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Abstract

In this paper, we propose and conduct a com-
prehensive benchmark on moment localiza-
tion task, which aims to retrieve a segment
that corresponds to a text query from a sin-
gle untrimmed video. Our study starts from
an observation that most moment localiza-
tion papers report experimental results only
on a few datasets in spite of availability of
far more benchmarks. Thus, we conduct
an extensive benchmark study to measure
the performance of representative methods
on widely used 7 datasets. Looking further
into the details, we pose additional research
questions and empirically verify them, includ-
ing if they rely on unintended biases intro-
duced by specific training data, if advanced
visual features trained on classification task
transfer well to this task, and if computa-
tional cost of each model pays off. With a
series of these experiments, we provide multi-
faceted evaluation of state-of-the-art moment
localization models. Codes are available at
https://github.com/snuviplab/MoLEF. |

1 INTRODUCTION

Moment localization task aims to retrieve a segment
that corresponds to a text query from an untrimmed
and unsegmented video. Fig. [I] shows an example to
locate a moment corresponding to a query like “She
is using a small vacuum cleaner.” in a video, and
the expected answer is the start/end times of [11.85,
48.6] for the query. This task is more challenging and
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Query 3: She demonstrates how
to use the vacuum as she talks.

Query 1: A woman is standing
and talking in a kitchen.

Query 2: She is using a small
vacuum cleaner.

Figure 1: An example of moment localization.

complicated than other video tasks like action recog-
nition, requiring comprehensive understanding of the
video and the textual query, as well as alignment be-
tween them. This includes detecting and distinguishing
objects and actions that appear in the video, multi-
granular abstraction of a scene from the discovered
objects and actions, and general understanding of the
scene transitions and relation between scenes.

Taking advantage of recent advances in computer vision
and natural language processing, the existing studies
on this task have argued that the performance has been
significantly improved. Despite their claim, however,
it is still questionable if these state-of-the-art models
actually have advanced general capability on this task.
Our study starts from an observation that most moment
localization papers report experimental results on a
few (usually two) datasets, although there are more
widely-used standard benchmarks. A natural question
after this observation is what if we test these models
on other unreported datasets. Will they show a similar
trend, outperforming other baseline models, or is this a
result of more or less overfitting on a specific dataset?

Looking further into the details, one can easily real-
ize notable diversity across benchmark datasets. First
of all, each dataset contains videos covering diverse
domain. For instance, action videos (e.g., Activi-
tyNet Captions) tend to be shorter and focus on rel-
atively simpler actions, compared to cooking videos
(e.g., YouCook2), where a more complex sequence of
steps is illustrated. Also, the observed actions or ob-
jects from different domain are quite different. We can
easily imagine that the best moment localization model
may not be the same for these different types of videos.
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Second, the nature of annotations is diverse across
datasets. For example, one dataset tends to have longer
annotations (3060 sec), while another has shorter ones
(2-3 sec). Annotations may be concentrated at the be-
ginning of each video in a dataset, while more uniformly
spread over the entire video in another. Observing such
a variety, it is questionable if a model (implicitly) learns
such a bias and overfits to a particular case.

Third, the query text is also diverse across datasets.
One dataset may be annotated with more detailed de-
scriptions, while another may contain more concise and
abstract ones. The vocabulary in the annotations could
also be diverse, considering various topics covered by
different domains. In this paper, we conduct two exper-
iments with modified query texts: 1) the action verb is
masked out and 2) the action verb is left. Through the
experiments, we reconfirm that the moment localiza-
tion models take advantage of such correlations innate
in the domain and the particular dataset.

If the moment localization models do their job without
being biased, they would perform consistently well on
most datasets, by precisely understanding the mean-
ing of the query and the video and scoring candidate
moments based on precisely estimated relevance, re-
gardless of the peripheral conditions like domain or
length of the video and query. If not, however, it may
mean that the models achieve better performance than
they deserve by somehow relying on those irrelevant
conditions that should not be utilized for this task.

In this paper, we propose to scrutinize whether the
existing moment localization methods solve the task
legitimately. First, we compare the end-to-end perfor-
mance of recent state-of-the-art moment localization
models on a more complete set of benchmarks cover-
ing various domains, under controlled configurations
(Sec. [f]). Second, we examine further on how much
each method utilizes specific biases, e.g., the distribu-
tion of annotations and the query text (Sec. [6). Third,
observing that each previous study uses particular but
different feature representations for video and text, we
breakdown the bottleneck for the performance of mo-
ment localization between the representations wvs. the
modeling aspects (Sec. . Finally, we complete the
study by comparing computational cost of the com-
peting models and seeing if increased model size or
inference time can pay off the cost (Sec. . From ex-
tensive experimental comparisons, this study aims at
providing precise diagnosis on the current state-of-the-
art moment localization models and useful insights for
the future research directions.
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Figure 2: A common MLSV architecture.

2 THE MOMENT LOCALIZATION
PROBLEM

The moment localization, or temporal video grounding,
task aims at localizing a short fraction (segment) from
a given entire video described by a query sentence.
Formally, given a video X represented as a sequence
of N frames, {X; |t = 1,..., N}, where X; € R? is a
visual feature vector representing the ¢-th frame, and
a text query w represented as a sequence of L word
tokens, {w; | i = 1,..., L}, where w; € |V is the i-th
word token and V is the vocabulary set, the goal of
moment localization task is to estimate the conditional
probability p(s|w), where s is a video segment given by
s={x¢|t=ts,..,t}, with t, and t. as the indices of
the starting and end frames of the segment in X. The
estimated scores for a handful number of candidate
segments, proposed either explicitly or implicitly (see
Sec. |3| for more details), are sorted and the top-k are
evaluated.

Note that this task can be extended to moment local-
ization in video corpus (MLVC) (Zhang et al., [2020al),
where a corpus of videos (instead of a single video)
is given and the task aims to retrieve video segments
that are best described by the text query among all
videos in this corpus. To distinguish from this, the
single-video version is often referred to as moment lo-
calization in a single video (MLSV). We limit the scope
of our comparative study to MLSV, leaving MLVC as
an interesting future study.

3 RELATED WORK

3.1 Moment Localization Approaches

Existing MLSV methods are roughly classified into
three categories: 1) proposal-based, 2) proposal-free,
and 3) others. Most models consist of feature extrac-
tors, encoders, multimodal fusion modules, and predic-
tion heads, as illustrated in Fig.

Proposal-based approaches first generate multi-
ple candidate segments before matching them with
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the query. Depending on how they generate the pro-
posals, they are further classified into sliding-window-
based (Wu and Han| [2018} |Jiang et all [2019} [Ge et al.l
2019), proposal-generated (Xu et al.l [2019; |Chen and|
Jiang, 2019; |Xiao et al.,[2021c; |Liu et al., 2021al), anchor-

based (Yuan et al.,|2019a; Zhang et al., 2019a; Qu et al.
2020} Wang et al., [2020; [Chen et al.l 2018} Zhang et al.
019 : [Liu et all 2020, [2021D)), and 2D-based (Gao and

Xu| [2021; Hu et al., 2021} |Zhang et al.l [2020c; [Gao et al.|
2021} [Sun et al.| [2022; |Zheng et al., [2023). In this study,
we experiment with anchor-based and 2D-based meth-
ods, since the sliding-window and proposal-generated
methods suffer from high computational cost and show
relatively weaker performance. The anchor-based meth-
ods are also limited in that the lengths of proposals
are constrained to those of the pre-defined anchors.

Proposal-free approaches first compute a query-
aware video representation as a sequence of features,
and then predict the starting and ending frames of
the segment described by the query. They are further
classified into regression-based (Yuan et al. 2019b
[Lu et all [2019; [Ghosh et all 2019} [Zeng et all 2020
Mun et al. 2020} [Li et all 2021} [Chen et al., 2020al/bj
Chen and Jiang] [Kim et all 2021}
2023b} [Xiao et al [2021albt [Zhang et al. [2023c) and

span-based approaches (Zhang et al 2020b} Rodriguez

et all 2020} [Yu et al 2021} [Zhang et al. [2021blla; [Woo
et al.l [2022)). The regression-based methods are trained

to directly predict moment scores, exhibiting greater
computational efficiency than anchor-based methods.
The span-based methods treat the input video as a text
passage, advantageous for handling long videos.

In addition, weakly supervised approaches (Duan et al.l

2018, Wang et all 2021} [Yang et all Huang]
et al., [2021; |Chen and Jiang) [2021; [Song et all [2020)

introduce the MLSV task as an auxiliary task for repre-
sentation learning or other downstream tasks. Several
methods (Zheng et al., [2022alb) propose a weakly su-
pervised learning for MLSV, utilizing Gaussian masks
to capture query-related events in proposal generation.

There are a few other highly relevant tasks concurrently
studied. Spatio-temporal video grounding (Chen et al.
2019; [Sadhu et al., [2020; [Tang et al. [2020; |Zhang et al.!
2020dle} [Li et all, [2022) further extends the moment
localization to the spatial dimension, localizing a spatio-
temporal tube of an object described by a text query.
Action segmentation (Lea et al., 2017} |[Farha and Gall,
is another relevant task, temporally locating a
set of pre-defined actions, instead of a free-form text

query.

3.2 Comparative Studies on MLSV

There are a few existing works that have conducted
a comparative study on MLSV methods.
have raised the annotation bias issue and re-
organized ActivityNet and Charades-STA to differ-
entiate the moment distribution in the training and
test sets. Our work shares common motivation, but
separates them even more strictly, completely non-
overlapping the intervals. |Otani et al. (2020) have
raised the query text bias issue and performed action-
aware blind experiments by sampling timestamps with
the top verbs. Our work is distinguished from this
in that we conduct experiments with modified query
texts, masking out or solely leaving the action verbs.
For a more complete understanding, the readers are
encouraged to read recent surveys (Liu et al. 2021}
12023 Zhang et al., 2023a) on general MLSV, or one
focusing on activities (Yang et al., 2020).

4 COMPARATIVE STUDY DESIGN

Our study focuses on the following research questions:

1. Do the existing MLSV methods perform equally
well on videos from a variety of domains? More
generally, what are important factors to build an
MLSV model that performs uniformly well without
being affected by data characteristics? > Sec. [f]

2. How much are the MLSV methods affected by
the annotation bias and the query text bias? How
much do they get benefit from these biases? Which
method is more robust from these biases? > Sec.

3. For the MLSV task, which one is more important,
between feature representations and modeling?
How much benefit we get from stronger features?
> Sec. [7]

4. How efficient are the existing MLSV methods in
terms of model size and inference time? > Sec.

4.1 Experimental Settings

Benchmark Datasets. We use 7 standard
benchmark datasets for our experiments: Activi-
tyNet Captions (Krishna et all [2017), Charades-
STA (Gao et al, 2017), TACoS (Regneri et all
2013), DiDeMo (Anne Hendricks et al.) [2017),
YouCook2 (Zhou et al., 2018), MSR-VTT (Xu et al.,
2016), and TVR (Lei et al., [2020). Tab. [1] summarizes
general statistics of them, and Appendix [D] provides
the detailed descriptions. We employ the common ex-
perimental settings (e.g., video and text features) for
each dataset. See Appendix [B] for details.

Competing Models. The methods of the MLSV
task are classified into three categories: 1) proposal-
based, 2) proposal-free, and 3) others. Most models
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Dataset \ActivityNet Charades-STA TACoSorg DiDeMo YouCook2 MSR-VTT TVR
Video source YouTube Homes Lab Kitchen Flickr YouTube YouTube TV
Domain Open Indoor Activity Cooking Open Cooking Open TV show
# Videos 14,926 6,664 127 10,641 1,790 5,127 19,614
# Moments 71,722 11,733 3,290 48,228 13,828 7,110 97,444
# Text queries 71,957 16,050 18,818 75,431 13,829 142,220 98,070
Average # annotations per video ‘ 4.8 1.8 25.9 7.1 7.7 14 5.0
Vocab size 15,505 1,303 2,287 7,785 13,079 28,041 57,103
Average video length (sec) 117.6 30.8 287.1 53.8 315.4 426.1 76.1
Min/Max video length (sec) 1.6 / 755.1 5.7 /1944 48.8 / 1402.7 22.0 / 2150.4 44.3 / 1106.1 5.0 / 3602.0 2.0 / 272.0
Average moment length (sec) 37.1 8.2 6.1 7.5 19.6 15.1 9.1
Min/Max moment length (sec) 0.05 / 408.8 1.0 / 80.8 0.3 / 167.0 2.0 / 25.0 1.0 / 264.0 10.0 / 30.0 0.3 /239.4
Average query length (words) 13.2 6.2 8.8 7.6 8.8 9.4 12.2
Min/Max query length (words) 3/ 82 2/11 1/202 1/48 2/ 44 2/ 72 6 /107

Table 1: Statistics of benchmark datasets used in this study.

consist of feature extractors, encoders, multimodal fu-
sion modules, and prediction heads, as illustrated in
Fig. 2l We summarize representative models in each
category in Appendix [A]

For our study, we select recent state-of-the-art methods
among the anchor-based, 2D-based, regression-based,
and span-based ones. We exclude methods with in-
competent reported scores or those requiring excessive
computational cost (e.g., sliding-windows). If there
are multiple models with almost identical structure or
idea, we choose the most recent and competent one for
our study. From these criteria, we select the following
methods for our comparative study:

e Anchor-based approaches: TGN (Chen et al., 2018]),
CMIN (Zhang et al.l |2019b), CSMGAN (Liu et al.,
2020), IA-Net (Liu et al), 2021D)

e 2D-Map approaches: 2D-TAN (Zhang et al., 2020c),
RaNet (Gao et al., |2021)), MGPN (Sun et al 2022]),
TRM (Zheng et al., 2023)

e Regression-based methods: DRN (Zeng et al., 2020)),
LGI (Mun et al. [2020), PLRN (Kim et al., 2021)

e Span-based methods: VSLNET (Zhang et al.l |2020b),
TMLGA (Rodriguez et al., 2020), ReLoCLNet (Zhang
et al., 2021al), LVTR (Woo et al., 2022)

e Other models: CNM (Zheng et al.|
CPL (Zheng et al., 2022Db])

2022a)),

Detailed experimental settings for each method are
detailed in Appendix [C|

Evaluation Metrics. To measure the performance,
we adopt a commonly used metric for MLSV: Recall@k
with ToU=p (Escorcia et al., |2019; Lei et al.l 2020]).
It measures the ratio of test queries, having at least
one prediction within top-k retrieved moments whose
Intersection over Union (IoU) with the ground truth is
at least p. We set k=1 and p € {0.1,0.3,0.5,0.7} in
our experiments.

5 OVERALL COMPARISON

We first compare the overall MLSV performance of com-
peting models on all the benchmark datasets. Tab. [3]
reports the evaluation results, and we summarize no-
table observations below.

Observation 1 No specific method outperforms across
all domains; current models are rather specialized on a
specific domain or dataset.

On open domains (MSR-VTT and TVR), 2DTAN
and ReLoCLNet achieve the state-of-the-art across-
the-board, while on cooking videos (TACOS,,, and
YouCook2), MGPN, VSLNet, and CSMGAN perform
relatively stronger. On activity videos (ActivityNet and
Charades-STA), most models show decent performance,
since the authors have developed and evaluated them
on these datasets. Between the two action datasets,
there is no general tendency among models; CSMGAN
shows the strongest performance on ActivityNet, while
PLRN and MGPN are the strongest on Charades-STA.
However, they are not particularly competent on the
open domains. Nevertheless, there are a few relatively
robust models across datasets; e.g., 2DTAN.

Observation 2 Performance metrics measured at dif-
ferent IoU thresholds are usually in accordance, but not
always.

Tab. [3] indicates that the best performing models for
each dataset achieves the state-of-the-art with any IoU
threshold among {0.3,0.5,0.7}. However, there are a

2TGN is reproduced on the first 100 frames of MSR-VTT
due to the limitation on our computational resources.

3TRM uses DistilBERT (Sanh et al.,[2019) to extract
sentence and phrase features concurrently, following the
original setting.

4LVTR originally uses 4 sentences per video, but we use
only 1 for each video for fair comparison. This may explain
the lower performance.
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Figure 3: Distributions of the independent-identical and out-of-distribution test sets used for annotation bias
experiments.
= Dataset ActivityNet Charades-STA YouCook2
5 Ra@1l ToU@0.3 ToU@0.5 ToU@O0.7 ToU@0.3 ToU@O0.5 ToU@0.7 ToU@0.3 ToU@0.5 ToU@O.7
Setting IID OOD IID OOD IID 00D IID OOD IID OOD IID OOD IID OOD IID OOD IID OO0D
5 CMIN 68.23 17.71 | 50.39 8.94 | 28.81 1.77 | 65.42 41.58 | 50.95 32.42 | 23.51 20.91 | 49.06  7.09 | 34.38 3.60 | 13.65 1.91
f_g CSMGAN | 67.44 20.05 | 51.16 11.14 | 30.80 3.08 | 30.10 5.18 | 822 0.99| 0.68 0.00 | 45.52 6.49 | 31.46 3.85 | 12.71 1.56
< TA-Net 66.74 9.08 | 35.48 1.46 | 13.35 0.18 | 62.64 31.01 | 49.36 20.67 | 22.59 9.32 | 25.94 1.91 | 14.90 0.68 | 4.79 0.23
A 2D-TAN 63.25 22.73 | 49.09 13.81 | 34.38 2.82 | 62.44 42.44 | 4552 24.82 | 23.40 6.58 | 34.90 19.14 | 21.15 11.26 9.69 4.73
A RaNet 63.99 20.49 | 50.97 11.96 | 34.36  4.42 | 61.90 38.61 | 46.12 23.10 | 24.81  9.01 | 43.44 19.82 | 27.50 11.26 | 11.88  5.29
o DRN 63.51 19.33 | 47.56 896 | 28.98 3.17 | 59.24 11.67 | 36.96 3.70 | 1834 0.32| 13.02 0.00 | 6.77 0.00 | 1.77  0.00
~ LGI 66.57 15.74 | 49.78  8.22 | 31.14  3.08 | 42.68 33.99 | 26.70 17.93 | 11.33 493 | 9.79 0.68 | 4.90 0.11| 1.35 0.00
% VSLNet 60.76 20.46 | 44.24 12.14 | 28.71  5.14 | 63.12 35.71 | 45.31 21.30 | 26.84 10.73 | 32.81 2.48 | 20.00 1.35| 7.60 0.56
& TMLGA 46.48 21.02 | 28.60 10.56 | 17.39  4.60 | 59.88 22.30 | 43.70 14.98 | 22.25 7.89 | 44.69 22.30 | 30.00 14.98 | 15.62  7.89

Table 2: Annotation Bias. Performance on the IID and OOD test sets

on OOD, indicating they are relying on the annotation bias.

. Most methods drop their performance
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Figure 4: Labeled moments distribution with the top-1 words; (left): start-end points, (right): duration given the
start point.
+ Approach ActivityNet Charades-STA TACo0Sorg DiDeMo YouCook2 MSR-VTT TVR
S RGLLU | @.3 @05 @0.7| @0.3 @05 @0.7| @0.3 @05 @0.7| @0.3 @05 @0.7| @0.3 @05 @0.7| @0.3 @05 @0.7| @0.3 @05 @0.7
. TGN? 4551 2847 17.90| 50.51 34.38 16.26| 21.77 18.90 10.53| 29.70 1454 4.15| 515 220 0.65| 013 0.08 001] 1570 9.08 4.30
2 oMIN 63.61 43.40 23.88| 69.36 5252 27.49| 24.64 18.05 7.40| 26.84 1398 5.31| 5510 37.89 16.35| 8.80 3.33 1.04| 2203 11.06 4.15
S CSMGAN  68.52 49.11 29.15| 55.95 40.95 20.56| 33.90 27.09 10.64| 32.12 1633 5.88|64.12 49.05 27.37| 8.16 3.04 0.91| 25.62 13.75 5.98
< [ANet 67.14 4857 27.95| 63.91 61.29 37.91| 37.91 2627 8.06| 2152 9.86 2.74| 3416 21.48 9.11| 873 347 0.85| 25.64 1458 6.42
2DTAN 5945 4451 27.38| 60.32 39.81 23.31| 37.29 25.32 9.57| 30.80 16.75 8.72| 42.67 26.26 10.60|16.09 9.34 3.43| 42.74 28.92 17.57
~ RaNet 60.09 4559 28.67| 67.01 60.40 39.65| 43.34 3354 11.44| 32.07 1568 6.66| 50.57 35.28 18.21| 7.85 259 0.32| 24.19 1235 6.77
N MGPN 60.41 47.92 30.47| 6450 60.82 41.16|48.81 36.74 8.77| 29.24 16.86 9.88| 41.75 28.38 13.83| 8.06 3.92 1.34| 3298 23.24 13.55
TRM? 66.41 5044 31.18| 60.67 47.77 28.01| 18.44 1335 7.59| 30.16 17.10 8.94| 4210 28.84 14.49| 6.37 3.06 1.20| 41.09 29.66 17.14
., DRN | 60.99 45.45 24.36| 55.89 53.09 31.75| 9.47 565 3.20| 2947 1519 6.81| 1287 565 1.72| 805 3.95 1.36| 17.37 8.23 2.92
£ Lal 5852 4151 23.07| 72.96 59.46 35.48| 33.47 20.82 9.00| 31.60 1633 5.67| 24.91 1329 458| 1041 4.86 1.65| 24.27 13.67 591
PLRN 63.79 4448 26.81|73.17 59.73 37.28| 1406 9.02 4.30| 31.84 1640 6.22| 2357 1355 4.29| 9.72 445 1.65| 2938 17.51 8.16
VSLNet 6316 43.22 26.16] 70.46 5419 35.22| 29.61 24.27 20.03| 31.25 14.11 7.09| 3273 20.02 9.42| 7.31 3.33 1.55| 4231 2852 15.86
5 TMLGA  51.28 33.04 19.26] 67.58 52.02 33.74| 2454 21.65 16.46| 27.89 1417 6.83| 50.29 3557 19.19| 7.12 3.91 1.99| 1475 7.7 3.88
& ReLoCLNet 42.65 28.54 17.76| 48.58 23.93 8.82| 546 2.10 0.22|43.31 29.10 5.64| 828 252 0.69| 657 3.67 1.29[49.87 31.88 15.04
LVTR' | 28.73 1596 6.57| 51.72 3448 18.10| 508 195 0.00] 3275 20.82 13.13| 868 3.65 1.83| 6.40 240 042 1689 940 4.11
< CNM 55.68 33.33 13.08] 60.04 35.15 14.95] 1.08 005 000| 1823 484 1.24| 163 023 000| 393 171 090| 12.68 588 272
& CPL 53.67 3124 10.67| 5549 3534 17.24| 1.03 002 002| 2660 1159 4.08| 1271 261 0.32| 583 178 0.50| 1693 6.85 2.9

Table 3: Overall Comparison. R@Q1 with IToU@{0.3,0.5,0.7} of the representative methods on the end-to-end
moment localization task. The shaded scores are the reported ones in the original paper, while the rest are our

reproduction. The best reproduced score is marked with boldface.

2,3,4
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Figure 5: Distribution of the normalized length
of moments. Most datasets have a strong prior on
this distribution.

few exceptions. On ActivityNet and DiDeMo, CSM-
GAN and ReLoCLNet achieve the strongest perfor-
mance with lower IoU thresholds (0.3, 0.5), showing
relatively weaker performance with higher ones, respec-
tively. On the other hand, TRM and LVTR are the
strongest with higher IoU thresholds (0.7) on Activi-
tyNet and DiDeMo, respectively.

In conclusion, it is necessary to evaluate methods with
various IoU thresholds, since it is not always possible to
estimate performance using one threshold for another.
Appendix [F] provides mIoU metrics for this experiment.

6 EXPERIMENTATION ON BIASES

We further investigate if (and how much) more MLSV
methods take advantage of biases in datasets to localize

a moment. Specifically, we consider two types of biases:
annotation bias (Sec. and query text bias (Sec. .

6.1 Annotation Bias

Annotation bias indicates some underlying patterns
among the labeled moments. If the labeled moments
are selected uniformly randomly, e.g., in terms of the
start-end points and their length, the model may not
rely on any prior. In reality, however, even carefully de-
signed datasets may have unintentionally introduced bi-
ases; for instance, a dataset may contain more moments
starting at the beginning than later, or most moments
are shorter than 5 seconds, and so on. Fig. [} shows the
distribution of moments length, normalized by the cor-
responding video length. The labeled moments in most
datasets (except for ActivityNet, YouCook2) indeed
have a strong prior towards short moments, covering
< 20% of the video. The model might learn this bias
as prior, although the MLSV task itself is independent
of such prior.

Experimental design. We first merge the training,
validation, and test sets for each dataset and introduce

a custom split. Specifically, we first normalize the start
and end point of each moment for each video. Thus,
every video starts at 0 and finish at 1 regardless of
its length. AIl moments are sorted by their central
point and the last 10% are chosen as the test-OOD set
(see Appendix [H| for more details). The rest is divided
into training (70%), validation (10%), and test-1ID
(10%) sets uniformly randomly. We use ActivityNet,
Charades-STA, and YouCook2 for this experiment, as
they contain sufficient number of long-enough videos.
Fig. [3]illustrates their drastically different distributions
with a kernel density plot with a Gaussian kernel.

Observation 3 The existing approaches implicitly uti-
lize the label distribution of the dataset.

If the MLSV models are not affected by annotation
bias, the test performance should be identical with
the two splits. Tab. [2| indicates, however, all methods
significantly drop their performance on all datasets,
although the degree of drop varies. 2D-based and span-
based models are relatively more robust than others.

6.2 Query Text Bias

The model is expected to comprehend the query text
in full and use it to localize the corresponding moment
in the given video. If the annotation process is not
designed carefully, however, the model might focus only
on a sub-part of the query text, rather than the full sen-
tence to find the corresponding moment. Fig. [ plots
the distributions of the normalized moments with the
most frequent verbs on Charades-STA and TaCoSg,g,
indicating that these datasets actually have a specific
bias on the top-1 verbs. The moments containing the
word “open” in their queries in Charades-STA, for ex-
ample, have a consistent duration of around 20% of
the video, regardless of their start point. As another
example, the queries including “cut” in TACoS,,, are
located mostly at the front of the video, probably be-
cause cutting is needed often for ingredient preparation
at the beginning of cooking. From this observation,
we hypothesize that the model might easily locate a
moment based only on the action verb, instead of using
all other clues in the query. We name this as query text
bias, and investigate if the models rely on it.

Experimental design. We hypothesize that if the
models rely on the full sentence, they will not perform
well given only a part of the query. To verify this, we
evaluate models on two test sets : with modified query
texts 1) the action verb is masked out (M), 2) only the
action verb is left (A). If the model relies purely on
only one of them, it will maintain similar performance
on one, while severely fail on the other setting.

Observation 4 Models tend to rely more on the con-
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Ra@1 ToU@0.3 ToU@O0.5 ToU@O.7 ToU@0.3 ToU@O0.5 ToU@O.7
Method O M A| O M A| O M A| O M A| O M A| O M A
Dataset | ActivityNet | Charades-STA
5 CMIN 64.5 589 34.0 | 45.8 38.4 18.4 | 25.1 20.2 88 | 69.4 62.0 543 | 52.5 44.3 359 | 275 22.0 16.5
’§ CSMGAN | 66.1 64.8 46.7 | 46.5 42,5 259 | 26.2 22.7 14.1 | 56.0 32.6 23.1 | 41.0 9.0 5.2 | 20.6 1.2 0.5
< IA-Net 66.4 61.5 46.5 | 470 374 251|270 181 129|639 534 50.8 | 51.0 40.7 37.7 | 251 17.0 14.7
o) 2D-TAN 60.1 47.0 48.4 | 44.8 225 24.1 | 26.8 125 13.1 | 60.3 434 39.0 | 45.9 23.6 287 | 24.9 10.5 15.0
& RaNet 60.1 581 42.8 | 45.1 42.6 26.0 | 28.1 25.3 13.7 | 67.0 583 53.8 | 53.1 434 39.9 | 30.7 246 225
o0 DRN 61.0 58.7 45.2 | 425 38.8 23.0| 239 206 122|559 53.8 424 | 36.4 34.1 233 | 17.6 15.1 9.0
~ LGI 58.0 56.0 43.0 | 39.8 379 276|217 19.6 142 | 709 60.4 57.9 | 582 46.2 43.6 | 352 254 23.8
3 VSLNet 549 56.4 40.0 | 386 36.9 24.1 | 23.7 21.0 143 | 675 554 56 0 50.8 36.8 37 6 322 22.0 20.6
&  TMLGA 51.3 50.6 48.1 | 26.6 25.8 21.3 | 153 14.8 123 | 70.0 59.9 49.0 37.1 31.5 16.5 0.5
Dataset | TACoSorg | YouCook2
5 CMIN 274 214 104 | 184 135 6.4 7.4 4.6 2.6 | 55.1 44.2 17.0 | 379 30.0 104 | 164 12.1 3.9
S COSMGAN | 254 189 7 3 20.0 14.2 5.3 | 10.6 6.6 2.3 | 64.1 555 19.3 | 49.1 41.1 10 9 27.4  20.6 4.5
E TA-Net 24.7 16.5 16.8 11.6 ] 8.1 6.1 342 30.2 153 | 21.5 19.5 9.1 7.7 3.7
fa) 2D-TAN 32.1 2.9 19.2 1.7 9.6 1.3 0.9 | 42.7 9.3 8.6 | 26.3 5.2 10.6 2.1 1.6
& RaNet 25.2 228 11 3 204 18.7 11.4 104 5.0 | 50.6 45.1 19.1 | 35.3 30.7 10 8 18.2 15.3 4.6
&0 DRN 5.0 3.0 2.4 3.2 1.1 0.8 | 129 12.8 8.17 5.7 5.6 1.7 1.5
~ LGI 33 5 2.5 20 8 1.2 9.0 0.2 0.2 249 225 12,0 | 133 11.7 4.0 1.3
5 VSLNet 24.5 18.6 11 0 17.1 148 11.5 9.8 6| 327 249 152 | 20.0 14.2 6.4 3.3
t% TMLGA 21.6 18.9 19.0 16.1 13.4  10.2 50.3 43.6 18.9 | 35.6 28.7 11 3 19 2 15.1 5.2

Table 4: Query Text Bias. Performance on the original queries (O), those with action verb masked (M), and
only the action verb term (A). Most methods degrade their performance both on M and A, where the degree is
more severe on A, indicating they rely more on the context.

Category Approach ToU@0.1 ToU@0.3 TIoU@O0.5 TIoU@O.7
R@1 VGG C3D I3D | VGG C3D I3D | VGG  C3D I3D | VGG  C3D 13D
AN-based CMIN 34.05 35.44 59.40 | 15.32 19.79 45.29 | 4.52 7.37 28.41 | 0.96 2.19 10.33
CSMGAN | 29.38 34.95 67.71 | 5.09 19.83 55.95 | 0.57 6.51 40.95 | 0.03 2.10 20.56
TA-Net 68.11 66.39 72.92 | 54.46 53.44 63.91 | 39.48 38.71 50.98 | 20.60 20.98 25.06
2D-based 2D-TAN 65.24 60.40 69.30 | 55.81 51.23 60.32 | 41.91 39.44 45.86 | 24.30 22.88 24.87
RaNet 53.55 5897 74.75 | 42.11 47.29 67.01 | 29.05 31.53 53.09 | 1594 15.19 30.70
Regression DRN 62.53 64.20 66.34 | 50.03 54.10 55.89 | 34.18 41.50 36.35 | 17.05 23.90 17.60
LGI 65.31 63.06 79.17 | 49.57 43.93 70.94 | 31.47 24.52 58.15 | 13.52 9.20 35.19
Span-based VSLNet 74.99 62.61 78.61 | 56.22 44.83 67.49 | 34.56 25.57 50.77 | 19.05 11.76 32.16
TMLGA 11.05 22.98 82.77 | 5.99 1247 69.97 | 2.28 516 49.01 | 0.73 1.51 31.53

Table 5: Impact of Video Features. Using more advanced features (I3D) significantly improves performance

of most models (on Charades-STA).

texts than the action itself, even on action-centric
datasets.

On most datasets and with most models, performance
drop is more severe with the action-verb (A) than with
the context-only (M) queries. This indicates that in

most cases models do not excessively rely on the action.

On cooking domain (e.g., YouCook?2), it is expected to
perform well with the context than only with the verb,
since particular tools or ingredients may give more hints

than action like cutting to locate some cooking step.

Tab. [ indeed verifies that the performance significantly
drops on the set A more than on the set M.

Surprisingly, a similar trend is observed even on the
action-centric datasets. On ActivityNet, models suffer
from poor performance only with the action queries

(A), while most of them maintain performance with
action-masked queries (M) similar to the original full
queries (O).

7 ANALYSIS ON FEATURE
REPRESENTATIONS

On most previous experiments including ours, a single
designated video and text features (summarized in
Appendix have been used for the sake of convenience
and fair comparison. However, this practice hinders
comparison between different feature representations
on this task. With the advances in video representation
learning, a natural research question arises: are the
advanced features developed for video classification also
powerful for MLSV task?
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We choose Charades-STA dataset for this experiment,
because relatively more number of previous works have
utilized various features with this dataset. Tab. [
compares the performance of each model on Charades-
STA with commonly used 3 features: VGG (Simonyan
and Zisserman, 2014), C3D (Tran et al., [2015]), and
I3D (Carreira and Zisserman, [2017]).

Observation 5 Most models enjoy significant perfor-
mance boost with advanced video representations, imply-
ing that use of advanced features may be more important
than improving the model.

Tab. [5| indicates that each model not just achieves the
best performance with I3D, but also any I3D-based
model often outperforms all other models using simpler
features (C3D, VGG). Although it is expected that
I3D-based models would be stronger, the degree of
difference is indeed surprising. This implies that using
an advanced feature representation can be more impor-
tant than any other modeling aspects. Thus, model
development research is encouraged to be conducted
on top of the most advanced features.

Among models, however, some are more severely af-
fected while others still show relatively comparable
performance with simpler features. Specifically, TA-
Net, 2D-TAN, and VSLNet achieve reasonably good
performance even with VGG and C3D, just slightly lag-
ging behind its own I3D counter-pert. IA-Net achieves
consistent performance across features probably thanks
to its refinement of cross-modal correlation. TMLGA
is an example of the opposite side, best-performing
among [3D-based models, while the worst with simpler
features. This model seems to heavily depend on fea-
ture representations since its cross-modal interaction
only consists of the attention-guided dot-product. This
observation implies that a robust cross-modal interac-
tion may help to compensate for the drawbacks of the
specific feature representations. As the advanced fea-
tures tend to require longer inference time, performing
well on lighter and simpler features would be another
criterion when designing a model.

8 ANALYSIS ON
COMPUTATIONAL COST

In this section, we analyze efficiency of the models in
terms of the model size and inference time. Tab. [G]
summarizes the number of parameters and per-query
inference time of each model, measured on ActivityNet
with batch size 1 on a single NVIDIA A100 GPU.
Overall tendency is similar on other datasets as well.

Observation 6 Span-based models tend to be lighter,
while regression-based models (especially DRN) tend
to be heavier. Additional computational cost with a

Category Model ‘ # params Inference time
Anchor CMIN 8M 29.5 ms
-based CSMGAN 16M 33.6 ms
TA-Net 23M 23.1 ms
2D-based 2D-TAN 92M 31.8 ms
RaNet 91M 26.9 ms
Regression  DRN 681M 1019.4 ms
LGI 54M 59.0 ms
Span-based  VSLNet 5M 15.7 ms
TMLGA 4M 20.8 ms

Table 6: Computational Cost. Per-query inference
time measured on ActivityNet dataset.

heavier model does not always pay off.

Overall, the model size and inference time are positively
correlated, as expected. The actual time taken at
inference is not significantly different among anchor-
based and 2D-based models, while span-based models
are 1.5-2 times faster.

Combining this cost analysis with Tab. [3] however,
we observe that such a light model like VSLNet actu-
ally can be the strongest model on some dataset, e.g.,
TACoS. This means larger and heavier models may not
necessarily bring better performance, and it is crucial
to design a proper scale suited for the target dataset.

9 QUALITATIVE RESULTS

We illustrate a few qualitative examples with an anchor-
based (CSMGAN) and a span-based (ReLoCLNet)
model, providing valuable insights into the behavior of
these models.

First, in Fig. @(a), we observe that CSMGAN provides
a broad range of predictions that match with the text
appearing throughout the entire video. In contrast,
ReLoCLNet tends to predict only at the beginning of
the video. Considering that the ground truth moments
in the ActivityNet dataset often appear in the early
parts, the model might take some advantage of it even
if the model does not fully understand the video and
query text. Second, due to the nature that CSMGAN
generates multi-scale anchors as proposals, Fig. @(b)
shows that multiple proposals might confuse the model
generating long predictions, in the DiDeMo dataset
especially due to its short average moment length.

From these observations, we recognize that models not
fine-tuned for specific granularity tend to rely on these
biases, resulting in limited prediction varieties. Also,
certain models exhibit sensitivity to specific hyperpa-
rameters, such as clip length and maximum length of
the predicted span.
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(a) ActivityNet

(b) DiDeMo

Query 1 : Two people stand in a boxing ring.

0.00 h=---=mmmmmmm oo > 53.57

0.00 |---» 3.00

Query 1:

0.00 +--->» 10.00

0.00+---» 10.00

House comes into view.
5.00F------ » 15.00 Ground Truth
36.74 b--mmmmmmmo oo > 66.13 CSMGAN
5.00F------ > 15.00 ReLoCLNet

Query 2 : Ared bus drives behind the band

Ground Truth
78.08 t---------- »136.64 CSMGAN
ReLoCLNet

Figure 6: Qualitative results on ActivityNet and DiDeMo datasets

10 LIMITATION

We consider three limitations of our work as follows.
First of all, in a rapidly evolving field like MLSV, new
models are continuously developed, and thus the conclu-
sions we draw in this paper may not last for a long time
with the newly developed models. Second, although
we have tuned hyperparameters to ensure reasonable
performance of each model, there may be room for fur-
ther improvement due to the limitations in grid search.
We believe this unexplored gap would not change the
overall conclusions, but the actual figure might be more
or less different from the reported. Lastly, we had to
make a conscious decision to neglect specific conditions
of individual models in order to establish a standard
evaluation setting for a fair comparison. For instance,
TGN employs Inception-v4 video features in their orig-
inal paper, while we use C3D features for all models
to compare them under an identical setting. This stan-
dardization might overlook certain strategies employed
by individual models, potentially negatively affecting
their relative strengths.

11 SUMMARY

In this paper, we conduct a comprehensive comparative
study of the representative moment localization (on a
single video; MLSV) models on multiple benchmarks.
We summarize our conclusions from our observations,
answering to the research questions we pose in Sec. [4

1. No current MLSV method performs equally well
on videos from various domains. > Obs. [

2. Most current MLSV methods are significantly af-
fected by the annotation bias, but not so much by
the query text bias. > Obs. 3] and []

3. For the MLSV task, feature representation
looks significantly more important than modeling.
> Obs.

4. Larger models may not necessarily bring better
performance, so it is important to design a proper
scale suited for the target data. > Obs. [6]

Empirical evaluations conducted in this study reveal
that the current moment localization models are not as
strong and robust as we expect, e.g., over-engineered on
a specific video domain and relying on annotation bias
in the training set. This study also implies developing
a stronger feature representation from genuine video
understanding is essential for further improvement on
moment localization.
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Towards a Complete Benchmark on Video Moment Localization:
Supplementary Materials

A SUMMARY OF MOMENT LOCALIZATION APPROACHES

The methods of the MLSV task are classified into three categories: 1) proposal-based, 2) proposal-free, and 3)
others. Most models consist of feature extractors, encoders, multimodal fusion modules, and prediction heads, as
illustrated in Fig.

A.1 Proposal-based Approaches

Proposal-based methods first generate multiple candidate segments before matching them with the query.
Depending on how they generate the proposals, they are further classified to sliding-window-based (Wu and Han)|
2018} Jiang et all 2019} |Ge et al., |2019), proposal-generated (Xu et al., |2019; |(Chen and Jiang} 2019; Xiao et al.,
2021c; |Liu et al., [2021a)), anchor-based, and 2D-based. In this study, we consider anchor-based and 2D-based
methods for proposal-based approaches, because the sliding-window-based and proposal-generated methods suffer
from high computational cost and show relatively weaker performance.

Anchor-based approaches (Yuan et al., 2019a; |Zhang et al.| [2019a; (Qu et al., 2020; Wang et al., 2020|) generate
proposals with multi-scale anchors from input visual features before passing through encoders. TGN (Chen
et al., |2018)) introduces a dynamic single-stream architecture to capture fine-grained interactions between video
frames and the query. CMIN (Zhang et al.| [2019b) adopts multi-scale anchors based on different ratio of temporal
scales centered at each time step, followed by cross-modal interaction with syntactic structure of queries and
long-range semantic dependencies in videos. CSMGAN (Liu et all [2020) adopts multi-scale anchors similar to
CMIN, equipped with cross-modal and uni-modal graph attention networks. TA-Net (Liu et al., |2021b)) introduces
an iterative framework with co-attention and calibration to align semantics between the video and the query.
Anchor-based methods also suffer from a limitation that the lengths of proposals are constrained to those of the
pre-defined anchors.

2D-Map approaches (Gao and Xul, 2021} Hu et al., |2021) are proposed to overcome limitations of the anchor-
based methods. They compute a two-dimensional map to flexibly consider proposals starting and ending at
any point. 2D-TAN (Zhang et al., |2020c) models temporally adjacent relations of moments to match language
and video features. RaNet (Gao et al., [2021) presents a graph-based network to capture visual and query
representations by formulating this task as a video reading comprehension problem. MGPN (Sun et al.l |2022)
introduces reading strategies inspired by human reading habits through a multi-granularity perception network.
TRM (Zheng et al., [2023)) makes prediction at phrase-level, more fine-grained than the usual sentence-level, to
better understand each semantic entity in the sentence.

A.2 Proposal-free Approaches

Proposal-free methods first compute a query-aware video representation as a sequence of features, and then
predict the starting and ending frames of the segment described by the query. They are further classified into
regression-based and span-based approaches.

Regression-based methods (Yuan et all|[2019b; [Lu et al. [2019; |Ghosh et al., 2019; [Li et al., [2021; |Chen et al.,
2020aljb; |Chen and Jiang), |2020|) are trained to directly predict the scores of moments. DRN (Zeng et al.l 2020)
is composed of a dense regression network with a video-query interaction module to fuse the video and query
features hierarchically. LGI (Mun et al. 2020) is another regression-based method, performing a sequential query
attention to extract multiple semantic phrases from the text query and local-global video-text interaction to
capture relations between candidate segments and the phrase.
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PLRN (Kim et all 2021)) leverages semantic phrase representations following LGI (Mun et al., 2020), capturing
comprehensive contextual information with one semantic phrase using an efficient center-width location regression
loss.

Span-based methods (Yu et al.| 2021 |Zhang et al.,|2021b)), originally inspired by the reading comprehension task,
compute the probability of a video segment to be the start and end point of a target moment. VSLNET (Zhang
et al. |2020b)) tackles the MLSV task as a multi-modal question answering problem by treating the video as a text
passage and a moment as an answer span. A query-guided highlighting strategy is proposed to guide searching
the target moment. TMLGA (Rodriguez et al., 2020) predicts the start and end frames by attending relevant
features with guided attention and improves the capability of localization with a loss using the attended features.
ReLoCLNet (Zhang et al.l [2021a) is jointly trained on MLSV and MLVC tasks by utilizing both video-level
and frame-level contrastive loss to align visual and textual representations. LVTR (Woo et al., [2022) randomly
initializes proposals, explores time space, and then matches the corresponding target.

A.3 Other Approaches

In addition to the aforementioned approaches, weakly supervised learning approaches (Duan et al., [2018; [Wang
et all 2021; [Yang et all 2021; [Huang et al.l 2021; |Chen and Jiang), [2021; |Song et al., |2020) introduce the MLSV
task as an auxiliary task for representation learning or other downstream tasks. These methods are excluded from
our study as they do not target the MLSV as their main task. However, CNM (Zheng et al., |2022a)) proposes a
weakly supervised learning for MLSV, generating a proposal based on a Gaussian mask, not sliding windows.
Similarly, CPL (Zheng et al. |2022b)) also incorporates Gaussian proposals, but utilizing multiple masks that
jointly contribute to a unified positive proposal.

B DETAILED EXPERIMENTAL SETTINGS

Feature extractors. We employ the common experimental settings for each dataset. For video feature extractor,
we use pre-trained 13D (Carreira and Zisserman, 2017)) for Charades-STA, C3D (Tran et al., 2015) for ActivityNet,
TACoSore and MSR-VTT, VGG (Simonyan and Zisserman), 2014) for DiDeMo, S3D (Xie et all [2018)) pre-trained
on HowTol00M (Miech et al., |2019) with MIL-NCE (Miech et al.| [2020) for YouCook2, and RestNet-+I3D (Tran
et al., 2018) for TVR. For Charades-STA, ActivityNet, TACo0Ss, and MSR-VTT, the pre-trained network takes
16 video frames as one clip, and each clip overlaps 8 frames (the overlapping size is 0.5). For ActivityNet, we
conduct dimension reduction from 4096 to 500 by PCA, following the standard practice. For DiDeMo and TVR,
we use the officially provided visual features. In order to compare performance of different features (Sec. , we
additionally use C3D and VGG features for Charades-STA.

For textual representation, we utilize the pre-trained GloVe (Pennington et al.l |2014) embedding with d = 300
for all datasets except for TVR, where we use the officially provided RoBERTa (Liu et al.l |2019) features with
d = T768.

Training settings. We train all models with the Adam optimizer (Kingma and Ba, 2015)). We adopt the optimal
hyper-parameters reported in each original paper, and fine-tune them for several models whose performance is far
from the reported one.

C IMPLEMENTATION DETAILS

In this section, we provide more implementation details that are useful for reproducing our results.

We generally follow the training setup of the existing works. Each model is trained for up to 100 epochs, on a
single NVIDIA A100 GPU. The model and training hyperparameters are detailed for each benchmark dataset
below:

TGN. We use an LSTM for sentence encoding, and the number of the anchors is set to 20 for Charades-STA
and 100 for ActivityNet, respectively. Also, for TACoS, DiDeMo, YouCook2, MSR-VTT and TVR, we use 32
anchors. For training, we use the learning rate of 10~° and clipping gradient norm of 100. To refine extracted
samples, we set 0.85 as a threshold to extract positive samples and 0.15 for negative samples. The threshold for
non-maximum suprression is set to 0.55.
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CMIN. We cross-validate the anchor widths among {16, 24, 32, 40} for Charades-STA, {16, 32, 64, 96, 128,
160, 192} for ActivityNet, MSR-VTT, and TVR, and {8, 16, 32, 64} for TACoS, DiDeMo, and YouCook2. We
construct the CMIN model with 2 GCN layers for the sentence encoder and 2 attention layers for the video
encoder. We set the clearing threshold A to 0.3, and the high-score threshold v to 0.7. The final loss is controlled
with balance weight of 0.001.

CSMGAN. We use the same anchor widths as described in CMIN. We use 2 attention layers for the video
sentence encoder, and also 2 joint graph layers. The balance weight g in the final loss is set to 0.001 for ActivityNet
and 0.005 for TACoS and Charades-STA, respectively, and we set the high-score threshold 7 to 0.45 for all
datasets.

TIA-Net. This model also uses the same setting of anchors width adopted in CMIN. The balancing hyperparameter
« of the final loss is set to 0.001 for ActivityNet and 0.005 for TACoS and Charades-STA datasets. Also, the
high-score threshold A is set to 0.45.

2D-TAN. We divide the dataset into 2 groups, i.e., ActivityNet, MSR-VTT and TVR to group A, and TACoS,
DiDeMo and YouCook2 to group B, and we apply separate hyper-parameters for each group. The min/max
scaling thresholds, tyin and tyax, are set to 0.5/1.0 for group A and 0.3/0.7 for group B, respectively. Besides,
we use a 4-layer convolution network with kernel size of 9 for group A and an 8-layer convolution network with
kernel size of 5 for group B. 2D-TAN adopts either max-pooling and stacked convolution for moment features
extraction. We set corresponding clip-proposal modules for each, following the original paper.

RalNet. We use the same group division from 2D-TAN, and apply it to hyper-parameters of RaNet for each
group. The min/max scaling threshold of group A is 0.5/1.0, while that of group B is 0.3/0.7.

MGPN. We use a bi-GRU for sentence encoding and the number of layers is 2 for ActivityNet, Charades-STA,
DiDeMo, YouCook2, MSR-VTT, and TVR, while 3 for TACoS. Also, the size of all hidden states is 256 for all
datasets. For training, we set the learning rate to 1073,

DRN. At the first stage, we use a learning rate of 10~* for ActivityNet, DiDeMo, 10~° for Charades-STA,
TACoS, and 106 for MSR-VTT, TVR. At the second stage, the learning rate is decayed to 1/100 of the original
value, following the original paper. This rate is also used at the fine-tuning stage.

LGI. We use 3 semantic phrases for sequential attention network for Charades-STA, TACoS, DiDeMo, and
YouCook2 datasets (group A) and 5 semantic phrases for ActivityNet, MSR-VTT, and TVR datasets (group B).
Also, we set the weight of 0.3 and 0.2 in the distinct query attention loss for group A and B, respectively. The
number of heads of local-global video-text interaction is 4 and 5 for group A and B, respectively.

PLRN. We basically follow the training settings for LGI. We set a learning rate of 4 x 10~* at training.

VSLNet. We set the dimensionality of all hidden layers to 128. We set the convolutional kernel size to 7, and
the number of heads for multi-head attention to 8. We use an RNN for the predictor in the model. Also, to train
the model, we adopt the gradient clip norm of 1 and the weight in the highlight loss of 5.0.

TMLGA. We set the learning rate to 10~# and weight decay to 107°. Also, the dynamic filter consists of an
LSTM with an average pooling layer, and for the prediction head, we use a multi-layer perceptron. The video
feature size of the localization layer differs by dataset: 500 for ActivityNet, 1024 for Charades-STA, 4096 for
TACoS, DiDeMo, and MSR-VTT, 512 for YouCook2, and 3072 for TVR.

ReLoCLNet. We set the learning rate to 10~* for Charades-STA, DiDeMo, and YouCook2, and 10~° for
ActivityNet, TACoS, and TVR. The maximum length of video sequence is set to 128 for TVR and ActivityNet,
64 for Charades-STA, and 200 for other datasets. Besides, the maximum length of a text query is set to be 30 for
TVR and 64 for others, following the original setting.

CNM. For the Transformer encoder, we set the dimensionality of token embeddings to 256, the number of
attention heads to 4, and the number of layers to 3, respectively. At training, we set the contrastive loss parameters
51 = 0.1 and B3 = 0.15, respectively. The hyper-parameter « for controlling a variance over the Gaussian Mask is
set to 5.

LVTR. We set the learning rate to 10~ on every dataset and weight decay to 10~* for ActivityNet, Charades-STA,
TACoS, DiDeMo, MSR-VTT, and TVR, while 2 x 10~* for YouCook2. We measure the correspondence between
prediction and query based on dot product similarity for ActivityNet, Charades-STA, TACoS, DiDeMo, and
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YouCook2, while cosine similarity for MSR-VTT and TVR. Although this model is designed to use multiple
texts, we keep the number of input sentences per video to 1 to maintain the same experimental setting with other
models. This setting might have led to degraded performance overall.

TRM. To create phrases for each dataset, we parse the sentence using the pre-trained SRLBERT (Shi and Lin,
2019), following the original paper. We retain only the semantic roles that occur in roughly more than 1/10 of the
most frequent semantic role. The maximum number of frames is set to 64 for Charades and 256 for the others.
Other hyperparameters remain consistent with the original implementation.

CPL. We set the number of positive proposals as 8. For the transformer encoder and decoder, we constructed 3
layers, each consisting of 4 attention heads with hidden dimensionality of 256. In terms of hyperparameters, we
set 0 =9,7=0,8; =0.1,82 = 0.15, and a; = 1. g was selected from {0.1,1,5}, and X\ was set to be within the
range [0.13,0.15] depending on datasets. We chose loss-based strategy for final prediction, as it demonstrated
superior performance.

D DETAILS ON BENCHMARK DATASETS

ActivityNet Captions (Krishna et all 2017) is originally introduced for dense video captioning task but is also
adopted for MLSV. Its videos are originated from the ActivityNet dataset (Caba Heilbron et al., [2015), which
aims to recognize human actions in videos. Since the test set is withheld for a competition, we utilize the ‘vall’
partition for validation and ‘val2’ for testing, following previous works.

Charades-STA is adapted from an indoor activity recognition dataset called Charades (Gao et all 2017)), by a
semi-automatic process to make video-level descriptions to clip-level ones. As this dataset does not provide a
set-aside validation set, we take 10% of the training set for validation used for righteous model selection.

TACoS contains 127 cooking scenario videos collected from MPII Cooking Composite Activities dataset (Rohrbach
et al.,|2012), originally designed to recognize human activities in a kitchen. There are two versions, TACoS, (Reg{
neri et al., 2013) and TACoSapTan (Zhang et al., [2020c), and we use the former to compare the existing methods.
Since only a small proportion of videos are accompanied by a long text query, TACoS is considered more
challenging than other benchmarks. We follow the standard split of TAC0Sqe: 10,146 moment-query pairs for
training, 4,589 for validation, and 4,083 for testing.

DiDeMo (Anne Hendricks et al., [2017)) has its origin in an open domain dataset YFCC100M (Thomee et al.,[2016)),
containing over 100k Flickr videos. Among them, 10k videos with an average length of 53.8 seconds are selected.
Unlike other datasets, moments in DiDeMo start and end at a multiple of 5-seconds (e.g., ts = 10,t. = 15). We
follow the conventional split: 60,391, 7,679, and 7,361 video-query pairs for training, validation, and testing set,
respectively.

YouCook2 (Zhou et al., |2018]) contains 1,790 videos of 89 cooking recipes, taken at home with an unfixed camera.
Up to first 20 minutes of each video is annotated with temporal boundaries and described in natural language.
As this dataset does not provide a set-aside validation set, we take 10% of the training set for validation.

MSR-VTT (Xu et al., |2016) consists of clips and queries explaining each moment with annotations in 20
categories. From 7,180 videos, 10k clips are extracted and 200k sentences are labeled to them. This dataset is
originally designed for clip retrieval, providing frames only within the moment with its start and end timestamp
from its original video. We repurpose this dataset for MLSV by processing the entire video available on the web.
Excluding currently unavailable videos, we use 5,127 videos.

TVR (Lei et al., 2020) is composed of 20k videos and 98k manually annotated text descriptions from TV shows.
Since this dataset is stemmed from TV shows, videos and text queries contain rich social interaction between
characters, making the benchmark more challenging. Ground truth is provided only for training and validation
sets, while the test partition is withheld for a competition. Thus, we set-aside 1/8 of the training set for validation
and use the original validation set for testing.

E FEATURE ENCODERS AND MULTIMODAL FUSION METHODS

Our Moment Localization Evaluation Framework (MoLEF) implements various visual and textual feature encoders
as well as multimodal fusion methods that have been explored in literature.
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E.1 Video Encoder

Various visual representations are used to capture temporal dependencies within a video. TGN adopts a simple
LSTM to aggregate visual features. CMIN (Zhang et al. [2019b), CSMGAN [2020), and IANet
use multi-headed self-attention module to capture long-range semantic dependencies and then employ
bidirectional GRU to incorporate the contextual information. 2D-TAN (Zhang et al [2020c), RaNet
, and MGPN consist of variant convolution blocks with average pooling and max pooling,
to capture the contextual information in video features. VSLNet (Zhang et al., 2020b) and ReLoCLNet (Zhang
adopt Transformer blocks as a video encoder. LGI (Mun et al., 2020) and PLRN (Kim et al.} [2021

use an embedding layer followed by a ReLU function.

E.2 Text Encoder

For text encoders, several variants of LSTMs, GRUs, or Transformers are used to integrate the sequential
information. LSTM is employed for 2D-TAN (Zhang et al.l 2020c) and TGN (Chen et al., 2018), while RNN is
used for LGI (Mun et al.,|2020) and PLRN (Kim et al.,2021). RaNet (Gao et al., 2021) adopts a bidirectional
LSTM, and a bidirectional GRU is used for TANet (Liu et al. [2021b), TMLGA (Rodriguez et al., [2020)), and
MGPN 2022). CMIN (Zhang et al., [2019b) uses a bidirectional GRU and graph convolution block
networks to consider syntactic dependency graph. CSMGAN (Liu et all, [2020) uses convolutional blocks, LSTM,
and GRU layers to encode textual reperentations. VSLNet (Zhang et al., 2020b) and ReLoCLNet
2021a) employ Transformer blocks to capture better contextual representations of the query.

E.3 Multi-modal Fusion

Various multimodal fusion methods have been introduced to aggregate textual and visual features. As a simple
method, 2D-TAN (Zhang et all [2020c), ReLoCLNet (Zhang et al) [2021a)), LGI (Mun et al., [2020), RaNet
, and PLRN (Kim et al., use a Hardmard product to encode both text and visual representations,
and then employ additional layers such as convolution blocks, non-local blocks, or fully-connected layers. For a
better aggregation, TMLGA (Rodriguez et al. 2020) and MGPN adopt the attention mechanism.
Especially, IANet (Liu et al.,|2021b) propose inter- and intra-attention to consider modal relations and calibration
module for alignment refinement. CMIN (Zhang et al., [2019b]), TGN (Chen et al., |2018), and DRN
apply the attention mechanism, in conjunction with additional layers such as LSTM, bidirectional LSTM,
or cross-gating mechanism. VSLNet (Zhang et all, [2020b]) considers two-way attention mechanism to encode
visual-to-query and query-to-visual features, while CNM (Zheng et al., |2022a) and CPL (Zheng et al., 2022b) use
a Transformer block with mask conditioned attention. Also, CSMGAN applies a cross-modal
relation graph and self-modal relation graph to integrate information among cross-modal relations and to capture
self-attentive contexts within relations.

F MORE EXPERIMENTAL ANALYSIS

Tab. [l reports the performance of competing models on an additional metric, the mean Intersection over Union
(mloU):

mloU = i Z ﬂ ([53756]’ [tsate]) (1)

where [t,,t.] and [t,, fe] are the ground truth and predicted moments between start and end points, respectively,
and N is the number of samples. Along with the Recall@k with IoU=p analyzed in Sec. [d] the mIoU metric is
also often used for evaluation.

According to Tab. [[} the overall trend is similar to Recall@k with IoU=p in Tab. [3} for instance, CSMGAN
achieves the strongest performance on YouCook2, while LGI is the strongest on TACoS, and so on. However, some
models achieve relatively stronger performance in mloU. VSLNet, for example, achieves the best performance on
DiDeMo and TVR, while it lags behind other competing models in Recall@k with IoU=p. 2D-TAN is an example
of the opposite, achieving much stronger performance in Recall@k with IoU=p, while relatively weaker in mIoU.
This results indicates that evaluating in multiple metrics does matter to draw a more trustworthy conclusion
when compare models.
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Table I: Comparison results of mIoU (%) of the competing models.

Category Approach mloU 1
Dataset ActivityNet Charades-STA TACoS DiDeMo YouCook2 MSR-VTT TVR
AN-based TGN 33.46 36.75 15.03 20.53 3.80 0.60  10.47
CMIN 43.74 46.74 17.71 17.55 35.17 5.32 15.3
CSMGAN 46.18 22.87 13.03 20.5 43.25 1.32 17.94
TA-Net 46.30 43.11 16.11 14.02 21.81 5.35 17.92
2D-based 2D-TAN 43.36 41.59 21.63 21.01 27.04 7.92 18.34
RaNet 44.38 46.32 18.02 22.24 33.52 2.15 13.52
MGPN 44.35 47.58 14.59 20.19 27.73 5.63  23.03
TRM 45.78 44.92 13.10 20.36 27.98 4.74 28.55
Regression =~ DRN 36.16 43.01 4.09 20.83 8.84 5.72 11.69
LGI 40.73 45.35 22.51 21.01 16.24 7.27 16.54
PLRN 36.92 44.34 10.04 20.86 15.67 6.22 19.91
Span-based  VSLNet 40.48 47.61 17.32 22.30 22.77 5.88 30.16
TMLGA 35.61 48.21 14.39 19.30 36.15 6.05  13.85
ReLoCLNet 21.23 22.74 3.80 15.24 5.45 5.70 16.95
LVTR 20.95 33.83 4.24 22.07 6.69 4.83 12.05
Others CNM 36.77 32.90 3.09 17.86 6.60 746  13.12
CPL 34.39 33.65 3.24 17.38 13.67 6.85  14.57

G MOMENTS DISTRIBUTION OF DATASETS

In addition to the length of a video, we investigate the distribution of moments of each dataset with the start and
end point in Fig. [l Charades-STA and ActivityNet have a few dense points on the distribution, while others have
widely spread dense areas. As seen in this visualization, a model is subject to be biased to these densely observed
cases, instead of solving the task without prejudice. See Sec. for more discussion.

H DETAILED EXPERIMENTAL DESIGN ON BIAS

For the annotation bias experiment (Sec. , we create test-IID and test-OOD sets as follows. First, we merge
the training, validation, and test sets for each dataset and normalize the start and end point of each video
moment with each length. For example, the start/end moment of [0, 15] in a 30-seconds video is normalized
with [0,0.5]. Thus, all moments start as early as 0 and ends as late as 1, regardless of the length of the video
they belong to. Second, the normalized moments are sorted by the central point of each and the last 10% of
them are used for test-OOD set. For ActivityNet, Charades-STA, and YouCook2, we use the threshold of 0.55,
0.83, and 0.61, respectively. Third, the rest of the dataset is divided into training (70%), validation (10%) and
test-I1ID sets (10%), uniformly randomly. (Here, the ratio means from the original distribution including the
test-OOD partition.) Thus, the videos in different partitions do not overlap. Fig. |lI|shows the normalized moment
distributions of generated train and validation sets. As shown in Fig. 3] and Fig. [[I} the train, validation, test-IID
sets have similar distributions, but the test-OOD set has a completely different distribution.

For the query text bias experiment (Sec. , we generate two test sets: 1) the action verb is masked out (M),
and 2) only the action verb is left (A). To generate the sets, we use the part-of-speech tagging method of Spacy
libraryE If the part-of-speech tag of each token is a verb, the token is masked out for set M and left for set A.
Specifically, we consider the first verb for this generation process because the first verb usually contains the key
explanation of subjects in the described sentence.

I BROADER IMPACT

Video moment localization task requires a comprehensive understanding of the video and the textual query,
as well as alignment between them. Our work basically provides a common evaluation framework for current

"https://spacy.io/
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Figure I: Normalized moment distribution of all datasets.
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Figure II: Normalized moment distribution of ActivityNet, Charades-STA, and YouCook2 datasets, based on our
split for query-text bias experiment.

state-of-the-art models and experimental analysis on them using public datasets. Thus, basically, this work does
not bring any primary concern on fairness, privacy, or other foreseeable negative impacts on society. Potentially,
this work may assist numerous applications, such as video surveillance, robotic navigation, autonomous driving,
sports analytics, and more.

However, the datasets used in the comparison have not been created in a way considering fairness
or privacy (Jeon et al. [2022| [2023), although these datasets are widely used in computer vision research
community. Thus, models trained on these datasets might be biased to specific races, countries, or societies, and
the experimental conclusions that we have drawn on top of these models might have been affected as well. As our
study does not directly address this problem, this potential issue might remain unresolved.

Also, the technology itself that enables easy retrieval of a visual content from videos from natural language can
be ambivalent. This technology can be used for beneficial purposes (e.g., identifying theft or violence in security
camera, monitoring unapproved trespassing). However, if misused in scenarios such as unauthorized recording of
videos involving unidentified individuals, many previously overlooked aspects could be more easily discovered.
Also, video recordings should be more thoroughly protected and managed, since an information leak would cause
much more serious problems including privacy issues when equipped with this technology. Addressing these
aspects would likely require societal consensus and careful consideration.
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