 2d+ 1)e−ι − 2e−ι − 12te−ι − 4de−ι ≤ 1− 2t(6t+ 2d+ 1)e−ι,

which completes the induction.

From Lemma C.8, we observe that the difference between the coupling sequences has an exponential growth with
time t, under the assumption that the iterates get stuck around the saddle points. Intuitively, after a sufficiently
long period, it is contradictory to grow exponentailly and remain stuck at the same time. We now validate this
intuition and show that the iterates generated by PowerEF-SGD is able to escape the saddle points.
Corollary C.9 (Escaping saddle points). Suppose that Assumptions 2.1*, 2.2, 2.3, 2.5 hold. Then with proba-
bility at least 1

3 − I(6I + 2d+ 1)e−ι,
max
t≤I
‖yt0+t − yt0‖ ≥ R.

Proof. We run two instances of Algorithm 1 according to Definition C.4 to obtain the coupling sequences
{yt0+t}, {y′

t0+t}. Due to the identical distributions of {yt0+t} and {y′
t0+t}, it suffices to prove that the fol-

lowing event E holds with probability at least 2
3 − 2I(6I + 2d+ 1)e−ι:

max{‖yt0+t − yt0‖ ,
∥∥y′

t0+t − yt0
∥∥} ≥ R ∀t ≤ I.

Assume that E does not hold. By Lemma C.8, with probability at least 2
3 − 2I(6I + 2d+ 1)e−ι,

‖ŷt0+I‖ ≥
√
ηr

6
√
6npγd

(1 + ηγ)I ≥ 2R,

where we set I ≥
log 12R

√
6npLd√
ηr

log(1+ηγ) , which is satisfied when ι ≥ log 864npLdR2

ηr2 , meaning that ι can take Õ(1) with
respect to all the parameters. Then

max{‖yt0+I − yt0‖ ,
∥∥y′

t0+I − yt0
∥∥} ≥ 1

2
‖ŷt0+I‖ ≥ R,

which contradicts the assumption.

C.4 Convergence

Combining Corollary C.9 with the improve-or-localize behavior of PowerEF-SGD (Lemma C.3), we conclude
that the objective receives sufficient descent.
Lemma C.10 (Descent from saddles). Suppose that Assumptions 2.1*, 2.2, 2.3, 2.5 hold. Then with probability
at least 1− 7Ie−ι,

f(yt0+I)− f(yt0) ≤
1

4
F .

Moreover, with probability at least 1
3 − 2I(3I + d+ 4)e−ι,

f(yt0+I)− f(yt0) ≤ −F .
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Proof. By Lemma C.3, with probability at least 1− 7Ie−ι,

f(yt0+I)− f(yt0) ≤
cκη

ι5
ϵ2(ηI + ι)− 1

16ηI
·max

t≤I
‖yt0+t − yt0‖

2

≤ 2cκη

ι4

√
ϵ3

ρ
− 1

16ηI
·max

t≤I
‖yt0+t − yt0‖

2

≤ 1

4
F − 1

16ηI
·max

t≤I
‖yt0+t − yt0‖

2
, (29)

by setting κη ≤ κF
8c in (29). The first claim is now immediate. To prove the second claim, invoking Corollary

C.9, we have

1

16ηI
·max

t≤I
‖yt0+t − yt0‖

2 ≥ R2

16ηI
=

κ2
R

16ι4

√
ϵ3

ρ
≥ 5

4
F (30)

with probability at least 1
3 − I(6I + 2d + 1)e−ι, where we set κF ≤ κ2

R
20 . Taking this back to (29) implies that

f(yt0+I)− f(yt0) ≤ −F with probability at least 1
3 − 2I(3I + d+ 4)e−ι.

We arrive at the final stage to show the convergence to ϵ-SOSPs.

Proof of Theorem 4.4. All the iterates can be classified into three types, namely (i) iterates that are not ϵ-FOSPs,
(ii) ϵ-strict saddle points, and (iii) ϵ-SOSPs. By Theorem 4.3, we have showed that at most 1/4 of the iterates
are not ϵ-FOSPs. Therefore, it suffices to show that at most 1/4 of the iterates are ϵ-strict saddle points.

Similar to Theorem 16 of Jin et al. (2021), we define the following stopping times {z1, ..., zM} by

z1 = inf{τ : ‖∇f(xτ )‖ ≤ ϵ and λmin(f(xτ )) ≤ −
√
ρϵ},

zk = inf{τ > zi−1 + I : ‖∇f(xτ )‖ ≤ ϵ and λmin(f(xτ )) ≤ −
√
ρϵ},

with M = max{k : zk + I ≤ T}. Then we have

f(yT )− f(y0) =

M∑
k=1

[f(yzk+I)− f(yzk)]︸ ︷︷ ︸
T1

+ [f(yT )− f(yzM )] + [f(yz1)− f(y0)] +

M−1∑
k=1

[f(yzk+1
)− f(yzk+I)]︸ ︷︷ ︸

T2

.

According to Lemma C.10 and a supermartingale concentration inequality, with probability at least 1− 2I(3I +
d+ 4)T 2e−ι,

T1 ≤ −
(
3

4
M − c

√
Mι

)
F .

Applying union bound over all t0, t to Lemma C.3, with probability at least 1− 7T 3e−ι,

T2 ≤
cκη

ι5
ϵ2(ηT +Mι).

Suppose that more than T/4 iterates are ϵ-strict saddle points, then M ≥ T
4I . Now with probability at least

1− T 2(6I2 + 2dI + 8I + 7T )e−ι ≤ 1− 8T 2(I2 + dI + I + T )e−ι,

f(yT )− f(y0) ≤ −
(
3

4
M − c

√
Mι

)
F +

cκη

ι5
ϵ2(ηT +Mι)

≤ −
(
3

4
M − c

√
Mι

)
F +

cκη

ι5
ϵ2(4ηI + ι)M
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≤ −
(
3

4
M − c

√
Mι

)
F +

5cκη

ι4

√
ϵ3

ρ
M ≤ −1

2
MF (31)

≤ −TF
8I

, (32)

where we set M ≥ 64c2ι and κη ≤ κF
40c for (31). Clearly, by setting κT > 8

κF
, we have

T >
8Ifmax

F
=

8ι5fmax

κFηϵ2
.

Then (32) further gives f(yT ) − f(y0) < −fmax, which is a contradiction. This proves that at most 1/4 of the
iterates are ϵ-strict saddle points, hence establishes the theorem.


	INTRODUCTION
	Our contribution
	Related works
	Notation

	PROBLEM FORMULATION
	Nonconvex finite-sum minimization
	Local stochastic gradient oracle
	Communication compression

	PROPOSED ALGORITHM
	Fast Compressed Communication
	PowerEF-SGD
	Discussion

	PERFORMANCE GUARANTEES
	EXPERIMENTS
	Heterogeneous federated learning
	Escaping saddle points

	CONCLUSION
	TECHNICAL PREPARATION
	PROOF OF FIRST-ORDER CONVERGENCE
	Compression error bound
	Convergence

	PROOF OF SECOND-ORDER CONVERGENCE
	Uniform Error Bound
	Improve-or-localize behavior
	Escaping saddle points
	Convergence


