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Abstract

We introduce the Random Oscillators Net-
work (RON), a physically-inspired recurrent
model derived from a network of heteroge-
neous oscillators. Unlike traditional recurrent
neural networks, RON keeps the connections
between oscillators untrained by leveraging
on smart random initialisations, leading to
exceptional computational efficiency. A rig-
orous theoretical analysis finds the necessary
and sufficient conditions for the stability of
RON, highlighting the natural tendency of
RON to lie at the edge of stability, a regime of
configurations offering particularly powerful
and expressive models. Through an extensive
empirical evaluation on several benchmarks,
we show four main advantages of RON. 1)
RON shows excellent long-term memory and
sequence classification ability, outperforming
other randomised approaches. 2) RON outper-
forms fully-trained recurrent models and state-
of-the-art randomised models in chaotic time
series forecasting. 3) RON provides expres-
sive internal representations even in a small
parametrisation regime making it amenable
to be deployed on low-powered devices and
at the edge. 4) RON is up to two orders of
magnitude faster than fully-trained models.

1 INTRODUCTION

Recurrent Neural Networks (RNNs) represent one of
the cornerstones of Machine Learning (ML) since its
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early beginning (Elman, 1990). The key characteristic
of RNNs is to encode temporal information present
in the input into the RNN parameters and its hidden
state. RNNs can be directly implemented in physical
systems as information-processing units (Hauser et al.,
2011; Nakajima et al., 2015; Wright et al., 2022; Lee
et al., 2022). This type of RNN leverages its intrinsic
nonlinear dynamics as a resource to empower analogi-
cal systems with flexible computation capabilities.
Following the footprints of these works, we investigate
a physically-inspired RNN derived from a continuous-
time ODE describing a network of oscillators. We cast
this model into the Reservoir Computing (RC) frame-
work (Lukoševičius and Jaeger, 2009) and we dub it
Random Oscillators Network (RON). RC is a flexible
paradigm of training RNNs which leverages an un-
trained nonlinear system (the reservoir) mapping input
signals into an high dimensional space, and adapting a
linear readout layer only, thus resulting in particularly
fast training (Nakajima and Fischer, 2021).
Oscillators represent an archetypal dynamical behavior
ubiquitous in nature that can be found in chemical
reactions such as Belousov–Zhabotinsky, electronic cir-
cuits like amplifiers, business cycles, central nervous
system diseases like Parkinson’s, pendulum clocks, fire-
flies’ light pulses, and others (Pikovsky et al., 2002).
This motivates us to inspect to what extent an un-
trained ensemble of input-driven heterogeneous oscilla-
tors can be exploited for time series processing. We take
inspiration from the coupled oscillatory RNN (coRNN)
(Rusch and Mishra, 2023), a recently proposed deep
learning model based on oscillators. We extend this
model to the case of heterogeneous oscillators coupled
only in the position variable, but being uncoupled in
the damping terms. Also, our RON follows the princi-
ples of RC by leveraging untrained hidden parameters.
Our contributions can be summarised as follows:

• We introduce the RON model (Section 2.3), and
prove it to be a generalisation of a popular RC
model used in many time series processing tasks,
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like classification (Jaeger et al., 2007), and fore-
casting (Jaeger and Haas, 2004).

• A theoretical analysis of stability (Section 3) re-
veals that the linearised RON exhibits a tendency
towards the identity mapping, a widely recognised
important feature in the context of deep learn-
ing (He et al., 2016), which in turns equips the
RON with an architectural bias towards the edge
of stability (Bertschinger and Natschläger, 2004).
Precisely, we provide an estimation of the Jaco-
bian’s norm of RON (Theorem 3.1), a characteri-
sation of its eigenspectrum (Theorem 3.2), and we
derive sufficient and necessary conditions (Propo-
sition 3.3) for the existence and uniqueness of an
asymptotically stable solution for RON.

• We test RON on several time series benchmarks
(Sections 5-6). In time series classification, RON
strongly outperforms randomised models on long-
term dependencies tasks and suffers only a slight
degradation in performance with respect to fully-
trained models, while being two orders of magni-
tude more efficient. On classification tasks requir-
ing medium to short-term memory with a relatively
small number of parameters, RON outperforms all
models, thus demonstrating remarkably expressive
internal representations. On chaotic systems fore-
casting, RON outperforms both state-of-the-art
randomised and fully-trained recurrent models.

2 FROM HARMONIC OSCILLATOR
TO RANDOM OSCILLATORS
NETWORKS

We first provide a gentle introduction to the damped
harmonic oscillator, framing it in the context of fading
memory systems. Then we introduce a recurrent layer
based on heterogeneous oscillators which takes advan-
tage of a fixed nonlinear dynamical system, called Ran-
dom Oscillators Network (RON), and a fully trained
version, called heterogeneous coupled oscillatory RNN
(hcoRNN). Finally, we link our RON model to a well-
known RC model called Leaky-ESN.

2.1 Damped harmonic oscillator

The harmonic oscillator is a mechanical oscillator
(Fig. 1(a)) with constant mass and linear damping.
The harmonic oscillator is described by the following
ODE, where we also include a time-varying forcing
f(t) ∈ R:

ÿ =
1

m
(f(t)− γ y − ε ẏ) . (1)

Here, y ∈ R, ẏ, and ÿ are defined as the oscillator po-
sition, its velocity, and acceleration respectively. Fur-

thermore, m is the point mass, γ ∈ [0,∞) the constant
stiffness, and ε ∈ [0,∞) the damping coefficient. We
consider in the following the case with m = 1. Such a
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(a) Schematic (b) Bode plot

(c) Evolution of a single oscillator a selection of (ε,W, b)

Figure 1: Panel (a): Schematic of a driven, damped
harmonic oscillator. Panel (b): Bode plot for har-
monic oscillators with different stiffnesses γ and damp-
ing coefficients ε. Panel (c): Time evolution of
a single harmonic oscillator with γ = 1 driven by
f(t) = tanh(W y+b) for various values of ε, W , and b.

simple system has already several properties that make
it ideal to serve as a fundamental cell of our learning
strategy.

First, different choices of γ and ε give rise to quite
different transient behaviors, as shown in Fig. 1(c).
This reflects in the capability of each oscillator to isolate
different portions of the spectrum of the input signal
f(t) as can be seen in the Bode plot of the configuration
y in Fig. 1(b). Also, note that the velocity ẏ can
serve as a high pass counterpart to y. Second, these
oscillators have fading memory. Indeed, the energy of
(1) is E = mẏ2/2+ γy2/2. This is a strictly decreasing
function of time for ε > 0, since Ė = −εẏ2. In rough
terms, the dynamical system forgets its initial condition
after a transient.

Still, the linear nature of (1) may be not expres-
sive enough. We thus consider a simple variation
on this system obtained by selecting the forcing as
the output of a one-dimensional neuron with a hy-
perbolic tangent as the activation function f(t) =
tanh(W y + b) where W,b ∈ R (see green and red
lines in Fig. 1(c)). This small change substantially
enriches the dynamic spectrum of this simple unit,
without changing its fundamental character. Consid-
ering a bias term b ̸= 0 also changes the equilibria
of the spring. The equilibria of the oscillator are now
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all y verifying tanh(Wy + b) − γ y = 0. For W < 0,
the oscillator becomes multi-stable with up to three
equilibria with one unstable and two stable ones.

2.2 Random Oscillators Network

We combine here several of the fundamental units de-
scribed above into a network of input-driven damped
harmonic oscillators that we will later use to perform
computations.

Let us start by introducing a pool of N decoupled
mechanical oscillators as in eq. (1):

ÿ = f(t)− γ ⊙ y − ε⊙ ẏ, (2)

where ⊙ denotes the point-wise multiplication of vec-
tors, γ, ε ∈ RN are the vectors collecting all γ and ε for
each of the oscillators. Similarly, y, ẏ ∈ RN collect all
position and velocity for each of the oscillators. Gen-
eralising the nonlinear spring tanh(W ȳ + b) discussed
above, we introduce here the following more expressive
feedback forcing term

f(t) = tanh(Wy +Vu(t) + b), (3)

where u(t) is the external input driving the network.
The forcing term f can be interpreted as in Fig. 2 as
an excitation layer (red box) driving the dynamics of
the subsequent layer of heterogeneous oscillators (blue
box). Being f a function of all configurations y, this
forcing term has the effect of nonlinearly connecting
the decoupled oscillators into a network. We notice
later in section 4 that this forcing term will generate a
closed-loop behavior akin to Rusch and Mishra (2023).

In ML terms, eqs. (2)-(3) describe a recurrent layer
with hidden state y ∈ RN , with N being the number of
neurons. W ∈ RN×N are the hidden-to-hidden recur-
rent connections, V ∈ RN×I are the input-to-hidden
connections, and b ∈ RN the bias vector. The hyper-
bolic tangent mediates a nonlinear bounded response
in the oscillators.

Introducing the variable z = ẏ, we get the following
first-order system of ODEs:

ẏ =z, (4)

ż =tanh(Wy +Vu(t) + b)− γ ⊙ y − ε⊙ z, (5)

that we discretise with an implicit (the ẏ equation), and
an explicit (the ż equation) Euler numerical scheme,
via discretisation time step τ > 0, as follows.

Definition 2.1. Random Oscillators Network
(RON). The RON is a discrete-time RNN model whose
update reads as follows:

yk+1 = yk+τzk+1,

zk+1 = zk+τ
(
tanh(Wyk +Vuk+1 + b)

−γ ⊙ yk − ε⊙ zk
)
.

(6)
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Nth Neuron

<latexit sha1_base64="CztDG2+kltRmos20+KOkHqdKbhU=">AAACCXicbVDLSsNAFJ3UV62vqEs3g63gqiTF17LgxpVWsA9oQ5lMJ+3QmSTM3BRK6Bf4C251707c+hVu/RKnbRa29cCFwzn3ci7HjwXX4DjfVm5tfWNzK79d2Nnd2z+wD48aOkoUZXUaiUi1fKKZ4CGrAwfBWrFiRPqCNf3h7dRvjpjSPAqfYBwzT5J+yANOCRipa9ul+xIM8IOmXAgCkeraRafszIBXiZuRIspQ69o/nV5EE8lCoIJo3XadGLyUKOBUsEmhk2gWEzokfdY2NCSSaS+dfT7BZ0bp4SBSZkLAM/XvRUqk1mPpm01JYKCXvan4n9dOILjxUh7GCbCQzoOCRGCI8LQG3OOKURBjQwhV3PyK6YAoQsGUtZDiy0nBlOIuV7BKGpWye1W+fKwUqxdZPXl0gk7ROXLRNaqiO1RDdUTRCL2gV/RmPVvv1of1OV/NWdnNMVqA9fULFumZmQ==</latexit>

Nth Oscillator

<latexit sha1_base64="tQ9+lo50UIBoTKRtWJm6U0D8rk8=">AAACCXicbVC7SgNBFJ2Nrxhfq5Y2g4lgFXaDrzJgY2cE84AkhNnJbDJkZnaZuRsIS77AX7DV3k5s/Qpbv8RJsoUmHrhwOOdezuUEseAGPO/Lya2tb2xu5bcLO7t7+wfu4VHDRImmrE4jEelWQAwTXLE6cBCsFWtGZCBYMxjdzvzmmGnDI/UIk5h1JRkoHnJKwEo91y3xEgzxvaFcCAKR7rlFr+zNgVeJn5EiylDrud+dfkQTyRRQQYxp+14M3ZRo4FSwaaGTGBYTOiID1rZUEclMN51/PsVnVunjMNJ2FOC5+vsiJdKYiQzspiQwNMveTPzPaycQ3nRTruIEmKKLoDARGCI8qwH3uWYUxMQSQjW3v2I6JJpQsGX9SQnktGBL8ZcrWCWNStm/Kl8+VIrVi6yePDpBp+gc+egaVdEdqqE6omiMntELenWenDfn3flYrOac7OYY/YHz+QNC/5m0</latexit>

ith Oscillator

<latexit sha1_base64="a3In6a/dc0UAbm/2Z+OuPDE7fBI=">AAACBXicbVC7SgNBFJ31GeMramkzGASrsBt8lQEbOyOYByRrmJ3MJkPmsczcFUJI7S/Yam8ntn6HrV/iJNnCJB64cDjnXs7lRIngFnz/21tZXVvf2Mxt5bd3dvf2CweHdatTQ1mNaqFNMyKWCa5YDTgI1kwMIzISrBENbiZ+44kZy7V6gGHCQkl6isecEnDSY2AB31nKhSCgTadQ9Ev+FHiZBBkpogzVTuGn3dU0lUwBFcTaVuAnEI6IAU4FG+fbqWUJoQPSYy1HFZHMhqPp12N86pQujrVxowBP1b8XIyKtHcrIbUoCfbvoTcT/vFYK8XU44ipJgSk6C4pTgUHjSQW4yw2jIIaOEGq4+xXTPjGEgitqLiWS47wrJVisYJnUy6XgsnRxXy5WzrN6cugYnaAzFKArVEG3qIpqiCKDXtArevOevXfvw/ucra542c0RmoP39Qu/opj6</latexit>

1st Oscillator

<latexit sha1_base64="TCSmDa9ykDXDoBPYbz27hvTJH5k=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqswUfOCq4MaFiwr2Ae1YMplMG5pJhiSjlKH/4caFIm79F3f+jWk7C209EDiccw/35gQJZ9q47rdTWFldW98obpa2tnd298r7By0tU0Vok0guVSfAmnImaNMww2knURTHAaftYHQ99duPVGkmxb0ZJ9SP8UCwiBFsrPRwa2NYIZsIZWr65YpbdWdAy8TLSQVyNPrlr14oSRpTYQjHWnc9NzF+hpVhhNNJqZdqmmAywgPatVTgmGo/m109QSdWCVEklX3CoJn6O5HhWOtxHNjJGJuhXvSm4n9eNzXRpZ8xkaSGCjJfFKUcGYmmFaCQKUoMH1uCiWL2VkSGWGFibFElW4K3+OVl0qpVvfPq2V2tUr/K6yjCERzDKXhwAXW4gQY0gYCCZ3iFN+fJeXHenY/5aMHJM4fwB87nD2+IknU=</latexit>

Linear readout
<latexit sha1_base64="A/91ND+BDBDG8dmwOilTVYQwOP0=">AAACD3icbVC7SgNBFJ2Nrxhfq5Y2g0GxCrsBH1gFbCyjmAckIcxO7iZDZmeWmdlAWPIHNv6KjYUitrZ2/o2TZAtNPHDhcM693HtPEHOmjed9O7mV1bX1jfxmYWt7Z3fP3T+oa5koCjUquVTNgGjgTEDNMMOhGSsgUcChEQxvpn5jBEozKR7MOIZORPqChYwSY6Wue3oPGtRIMoVliAdgQMk+CJCJxlJTxjkxUumuW/RK3gx4mfgZKaIM1a771e5JmkQgDOVE65bvxaaTEmUY5TAptBMNMaFD0oeWpYJEoDvp7J8JPrFKD4dS2RIGz9TfEymJtB5Hge2MiBnoRW8q/ue1EhNedVIm4sSAoPNFYcKxkXgaDu4xBdTwsSWEKmZvxXRAFKE2Fl2wIfiLLy+TernkX5TO78rFynUWRx4doWN0hnx0iSroFlVRDVH0iJ7RK3pznpwX5935mLfmnGzmEP2B8/kDCWidSQ==</latexit>

Reservoir of heterogeneous oscillators

<latexit sha1_base64="n1uspoVUdg3Tswz9F5PcpMEM76c="></latexit>

Untrained
<latexit sha1_base64="0XEbolM4eZE94y7TDl/nt9qK3qQ="></latexit>

Trained
<latexit sha1_base64="HAZqJurO5UCZ022CHznulB98OYw="></latexit>

r = Woy + bo

<latexit sha1_base64="XuOanP5Xzs/+nxZsWe+k317yY78=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxC3ZREfHRZcONKKtgHtKFMppN26GQSZm6EGvolblwo4tZPceffOGmz0NYDA4dz7uWeOX4suAbH+bYKa+sbm1vF7dLO7t5+2T44bOsoUZS1aCQi1fWJZoJL1gIOgnVjxUjoC9bxJzeZ33lkSvNIPsA0Zl5IRpIHnBIw0sAu90MCYz9Ig9ngrgpnA7vi1Jw58Cpxc1JBOZoD+6s/jGgSMglUEK17rhODlxIFnAo2K/UTzWJCJ2TEeoZKEjLtpfPgM3xqlCEOImWeBDxXf2+kJNR6GvpmMoupl71M/M/rJRDUvZTLOAEm6eJQkAgMEc5awEOuGAUxNYRQxU1WTMdEEQqmq5IpwV3+8ippn9fcq9rl/UWlUc/rKKJjdIKqyEXXqIFuURO1EEUJekav6M16sl6sd+tjMVqw8p0j9AfW5w9bvpLf</latexit>

fN (t)

<latexit sha1_base64="RdMYzDHzWwLNhMdrJf8JwCPAqMo=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0Wom5KIjy4LblxWsA9oQ5hMJ+3QySTM3Ag19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgkRwDY7zba2tb2xubZd2yrt7+wcV+/Coo+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeY3OZ+95EpzWP5ANOEeREZSR5ySsBIvl0ZRATGQZiFM5/X4Ny3q07dmQOvErcgVVSg5dtfg2FM04hJoIJo3XedBLyMKOBUsFl5kGqWEDohI9Y3VJKIaS+bB5/hM6MMcRgr8yTgufp7IyOR1tMoMJN5TL3s5eJ/Xj+FsOFlXCYpMEkXh8JUYIhx3gIecsUoiKkhhCpusmI6JopQMF2VTQnu8pdXSeei7l7Xr+4vq81GUUcJnaBTVEMuukFNdIdaqI0oStEzekVv1pP1Yr1bH4vRNavYOUZ/YH3+AIT7kvo=</latexit>

fi(t)

<latexit sha1_base64="CyE/GToch/GFjvYnoaLduw8IHOk=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURH10W3LisYB/QhjCZTtqhk0mYmQg19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgoQzpR3n21pb39jc2i7tlHf39g8q9uFRR8WpJLRNYh7LXoAV5UzQtmaa014iKY4CTrvB5Db3u49UKhaLBz1NqBfhkWAhI1gbybcrgwjrcRBm4cx3a/rct6tO3ZkDrRK3IFUo0PLtr8EwJmlEhSYcK9V3nUR7GZaaEU5n5UGqaILJBI9o31CBI6q8bB58hs6MMkRhLM0TGs3V3xsZjpSaRoGZzGOqZS8X//P6qQ4bXsZEkmoqyOJQmHKkY5S3gIZMUqL51BBMJDNZERljiYk2XZVNCe7yl1dJ56LuXtev7i+rzUZRRwlO4BRq4MINNOEOWtAGAik8wyu8WU/Wi/VufSxG16xi5xj+wPr8AS9zksI=</latexit>

f1(t)

<latexit sha1_base64="hzsojIQVSLvomwc+yd/doiXEIL8=">AAAB9HicbVDLSsNAFL3xWeur6tJNsAh1UxLx0WXBjcsK9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W2vrG5tb24Wd4u7e/sFh6ei4paNEUdakkYhUxyeaCS5ZEzkK1okVI6EvWNsf32V+e8KU5pF8xGnMvJAMJQ84JWgkrxcSHPlBmswqeNEvlZ2qM4e9StyclCFHo1/66g0imoRMIhVE667rxOilRCGngs2KvUSzmNAxGbKuoZKETHvpPPTMPjfKwA4iZZ5Ee67+3khJqPU09M1kFlIve5n4n9dNMKh5KZdxgkzSxaEgETZGdtaAPeCKURRTQwhV3GS16YgoQtH0VDQluMtfXiWty6p7U71+uCrXa3kdBTiFM6iAC7dQh3toQBMoPMEzvMKbNbFerHfrYzG6ZuU7J/AH1ucPn/eR/A==</latexit>

u(t)
<latexit sha1_base64="hzsojIQVSLvomwc+yd/doiXEIL8=">AAAB9HicbVDLSsNAFL3xWeur6tJNsAh1UxLx0WXBjcsK9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W2vrG5tb24Wd4u7e/sFh6ei4paNEUdakkYhUxyeaCS5ZEzkK1okVI6EvWNsf32V+e8KU5pF8xGnMvJAMJQ84JWgkrxcSHPlBmswqeNEvlZ2qM4e9StyclCFHo1/66g0imoRMIhVE667rxOilRCGngs2KvUSzmNAxGbKuoZKETHvpPPTMPjfKwA4iZZ5Ee67+3khJqPU09M1kFlIve5n4n9dNMKh5KZdxgkzSxaEgETZGdtaAPeCKURRTQwhV3GS16YgoQtH0VDQluMtfXiWty6p7U71+uCrXa3kdBTiFM6iAC7dQh3toQBMoPMEzvMKbNbFerHfrYzG6ZuU7J/AH1ucPn/eR/A==</latexit>

u(t)

<latexit sha1_base64="hzsojIQVSLvomwc+yd/doiXEIL8=">AAAB9HicbVDLSsNAFL3xWeur6tJNsAh1UxLx0WXBjcsK9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W2vrG5tb24Wd4u7e/sFh6ei4paNEUdakkYhUxyeaCS5ZEzkK1okVI6EvWNsf32V+e8KU5pF8xGnMvJAMJQ84JWgkrxcSHPlBmswqeNEvlZ2qM4e9StyclCFHo1/66g0imoRMIhVE667rxOilRCGngs2KvUSzmNAxGbKuoZKETHvpPPTMPjfKwA4iZZ5Ee67+3khJqPU09M1kFlIve5n4n9dNMKh5KZdxgkzSxaEgETZGdtaAPeCKURRTQwhV3GS16YgoQtH0VDQluMtfXiWty6p7U71+uCrXa3kdBTiFM6iAC7dQh3toQBMoPMEzvMKbNbFerHfrYzG6ZuU7J/AH1ucPn/eR/A==</latexit>

u(t)

<latexit sha1_base64="hzsojIQVSLvomwc+yd/doiXEIL8=">AAAB9HicbVDLSsNAFL3xWeur6tJNsAh1UxLx0WXBjcsK9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W2vrG5tb24Wd4u7e/sFh6ei4paNEUdakkYhUxyeaCS5ZEzkK1okVI6EvWNsf32V+e8KU5pF8xGnMvJAMJQ84JWgkrxcSHPlBmswqeNEvlZ2qM4e9StyclCFHo1/66g0imoRMIhVE667rxOilRCGngs2KvUSzmNAxGbKuoZKETHvpPPTMPjfKwA4iZZ5Ee67+3khJqPU09M1kFlIve5n4n9dNMKh5KZdxgkzSxaEgETZGdtaAPeCKURRTQwhV3GS16YgoQtH0VDQluMtfXiWty6p7U71+uCrXa3kdBTiFM6iAC7dQh3toQBMoPMEzvMKbNbFerHfrYzG6ZuU7J/AH1ucPn/eR/A==</latexit>

u(t)

<latexit sha1_base64="yUlAUZ+HyIgACerHnwervc2AvxA=">AAAB9HicbVDLSsNAFL3xWeur6tJNsAh1UxLx0WXBjcsK9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W2vrG5tb24Wd4u7e/sFh6ei4paNEUdakkYhUxyeaCS5ZEzkK1okVI6EvWNsf32V+e8KU5pF8xGnMvJAMJQ84JWgkrxcSHPlBOp1V8KJfKjtVZw57lbg5KUOORr/01RtENAmZRCqI1l3XidFLiUJOBZsVe4lmMaFjMmRdQyUJmfbSeeiZfW6UgR1EyjyJ9lz9vZGSUOtp6JvJLKRe9jLxP6+bYFDzUi7jBJmki0NBImyM7KwBe8AVoyimhhCquMlq0xFRhKLpqWhKcJe/vEpal1X3pnr9cFWu1/I6CnAKZ1ABF26hDvfQgCZQeIJneIU3a2K9WO/Wx2J0zcp3TuAPrM8fpheSAA==</latexit>

y(t)

<latexit sha1_base64="yUlAUZ+HyIgACerHnwervc2AvxA=">AAAB9HicbVDLSsNAFL3xWeur6tJNsAh1UxLx0WXBjcsK9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W2vrG5tb24Wd4u7e/sFh6ei4paNEUdakkYhUxyeaCS5ZEzkK1okVI6EvWNsf32V+e8KU5pF8xGnMvJAMJQ84JWgkrxcSHPlBOp1V8KJfKjtVZw57lbg5KUOORr/01RtENAmZRCqI1l3XidFLiUJOBZsVe4lmMaFjMmRdQyUJmfbSeeiZfW6UgR1EyjyJ9lz9vZGSUOtp6JvJLKRe9jLxP6+bYFDzUi7jBJmki0NBImyM7KwBe8AVoyimhhCquMlq0xFRhKLpqWhKcJe/vEpal1X3pnr9cFWu1/I6CnAKZ1ABF26hDvfQgCZQeIJneIU3a2K9WO/Wx2J0zcp3TuAPrM8fpheSAA==</latexit>

y(t)

<latexit sha1_base64="yUlAUZ+HyIgACerHnwervc2AvxA=">AAAB9HicbVDLSsNAFL3xWeur6tJNsAh1UxLx0WXBjcsK9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W2vrG5tb24Wd4u7e/sFh6ei4paNEUdakkYhUxyeaCS5ZEzkK1okVI6EvWNsf32V+e8KU5pF8xGnMvJAMJQ84JWgkrxcSHPlBOp1V8KJfKjtVZw57lbg5KUOORr/01RtENAmZRCqI1l3XidFLiUJOBZsVe4lmMaFjMmRdQyUJmfbSeeiZfW6UgR1EyjyJ9lz9vZGSUOtp6JvJLKRe9jLxP6+bYFDzUi7jBJmki0NBImyM7KwBe8AVoyimhhCquMlq0xFRhKLpqWhKcJe/vEpal1X3pnr9cFWu1/I6CnAKZ1ABF26hDvfQgCZQeIJneIU3a2K9WO/Wx2J0zcp3TuAPrM8fpheSAA==</latexit>

y(t)

<latexit sha1_base64="yUlAUZ+HyIgACerHnwervc2AvxA=">AAAB9HicbVDLSsNAFL3xWeur6tJNsAh1UxLx0WXBjcsK9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W2vrG5tb24Wd4u7e/sFh6ei4paNEUdakkYhUxyeaCS5ZEzkK1okVI6EvWNsf32V+e8KU5pF8xGnMvJAMJQ84JWgkrxcSHPlBOp1V8KJfKjtVZw57lbg5KUOORr/01RtENAmZRCqI1l3XidFLiUJOBZsVe4lmMaFjMmRdQyUJmfbSeeiZfW6UgR1EyjyJ9lz9vZGSUOtp6JvJLKRe9jLxP6+bYFDzUi7jBJmki0NBImyM7KwBe8AVoyimhhCquMlq0xFRhKLpqWhKcJe/vEpal1X3pnr9cFWu1/I6CnAKZ1ABF26hDvfQgCZQeIJneIU3a2K9WO/Wx2J0zcp3TuAPrM8fpheSAA==</latexit>

y(t)

<latexit sha1_base64="QTgahviERW7nwujbcBr6rEFm6+s=">AAAB+HicbVDLSsNAFL3xWeujUZduBotQNyURH10W3LisYB/QhjCZTtqhk0mYmQg19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgoQzpR3n21pb39jc2i7tlHf39g8q9uFRR8WpJLRNYh7LXoAV5UzQtmaa014iKY4CTrvB5Db3u49UKhaLBz1NqBfhkWAhI1gbybcrgwjrcRBm05nv1vS5b1edujMHWiVuQapQoOXbX4NhTNKICk04VqrvOon2Miw1I5zOyoNU0QSTCR7RvqECR1R52Tz4DJ0ZZYjCWJonNJqrvzcyHCk1jQIzmcdUy14u/uf1Ux02vIyJJNVUkMWhMOVIxyhvAQ2ZpETzqSGYSGayIjLGEhNtuiqbEtzlL6+SzkXdva5f3V9Wm42ijhKcwCnUwIUbaMIdtKANBFJ4hld4s56sF+vd+liMrlnFzjH8gfX5A0yxktU=</latexit>

y1(t)

<latexit sha1_base64="QaXP/oZ8ivf0aC2BgjnJO/03i0I=">AAAB+HicbVDLSsNAFJ3UV62PRl26CRahbkoiProsuHElFewD2hAm00k7dDIJMzdCDP0SNy4UceunuPNvnLRZaOuBgcM593LPHD/mTIFtfxultfWNza3ydmVnd2+/ah4cdlWUSEI7JOKR7PtYUc4E7QADTvuxpDj0Oe3505vc7z1SqVgkHiCNqRvisWABIxi05JnVYYhh4gdZOvPu6nDmmTW7Yc9hrRKnIDVUoO2ZX8NRRJKQCiAcKzVw7BjcDEtghNNZZZgoGmMyxWM60FTgkCo3mwefWadaGVlBJPUTYM3V3xsZDpVKQ19P5jHVspeL/3mDBIKmmzERJ0AFWRwKEm5BZOUtWCMmKQGeaoKJZDqrRSZYYgK6q4ouwVn+8irpnjecq8bl/UWt1SzqKKNjdILqyEHXqIVuURt1EEEJekav6M14Ml6Md+NjMVoyip0j9AfG5w94/JLy</latexit>

yN (t)

<latexit sha1_base64="bk2d6TYGdwf0bOWcnNyVDWjr3r0=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0Wom5KIjy4LblxWsA9oQ5hMJ+3QySTM3Ag19EvcuFDErZ/izr9x0mahrQcGDufcyz1zgkRwDY7zba2tb2xubZd2yrt7+wcV+/Coo+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeY3OZ+95EpzWP5ANOEeREZSR5ySsBIvl0ZRATGQZhNZz6vwblvV526MwdeJW5BqqhAy7e/BsOYphGTQAXRuu86CXgZUcCpYLPyINUsIXRCRqxvqCQR0142Dz7DZ0YZ4jBW5knAc/X3RkYiradRYCbzmHrZy8X/vH4KYcPLuExSYJIuDoWpwBDjvAU85IpREFNDCFXcZMV0TBShYLoqmxLc5S+vks5F3b2uX91fVpuNoo4SOkGnqIZcdIOa6A61UBtRlKJn9IrerCfrxXq3Phaja1axc4z+wPr8AaI5kw0=</latexit>

yi(t)
<latexit sha1_base64="hoBqqB3eOoM8B0BkTh12tqoQS0E=">AAAB9HicbVDLSsNAFL3xWeur6tJNsAh1UxLx0WXBjcsK9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W2vrG5tb24Wd4u7e/sFh6ei4paNEUdakkYhUxyeaCS5ZEzkK1okVI6EvWNsf32V+e8KU5pF8xGnMvJAMJQ84JWgkrxcSHPlBqmYVvOiXyk7VmcNeJW5OypCj0S999QYRTUImkQqiddd1YvRSopBTwWbFXqJZTOiYDFnXUElCpr10HnpmnxtlYAeRMk+iPVd/b6Qk1Hoa+mYyC6mXvUz8z+smGNS8lMs4QSbp4lCQCBsjO2vAHnDFKIqpIYQqbrLadEQUoWh6KpoS3OUvr5LWZdW9qV4/XJXrtbyOApzCGVTAhVuowz00oAkUnuAZXuHNmlgv1rv1sRhds/KdE/gD6/MHm1+R+Q==</latexit>

r(t)

<latexit sha1_base64="OBAab7U9r9hqi2bFWXwkj7owot0="></latexit>

ÿ = tanh(Wy + Vu(t) + b)�� � y � "� ẏ

<latexit sha1_base64="nEFptQE6pHrRqP5yFHCPKYTn1RE="></latexit>

Input
<latexit sha1_base64="Q8wYIT86BK7T0yy9IpY32Z8Dc7k="></latexit>

Output

Figure 2: The Random Oscillators Network (RON)
consists of N harmonic oscillators forced by coupled
neurons with hyperbolic tangent activations. A linear
output layer maps the states of the mechanical oscilla-
tors in the desired output. This layer is the only one
that is adapted during learning.

The hidden states yk computed by eqs. (6) are exploited
as features encoding crucial temporal information for
the processing of the discretised input time series uk.
To solve time series tasks, we stack a linear layer trans-
forming the hidden state y to an output state r as
follows:

rk+1 = Woyk+1 + bo (7)

where Wo,bo, are weights and biases of the output
layer. Eqs. (6)-(7) describe an RNN model mapping
input sequences uk into output sequences rk, see Fig. 2
for a schematic representation of RON model.

In RON, the parameters W,V,b, of the feedback forc-
ing term are randomly generated and kept fixed. Pre-
cisely, they are generated according to a uniform distri-
bution in (−2, 2) for W, (0, 1) for V and (−1, 1) for b.
Then, in line with the RC framework, the matrix W
is scaled with an hyperparameter ρ > 0 which tunes
its spectral radius, and the matrix V is scaled with
an hyperparameter ν > 0 (see Lukoševičius (2012) for
a practical guide to RC techniques). Similarly to ρ,
and ν, also the stiffness and damping coefficients of
the oscillators, respectively γ, and ε, are treated as
hyperparameters of the RON to be selected via valida-
tion techniques. In practice, we create heterogeneous
oscillators selecting a midpoint and a radius for each γ
and ε, thus generating uniformly random values within
that interval. An important feature of RON is the het-
erogeneity of input-driven responses of its reservoir of
oscillators. This heterogeneity allows the linear readout
to extract more easily the crucial features for solving
the task at hand. Remarkably, entries of Wo,bo, are
the only trainable parameters of an RON, and we use
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ridge regression for learning them. The scalar value τ
in eqs. (6) is linked to the step size of the numerical
integration. Therefore, if one wants to discretise the
continuous-time model for the sake of merely reproduc-
ing the continuous-time dynamics, then an opportunely
small value of the step size is required. However, here
we are not interested in reliably simulating trajecto-
ries of the continuous-time dynamical system defined
by eqs. (4)-(5), but rather to investigate the expres-
siveness of the physically-inspired discrete-time RNN
model of eqs. (6) that we derived. As a consequence,
in the remainder of this paper, we will treat τ > 0 as a
hyperparameter.

In order to evaluate the impact of randomisation, we
consider a version of RON, that we call heterogeneously
coupled oscillatory RNN (hcoRNN), where parameters
W,V,b, of the feedback forcing term are learned via
the backpropagation through-time algorithm. Whilst
we consider τ, ε,γ, as hyperparameters of the hcoRNN
model.

2.3 RON as Leaky-ESN

In the particular case of eqs. (6) with ε ≡ 1

τ
, the

z-dynamics become completely determined by the y-
dynamics. Therefore, the hcoRNN equation becomes

yk+1 = yk + τ2 tanh(Wyk +Vuk+1 + b)− τ2γ ⊙ yk.

Interestingly, setting further γ ≡ 1, we recover a popu-
lar RC model named Leaky-ESN (Jaeger et al., 2007),
whose state-update equation reads as follows:

yk+1 = τ2 tanh(Wyk +Vuk+1 +b) + (1− τ2)yk. (8)

In the context of eq. (8), the hyperparameter τ is
interpreted as the squared root of the leak rate of the
model.

The Leaky-ESN model has been successfully used in
many ML tasks involving time series, like audio process-
ing (Jaeger et al., 2007). Remarkably, the Leaky-ESN
with linear output layer as in eq. (7) can accurately
learn the climate of chaotic attractors (Lu et al., 2018).

From this perspective, the RON can be interpreted as
a generalisation of the Leaky-ESN model, and as such
it has the capability to describe both stable complex
oscillatory dynamics and chaotic dynamics, provided
with an opportune choice of hyperparameters.

3 LINEAR STABILITY ANALYSIS

In this section, we perform a linear stability analysis
of the RON model (Definition 2.1). All the proofs
can be found in the Supplementary Material. Let

us denote Xk =

(
yk

zk

)
. Then, the RON model can

be defined by the input-driven state-update equation
Xk+1 = G(Xk,uk+1), where G : R2N × RI → R2N

is defined by eqs. (6). The Jacobian of the G map
computed on (Xk,uk+1), denoted with Jk, reads:

Jk =

[
∂yk+1

∂yk

∂yk+1

∂zk
∂zk+1

∂yk

∂zk+1

∂zk

]
= (9)

=

[
I+ τ2Ak τ

(
I− τdiag(ε)

)
τAk I− τdiag(ε)

]
, (10)

where

Ak =SkW − diag(γ), (11)

Sk =diag
(
1− tanh2(Wyk +Vuk+1 + b)

)
. (12)

A widely known stability condition for RC systems
(Jaeger, 2001) is given by imposing that the Jacobian
is a contraction. This condition of contraction implies
the existence and uniqueness of a uniformly asymp-
totically stable solution for the input-driven system,
and it is expressed by imposing the Euclidean norm
of the Jacobian to be uniformly less than 1 (Ceni
et al., 2020). From eq. (9) we can already see that

Jk = I+ τ

[
τAk I− τdiag(ε)
Ak −diag(ε)

]
has a bias towards

the identity mapping for small values of τ . We provide
below an upper bound for the Euclidean norm of the
Jacobian of eq. (9) based on the following quantities

ξ =max
j

|1− τεj |, (13)

η =max
j

|1− τ2γj |, (14)

σ =||W||, (15)

while we denote γmax = maxj γj , εmax = maxj εj , and
similarly for the min values we use γmin, εmin.

Theorem 3.1. The norm of the Jacobian matrix of
the RON model admits the following upper bound

||Jk|| ≤ max(η + τ2σ, ξ) + τ max(ξ, γmax + σ). (16)

In particular, for τ ≪ 1, and assuming εmin > 0, and
γmax ≥ 1, the bound reads as follows:

||Jk|| ≤ 1 + τ(γmax + σ) +O(τ2). (17)

Theorem 3.1 highlights that although the entire eigen-
spectrum can be uniformly bounded around a neigh-
bourhood of the identity by means of τ , it is a hard task
to find combinations of hyperparameters ensuring that
supk ||Jk|| < 1, and so ensuring uniform asymptotic
stability for the RON model. One interesting example

is given by the particular case of ε ≡ 1

τ
, where the
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y-dynamics becomes decoupled from the z-dynamics,
as observed in the previous section; we provide suffi-
cient conditions for contractivity for such a particular
case in the Supplementary Material. In the general
case, imposing the upper bound of eq. (16) to be less
than 1, we obtain sufficient conditions for a contrac-
tive RON, thus a uniformly asymptotically stable RON
in particular. For sake of conciseness, these sufficient
conditions for a contractive RON are reported in the
Supplementary Material.

These sufficient conditions define a very narrow region
of hyperparameters. The difficulty to satisfy these
sufficient conditions reflects how disinclined is RON
to this strong condition of stability. Imposing such
strict conditions of contractivity on the RON model
might harm its expressiveness. We might relax the
request of contracting at each time step in favour of
the less stringent requirement of having all the eigen-
values inside the unit circle. Note however that, for
a generic discrete-time linear non-autonomous system,
having all eigenvalues inside the unit circle is not suffi-
cient to imply asymptotic stability (Slotine et al., 1991;
Kozachkov et al., 2022).

We provide a more precise picture of the eigenvalues
distribution of the RON model in the following theorem.

Theorem 3.2. For all µ eigenvalues of the Ja-
cobian of the RON model there exists a point
λ ∈ { 1 − τ2 γj , 1 − τ εj }Nj=1 such that

|µ− λ| ≤ C, (18)

where C = τ2σ + τ max
(
ξ, γmax + σ

)
.

According to Theorem 3.2, the eigenspectrum of the
Jacobian of an RON model is contained inside the union
of disks of radius C centered on the points 1− τεi, 1−
τ2γi, see Fig. 3 for a visual representation of this fact,
and Fig. 4 for few eigenspectrum configurations of an
RON. For an input-free RON, having all eigenvalues
inside the unit circle does suffice to have asymptotic
stability. We provide a necessary condition based on
the strength of the feedback loop, i.e. providing a
bound on the σ hyperparameter, for the asymptotic
stability of an input-free RON.

Proposition 3.3. Necessary conditions. If the
input-free RON model is asymptotically stable, then
either one of the two cases must hold true

• if σ > ξ − γmax, then σ ≤ 1− τγmax

τ + τ2
.

• if σ ≤ ξ − γmax, then σ ≤ 1− τξ

τ2
.

The idea of the proof relies on imposing that all the
disks of Theorem 3.2 lie inside the unit circle. This

Figure 3: Depiction of the eigenspectrum’s bound given
by Theorem 3.2 for the Jacobian of an RON model.

translates in the conditions:

C ≤ τεi ≤ 2− C, (19)

C ≤ τ2γi ≤ 2− C, (20)

for all i = 1, . . . , N , where C is defined in Theorem 3.2.
The necessary conditions of Proposition 3.3 are derived
by imposing that C ≤ 1, which is a necessary condition
for inequalities (19)-(20) to hold, otherwise 2−C < C.

Remark 3.4 (Guideline values). Searching around the
edge of stability of RON, we can lose inequalities (19)-
(20), pushing C to zero, to derive the following guideline
values for the hyperparameters of the oscillators:

εmin ≥ 0, (21)

γmin ≥ 0, (22)

εmax ≤ 2/τ, (23)

γmax ≤ 2/τ2. (24)

Selecting τ values small enough while satisfying
eqs. (21)-(24) will generate typically RON models with
an underlying Jacobian just marginally unstable with
eigenvalues at most slightly beyond the unitary circle in
a neighborhood of the value of 1. Therefore, promoting
the computation at the edge of stability, which has
been recognised to be useful for time series processing
(Legenstein and Maass, 2007), and lately also in typical
deep learning applications (Cohen et al., 2021).

4 RELATED WORKS

Reservoir Computing. The key idea behind RC is
to treat the internal dynamics of a recurrent neural net-
work as fixed, i.e. untrained (Lukoševičius and Jaeger,
2009). RC leverages smart random initialisations of
the recurrent part of the model, called the reservoir,
and only trains an output layer, usually with linear
regression techniques, to decode the internal dynamics
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Figure 4: Jacobian’s eigenspectrum eq. (9) for few hy-
perparameter’s combinations. Bias vector has β in all
its components, input-to-hidden matrix V is zero ma-
trix. Left: a case satisfying the sufficient conditions for
a contractive RON. Centre: a case of RON coinciding
with Leaky ESN. Right: a case satisfying the guideline
values of Remark 3.4 with strong coupling, i.e. σ ≫ 1.

into an output signal.
The Echo-State Network (ESN) (Jaeger, 2002) is one
of the most representative models belonging to the RC
paradigm. In this work, we use ESNs to assess the
effectiveness of our model against state-of-the-art RC
models. The state-update equation of an ESN reads:

yk = α tanh(Wyk−1 +Vuk + b) + (1− α)yk, (25)

where yk ∈ RN ,uk ∈ RI are the internal state and
input trajectories at time-step k, respectively and
W ∈ RN×N ,V ∈ RN×I ,b ∈ RN are fixed, randomly-
initialised parameters. The hidden matrix W is ran-
domly initialised and then scaled such that its spectral
radius ρ is smaller than 1. Also, the matrix V is scaled
by a scalar value ν. The scalar α is the leak rate, it is
entitled to calibrate the time scale of the ESN’s dynam-
ics according to that of the input signal. All the three ρ,
ν, and α, are task-specific and are usually determined
by a model selection phase (e.g., with random/grid
search). We adopt this approach for all ESNs used in
our experiments.

coRNN. We compare the performance of RON
against the coupled oscillatory RNN (coRNN) from
Rusch and Mishra (2023). coRNN also builds on a
network of oscillators. A coRNN has unique scalar
values γ ≡ γ, ε ≡ ε, and it is defined by the following
equation:

yk+1 = yk+τzk+1,

zk+1 = zk+τ
(
tanh(Wyk +Wzk +Vuk+1 + b)

−γyk − εzk
)
.

(26)

Differently from RON, the coRNN model is fully
trained, does not use heterogeneous oscillators and
requires an additional hidden-to-hidden adaptive ma-
trix W. In particular, for the same number of units,
the coRNN model has more trainable parameters than
RON (and hcoRNN), thus larger computational time
for training and inference.

5 EXPERIMENTS

Our empirical evaluation focuses on two key RON prop-
erties, discussed in the theoretical analysis of Section
21:

1. We study the impact of weight randomisa-
tion by comparing the performance of an RON
against fully-trained hcoRNN, coRNN, and LSTM
(Hochreiter and Schmidhuber, 1997), on both se-
quence classification and time series forecasting
benchmarks. We also highlight the advantages of
RON in terms of computational efficiency.

2. We study the role played by the dynamical system
stability in an RON. To this end, we show the
stability properties of the best models, according
to our findings of Section 3.

To guarantee a fair comparison, we adopt the experi-
mental setup of Rusch and Mishra (2023), where the
coRNN model was first introduced, and we extend it
with additional benchmarks. For each benchmark and
model, we performed grid search on a separate vali-
dation set to obtain the best models which were then
evaluated on the held-out test set. We report all the de-
tails related to model selection and best configurations
in the Supplementary Material.

Sequence classification benchmarks. We use
6 classification benchmarks, sMNIST, psMNIST,
npCIFAR-10, FordA, Adiac and uWaveGesture2. The
MNIST and CIFAR-based benchmarks are used to test
the long-term memory capabilities of the model, while
FordA and Adiac for medium and short-term memory,
respectively.
In sMNIST, the model observes one pixel at a time
and it is required to predict the digit class after having
processed all the 784 pixels. The psMNIST benchmark
is the same as sMNIST, except that the pixels in an
image are shuffled according to a fixed, random permu-
tation.
The npCIFAR-10 benchmark presents each RGB image
of CIFAR-10 in a row-wise fashion (flattening the RGB
channels into a single vector), leading to sequences of
32 elements. A randomly generated suffix is added
to each sequence, reaching a sequence length of 1,000
time steps. Since the information required to classify
the image is contained at the very beginning of the
sequence, the model needs to extend its memory over
hundreds of steps. FordA is a binary classification task

1The code to reproduce the experiments is
available at https://github.com/AndreaCossu/
RandomizedCoupledOscillators/

2FordA, Adiac and uWaveGesture from
timeseriesclassification.com
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Table 1: Test Accuracy (for sMNIST, psMNIST, npCIFAR-10, FordA, Adiac), and test NRMSE (for Lorenz96,
Mackey-Glass). Mean values computed over 5 trials, empirical standard deviation in subscript. Bold for best
accuracy for fully-trained (red) and randomised models (green), underline for overall best accuracy.

Model Fully-trained Randomised

LSTM coRNN hcoRNN (our) Leaky ESN RON (our)

sMNIST ↑ 0.9860 0.0017 0.9921 0.0002 0.9871 0.0011 0.9211 0.0020 0.9780 0.0006

psMNIST ↑ 0.8761 0.0390 0.9435 0.0224 0.9635 0.0048 0.8503 0.0150 0.9301 0.0054

npCIFAR-10 ↑ 0.1000 0.0000 0.5841 0.0033 0.5548 0.0031 0.2060 0.0016 0.4158 0.0101

FordA ↑ 0.5803 0.0432 0.7003 0.1535 0.7944 0.0859 0.5461 0.0320 0.6885 0.0385

Adiac ↑ 0.4793 0.0187 0.4517 0.0252 0.5586 0.0706 0.6928 0.0116 0.7313 0.0050

uWaveGesture ↑ 0.59± 0.05 0.85± 0.01 0.87 0.018 0.86± 0.01 0.89 0.01

Lorenz96 ↓ 2.4× 10−1
3.6×10−2 2.1× 10−1

5.2×10−2 2.6× 10−1
2.5×10−2 2.0× 10−3

2.0×10−4 1.6× 10−3
1.7×10−4

Mackey-Glass ↓ 3.4× 10−2
3.2×10−3 6.2× 10−2

1.5×10−2 5.4× 10−2
4.9×10−3 3.0× 10−2

1.4×10−3 1.8× 10−2
6.5×10−3

from real-world data (of time series of length 500) to
diagnose whether a certain symptom exists or does not
exist in an automotive subsystem.
Adiac is used to measure the ability of the model to
classify among a large number of classes (37) on rela-
tively short sequences (176 time steps).
uWaveGestures is a benchmark that represents different
gestures measured from accelerometers.

Chaotic systems forecasting. In Rusch and
Mishra (2023), the authors discussed how coRNN mod-
els are not tailored to time series forecasting for chaotic
systems, due to their inability (by design) to generate
chaotic dynamics. We show that, instead, our RON
model is very effective in predicting chaotic systems.
Following Rusch and Mishra (2023), we ran time-series
forecasting experiments on the Lorenz96 chaotic system.
The Lorenz96 system is defined by the following dif-
ferential equation ẋi = (xi+1 − xi−2)xi−1 − xi + F ,
with i = 1, . . . , 5 and F an external driving force.
The task consists in predicting the next 25-th state
of the system in the chaotic regime with F = 8. The
training, validation, and test sets are composed of 128
trajectories of length 2000. Each trajectory is inde-
pendently generated by solving the Lorenz96 equation
with a random initial condition sampled uniformly from
[F −0.5, F +0.5] and a discretisation time-step of 0.01.
In addition, we also study the popular Mackey-Glass
chaotic system (Mackey and Glass, 1997). Similar to
Jaeger and Haas (2004), the task is to predict the 84-th
next state of the system. As commonly done for time
series forecasting, we used an initial washout of length
200 (the first 200 steps are used to warm up the model,
but are not used when evaluating its performance).
The performance of the models is measured by the Nor-
malised Root Mean Squared Error (NRMSE), where
normalisation is performed by diving the RMSE by the
root mean square of the target trajectory, as in Rusch
and Mishra (2023).

6 RESULTS

Table 1 reports the results on all benchmarks for LSTM,
Leaky ESN, coRNN, hcoRNN and RON. Results are
divided in two categories: fully-trained models, and
randomised ones. We highlight in bold the best ac-
curacy within each category, in red for fully-trained
and green for randomised models, underlining the over-
all better. Within each benchmark, we use the same
number of trainable parameters for each model. For
CIFAR, Lorenz96, and MNIST-based benchmarks we
keep a large number of trainable parameters similarly
to Rusch and Mishra (2023), while for FordA, Adiac,
uWaveGesture and Mackey-Glass we explore a smaller
parametrisation regime (Table 2).

On the long-term memory benchmarks, sMNIST, psM-
NIST and npCIFAR-10, our RON model outperforms
the Leaky ESN by a large margin. It is important to
stress that, usually, fully-trained models achieve higher
performance than randomised RC models in long-term
memory benchmarks. Instead, except for the very
challenging npCIFAR-10, RON not only outperforms
ESN models but also significantly narrows the gap
with respect to fully-trained models.

FordA appears a challenging task to solve for LSTM
and Leaky ESN models, arguably due to the low
parametrisation regime. Here oscillators-based models
exhibit a clear advantage, in particular our hcoRNN
achieves the best overall accuracy. On the Adiac and
uWaveGesture benchmarks, randomised RC models
show an advantage over fully-trained models, and in
particular RON achieves the best overall accuracy.

As shown by the Lorenz96 and Mackey-Glass results,
RON obtains the best overall performance when mod-
elling chaotic dynamical systems. RON sharply outper-



Random Oscillators Network for Time Series Processing

Table 2: Number of trainable parameters and total training time (in minutes) for each benchmark and model.
The number of parameters includes linear classifier/predictor. hcoRNN is comparable in both size and training
time to a coRNN from Rusch and Mishra (2023).

Model sMNIST psMNIST npCIFAR-10 FordA Adiac Lorenz96 Mackey-Glass
Parameters ≈ 134k ≈ 134k ≈ 52k ≈ 0.1k ≈ 3.7k ≈ 34k ≈ 1k

hcoRNN (our) 230m 230m 360m 16m 2m 8m 1m
Leaky ESN 11m 12m 5m 0.05m 0.03m 1m 0.5m
RON (our) 11m 12m 5m 0.05m 0.03m 1m 0.5m

Table 3: Validity of guideline values of Remark 3.4 and
necessary conditions of Prop. 3.3 for best RON configu-
rations from Table 1 for all tasks. The value of the best
hyper-parameters can be found in the Supplementary
Material.

εmin ≥ 0 γmin ≥ 0 τεmax ≤ 2 τ2γmax ≤ 2 Prop. 3.3

✓ ✓ ✓ ✓ ✓

forms fully-trained models by two orders of magnitudes
in the Lorenz96 task, while surpassing state-of-the-art
RC models. Aligned with what was hypothesised by
Rusch and Mishra (2023), fully-trained models like
coRNN struggle in predicting chaotic behaviours. How-
ever, the same family of models shows excellent perfor-
mance in the same task when equipped with randomi-
sation properties.
Generally in all the considered tasks, RON always out-
performs Leaky ESN, demonstrating that a pool of ran-
domly connected heterogeneous oscillators can provide
a set of internal representations for time series process-
ing purposes richer than typical ESN models. Overall,
either hcoRNN or RON are the best-performing models
in 6 out of 7 benchmarks, highlighting the effectiveness
of their architectural bias.

RON stability. We verified whether or not the best
RON configurations (provided in the Supplementary
Material) satisfy the guideline values of Remark 3.4
and the necessary conditions of Prop. 3.3. We can
observe from Table 3 that the best RON in our ex-
periments always satisfy both the guideline and the
necessary conditions. We also compared the perfor-
mance of our best RON against an RON that satisfies
the sufficient conditions ensuring a contracting map.
The results of this comparison, which can be found in
the Supplementary Material, show that the sufficient
conditions are overly restrictive and do not allow to
learn properly any of the time series tasks. Therefore,
RON requires to go beyond contractivity and towards
edge of stability configurations, where it performed
best according to all our experiments.

Figure 5: Accuracy on the npAdiac dataset. The x-axis
shows the padded sequence length.

Study on varying sequence length. We consid-
ered the noise-padded Adiac task (npAdiac) to test
the performance of all models to varying time-series
lengths. The npAdiac dataset is created by appending
after each Adiac time series (composed by 176 time
steps) a number of 5, 50, 100, and 200 time steps of
Gaussian noise (mean 0 and std 1). We report the
accuracy results in Figure 5. The dots represent the av-
erage accuracy over 5 trials, the coloured shades cover
one standard deviation. We used the same hyperpa-
rameters used for the Adiac task and reported in Table
5.
LSTM appears extremely sensitive to the padding of
noise. In general, randomised models appear more re-
silient than fully-trained ones. In particular, hcoRNN
keeps a better performance than coRNN and LSTM,
while RON is always the overall best performing.

Comparison with expRNN. We compare RON
against the expRNN model (Lezcano-Casado and
Mart́ınez-Rubio, 2019), a fully-trainable RNN with



Ceni, Cossu, Stölzle, Liu, Della Santina, Gallicchio, Bacciu

Table 4: Accuracy/loss for the expRNN model and
RON on Adiac, FordA and Mackey-Glass datasets.

Adiac ↑ FordA ↑ MG (10−2) ↓
expRNN 0.620.05 0.590.06 6.461.71
RON 0.730.01 0.690.04 1.80.65

orthogonal recurrent weights. Results are shown in
Table 4. RON always outperforms expRNN. On Adiac,
the expRNN achieves the best performance among
fully-trained models. On FordA, the expRNN sur-
passes the LSTM, but it underperforms with respect
to oscillatory-based models. ExpRNN does not seem
suitable for chaotic time series forecasting, achieving
the worst performance among the considered models.

Computational efficiency. Due to the untrained
recurrent layer, the training time can be up to two
orders of magnitudes smaller in RON than in fully-
trained models (Table 2). In fact, RON does not need to
be trained with back-propagation through time, greatly
improving its computational efficiency both in terms of
time and energy consumption, compared to (h)coRNN
and LSTM.
The oscillatory-based recurrent models require more
hyperparameters tuning than other recurrent models
like LSTM. This often makes it challenging to train
models like hcoRNN and coRNN. However, the lower
training time for RON allows us to explore a wider
range of configurations than in fully-trained models.
This appears to be crucial, since the (h)coRNN is quite
sensitive to the choice of its hyper-parameters, like τ .
Training times for coRNN and LSTM are comparable
to those reported for hcoRNN in Table 2.

7 CONCLUSION AND FUTURE
WORKS

We developed a theoretical and empirical analysis of
recurrent dynamical systems based on randomly cou-
pled oscillators. We introduced the RON model, which
builds on a dynamical recurrent layer made up of un-
trained heterogeneous oscillators with randomisation
properties. Our theoretical analysis shows how RON
can be effectively driven towards edge of stability con-
figurations. We empirically evaluated RON on a set
of sequence classification and time series forecasting
benchmarks. Our results show that RON exhibits an
effective long-term memory while greatly improving
the performance in chaotic systems prediction. The
computational efficiency of RON in terms of training
time and the number of parameters is orders of mag-
nitude better than fully-trainable recurrent networks,
including those based on coupled oscillatory systems.

Looking ahead at future works, we plan to investigate
deep architectural organisations of the randomised os-
cillators in RON. Following the principles of Deep RC
(Gallicchio et al., 2017), Deep RON would be able to
learn richer latent representations at multiple temporal
scales. Due to its physically-inspired design, RON is
amenable to implementation in neuromorphic hardware
(like mechanical or optical systems) (Rajendran et al.,
2019) that can mimic the behaviour of coupled oscilla-
tors. Due to its efficient design and restricted training
protocol, RON can be deployed in resource-constrained
environments, like at the edge, on devices with limited
computational capacity. This can lead towards a more
sustainable and energy-efficient way of leveraging deep
learning models for time series processing.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes

(b) Complete proofs of all theoretical results. Yes

(c) Clear explanations of any assumptions. Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes
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(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. Yes

(b) The license information of the assets, if appli-
cable. Yes

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Not Applicable

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable

A Model selection

We provide the complete experimental setup used for
model selection. Table 5 report the grid search per-
formed during model selection on all benchmarks, with
the best value in bold.
We used the same number of adaptive parameters for
each model. This means that randomised models use
more hidden units than the fully-trained ones, since
they only have trainable hidden-to-output parameters.
To get the total number of adaptive parameters for
RON and ESNs, one simply needs to multiply the num-
ber of hidden units and the output size (number of
readout units).
RON and ESNs use 13,000 units for sMNIST and
psMNIST, 5,200 units for npCIFAR-10, 6,800 units
for Lorenz96, 1,000 units for Mackey-Glass, and 100
units for Adiac and FordA. Fully-trained models use

256 units for sMNIST and psMNIST, 128 units for
npCIFAR-10, 130 units for Lorenz96, and 22 units for
Mackey-Glass. hcoRNN, coRNN, LSTM, use respec-
tively 8,6,4, units for FordA, and 44,34,25, units for
Adiac, this to keep the same number of trainable pa-
rameters. Fully-trained models have been trained for
the same number of epochs (120) as the original coRNN
model from Rusch and Mishra (2023). Due to the high
computational cost of both coRNN and hcoRNN, the
grid search for hcoRNN was performed around the best
hyper-parameters found by the coRNN original paper
(Rusch and Mishra, 2023).
For Leaky ESN and RON, the recurrent weight ma-
trix was uniformly initialised in [−2, 2], before scaling
the spectral radius. The input-to-state matrix was
uniformly initialised in [0, 1].

For the Stable-RON model, we used the following con-
figuration: τ = 1.1, γ = 0.58±0.03, ϵ = 0.77±0.10, ρ =
0.01. These hyper-parameters satisfy the sufficient con-
ditions of Proposition 3.2, but are overly restrictive for
the model.

B Proof of Theorem 3.1

We will make use of the following lemma.

Lemma B.1. Let be given two square matrices M,N
of the same dimension. Then it holds that

(i)

∣∣∣∣∣
∣∣∣∣∣
[

M 0
0 N

] ∣∣∣∣∣
∣∣∣∣∣≤ max(||M||, ||N||),

(ii)

∣∣∣∣∣
∣∣∣∣∣
[

0 M
N 0

] ∣∣∣∣∣
∣∣∣∣∣≤ max(||M||, ||N||).

Proof. We notice that for any unitary vector X =

(
y
z

)
it holds∣∣∣∣∣

∣∣∣∣∣
[

M 0
0 N

](
y
z

) ∣∣∣∣∣
∣∣∣∣∣
2

= ∥My∥2 + ∥Nz∥2 ≤

≤ max(∥My∥, ∥Nz∥)2,

from which it follows that

∣∣∣∣∣
∣∣∣∣∣
[

M 0
0 N

] ∣∣∣∣∣
∣∣∣∣∣≤

max(||M||, ||N||). For the antidiagonal case, note that[
0 M
N 0

]
=

[
M 0
0 N

] [
0 I
I 0

]
, hence we have

for any unitary vector X =

(
y
z

)
that

∣∣∣∣∣
∣∣∣∣∣
[

0 M
N 0

](
y
z

) ∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣
[

M 0
0 N

] [
0 I
I 0

](
y
z

) ∣∣∣∣∣
∣∣∣∣∣
2

≤



Random Oscillators Network for Time Series Processing

Table 5: Model selection configurations. α is the ESN leaky rate, ν is the input scaling, ρ is the spectral radius. For
Adiac and FordA, the coRNN model has been validated on the same grid of hcoRNN. The selected configuration
for coRNN on FordA was τ = 0.25, ϵ = 3, γ = 1, and on Adiac was τ = 0.1, ϵ = 1, γ = 5.
sMNIST Configuration

hcoRNN ϵ = 4.7± {1,0.5}, γ = 2.7± {1,0.5}, τ = {0.42,0.042}
Leaky ESN α = {1, 0.5, 0.1, 0.01,0.001}, ρ = {900, 90, 9,0.999, 0.99, 0.9}, ν = {10,1, 0.1}
RON τ = {0.42,0.042}, ρ = {900, 90,9, 0.9}, ν = {10,1, 0.1}, ϵ = {5.1,0.51} ± {1,0.5}, γ = {2.7, 0.27} ± {1, 0.5}
psMNIST

hcoRNN ϵ = 8.0± {1,0.5}, γ = 0.4± {1, 0.5}, τ = {0.76,0.076}
Leaky ESN α = {1, 0.5, 0.1,0.01, 0.001}, ρ = {900, 90, 9,0.999, 0.99, 0.9}, ν = {10, 1,0.1}
RON τ = {0.76,0.076}, ρ = {900, 90, 9,0.9}, ν = {10,1, 0.1}, ϵ = {8,0.8} ± {1, 0.5}, γ = {4, 0.4} ± {1, 0.5}
npCIFAR-10

hcoRNN ϵ = 12.7± {1,0.5}, γ = 1.3± {1,0.5}, τ = {0.76,0.076}
Leaky ESN α = {1, 0.5, 0.1, 0.01,0.001}, ρ = {900, 90, 9, 0.9}, ν = {10,1, 0.1}
RON τ = {0.34,0.034}, ρ = {900, 90,9, 0.9}, ν = {10, 1,0.1}, ϵ = {12.7, 1.27} ± {1,0.5}, γ = {13,1.3} ± {1,0.5}
Lorenz96

hcoRNN ϵ = {15, 10,2, 1} ± {0.5, 1}, γ = {15, 10,2, 1} ± {0.5, 1}, τ = {1.5, 0.8,0.5, 0.1, 0.01}
Leaky ESN α = {1,0.5, 0.1}, ρ = {900, 90, 9,0.9}, ν = {10, 1,0.1}
RON τ = {1, 0.7, 0.5,0.17, 0.1, 0.05, 0.01, 0.001}, ρ = {90, 9, 0.999,0.99, 0.9}, ν = {10, 1,0.1}, ϵ = {10, 5, 2, 1} ± {1,0.5}, γ = {10, 5, 2, 1} ± {1, 0.5}
Mackey-Glass

hcoRNN ϵ = {10, 2, 1} ± {0.5, 1}, γ = {10,2, 1} ± {0.5, 1}, τ = {0.8,0.1}
Leaky ESN α = {1, 0.5, 0.1}, ρ = {900, 90, 9,0.9}, ν = {10,1, 0.1}
RON τ = {5, 2, 1, 0.5, 0.3, 0.2,0.17, 0.05}, ρ = {0.999, 0.99,0.9}, ν = {10, 1, 0.1}, ϵ = {5,2, 1} ± {1,0.5}, γ = {15, 10, 5,2, 1} ± {1, 0.5}
FordA

hcoRNN ϵ = {5, 3,0.5} ± {5, 3,0.5}, γ = {5, 3,1} ± {5,1, 0.5}, τ = {0.25, 0.1, 0.05, 0.01}
Leaky ESN α = {1, 0.9, 0.7,0.5, 0.1, 0.01, 0.001, 0.0001}, ρ = {7, 5, 2, 0.999,0.99, 0.9, 0.7, 0.5}, ν = {50, 10, 5, 1,0.5, 0.1.0.01, 0.001}
RON τ = {0.2, 0.05, 0.01}, ρ = {9,0.9}, ν = {10, 1,0.1}, ϵ = {5, 0.5} ± {5, 2.5, 0.5}, γ = {3,1} ± {1,0.5, 0.25}
Adiac

hcoRNN ϵ = {5, 1,0.5} ± {5, 1,0.5}, γ = {5, 3,1} ± {5,1, 0.5}, τ = {0.25, 0.1, 0.05, 0.01}
Leaky ESN α = {1, 0.9, 0.7, 0.5, 0.1, 0.01, 0.001,0.0001}, ρ = {7, 5, 2, 0.999,0.99, 0.9, 0.7, 0.5}, ν = {50, 10, 5, 1, 0.5, 0.1.0.01, 0.001}
RON τ = {0.05,0.01}, ρ = {9, 0.9}, ν = {10, 1, 0.1}, ϵ = {5, 0.5} ± {5, 2.5,0.5}, γ = {3, 1} ± {1, 0.5, 0.25}

≤ max(∥M∥, ∥N∥)2
(∣∣∣∣∣
∣∣∣∣∣
[

0 I
I 0

](
y
z

) ∣∣∣∣∣
∣∣∣∣∣
2)

=

= max(∥M∥, ∥N∥)2.

Lemma B.1 allows us to prove Theorem 3.1 whose
statement we report here below.

Theorem. The norm of the Jacobian matrix of the
hcoRNN and RON models admit the following upper
bound

||Jk|| ≤ max(η + τ2σ, ξ) + τ max(ξ, γmax + σ). (27)

In particular, for τ ≪ 1, and assuming εmin > 0, and
γmax ≥ 1, the bound reads

1 + τ(γmax + σ) +O(τ2). (28)

Proof. We decompose the Jacobian of a RON in the
sum of two matrices, one diagonal one anti-diagonal,
as follows

Jk =

[
I− τ2diag(γ) + τ2SkW 0

0 I− τdiag(ε)

]
+

[
0 τ

(
I− τdiag(ε)

)
τAk 0

]
.

(29)

The upper left block of the diagonal matrix in eq. (29)
admits the following bound.

||I− τ2diag(γ) + τ2SkW|| ≤ (30)

≤ ||I− τ2diag(γ)||+ τ2||SkW|| ≤ (31)

≤ max
j

|1− τ2γj |+ τ2||W|| = η + τ2σ, (32)

where we used the triangle inequality, and the fact that
||SkW|| ≤ ||W||, due to the definition of Sk.

The bottom right block of the diagonal matrix in
eq. (29), is itself diagonal, and admits the following
exact estimation.

||I− τdiag(ε)|| = max
j

|1− τεj | = ξ. (33)

The upper right block of the diagonal matrix in eq. (29),
is itself diagonal, and admits the following exact esti-
mation.

||τ(I− τdiag(ε))|| = τ max
j

|1− τεj | = τξ. (34)

The bottom left block of the diagonal matrix in eq. (29)
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admits the following bound.

||τ(SkW − diag(γ))|| ≤ τ(||SkW||+ ||diag(γ)||) ≤
(35)

≤ τ(||W||+ γmax) = τ(σ + γmax).
(36)

Putting together eqs. (30)-(36), and Lemma B.1, we
obtain

||Jk|| ≤ max(η + τ2σ, ξ) + τ max(ξ, σ + γmax),

which is the thesis.

In particular, for small enough values of τ we have that
τεmax ≤ 1, and τ2γmax ≤ 1, which in turns imply that
ξ = 1 − τεmin, and that η = 1 − τ2γmin, respectively.
Furthermore, assuming that εmin > 0, and γmax ≥ 1,
we have that ξ < 1 ≤ σ + γmax. Therefore, the bound
reads

max(1− τ2γmin + τ2σ, 1− τεmin) + τ(σ + γmax).

Finally note that for εmin > 0, and small enough τ ≪
1, we have that τ2(γmin − σ) < τεmin, and so that
1− τεmin ≤ 1− τ2γmin + τ2σ. Hence, the bound has
the following expansion for small values of τ

1 + τ(γmax + σ) +O(τ2). (37)

C Contractivity for the particular case

of ε ≡ 1

τ

We already noticed that for the particular case of ε ≡ 1

τ
the z-dynamics of the hcoRNN and RON equations
become unidirectionally driven by the y-dynamics. In
such a case, we can focus only on the y-dynamics which
reads

yk+1 = (I−τ2diag(γ))yk+τ2 tanh(Wyk+Vuk+1+b).
(38)

We provide the following sufficient conditions for con-
traction in the particular case of (38).

Proposition C.1. In the particular case of ε ≡ 1

τ
,

the hcoRNN and RON models are contractive whenever

(i) σ < γmin, if τ
2(γmin + γmax) ≤ 2;

(ii) σ <
2− τ2γmax

τ2
, if τ2(γmin + γmax) > 2.

Proof. The Jacobian of eq. (38) reads Jk = I+τ2Ak =
(I − τ2diag(γ)) + τ2SkW. Therefore, it holds
||Jk|| ≤ ||I− τ2diag(γ)||+ ||τ2SkW|| ≤ η+ τ2σ. Thus,

||Jk|| < 1 holds whenever σ <
1− η

τ2
. Finally note that,

due to the definition of η, there are two possibilities,
either η = 1 − τ2γmin, if τ2(γmin + γmax) ≤ 2, or
η = τ2γmax − 1, if τ2(γmin + γmax) > 2. The first case
implies the thesis of (i), while the second case implies
the thesis of (ii).

Note that, in order for (i) and (ii) to hold in Proposi-
tion C.1, two necessary conditions must hold, namely
γmin ≥ 0, and τ2γmax ≤ 2.

D Sufficient conditions for a
contractive RON

Proposition D.1. Sufficient conditions. If
ξ − η

τ2
≤ ξ − γmax then the hcoRNN and RON mod-

els are asymptotically uniformly stable whenever one
of the following three conditions holds:

• σ ≤ ξ − η

τ2
, and ξ <

1

1 + τ
,

•
ξ − η

τ2
< σ ≤ ξ − γmax, and σ <

1− τξ − η

τ2
,

• σ ≥ ξ − γmax, and σ <
1− η − τγmax

τ(1 + τ)
.

If ξ − γmax <
ξ − η

τ2
then the RON model is stable

whenever one of the following three conditions hold:

• σ ≤ ξ − γmax, and ξ <
1

1 + τ
,

• ξ − γmax < σ ≤ ξ − η

τ2
, and σ <

1− ξ

τ
− γmax,

• σ ≥ ξ − η

τ2
, and σ <

1− η − τγmax

τ(1 + τ)
.

Proof. Recall the upper bound of the Jacobian found
in Theorem 3.1, that we denote for the purpose of the
proof as

c = max(η + τ2σ, ξ) + τ max(ξ, σ + γmax). (39)

The proof consists in studying the inequality c ≤ 1.
The proof is divided in 4 cases.

CASE 1.
Assume that η + τ2σ ≤ ξ and γmax + σ ≤ ξ. These
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assumptions hold if and only if σ ≤ min(
ξ − η

τ2
, ξ −

γmax). If such assumptions are true, then the constant
(39) reads c = ξ + τξ. Therefore, by Theorem 3.1, the

Jacobian has norm less than 1 whenever ξ <
1

1 + τ
.

CASE 2.
Assume that η + τ2σ ≥ ξ and γmax + σ ≤ ξ. These

assumptions hold if and only if
ξ − η

τ2
≤ σ ≤ ξ −

γmax. If such assumptions are true, then the constant
(39) reads c = η + τ2σ + τξ. Therefore, by Theorem
3.1, the Jacobian has norm less than 1 whenever σ <
1− τξ − η

τ2
.

CASE 3.
Assume that η + τ2σ ≤ ξ and γmax + σ ≥ ξ. These

assumptions hold if and only if ξ − γmax ≤ σ ≤ ξ − η

τ2
.

If such assumptions are true, then the constant (39)
reads c = ξ + τ(σ + γmax). Therefore, by Theorem
3.1, the Jacobian has norm less than 1 whenever σ <
1− ξ

τ
− γmax.

CASE 4.
Assume that η + τ2σ ≥ ξ and γmax + σ ≥ ξ. These as-

sumptions hold if and only if σ ≥ max(ξ−γmax,
ξ − η

τ2
).

If such assumptions are true, then the constant (39)
reads c = η + τ2σ + τ(σ + γmax). Therefore, by Theo-
rem 3.1, the Jacobian has norm less than 1 whenever

σ <
1− ξ − τγmax

τ(1 + τ)
.

The statement of the Proposition D.1 organises results

depending on whether
ξ − η

τ2
≤ ξ − γmax, or vice versa.

Table 6: Test Accuracy for sMNIST, psMNIST
and npCIFAR-10 and test NRMSE for Lorenz96.
Contractive-RON refers to a RON satisfying the suffi-
cient conditions for contractivity.

Contractive-RON RON

sMNIST ↑ 0.15 0.95
psMNIST ↑ 0.22 0.90
npCIFAR-10 ↑ 0.10 0.33
Lorenz96 ↓ 3.9× 10−1 4.9 ×10−4

E Proof of Theorem 3.3

The proof is a straightforward application of the Bauer-
Fike’s theorem (Bauer and Fike, 1960) that we report
here for ease of comprehension.

Theorem E.1 (Bauer-Fike). Let D be a diagonalisable
matrix, and let H be the eigenvector matrix such that
D = HΛH−1 where Λ is the diagonal matrix of the
eigenvalues of D. Let E be an arbitrary matrix of the
same dimension of D. Then, for all µ eigenvalues of
D+E, there exists an eigenvalue λ of D such that

|µ− λ| ≤ ∥H∥∥H−1∥∥E∥. (40)

Let us denote

Ek =

[
τ2SkW τ

(
I− τdiag(ε)

)
τAk 0

]
. (41)

The norm of the matrix Ek can be bounded as stated
in the following lemma.

Lemma E.2. The matrix Ek admits the following
upper bound

||Ek|| ≤ C, (42)

where C is defined as follows

C = τ2σ + τ max
(
ξ, γmax + σ

)
. (43)

Proof. We decompose the matrix Ek in its diagonal
and antidiagonal parts, and apply Lemma B.1
obtaining the thesis.

Then, Theorem E.1 in combination with Lemma E.2
give us all the ingredients to prove Theorem 3.3, whose
statement we report here below.

Theorem. For all µ eigenvalues of the Jacobian of
the hcoRNN and RON models there exists a point
λ ∈ { 1 − τ2 γj , 1 − τ εj }Nj=1 such that

|µ− λ| ≤ C, (44)

where C = τ2σ + τ max
(
ξ, γmax + σ

)
.

Proof. We decompose the Jacobian in the sum of two
matrices as follows

Jk =

[
I− τ2diag(γ) 0

0 I− τdiag(ε)

]
+

[
τ2SkW τ

(
I− τdiag(ε)

)
τAk 0

]
,

(45)
and apply the Bauer-Fike’s Theorem E.1, choosing

D =

[
I− τ2diag(γ) 0

0 I− τdiag(ε)

]
, and E = Ek

as defined in eq. (41). Noticing that D is already
diagonalised, i.e. D = Λ, thus the eigenvector matrix
H is the identity matrix, and the eigenspectrum of D
is the set of all the points {1− τ2γj , 1− τεj}Nj=1. The
norm of the matrix Ek is bounded with C as stated in
Lemma E.2.
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F Proof of Proposition 3.4

Lemma F.1. If the input-free hcoRNN and RON mod-
els are asymptotically stable, then C ≤ 1, where C is
defined in eq. (43).

Proof. For an input-free hcoRNN and RON it is suffi-
cient to have a single eigenvalue outside the unit circle
to lose asymptotic stability. By logical contraposition
it follows that having all eigenvalues inside the unit
circle is a necessary condition for asymptotic stability.
We make use of eq. (18) to impose all eigenvalues inside
the unit circle. In particular, the inequalities to satisfy
can be expressed in terms of γmin, γmax, εmin, εmax, and
are the following

1− τ2γmin + C ≤ 1, (46)

1− τ2γmax − C ≥ −1, (47)

1− τεmin + C ≤ 1, (48)

1− τεmax − C ≥ −1. (49)

The above inequalities can be rewritten as follows

C ≤ τ2γmin ≤ τ2γmax ≤ 2− C, (50)

C ≤ τεmin ≤ τεmax ≤ 2− C. (51)

We deduce that a necessary condition for eqs. (50)-(51)
to hold is that C ≤ 1. In fact, if C > 1, then
2− C < C, and eqs. (50)-(51) are never satisfied.

We use Lemma F.1 to deduce necessary conditions on
the hyperparameter σ for an input-free hcoRNN and
RON to be asymptotically stable.

Proposition. If the input-free hcoRNN and RON mod-
els are asymptotically stable, then either one of the two
cases must hold true

• if σ > ξ − γmax, then σ ≤ 1− τγmax

τ + τ2
.

• if σ ≤ ξ − γmax, then σ ≤ 1− τξ

τ2
.

Proof. If there is asymptotic stability then Lemma F.1
implies that C ≤ 1.
Let’s first assume that σ > ξ − γmax. The constant C,
in such case, reads C = τ2σ + τ(γmax + σ). Imposing

C ≤ 1 translates in the condition σ ≤ 1− τγmax

τ + τ2
.

Now let’s assume that σ ≤ ξ − γmax. In this case the
constant reads C = τ2σ + τξ. Imposing that C ≤ 1

gives us the upper bound σ ≤ 1− τξ

τ2
.


