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Abstract

Stochastic convex optimization is one of the
most well-studied models for learning in mod-
ern machine learning. Nevertheless, a central
fundamental question in this setup remained
unresolved:

how many data points must be ob-
served so that any empirical risk
minimizer (ERM) shows good per-
formance on the true population?

This question was proposed by Feldman who
proved that Q(¢ + %) data points are nec-
essary (where d is the dimension and ¢ >
0 is the accuracy parameter). Proving an
w(? 4+ %) lower bound was left as an open
problem. In this work we show that in fact
O(% + ) data points are also sufficient. This
settles the question and yields a new sepa-
ration between ERMs and uniform conver-

gence.

This sample complexity holds for the classi-
cal setup of learning bounded convex Lips-
chitz functions over the Euclidean unit ball.
We further generalize the result and show
that a similar upper bound holds for all sym-
metric convex bodies. The general bound is
composed of two terms: (i) a term of the
form O(%) with an inverse-linear dependence
on the accuracy parameter, and (ii) a term
that depends on the statistical complexity of
the class of linear functions (captured by the
Rademacher complexity). The proof builds
a mechanism for controlling the behavior of
stochastic convex optimization problems.
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1 INTRODUCTION

Stochastic convex optimization (SCO) is a benchmark
framework that is widely used for studying stochas-
tic optimization algorithms such as gradient descent
and its variants. This is often justified by the simplic-
ity of the framework and the possibility of a rigorous
analysis that can hint at the pros and cons of vari-
ous optimization techniques in practical setups such
as machine learning. It has also been studied in the
optimization literature under the name sample aver-
age approximation (SAA); see for example (13} [14)
and references within.

Stochastic convex optimization is particularly useful
for understanding the interaction between optimiza-
tion and generalization in complex scenarios. The
works of (30), and subsequently (31l), demonstrated
how the choice of an algorithm is crucial not only for
optimization reasons, but also for generalization rea-
sons. Namely, to avoid overfitting without careful al-
gorithmic choices, one must use dimension-dependent
sample size. On the other hand, with the correct al-
gorithm, one can avoid overfitting with far less data
points. For this reason, SCO became a prototypical
model for researching over-paramterization (23; [19;
25; [24]). These works aim to understand how can al-
gorithms avoid overfitting, even when the number of
data points is significantly smaller than the number of
free parameters.

In more detail, a classical paradigm for learning is to
draw n i.i.d. data points z1,...,z, from an unknown
distribution and to optimize the empirical risk defined
as

) == fw, ),

where f(x,z) is some loss function that measures the
performance of parameter x on the data point z. When
n is sufficiently large, a minimizer of F should also
demonstrate good performance on the population loss
F(z) = E,.p[f(z,2)]. This is exactly the setting of
SCO, expect that SCO makes the additional assump-
tion that the loss functions are convex (more details
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are provided below).

It is a well-known fact that in the Probably Approx-
imately Correct framework (20t [2), all optimization
algorithms share the same statistical rate (20} [21)).
Namely, the statistical rate of all learning algorithms
is the same. And understanding the rate of any learn-
ing algorithm is equivalent, then, to understanding the
rate of any specific ERM. In stochastic convex opti-
mization, however, not all algorithms are equal. While
there are learning algorithms that perform well with
only n = O (%) data points (30} 3), others must ob-
serve at least Q(g) points to guarantee good perfor-
mance where d is the dimension of the parameter space
r € R? (31).

And yet, even though separations between the statisti-
cal performances of different ERMs are known, one of
the most fundamental questions in stochastic convex
optimization remained unanswered:

what is the worst-case sample complexity of ERMs in
SCO?

A standard covering argument (e.g. ([L0;[5))) shows it to

be at most O(E%) (31) demonstrated it to be at least
Q(2 + %). The gap between the lower bound and the
upper bound remained open, and was proposed as an

open problem in (31)).

1.1 Owur contribution

We resolve the afforementioned open problem and
complete the picture by proving that the sample com-
plexity of ERMs in SCO is actually at most

0 (d + 12) :
e €

Notice that this bound separates the statistical com-
plexity of ERMs from uniform convergence. The sta-
tistical complexity of uniform convergence is the num-
ber of examples required so that typically for every
model in the parameter space, the empirical loss is
close to the true population loss. In SCO, (31]) pro-
vided a lower bound that matches the well-known up-
per bound (5 [10) and demonstrated that the statisti-
cal complexity of uniform convergence is (:)(E%) Our
result shows that, while different ERMs may exhibit
different performances, all ERMs are better than the
worst-case uniform convergence rate. Even without al-
gorithmic assumptions, learning in SCO is easier than
uniform convergence (distinctively from other classical
models such as PAC learning).

A second notable aspect of our result is that, usually,
the term 2 corresponds to noise or to the agnostic
setting of learning. The term g, on the other hand,

corresponds to a realizable setting. It is somewhat
surprising that these two different types of “behav-
iors” are simultaneously appearing in a single model.
In stochastic convex optimization, the ERM principle
somehow intrinsically combines low dimensional ag-
nostic learning and high-dimensional realizable learn-
ing.

The above result is true for learning bounded convex
Lipschitz functions with respect to an ¢3-bounded do-
main. We generalize our result and analyze the sta-
tistical complexity of ERMs with respect to general
norms. For any norm and its corresponding unit ball
K, and for learning bounded convex Lipschitz func-
tions, the statistical complexity of ERMs with error
O(e) is at most

0 (f + Rad,gl(g)> 7

where Rad,;1 (¢) measures the statistical complexity of
learning over KC when we restrict the observed losses to
be linear. The first term is the dimension-dependent
part of the statistical complexity and is the same for
all norms. The second term, which is the dimension-
independent part for the ¢ norm, is not the classi-
cal Rademacher complexity of the full class (“convex
functions”), but is the Rademacher complexity of a
smaller class (“linear functions”). The above result
yields a tight bound for the ¢5 norm, but also yields
tight bounds for general £, norms ((31) proved match-
ing lower bounds for £, norms).

2 FORMAL SETUP AND MAIN
RESULT

Let us formally state the algorithmic problem we ex-
plore. A one-dimensional illustration appears in ?77.
We consider a general norm || - || on R? and its unit
ball . We also consider a general domain Z, which
for concreteness we assume to be finite. Our result
hold when Z is infinite, but then one needs to care-
fully deal with measurability issues. We refer to (6]
for the relevant definitions and formal setup in which
our result hold in full generality.

For each z € Z, we consider a function f,(z) that is
convex and L-Lipschits with respect to x. That is, for
every x,v,

[fo(@) = f2() < Lllz =yl

We are interested in the problem of optimization over
the parameter domain K. We note, though, that there
is no loss of generality in assuming f, is defined over
the whole space R?, because every L-Lipschitz convex
function over K can be extended to an L-Lipschitz
convex function over all of R<.
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We next assume a distribution D that is supported
on the domain Z. We consider the convex function F’
defined by

F(z) =E.up[f.(z)].

The function F is often referred to as the population
loss or true risk, and is also L-Lipschitz. The algo-
rithmic goal is to find a minimizer «* of F'. The set of
minimizers of F in I is

argmingF' = {z* € K:Vz € K F(2*) < F(x)}.

The learning algorithm does know the distribution D.
Instead, one assumes that the learner can observe an
iid. sample S = (z1,...,2,) of n examples drawn
from the distribution D. A natural strategy in this
setting is to follow the ERM principle. Given S, we
consider the empirical risk or empirical loss

=23,
J€ln]

An ERM learning rule is any algorithm that outputs
2 € argmin ,CF .

For an accuracy parameter ¢ > 0, the ERM principle
is considered successful if

F(z) < F(a*) +e.
We would like to have the guarantee that with as few
samples as possible, any algorithm that follows the
ERM principle is successful.

Our results provide such a guarantee. We first state
our result in the cleanest form possible. Accordingly,
the only two parameters we focus on are the dimension
d and accuracy parameter €, and we work over the /o
norm and its unit ball

B={zecR?: |z|, <1}.

General norms and other parameters are treated in
Section 2.T] below.

Theorem 1. Suppose that for every z € Z, the func-
tion f, is convex, 1-Lipschitz with respect to || - |2
and for every x € B we have |f,(x)] < 1. For every
distribution D on Z, and for all accuracy parameters
0<e<l,if

3dIn(4) 40
nzng="——= 4 5

then with probability at least % over S ~ D™, for all
x € B,

F(z) < F(z*)4+e = F(x) < F(z*) + 40e.

The theorem shows that for n > ng, not only that the
ERM principle is successful, but it is also robust in the
sense that it is safe to output any point & that is merely
close to being a minimizer of F. There is a distinction
between ERMs (algorithms that output a minimizer of
F ) and approximate ERMs (algorithms that output an
approximate minimizer of a ). This subtle distinction
is important in SCO. Approximate ERMs can be more
efficient than exact ERMs; see (10). For example, for
e > (1), for all problems, sample complexity of O(1)
can be achieved by a regularized ERM which is an
approximate ERM, but for some problems, any exact
ERM must have sample complexity Q(Ind).

2.1 General norms

We next provide a more fine-grained result that gen-
eralizes Theorem [1| for arbitrary norms and their unit
balls. We start by introducing the necessary terminol-
ogy. Recall that |- is a norm on R? and K C R? is
its unit ball. Denote by || - ||« the dual norm

lgll, = sup(g,z).
zel

The Rademacher complexity of K with respect to a
sample S = (g1,...,9,) € (RY)" is

1 n
Rad(K, S) = E, g;lajgj ,

*

where the expectation is over Rademacher random
variables o1,...,0, (i.e., i.i.d. uniform in {£1}). Ob-
serve that Rad(XC,S) corresponds to the standard
Rademacher complexity if we think of K as a class
of linear functions operating on the dual ball; indeed,
for every S,

n

1
sup —

Kne
xTE j=

Rad(IC,S) :Eo— 0'j<gj,$>
1

For an integer n, define

Rad(K,n) = sup Rad(K, S),
s

where the supremum is over S = (¢1,...,9n) so that
llgjll« <1 for all j € [n]. For € > 0, define

Radic'(¢) = min {n € N: Rad(K,n) < e}.
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It is worth noting that because

n+1

n—i—lzgjg]

*

1
=E n—l—l Z Zajgj

Cln+1]:|I|= zeI
1
| > Z ;9
IC[n+1]:|I|=n

zeI

]

the following monotonicity holds:
Rad(KC,n + 1) < Rad(K, n).

Therefore, if n > Radi'(¢) then Rad(K,n) < &

The general bound on the sample complexity of ERMs
is described in the following theorem.

Theorem 2. Suppose that for every z € Z, the func-
tion f. is convex, L-Lipschitz with respect to || - || and
for every x € K we have |f.(z)| < c. For every distri-
bution D on Z, and for all0 < e,§ <1, if

12¢d 3L € 8c? 4

S (D) R (5p) + ()
then with probability at least 1 — & over S ~ D™, for
all z € IC,

n>mng =

+e = F(z) < F(z*)+ 40e.

The sample complexity ng consists of three different
terms. The first term is of the form ¢ In(£), and also
appears in the /5 setting. In a nutshell, the dln(%)
part comes from the logarithm of the cover number
(see Lemma [1| below). The second term Radi' (%)
correspond to learning the special case of linear func-
tions. It heavily depends on the norm and its unit ball
K. For example, when £ > Q(1), for the ¢, norm it
is O(1), for the ¢; norm it is O(Ind), and for the {
norm it is O(d). The third term O(Z—zln(%)) is the
only place the confidence parameter § appears in.

3 ON THE PROOF

We now outline the proof of Theorem The proof
has two central ingredients. One ingredient is a first-
order optimality condition for stochastic convex opti-
mization problems (Theorem [3] in Section [.1). The
second ingredient connects properties of ERM to the
Bregman divergence and prove a strong concentration
bound for it. The mechanism underlying these steps
may be useful for other convex optimization problems.
The proof of the theorem is finally given in Section[5.1]

The proof of Theorem [2]requires a couple of additional
ideas, which are explained in Section [0}

A key property is identified in Theorem [6] This claim
allows to replace the ;% term which is “expected to
hold” by the term g which is “correct”. The intuition
for this gain is that distinguishing between a coin with
bias % 5+€ and a coin with bias 2 5—€ requires _z 2L samples,
but distinguishing between a coin with bias € and a
coin with bias 2¢ can be done with only é samples.

Where is the coin? For the simplicity of the exposition,
we assume that the f,’s are smooth and that the min-
imizer z* is in the interior of B (we also included an
illustration in Figure. In this case, F' is also smooth
and first-order optimality implies that VF(2*) = 0.
For each x € B, we know that F'(z) — F(a*) > 0,
and our goal is to control the empirical difference
F(xz) — F(z*). This is achieved, in a nutshell, through
the non-negativity of the Bregman divergence. The
Bregman divergence associated with f, between x and

x> is

Dy (z,27) := fo(2) — f2(2") = (V/[.(z

It is always non-negative, and it is also bounded from
above by four. The key observation is that

F(x) — F(z7) = E.p[Dy. (z,27)],

*),LE - :C*>.

= DF('T7 Z‘*)
which is explained by
E. p[Vf.(z¥)] =

We also see that “z is a bad output” when Dg(z,2*) >
2¢. Instead of directly controlling F'(z) — F(z*), we
aim to control the empirical Bregman divergence

= F(z) — F(z*) — (VE(z*), . — x*).

We can think of Dp(z,2*) as the bias of a coin tak-
ing values in [0,4]. The non-negativity and bounded-
ness of the Bergman divergence allows to prove, via
Bernestein inequality, that if Dp(x,2*) > 2¢ then

VF(2*) = 0.

Dg(x,2%)

Pr[Dpa(z,2*) < €] < exp(—Q(en)).

This seems pretty close to our goal; if “x is a bad
output” then it is very likely that Dg(x,z*) is large.
Because we actually care about F'(z) — F'(z*) and not
Dy (x,2*), we also need to control VF(z*). This can
be achieved via a simple concentration argument be-
cause

E[|VE(*)3] < -

By taking a standard union bound over an e-net N for
B of size [N| =~ (1)?, we get the final bound
Pr[3z € B F(z) — F(z*

) > de, F(z) — F(z*) < €]

< o+ N exp(=(en))
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Figure 1: An illustration of the role the Bregman di-
vergence plays in the proof. The graphs of F' and a
are from 7?7. The solid line is the tangent to F at
z* = 0, and the dashed line is the tangent to F at
xz*. The tangents are always below the graphs due to
convexity. The differences between the graphs and the
tangents are the Bregman divergences. By controlling
the tangent to F, we can control the behavior of ERM.
Controlling the tangent to F is easier than controlling
F because it is an affine function.

This argument actually works also when the f,’s are
not assumed to be smooth. For this, we need to replace
“gradients” by “subgradients”; see Section below.
But when z* is on the boundary of B, even in the
smooth case, we do not know that VF(2*) = 0. In this
case, we additionally need to understand what hap-
pens when Dp(x,2*) < 2. This is achieved in Theo-
rem [4

4 PRELIMINARIES

We next develop several preliminary results, and pro-
vide the background needed for the proof.

4.1 First-order optimality

The subgradient of f: R — R at z € R? is

Of(x) ={g R : vy e R f(y) > f(x) + (g,y — )}

If f is convex then the set 0f(x) is never empty (33).
If f is convex and L-Lipschitz with respect to || - || then

g€ df(z) = gl < L.

A deep property of stochastic functions follows from
the subgradient sum property (because it is a cen-
tral idea, we included a proof in the material). For
a stochastic convex function, the subgradient can be

thought as the expectation of the subgradients (();
namely, if F = E,.p[f.], then for every g € OF(z),
for each z € Z, there exists g, € df.(x) so that

g= ]EZND[QZ]-

This leads to the following stochastic first-order opti-
mality condition.

Proposition 3 (Stochastic first-order condition). Let
|- || be a norm on RY and denote by K its unit ball.
Let D be a distribution on the finite set Z. Suppose
that for every z € Z, the function f, is convex and
L-Lipschitz. Assume that

x* € argming F

where F = K, p|[f.]. Then, for each z € Z, there is
g. € 0f.(x*) so that ||g.|l« < L and for all z € IC,

(G,x—2*) >0 (1)
where G = E,.plg,] € OF (z*).

Proof. The first-order optimality condition (see
e.g. (33t [7)) applied to F states that there is G €
OF (x*) so that for all x € K,

(Gyz —a*) > 0.

By the subgradient sum property, there are g, €
Of.(x) such that G = Elg.]. Because f, is L-Lipschitz,
we know that ||g. |, < L. O

4.2 The Bregman divergence

The Bregman divergence measures the difference be-
tween a convex function and its first-order approxima-
tion. It is often defined for smooth functions, but for
our purposes, we require a definition that makes sense
for genercal SCO problems. For a stochastic function
F =E,.p[f.] and a point z*, the Bregman divergence
associated with F' at x* is

D(z,*) = Dp(z,a*) = F(x) - F(a*) - (G,z — a),

for some G € OF(x*). This mapping depends on the
choice of GG, but to avoid cumbersome notations we will
suppress this dependence. Importantly, we care about
the Bregman divergence at x* which is a minimizer
of F', and we assume that G € OF (z*) is chosen to
be a sub-gradient whose existence is guaranteed by
Theorem [3

Given a sample S = (z1,...,2,), the empirical Breg-

man divergence is

Bla,*) = F(@) - P(a*) — Gz — 7°),
where G = L3 g.. € 9F(2*). Two key observa-
tions are that by the convexity of all the f.’s, both
D(z,2*) and D(z,x*) are non-negative, and

Espn[D(z,z*)] = D(x,z*).
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4.3 Covering numbers

For ¢ > 0, the e-cover number Covi(e) of K is the
minimum integer m so that there is a net N C K of
cardinality |N| = m so that for every z € K there is
y € N so that ||z —y|| < e. The following is a standard
bound on the cover numbers of unit balls of norms.

Lemma 1. Let || - || be a norm on R? and denote by
KC its unit ball. For every e > 0,

2(1 + 5))‘1'

Covi(e) < ( .

Proof. Let Y be a subset of IC of maximum size so that
for every y # ¢’ in Y we have ||y — y/'|| > €. Tt follows
that

(1+2)7IK] = |(1+2)K] = | LGJY (v+35K5)]

=l ok] = (5) ik,

where | - | denotes volume. Because Y is maximal, for
every € K there is y € Y so that ||z —y|| <2e. O

4.4 Bernstein’s inequality

Finally, we recall the following concentration bound,
due to Bernstein:

Lemma (Bernstein’s inequality). Let Ry,..., R, be
i.i.d. random variables taking values in [—M, M|, each
with mean zero and variance o?. Then, for all t > 0,
we have

t2
Pr(Y B 2] <o (- g o).
j€[n]

5 THE EUCLIDEAN NORM

In this section, we prove Theorem Let z* be an
arbitrary minimizer of F'in B. Let G € 0F(x*) be the
subgradient given in Theorem For a fixed sample,
we also denote:

é:

3=

n
> ga
i=1

We start the proof by providing both a lower bound
on the Bregman divergence at spurious empirical risk
minimizers, as well as an upper bound for the empirical
Bregman divergence at empirical risk minimizers.

The following claim says that for a point to be a spu-
rious risk minimizer, the Bregman divergence must be
“large”.

Claim 4. For all z € B, if
(F(x) = F(z*) <5¢) A (|G = G2 <€)
then
D(z,z*) > F(z) — F(x*) — Te.

Proof. Because

(G —a*) = (G -G,z —2*)+ (G, — 2*)
< 2+ (G, x — z*)
=2+ F(z*) + (G, x — z*) — F(z*)
=2+ F(z) — D(
< 2+ F(z) — F(a*
< T,
we can bound

D(z,2*) = F(z) — F(z*) — (G,z — 2¥)

O

Next, we relate data of the form “x is an ERM” to an
upper bound on the empirical Bregman divergence.

Claim 5. For all x € B, if
(F(z) — F(z*) <5) A (|G = G2 <€)
then

D(x,z*) < Te.

Proof.
D(z,z*) = F(z) — F(z*) — (G, z — z*)
< 5e — (G, x — x*)
=5e— (G -G,z — ") — (G, z — z*)
< 5¢ — (G—G,x—x*)
< Te. Eq.
O

So far, we showed that for a point to be a spurious em-
pirical risk minimizer, the Bregman divergence must
be large yet the empirical Bregman divergence is small.
The last claim we need is a concentration bound that
relates the empirical and true Bregman divergences.

Claim 6. Suppose that for each z € Z, the function
f- is convex, 1-Lipschitz with respect to || - ||2, and for
all x € B we have |f.(x)| < 1. Then, for every x € B,

D(;vQ, x*)}

Pr [D(a:,x*) < 7D(x,x*)n)’

40

.y Zn Gi.d. samples

Sexp(—

where the probability is over zi,..
from D.
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Proof. The random variable
- 1
D(z,z*) = - Z D, (z, ")
J

is the average of n i.i.d. variables Ry, ..., R,, each tak-
ing values in [0, 4] with expectation A := D(z,2*). By
the Bhatia—Davis inequality, the variance of the ran-
dom variables is at most

(4— M)A < 4\,

By Bernstein’s inequality,

P [Dle.0%) < 3] P [0, — ) < =]
S“P(‘qa@iémw)
< exp ( — %)

5.1 Putting it together

Assume that n > ng. We start with a simple claim
that controls the behavior of the linear part, and we
show that:

4

Pr{IG — Gl > <) < - (2)

Indeed,

A 1
EHG_GH% EZE<QZJ _G7ng/ _G>

Vo

1 4
= EZE”% -G* < o
J

Now, Eq. follows from Markov’s inequality.

Next, denote by E the event that there is € B so
that

(F(x) — F(z*) < &) A (F(x) — F(z*) > 40¢).

To prove the final result, we need to show that

Pr(E) < -. (3)

Towards this, denote by H the event that

=

IG~Gll2 <e.

Next, let N be an £-net for B of size at most (12/¢)?.
Denote by N the set of points x € N so that

(F(x) — F(z*) < 5¢) A (F(z) — F(x*) > 35¢).

Because F and F are Lipschitz, the net property im-
plies that if £ holds then N is a non-empty set. By
Theorem |4} conditioned on H, if z € N then

D(z,x*) > 16e.

On the other hand, for every z, conditioned on H, if
x € N then by Theorem |5| we have

D(z,z*) < 8e.

Let E, be the event that D(x,2*) < 8. We obtain,
therefore:

ENHC U E,.
TEN:D(z,z*)>16¢e

By Theorem [6] if D(z,z*) > 16¢ then
Pr[E,] < exp ( - %)

By the union bound, Lemma (1} Eq. , and because
n 2 no,

Pi(E) < Pilo] + ¥ e (- )

< 4 n (12)de ( an)

= Y exp [ = 22

~ e?n € P 3
1

< —.

—4

This completes the proof of Theorem

6 GENERAL NORMS

In this section, we prove Theorem [2| Our first task is
to handle the Lipschitz constant L and the bound ¢ on
the /5, norm. To properly handle general L and ¢, we
need to introduce a truncated version of the Bregman
divergence. Second, we address general confidence pa-
rameters. This requires a a uniform concentration re-
sult for the gradient at the optimum, combined with
an additional argument that bounds a contractive term
that may depend on it.

For the rest of this section, we fix a norm || - | and
its unit ball K. We also fix an optimal point z*, and
using Theoremwe fix subgradients g, € df,(x*) such
that the first-order condition Eq. holds for G =
E.~plg:]. As before, we denote by G the empirical

subgradient
n
A1
G=5 Z 9z;-
j=1

6.1 The Lipschitz and /., constants

Special care is required when ¢ < L. The reason is
that the Bregman divergence can be as large as L re-
gardless of ¢. We, therefore, introduce a truncated
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version of the Bregman divergence. The truncated di-
vergence associated with f: K — [—¢, ] is

Ty(z,2%) = f(z) = f(2") — max{—2¢, {9,z — 2")}.

The truncated divergence, as the Bregman divergence,
is always non-negative. But, in contrast to the Breg-
man divergence, it is always at most 4c because f is
bounded by c¢. Similarly to the Bregman divergence,
we use the following notation:

L 1S
T.=Ts., T=E..pT. and TzﬁZsz.
j=1

The random variable T'(z,z*) is the average of n
i.i.d. variables taking values in [0,4c] with expecta-
tion T'(z,z*). Analogously to Theorem @, we can de-
duce that:

Claim 7. For every z € IC,

. T(x,x*) T(x,x*)n

Pr [ T(x, z* <7’}< (—7)

r|T(x,2") < 5 < exp 100

We now want to develop analgoue statements to The-

orem [ and Theorem [Bl For that it will be convenient
to add the following notation

ly(a) = max{—2¢,a — (g,z*)}. (4)

The function ¢, : R — R is always convex and
I-Lipschitz. ~ Denote by L the function L(z) =
E.~plly. ({92, )] and by L it’s empirical analogue.
Both £ and £ are convex. For a sample S =
(21y..., 2n), the Tepresentativenes of S is defined to
be
Rep(S) = sup(£(z) — £(z).
zel

Claim 8. Suppose that Rep(S) < 2e. Then, for every
x ek, if

F(z) — F(z*) < 6¢

then

T(x,2*) < 8.

Proof.

T(x,x*) = F(z) — F(2*) — L(2)
< 6e + L(z) — L(z) — L(2)
< 8 — E,.pmax{—2¢, (9., — z*)}
< 8 —max{—2¢,E,.p(g., v —2*)}
<8 — (G,z — )
< 8e.

Eq.

O
!That is the terminology from the book (10).

Claim 9. Suppose that Rep(S) < 2e. For all x € K if
F(z) — F(z*) < 5e
then

T(z,z*) > F(z) — F(a*) — Te.

Proof. Because

L(z) = L(z) — L(x) + L(x) Rep(S) < 2¢
< 2 + L(z)
=2+ F(z*) + L(z) — F(2*)
< 2 + F(z) — T(z,2*) — F(z*)
< 2 + F(z) — F(z*) T(x,2*) >0

6.2 The linear part

In this section, we explain how to control Rep(S). We
are going to use standard results on the Rademacher
complexity, and for that we use the book (10)). In the
book, the Rademacher complexity of a set A C R"™ is
defined to be (and denoted by R):

1
Rad(A) =E, |sup — Z 0ja;

For a fixed sample S = (z1,...
set

A= As = {((gz1,2),

so that

,2n), we consider the
s (g2, x) ER" 1 € K}

Rad(A4) = Rad(K, S).

We also use the 1-Lipschitz maps ¢, : R — R that are
defined in Eq. . We denote by ¢ = fg the sequence
€= (ly. ,---,ly. ), and consider the set

toAd = {(ly., ({¢z1,2)), -+ 4y, ({9, 7)) € R" sz € K.

It follows from Rademacher calculus (10, see Lemma
26.9 (contraction lemma)) that

Rad(¢ o A, S) < Rad(A) = Rad(K, S). (5)

We also rely on the McDiarmid’s inequality following
(see e.g. (10, Lemma 26.4)).
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Lemma 2 (McDiarmid’s inequality). Let h: Z™ — R
be so that for some co > 0, for all j € [n] and for all
Zl,...,Zn,ZZ/- S Z}

[h(21, .oy 2n) — h(215 o 2ii1, 20 2ig 1y -+ o 20)| < co.

Let D be a distribution on Z. Then, for all 6 > 0,

Pr
SN’D’VL

1) — 4l > co mzwﬂgé

where p = Egpn[h(S)].

We obtain the following important corollary (see
also (10, Theorem 26.5)).

Corollary 10. Suppose that for each z € Z, the func-
tion f, is conver and L-Lipschitz with respect to || - ||
and for every x € K, we have |f,(x)| < ¢. For every
distribution D over Z and 6 > 0, with probability at
least 1 — 6 over S ~ D™,

Rep(S) < 2L - Rad(K, n) + ¢ M.

Proof. For each z € Z, we have [{,_(x)| < 4c for all
z € K. The map S — Rep(S) satisfies Eq. (6) with
co = 2. By Eq. and (10, Lemma 26.2), because

n

llg:|l« < L forall z € Z,

ESNDn [Rep(S)] S QESN'Dn [Rad(fs o As)]
< 2L -Rad(K,n).

By McDiarmid’s inequality, therefore, with probability
at least 1 — 9,

Rep(S) < 2L - Rad(K, n) + % In(2/8)n

2

6.3 Putting it together

The proof from here is similar to the simpler setup in
Theorem Assume that n > ng, as in the theorem
statement. Next, denote by E the event that there is
x € K so that

(F(x) — F(x*) < 5) A (F(a:) — F(2*) > 40¢).
The final result then follows if we prove that
Pr(E) <6. (7)
Towards this, denote by H the event that

Rep(S) < 2¢

By Theorem

0
Pr|— < —.
r| H]_2

Next, let V be an 57-net for K of minimal size. Denote

by N the set of points x € N so that

(F(z) — F(a*) < 5¢) A (F(z) — F(a*) > 35¢).

Because F and F are Lipschitz, the net property im-
plies that if £ holds then N is a non-empty set. By
Theorem |9 conditioned on H, if z € N then

T(x,x*) > 16¢.

On the other hand, by Theorem [§] for every = € K,
conditioned on H, if x € N then

T(z,2*) < 8e.

Let E, be the event that T'(z,2*) < 8. We obtain,
then:
ENHC U E,.
z€N:T(z,x*)>16¢e

By Theorem [7] if T(z,2*) > 16¢ then
en

PrlE,] < (— —).
r[Ey] < exp (- 5

By the union bound and Lemma

Pr[E] < Pr[-H] + |N|exp ( — Z—Z)
<5+ () e (- 50)

The proof of Theorem [2|is now complete because

3c¢%1n(4/6 3cIn(2/6
(4/5) , 32/

)

€ €

the last inequality is true for ¢ > ¢, which we can
assume because otherwise the result trivially holds.
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Appendix: The subgradient sum theorem

For completeness, we provide a proof of the subgradient sum theorem (see Rockafellar’s book ?). We added a
couple of figures that illustrate the main idea (Figure [1| and Figure . We work in the more general setting
when the function is defined on a convex subset of R?. For f: K —= R where K C R¢ is convex, define

Ocf@)={geR':Vy e K f(y) > f(z)+ (g.y — 2)}.

Theorem (subgradient sum). Let K C RY be a convex set with non-empty interior. If fi : R? — R and
f2 : K = R are conver and Lipschitz, then for all x € KC,

Ok (f1 + f2)(x) = Opa f1(x) + Ok fa(7).

This generality helps, for example, to deduce the first-order optimality condition we rely on.

Claim (first-order optimality). Let f : R? — R be Lipschitz and convex. Let K be convex and closed, and let
xo € argming f. Then, there is g € Oga f (o) so that (g,x — x¢) > 0 for all z € K.

Proof. The point xg is also a minimizer of f 4+ 1 as a function on K. Therefore, 0 € Ik (f + 1)(x¢). By the
subgradient sum theorem, there is g € Oga f(zg) so that —g € 9 1(xg). The latter says that for all x € K, we
have 1 > 1+ (—g,x — xp). O

Proof of the subgradient sum theorem. Let g € Ox(f1 + f2)(x). Define the convex Lipschitz functions hy, ho:
hi(y) = f1(y) = f1(@) = (9,y — x)

and
ha(y) = fa(y) — fa(2).
So, x is a minimizer of hy + ho in B, and hy(z) = he(x) = 0. Define the convex sets
Zy ={(y1, M) 1 €RY A > ha(yr)} CRY xR
and
Zy ={(y2,A2) 192 € K, A2 < —ha(y2)} C R? x R,

The interiors of these convex sets are disjoint because the minimum of hy + ho is zero. It follows that there is a
hyperplane separating them. This hyperplane is not “vertical” because the projection of both to R% contains K;
that is, the separating hyperplane is a graph of an affine function on R%. The point (z,0) belongs to both sets,
so the hyperplane must contain it. Overall, there is v € R? so that

V(y1, M) €21 (v,y1—2) <\
and

V(y2,A2) € Zo (v,y2 — ) = Ao
In other words, for all y € R%,

(v,y — ) < ha(y)
and for all y € K,
(v,y =) = —ha(y).
Going back to f1, fo, we get that for all y € R? |
(v,y —2) < fily) = fr(z) = {9,y — z)
and for all y € K
(=v,y — ) < faly) — fo(2).

The first inequality says that g + v € Opa f1(z) and the second that —v € I fo(x). O
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Figure 1: Part I of the illustration of the proof of the subgradient sum theorem. The function

fi(@) = (z —0.1)2 — 5 is the gray line. The function fy(z) = |z + 0.1] is the dashed line. Their sum

f1 + fa is the solid black line. The point of interest is x = —%, which is the minimum of f; + fa.
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Figure 2: Part II of the illustration of the proof of the subgradient sum theorem. The convex set Z; is the
epigraph of f;. The convex set Zs is “minus” the epigraph of f,. The point of interest is x = —%, and
0 € 95(f1 + f2)(z). The two convex sets meet at (x,0). There is a line separating Z; and Zs going through
(2,0). This line shows that we can write 0 as a subgradient of f; plus a subgradient of fs.



