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Abstract

We address the problem of identifying the op-
timal policy with a fixed confidence level in a
multi-armed bandit setup, when the arms are
subject to linear constraints. Unlike the stan-
dard best-arm identification problem which
is well studied, the optimal policy in this
case may not be deterministic and could mix
between several arms. This changes the ge-
ometry of the problem which we character-
ize via an information-theoretic lower bound.
We introduce two asymptotically optimal al-
gorithms for this setting, one based on the
Track-and-Stop method and the other based
on a game-theoretic approach. Both these
algorithms try to track an optimal allocation
based on the lower bound and computed by
a weighted projection onto the boundary of
a normal cone. Finally, we provide empirical
results that validate our bounds and visualize
how constraints change the hardness of the
problem.

1 INTRODUCTION

A classical problem in the multi-armed bandit frame-
work is pure exploration (Lattimore and Szepesvári,
2020), where the task of a learner is to answer some
query about a set of actions, also known as arms, by
iteratively choosing between the actions and receiving
an immediate reward sampled from a distribution asso-
ciated with the action. A very well-studied problem in
this context is Best-Arm Identification (BAI), where a
learner is trying to identify the arm with the highest
expected reward (Even-Dar et al., 2002; Bubeck et al.,
2009; Kalyanakrishnan et al., 2012). The BAI problem
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has many applications such as hyper-parameter tun-
ing (Li et al., 2017), clinical trials (Aziz et al., 2021),
communication networks (Lindståhl et al., 2022) and
user studies (Losada et al., 2022). However, many real-
world scenarios often involve constraints on the arms
that must be satisfied. For example, in recommender
systems, one may need to ensure diversity and genre
constraints (Kunaver and Požrl, 2017), or fairness of
exposure (Wang et al., 2021). In clinical trials, one may
need to account for toxicity constraints of the available
treatments (Brannath et al., 2009; Chen, 2021; Demirel
et al., 2022). As a result, standard BAI algorithms are
not perfectly fitted in these settings and might have
large sample complexity as we show empirically later
on in Section 5.

In this paper, we introduce the problem of pure ex-
ploration in bandits with linear constraints where the
goal is to identify, with a fixed confidence, a policy
that maximizes the expected rewards over arms while
satisfying some given constraints. A set of constraints
may change the nature of the pure exploration problem
fundamentally. In particular, the optimal policy may
not be deterministic, and finding the best arm may not
be sufficient. Let us consider the following example.
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Figure 1: A Visual Representation of Example 1.
Left figure with the full simplex represents the un-
constrained problem. While the constraints of person
A (middle) and person B (right) modify the problem
to be harder and easier than the unconstrained one.
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Example 1 (Optimal meal plan). Two people, A and
B, are searching for a meal plan π that maximizes taste,
i.e. expected reward µJπ, while satisfying some nutri-
tion constraints. Without any constraints this setting
reduces to BAI and can be viewed as searching for the
optimal policy over the probability simplex. However,
as illustrated in Figure 1, the nutrition constraints alter
the set of feasible sets and a person might have to mix
between several dishes to satisfy the constraints while
maximizing the reward. In Figure 1, the red arrow
indicates the preference direction and the red dot corre-
sponds to the optimal policy for each case. The dotted
arrows, bi, corresponds to the normal of that boundary,
i.e. the constraint causing the boundary, and as we will
see later, in Figure 2, the distance between µ and bi
controls the hardness of the problem. For person A,
the distance between b2 and µ decreases compared to
the unconstrained case, while it increases for person
B. Thus, the problem of finding the optimal pure explo-
ration policy gets easier for person B while harder for
person A. This is quantified by the minimum number
of samples required to identify the optimal policies for
person A, B, and the unconstrained case (ref. Fig. 2).

As illustrated in Figure 1, a learner may need to search
for a stochastic policy that allocates positive probabili-
ties to multiple arms and this influences how an efficient
learner should explore. Depending on the constraints,
the learner’s task may become easier or harder, e.g.
because the learner may need to explore several arms
more extensively, or the constraints may remove several
near-optimal policies, which makes the problem eas-
ier. These observations yield the following fundamental
questions:

How do a specific set of constraints impact a pure ex-
ploration problem in terms of the minimum number
samples required to identify the optimal policy?

Our Contributions. We define the problem of pure
exploration in bandits with linear constraints and derive
a corresponding lower bound on the sample complexity
of any algorithm. We further derive an explicit lower
bound for arms corresponding to Gaussian distribu-
tions, which shows that the hardness depends on the
projection of µ onto boundary of a normal cone, and
that the lower bound diminishes with the increasing
condition number of the constraints defining the opti-
mal policy. Our results show that the lower bound can
be thought of as a zero-sum game where the learner
plays an exploration strategy and the adversary plays
a constraint that is not active at the optimal policy.
These insights allow us to modify the standard BAI
algorithms, such as Track-and-Stop (Garivier and Kauf-
mann, 2016) and the game-theoretic algorithm (De-
genne et al., 2019), and extend them to the constraint
setting. We prove that our proposed algorithms are op-

timal in the asymptotic regime for the pure exploration
problem with known linear constraints. Finally, we
empirically evaluate the algorithms, both on synthetic
and realistic data.

1.1 Related Work

Now, we review some works on policy learning, a classi-
cal problem in decision-making (Bechhofer, 1958), that
deal with known or learned constraints on decisions
and/or constraint exploration due to safety, fairness,
or other preferences.

Adapting To Known Constraints. Constraints are
often used to ensure safety in reinforcement learning,
online learning and control (Moldovan and Abbeel,
2012; Gillulay and Tomlin, 2011; Wan et al., 2022;
Vaswani et al., 2022). In the bandit literature, some
variants of the best-arm identification (BAI) problem
impose constraints on the chosen arm, or on the ex-
ploration process. Wang et al. (2022); Camilleri et al.
(2022) studies the setting with unknown linear rewards
under known safety constraints but only allow single
coordinate actions. Faizal and Nair (2022) consider
BAI under fixed budget with known constraints on the
arms. Their setting differs from ours in that we look
for a best “policy” over arms with linear constraints
rather than a single best arm.

Learning Unknown Constraints. Sui et al. (2015,
2018) study online optimization of an unknown function
f with constraints on f , but without formal analysis.
In the bandit literature, constraints are mostly studied
in the regret-minimization setting. Moradipari et al.
(2021) and Pacchiano et al. (2021) consider regret min-
imization in linear bandits under linear constraints
from Bayesian and Frequentist perspectives, respec-
tively. Amani et al. (2019) study regret minimization
in linear contextual bandits with unknown and unob-
served linear constraints. Wang et al. (2021) aims to
minimize the fairness regret to ensure proportional ex-
posure for each arm, which implies a known structure
for the policies. Unlike these works, we focus on the
pure exploration setting. Lindner et al. (2022) con-
siders constrained linear best-arm identification arm
are vectors with known rewards and a single unknown
constraint (representing preferences) on the actions.

Pure Exploration Algorithms. Our Constrained
Track-and-Stop algorithm, (CTnS, Section 4), follows
the Track-and-Stop TnS) meta-scheme proposed by
Garivier and Kaufmann (2016). In TnS, one tracks
an optimal allocation with respect to a lower bound
and assumes that the current estimate is the true en-
vironment. This approach has been applied to vari-
ous bandits, e.g., linear bandits (Jedra and Proutiere,
2020), spectral bandits (Kocák and Garivier, 2021),
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heavy-tailed bandits (Agrawal et al., 2020), bandits
with multiple correct answers (Degenne and Koolen,
2019), and latent bandits (Kinyanjui et al., 2023). The
Constrained Game Explorer, (CGE, Section 4), follows
the gamification approach to pure-exploration, which
treats the lower bound as a zero-sum game between an
allocation player and instance player. This approach
was first introduced by Degenne et al. (2019), and later
used for best-arm identification in linear bandits (De-
genne et al., 2020) and combinatorial bandits (Degenne
et al., 2020). In particular, CGE is an extension of the
sampling rule of (Degenne et al., 2019) to the case of
known linear constraints.

Transductive Linear Bandit. Another related setup
is the transductive linear bandit (Fiez et al., 2019),
where one set of arms, A, are played during exploration
while the goal is to detect the best arm in some other
known set, Z. This is related to our setting since we
want to learn the best policy but only have access to
arms. Hence, our model can be viewed as a natural
special case of the transductive linear bandit where A is
the standard basis and Z is the set of policies. However,
the existing literature on transductive bandits does not
study the impact of linear constraints that we explicitly
study here and the resulting algorithms are different.

Bandits With Knapsacks. Our work is also related
to the bandit with knapsack (Badanidiyuru et al., 2018;
Agrawal and Devanur, 2016; Immorlica et al., 2022). In
this model, there are upper bounds on the total amount
of resources a learner can consume while interacting
with the bandit and each arm has its own resource
consumption. The goal is to minimize the cumulative
regret and the learner has to stop once the resources
are depleted. This is different from our setting since
we consider the problem of finding the best policy and
not regret minimization. Our constraints are also not
budget constraints but constraints in the policy space.

2 PROBLEM FORMULATION

We consider a multi-armed bandit problem with K
arms that corresponds to reward distributions, tPauKa“1,
with unknown means tµauKa“1 and support R. At each
time step t, a learner chooses to play one of the arms,
At P rKs, and observes an immediate reward Rt, drawn
from the reward distribution PAt

. The learner has
access to a non-empty and compact set of feasible
policies

F fi tπ P ∆K´1 : Bπ ď cu , (1)

where ∆K´1 is the K-simplex and B P RNˆK and
c P RN , are known parameters of the linear constraints.
For the ease of the presentation, we absorb the simplex
constraints in B and c. Hereafter, these variables refer

to both the simplex constraints, and the additional
linear constraints of the problem. The goal of the
learner is to recommend, with probability at least 1 ´ δ,
the unique optimal policy π˚

µ,F satisfying

π˚
µ,F fi arg max

πPF
µJπ. (2)

When it is clear from the context, we denote π˚
µ,F as

π˚. We refer to such a learner as a δ-PAC learner.
As 1 ´ δ quantifies the correctness of the learner, we
also want it to be efficient, i.e. to detect the optimal
policy fast. Let τδ denote the random stopping time
at which the learner stops interacting with the bandit
and makes a recommendation with confidence 1 ´ δ.
We aim to design a δ-PAC learner that minimizes the
expected stopping time Erτδs, a.k.a. sample complexity,
needed to find the optimal policy.

Depending on the application, a learner can abide by
the constraints of Equation (1) in two ways:

• Scenario 1: End-of-time constraint: The learner
does not have to take the constraints into account
during exploration. Only the final recommended
policy needs to satisfy the constraints.

• Scenario 2: Anytime constraint: The explo-
ration policy needs to satisfy the constraints in ex-
pectation during exploration, i.e. the exploration
policy wt needs to satisfy wt P F .

For example, Scenario 1 arises while using a more
sophisticated hardware to search for an optimal policy,
that should satisfy some energy-constraints, before
deploying it on a low-energy hardware. In contrast,
Scenario 2 can be thought of as performing the search
directly on the low-energy hardware. Now, we explicitly
state the assumptions used in this study:

• Assumption 1: The reward of each arm i P rKs

is distributed according to a sub-Gaussian single-
parameter exponential family parameterized by its
unknown mean µi.

• Assumption 2: The vector of arm means, µ, lies
in a bounded domain D “ rµmin, µmaxsK .

• Assumption 3: The optimal solution π˚
µ,F to the

linear program in Equation (2) is unique.

Assumptions 1 and 2 are standard in the literature (De-
genne and Koolen, 2019; Degenne et al., 2020). As-
sumption 3 is the analogue of assuming a unique best
arm in the BAI problem, and it ensures that the opti-
mum of Equation (2) is an extreme point. Hence, the
optimal policy π˚

µ,F always corresponds to an extreme
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point in the polytope F . In Appendix D, we discuss
the relaxation to ϵ-good policies.

Notations. Let Π denote the set of feasible exploration
policies. Thus, for Scenario 1, Π “ ∆K´1, and Π “ F
for Scenario 2. We denote the KL-divergence between
two single-parameter exponential family distributions
with mean x and y as dpx, yq. Additionally, if the
random variables are Bernoulli, we denote the KL-
divergence as klpx||yq.

3 LOWER BOUND

Lower bounds on the sample complexity of a δ-correct
algorithm, i.e. Erτδs, is a driving force in designing
good algorithms in the BAI literature (Garivier and
Kaufmann, 2016; Degenne and Koolen, 2019; Agrawal
et al., 2020).

Given a problem instance µ, a learner needs to collect
enough information about the problem to be able to
rule out all alternative instances, λ, for which we have
maxπPF λJπ ą λJπ˚ with confidence at least 1 ´ δ
. We refer to this set of instances as the Alt-set and
denote it as

ΛF pµq fi tλ P D : max
πPF

λJπ ą λJπ˚u. (3)

Garivier and Kaufmann (2016) introduced general tech-
niques for deriving lower bounds on the sample com-
plexity of any δ-PAC learner, which depends on the
the distance from µ to the closest λ P ΛF pµq in an
information-theoretic sense.

We extend these general proof techniques and show that
the expected stopping time of any δ-PAC algorithm ϕ
for BAI with linear constraints satisfies

Eµ,ϕ rτδs ě TF pµqklpδ||1 ´ δq. (4)

where TF pµq is the characteristic time, defined as

T´1
F pµq “ sup

wPΠ
inf

λPΛF pµq

K
ÿ

a“1

wadpµa, λaq. (5)

The supremum in Equation (5) hints towards the ex-
istence of some optimal exploration policy w, which
any optimal algorithm should try to track. This is
exactly the idea behind the Track-and-Stop meta-
scheme (Garivier and Kaufmann, 2016) (details in
Section 4). In order to design algorithms achiev-
ing the lower bound in Equation (4), we need to
solve the optimization problem in Equation (5). This
requires a more explicit characterization of ΛF pµq,
continuity properties of the function Dpw,µ,Fq fi

𝜆∗ = arg min
"∈$(&)

∑𝑤(𝑑(𝜇(, 𝜆()

𝜇 𝜆)∗ 𝜆*∗
𝜆+∗

A B𝑏!𝑏"𝑏#

Figure 2: Computing the λ satisfying Equation 6,
i.e. the most confusing instance, can be viewed as
an information-theoretic projection onto the boundary
of the normal cone spanned by the active constraints
at πµ. In A) we see the different normal cones for the
three different examples in Figure 1. In B) we have
fixed µ1 and µ3, as in Figure 1, and plot the lower
bound, assuming Np0, 1q noise and with δ “ 0.1, for
increasing µ2 which mean that we are moving µ closer
to the boundaries in A). We observe an inverse rela-
tionship between the distance to the boundary and the
lower bound, properly characterized in Corollary 1.

infλPΛF pµq

řK
a“1 wadpµa, λaq, and the set of optimal

allocations w˚pµq.

To derive an explicit expression for ΛF pµq, let M be
the number of active constraints for π˚, Bπ˚ P RMˆK

be a submatrix of B consisting of all these active con-
straints, and cπ˚ P RM the corresponding bounds in
c. Hence, there exists at least K linearly indepen-
dent rows in Bπ˚ , i.e. a matrix B̂π˚ P RKˆK and
vector ĉπ˚ P RK , such that π˚ “ B̂´1

π˚ ĉπ˚ . Since
our objective (Equation (2)) is a linear program, we
can leverage the optimality condition stating that
µ must be in the normal cone of the optimal solu-
tion (Boyd and Vandenberghe, 2004). Hence, we ex-
press the Alt-set as ΛF pµq “ tλ : λ R N pπ˚qu . Here,
N pπ˚q :“

␣

λ : λ “ BJ
π˚v,v P RM

ě0

(

is the normal cone
spanned by the active constraints for π˚.

Further, we say that π1 is a neighbor of π˚ if it is an
extreme point in F and shares K ´1 active constraints
with π˚. We denote the set of all neighbors of π˚ as
VF pπ˚q. Hence, we can decompose the Alt-set into
a union of a finite number of half-spaces ΛF pµq “
Ť

π1PVF pπ˚q

!

λ : λJ
pπ˚ ´ π1q ă 0

)

. This formulation
implies that if π˚ is not an optimal policy for the
instance λ, there must exist an direction for the simplex
algorithm to follow to increase the expected reward,
i.e. Dπ1 P VF pπ˚q : λJ

pπ˚ ´π1q ă 0. This formulation
of Alt-sets lead us to the observation that the most
confusing instances in the Alt-set w.r.t. µ lay on the
boundary of the normal cone.
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Specifically, Lemma 1 shows that the function
Dpw,µ,Fq is a weighted projection onto the plane
λJ

pπ1 ´ π˚q “ 0 for some π1 P VF pπ˚q, as shown in
Figure 2.
Lemma 1 (Projection Lemma). For any w P Π and
µ it holds that

Dpw,µ,Fq “ min
π1PVF pπ˚q

min
λ:λJpπ˚´π1q“0

K
ÿ

a“1

wadpµa, λaq

(6)

To compute Dpw,µ,Fq from Equation (6), we need
to have access to the true instance µ, which we do
not have in reality. Rather, we sequentially obtain
samples from the arms yielding an estimate µ̂t. Thus,
we need Dpw,µ,Fq and w˚pµq to satisfy continuity
properties (Theorem 1) w.r.t µ, that ensures as the
estimates µ̂t converge to µ, Dpw, µ̂t,Fq Ñ Dpw,µ,Fq

and our empirical distribution of plays gets closer to
some w P w˚pµq.
Theorem 1. Following properties are true for all µ
and F “ tπ P ∆K´1 : Bπ ď cu such that the problem
maxπPF µJπ has a unique solution.

• The function pw,µq ÞÑ Dpw,µ,Fq is continuous.
• The function µ ÞÑ TF pµq is continuous.
• The set-valued function µ ÞÑ w˚pµq is upper hemi-

continuous (definition in Appendix G).
• The set w˚pµq is convex.

3.1 Lower Bound For Gaussian Distributions

To gain further insights on how the constraints alter the
lower bound in Equation (4), we consider the special
case where all arms are Gaussian distributions with
equal variance σ2. This leads us to a close-form of the
projection in Lemma 1 as in Theorem 2.
Theorem 2. If the arms follow Gaussian distributions
with identical variance σ2 and wa ą 0 @a, we have that
the projection minλPD:λJpπ˚´π1qď0

řK
a“1 wadpµa, λaq

for any π1 P VF pπ˚q is satisfied by λa,π1 “ µa ´

γ pπ˚
´π1

qa
wa

, for γ “
µJpπ˚

´π1q
ř

a
pπ˚´π1q2

wa

, and the characteristic

time is

TF pµq´1 “ max
wPΠ

min
π1PVF pπ˚q

1

2σ2

`

µJ pπ˚ ´ π1q
˘2

ř

a
1
wa

pπ˚ ´ π1q2a

“ max
wPΠ

min
π1PVF pπ˚q

1

2σ2

}π˚ ´ π1}2µµJ

}π˚ ´ π1}2Diagp1{waq

Here, Diagp1{waq is a diagonal matrix with a-th entry
of the diagonal as 1{wa.

In the classical BAI setting, i.e. we only have simplex
constraints, the expressions in Theorem 2 reduces to

the BAI results of Kaufmann et al. (2016), see Ap-
pendix B for a derivation. From Theorem 2, we further
derive a lower and an upper bound on the characteristic
time. Let us define dπ1 fi minλ:λJpπ˚´π1q“0 ||µ ´ λ||2

and note that this is the distance between µ and the
hyperplane π˚ ´ π1 “ 0, see Figure 2 for illustration.
Corollary 1. The characteristic time TF pµq satisfies
the following bounds:

min
π1PVF pπ˚q

2σ2

d2π1

ď TF pµq ď min
π1PVF pπ˚q

2σ2K

d2π1

. (7)

Corollary 1 implies a lower bound of

Erτ s ě min
π1PVF pπ˚q

2σ2

d2π1

klpδ||1 ´ δq

Impact Of Constraints: Geometric View. We
first observe that, since the distance-to-projection

dπ1 “
µJpπ˚

´π1q
}π˚´π1}2

, the problem becomes easier when
the direction of the reward vector µ is aligned with
the deviation in policy π˚ ´ π1. Especially, if we
only consider deterministic policies, i.e. BAI prob-
lem, dπ1 “ µ1 ´µa “ ∆a where µ1 is the best arm, a is
the arm played by π1 and we retrieve the lower bound
of Kaufmann et al. (2016).

Impact Of Constraints: Constrained Optimiza-
tion View. We relate the lower bound more explicitly
to the constraint matrix B by using the fact that any
neighbor π1 P VF pπ˚q can be reached from π˚ via an 1-
rank update on a matrix B̂π˚ P RKˆK consisting of K
active constraints at π˚ that are linearly independent.
Thus, we only need to change one row in B̂π˚ and one
element in the corresponding ĉπ˚ to get B1 and c1 such
that π1 “ B1´1c1. This results in the lower bound on
the sample complexity presented in Corollary 2.
Corollary 2. For any π1 P VF pπ˚q, let B̂π˚ P RKˆK

be a set of active and linearly independent constraints
at π˚ such that the active constraints at π1 can be
achieved by a one-rank update on B̂π˚ . Let r1 be the
row in B̂π˚ that is changed during this one-rank update.

Part (a): Let ∆ P RK denote the vector of the sub-
optimality gaps, i.e. ∆a “ µ1 ´ µa, of each arm, then

TF pµq´1 “ max
wPΠ

min
π1PVF pπ˚q

1

2σ2

´

∆JB̂´1
π˚er1

¯2

}B̂´1
π˚er1 }2Diagp1{waq

(8)

Part (b): Let κ2 be the condition number of a matrix
B̂π˚ P RKˆK consisting of K linearly independent
active constraints at π˚, then the sample complexity of
any δ-PAC learner is lower bounded as

Erτ s “ Ω

ˆ

H

κ2
klpδ||1 ´ δq

˙

(9)
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with H “ 2σ2
ř

a‰a˚ ∆2
a
.

Corollary 2 relates constraints, arm sub-optimality, and
sample complexity. Equation (8) links sample complex-
ity to perturbations of the optimal policy. Naturally,
if a large perturbation of the optimal policy is only
slightly sub-optimal, the sample complexity will be
large. In contrast, if a small pertubation is bound to
cause the resulting policy to be highly sub-optimal it is
easier to detect the optimal policy. Equation (8) also
reinterprets the lower bound as a zero-sum game where
the agent plays an allocation and an adversary switches
an active constraint at π˚ to a non-active one.

Equation (9) provides a looser bound based on a sub-
optimality gap based complexity measure H, and the
condition number, κ2 of the active-constraint matrix,
which measures sensitivity of the optimal policy to
perturbations. A high κ2 implies that small perturba-
tions of the optimal policy will cause a large change
of the slack corresponding to the active constraints,
making exploration easier. A low κ2 means policy
perturbations have a smaller impact on the slack mak-
ing neighboring policies less distinguishable from the
optimal one.

4 ALGORITHMS

In this section, we focus on extending the classical pure
exploration algorithms to the setting of pure explo-
ration with linear constraints.

Algorithm Design. We begin by observing that any
pure exploration algorithm consists of three compo-
nents: A Stopping Rule, a recommendation rule, and
a sampling strategy. The stopping rule consists of a
condition deciding when to halt sampling further. The
recommendation rule decides what policy to recom-
mend as the optimal policy. The sampling rule decides
which arm to sample next given the history of arms
sampled and intermediate policies computed.

Component 1: Chernoff’s Stopping Rule With
Constraints. As a stopping rule, we extend the
Chernoff’s stopping rule (Garivier and Kaufmann,
2016). We first introduce the confidence set Ctpδq :“
!

λ :
řK

a“1 Na,tdpµ̂a,t, λaq ď cpt, δq

)

, where cpt, δq is a
threshold defined in Lemma 2.

Lemma 2 (Garivier and Kaufmann (2016)). For
any α ą 1 there exists a constant Cpα,Kq such that
for cpt, δq “ log tαCpα,Kq

δ we have for any t P N
P pµ R Ctpδqq ď δ.

Lemma 2 implies that Chernoff’s stopping rule is a

Algorithm 1 Constrained Track-and-Stop (CTnS)

Require: Confidence level δ, constraints pB, cq, explo-
ration set Π

1: Play each arm once.
2: while cpt, δq ą DpN{t, µ̂t,Fq do Ź Weighted

projection via Lemma 1
3: Compute w˚

t P argmaxwPΠ Dpw, µ̂t,Fq Ź

Solve for optimal w w.r.t. the constraints
4: Play At P argmina Na,t ´

řt
s“1 w

˚
a,s,ϵs and ob-

serve reward Rt

5: end while
6: Recommend π˚

µ̂t
“ argmaxπPF µ̂J

t π

Algorithm 2 Constrained Game Explorer (CGE)

Require: Confidence level δ, constraints pB, cq, explo-
ration set Π

1: while cpt, δq ą DpN{t, µ̂t,Fq do Ź Weighted
projection via Lemma 1

2: Get allocation wt from regret minimizer Ź

Running Adagrad over Π
3: Compute best-response λt w.r.t. wt and µ̂t Ź

Weighted projection via Lemma 1
4: Compute confidence intervals @a rαt,a, βt,as “

tξ : Na,tdpµ̂a,t, ξq ď fptqu

5: @a Ua
t :“ max

!

fptq
Na,t

,maxξPtαa
t ,β

a
t u dpξ, λa,tq

)

6: Update AdaGrad with lpwtq “
řK

a“1 waUa,t

7: Play At P argmina Na,t ´
řt

s“1 w
˚
a,s,ϵs and ob-

serve reward Rt

8: end while
9: Recommend π˚

µ̂t
“ argmaxπPF µ̂J

t π

δ-PAC stopping rule, and we stop when

inf
λPΛF pµ̂tq

K
ÿ

a“1

Na,tdpµ̂a,t, λaq ą cpt, δq. (10)

This means that the confidence set is a subset of the
normal cone spanned by the active constraints at π˚

µ̂t
.

The details of the constant in Lemma 2 are deferred to
Appendix C. Note that one can also derive a stopping
rule via the concentration results of Kaufmann and
Koolen (2021).

Component 2: Recommendation Rule. We rec-
ommend the solution of the linear programming (Equa-
tion (2)) with the empirical means of the arms at
the stopping time, π˚

µ̂t
“ argmaxπPF µ̂J

t π. Since
the empirical means might not always be within the
pre-specified range D, we let µ̂t denote the Euclidean
projection of the empirical means onto D.

Component 3a: CTnS.

First, we present our Constrained Track-and-Stop Al-
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gorithm (CTnS, Algorithm 1), which is an adapta-
tion of the Track-and-Stop (TnS) framework (Garivier
and Kaufmann, 2016) to the linear constraint setting
with aforementioned stopping and recommendation
rules. In Algorithm 1, we highlight, in red, the com-
putations that we modify from the original schematic
to account for the linear constraints. The algorithm
starts by playing each arm once. Then, until the
stopping rule in Equation (10) fires, it performs C-
tracking (Garivier and Kaufmann, 2016). This means
that we perform a max´min oracle call (Line 3), and
solve the problem in Equation (5) w.r.t our current
estimate of the means µ̂t to get an optimal alloca-
tion w˚

t . This step leverage our novel projection re-
sult in Lemma 1. We track the optimal allocation
via At P argmina Na,t ´

řt
s“1 w

˚
a,s,ϵs , where w˚

a,t,ϵt is
the projection of w˚

t onto Π
Ş

tw : wa ą ϵt@au, and
ϵt “ 1

2
?
K2`t

. Note that 1
t

řt
s“1 w

˚
a,s,ϵs P Π due to

the convexity of the set of feasible exploration poli-
cies/allocations.
Theorem 3 (Upper Bound For CTnS). For any α ą 1
and cpt, δq be defined as in Lemma 2, we have that the
expected stopping time of CTnS satisfies

lim
δÑ0

Erτ s

log 1
δ

ď TF pµq, @µ P D.

The proof of Theorem 3 can be found in Appendix C.2
and follows the same structure as the sample complex-
ity proof of the original TnS in Garivier and Kaufmann
(2016). However, the optimal allocation does not nec-
essarily have to be unique. rather, we use the upper
hemicontinuity and convexity of w˚pµq, while modify-
ing the tracking lemma originally used by Garivier and
Kaufmann (2016) with the tracking result of Degenne
and Koolen (2019). This change allows to track a set
of optimal solutions in absence of a unique optimum.

Component 3b: CGE. Track-and-Stop algorithms,
like CTnS, tend to be computationally inefficient for
larger problems since they requires a max´min call
at each iteration. To mitigate this, we adopt the ap-
proach of Degenne et al. (2019), and treat the op-
timization problem in Equation (5) as a two player
zero-sum game. This results in the Constrained Game
Explorer (CGE), in Algorithm 2. Instead of solving
for an optimal wt at each t, as in CTnS, we play
one game between an allocation player, who plays
w to maximize

řK
a“1 wadpµ̂a,t, λaq, and an instance

player, who plays the confusing instance λ to mini-
mize

řK
a“1 wadpµ̂a,t, λaq. We deploy an instance of

AdaGrad (Duchi et al., 2011) as the allocation player
is taken to be, which enjoys sub-linear regret over
any bounded domain when losses are convex, and the
instance player is taken to be a best-response w.r.t.
the allocation wt. The best-response is computed via

Lemma 1. The loss provided to AdaGrad at each time
step is

řK
a“1 wa,tUa,t, where Ua,t induces optimism as

Ua,t fi maxξPtαa,t,βa,tu Na,tdpξ, λa,tq. Here, pαa,t, βa,tq

are the endpoints of the confidence interval around
µ̂a,t, i.e. rαt,a, βt,as “ tξ : Na,tdpµa,t, ξq ă fptqu, and
fptq “ 3 log t ` log log t. We apply the same tracking
as in CTnS.

Theorem 4 (Upper Bound For CGE). The
expected sample complexity of CGE satis-
fies Erτ s ď T0pδq ` CK, where T0pδq :“
max

␣

t P N : t ď TF pµqcpt, δq ` Op
?
tQq ` Op

?
t log tq

(

.
Cµ is problem-dependent constant, C is a universal
constant and Q is an upper bound on the losses
provided to Adagrad.

The full proof of Theorem 4 can be found in Ap-
pendix C.3. We simply follow the steps of the proof of
Theorem 2 in Degenne et al. (2019) and apply specifics
of our setting when applicable.

Theorem 3 and 4 show that CTnS and CGE are asymp-
totically optimally, i.e. upper bound on their sample
complexities match the lower bound of constrained
pure exploration for small enough δ.

5 EXPERIMENTAL ANALYSIS

We evaluate our algorithms using the threshold cpt, δq “

log 1`log log t
δ , which is commonly done in the literature

(Garivier and Kaufmann, 2016), and we set fptq “ log t
in CGE. As benchmarks we will use the lower bound,
Equation 4, as well as a learner that samples from
the optimal allocation, given by the lower bound, at
all time steps. We also consider a learner that draws
arms from the uniform distribution and in scenarios
where the uniform distribution is not in the set of
feasible exploration policies we project it onto the set
and sample from the resulting distribution.

In addition, we consider a naïve adaptation of Track-
and-Stop (Kaufmann et al., 2016), which we call the
Projected-Track-and-Stop (PTnS). The PTnS algorithm
computes the allocation as if it was solving the clas-
sical BAI problem and projects the allocation back to
the feasible set when necessary. Comparing CGE and
CTnS with PTnS demonstrates (a) the importance
of tracking the constrained lower bound to design an
efficient algorithm, and, (b) the desired efficiency can-
not be achieved just by tracking the unconstrained
lower bound and projecting the corresponding alloca-
tion policy to the constrained set. Appendix E contains
additional experiments.1

1Code available at: https://github.com/e-
carlsson/constraint-pure-exploration

https://github.com/e-carlsson/constraint-pure-exploration
https://github.com/e-carlsson/constraint-pure-exploration
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(a) Characteristic time of the
BAI problem as we vary µ4

and µ5.
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(b) Characteristic time
of the constraint pure-
exploration problem as we
vary µ4 and µ5
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(c) Results (for 1000 ran-
dom seeds) on the instance
highlighted as a triangle in
Figure 3a and Figure 3b,
µ “ p1, 0.5, 0.4, 0.4, 0.5q,
with constraints and δ “ 0.1.
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(d) Results (for 1000 ran-
dom seeds) on the instance
highlighted as a star in
Figure 3a and Figure 3b,
µ “ p1, 0.5, 0.4, 0.95, 0.8q,
with constraints and δ “ 0.1.

Figure 3: Figure 3a and 3b illustrate the hardness of
the problem, i.e. the Characteristic time, changes in
the 5 arm instance µ “ p1.0, 0.5, 0.4, µ4, µ5q as we vary
µ4 and µ5. Figure 3a corresponds to the hardness in
the BAI while Figure 3b is the constraint setting with
constraints π1 ` π2 ď 0.5 and π3 ` π4 ď 0.5. We clip
the characteristic time at 106 for visual purposes.

Observation 1: Constraints Alter The Hardness
Of The Problem. In Figures 3a and 3b we illustrate
how the hardness of a bandit instance µ may differ once
we introduce constraints, assuming anytime constraints.
We consider the instance µ “ p1.0, 0.5, 0.4, µ4, µ5q and
plot how the characteristic time TF pµq changes as we
vary µ4 and µ5, Figure 3a corresponds to the classical
BAI, i.e. no constraints, and in Figure 3b we have
introduced the two constraints π1 ` π2 ď 0.5 and
π3 ` π4 ď 0.5. We have highlighted two instances,
one where the BAI problem is easy but the constraint
problem is hard (black triangle) and one where the
reverse is true (black star). We run the algorithms
on these two instances in Figure 3c and 3d, assuming
anytime constraints, and observe that both algorithms
operate close to the lower bound and outperforms the
uniform allocation strategy. We also observe that the
algorithms perform equally or better than the optimal
learner, this is an interesting phenomena and have been
observed earlier in other pure exploration scenarios (De-
genne et al., 2019). The PTnS does not account for
the constraints, as well as CTnS and CGE, and has a
sample complexity on par with uniform sampling.
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(a) Anytime Constraints
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(b) End-of-Time Constraints

Figure 4: Problem instance with 8 Gaussian
arms with σ “ 1. The arm means are µ “

r1.0, 0.7, 0.3, 0.0,´0.5,´1.0,´2.0,´3.0s and we have
one constraint 7π1 ` 7π2 ` π3 ď 0.5. The optimal
policy is π3 “ π4 “ 0.5. Results for δ “ 0.1 and 1000
random seeds.
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(b) End-of-Time Constraints

Figure 5: Experiments on IMDB dataset with 12 movies
and δ “ 0.1. Each experiment was performed over 500
random seeds.

Observation 2: Naïve Projection Cause High
Sample Complexity. In Figure 4, we consider an
eight-armed bandit with Gaussian reward distributions.
We observe that PTnS performs the worst on this
instance, specially in the end-of-time setting where
it is outperformed by uniform sampling. This because
in a BAI problem with the same µ the hardness of the
problem lies separating arm 1 and 2 but this doesn’t
have to be the case in the constraint bandit. The sub-
optimality of PTnS in Figure 4a, the anytime scenario,
illustrates that naïvely projecting the allocation onto
the feasible set won’t account for the constraints in
a meaningful way. In Appendix F we further discuss
these examples and compute the optimal allocations
and the allocations PTnS converge to for each scenario.

IMDB Movie Recommendation Environment.
We construct a semi-synthetic task based on the widely
used IMDB 50K Movie Dataset (Maas et al., 2011)
which contains metadata on k0 “ 50000 movies includ-
ing association with one or more of d “ 23 genres,
as indicated by a binary matrix X P t0, 1umˆd. In
our setting, actions correspond to recommending one
out of a subset of k ď k0 movies. To create reward
distributions for each movie, we simulate a popula-
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tion of nu “ 600 users, each assigned nf “ 5 favorite
genres fi with weights wifi “ r20, 10, 5, 2, 2s and let
wia “ 0 for a R fi. A score sia for user i and movie a
is created as follows, sij “ clippts̃ia{

ř

aPfi
wia ¨ σ0 `

σ1ϵias ; 1, 5q where s̃i¨ “ wiX
J ` w0, ϵia „ Up0, 1q,

σ0 “ 5, σ1 “ 3, and txs indicates rounding of x to the
nearest integer. We construct the bandit environment
by letting each movie a be represented by an arm with
reward Ra „ N pµ̂s¨a , σ̂

2
s¨a

q determined by the mean
and standard deviation of user reviews for the movie.
We sample a subset of movies and search for the opti-
mal policy that allocates at most 0.3 to action movies,
at least 0.3 to drama movies and at least 0.3 on family
movies. Note that one movie might belong to more
than one category. We present the result in Figure 5
for both the anytime scenario and the end of time sce-
nario. We observe that CTnS and CGE outperform
the uniform allocation strategy, which has a very high
variance. We also observe a bigger difference between
the algorithms under end of time constraints, this is
reasonable since the set of plausible exploration policies
is larger for that scenario. If the set of exploration poli-
cies is limited, there is little room for an algorithm to
be adaptive. This is also captured in the fact that the
lower bound for anytime constraints is always higher
or equal to the bound for end-of-time constraints.

6 CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper, we study the problem of pure explo-
ration in bandits with linear constraints. We provide a
generic lower bound for this setting that depends on
an information-theoretic projection onto the boundary
of the normal cone spanned by the active constraints
at the optimal policy. We derive a closed-form lower

bound for the case of Gaussian distributions and pro-
vide geometric insights into how constraints can make
a problem easier or harder. Furthermore, we leverage
the projection-based computation of the confusing in-
stances to modify TnS (Garivier and Kaufmann, 2016)
and GE (Degenne et al., 2019) to corresponding CTnS
and CGE versions for pure exploration in constraint
bandits. We empirically evaluate the algorithms on syn-
thetic and real data to assess the impact of constraints
on the hardness of the problem.

One interesting future direction is learning when reward
and constraints are unknown or partially unknown.
Another future direction we deem very interesting is
bandit with non-linear constraints as this would change
this structure of the normal cone and the resulting
projection.
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Appendix

A Notations

Table 1: Notations

K : Number of arms.

δ : Confidence parameter.

dpx, yq : KL-divergence between two random variables with means x
and y.

klpx||yq : KL-divergence between two Bernoulli random variables with
means x and y.

D fi rµmin,µmaxsK , i.e. the range of expected rewards

µ : True reward vector, µ P D.

µ̂t : Empirical means at time t projected onto D.

B : Matrix defining the linear constraints, i.e. Bπ ď c.

c : Vector defining the upper bound in the linear constraints, Bπ ď

c.

∆K´1 : Simplex in K dimensions.

F fi tπ P ∆K´1 : Bπ ď cu, i.e. the constrained policy space.

π : A feasible policy over K arms, i.e. π P F .

π˚ or π˚
µ : Unique optimal policy for bandit instance µ, defined as π˚

µ fi

π˚ fi argmaxπPF µJπ.

VF pπ˚q : Set of extreme points for π1, which share K ´ 1 linearly inde-
pendent constraints with π˚.

N pπ˚q : Normal cone spanned by the active constraints at π˚.

ΛF pµq fi tλ P D : maxπPF λJπ ą λJπ˚
µu, i.e. the set of alternative

bandit instances.

τ : Random stopping time of a pure exploration algorithm.

Π : Set of possible exploration policies/allocations.

TF pµq´1 fi supwPΠ infλPΛF pµq

řK
a“1 wadpµa, λaq, the characteristic time

for the constrained policy space

Dpw,µ,Fq : Shorthand for infλPΛF pµq

řK
a“1 wadpµa, λaq.

Dpw,µ,λq : Shorthand for
řK

a“1 wadpµa, λaq.

w˚pµq : Set of optimal allocations for bandit instance µ.

H fi 2σ2

}∆}22
quantifies complexity of bandit instance µ
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B LOWER BOUND ON SAMPLE COMPLEXITY

The following lemma by Kaufmann et al. (2016) provides a general information-theoretic inequality that applies
to any bandit model.

Lemma 3 (Kaufmann et al. (2016)). Let µ and λ be two bandit models with K arms such that µa and λa are
mutually continuous. For any almost surely finite stopping time τ we have

K
ÿ

a“1

EµrNa,τ sdpµa, λaq ě klpPµpEq||PλpEqq (11)

where E is any measurable event with respect to the filtration generated by the observed history.

From Lemma 3 we can directly derive a lower bound on the expected stopping time of any δ-PAC algorithm in
the constraint multi-armed bandit setting. We present this lower bound in Theorem 5 and the proof is virtually
the same as the proof for the lower bound in Garivier and Kaufmann (2016). We present it here for completeness.

Theorem 5 (Lower bound on sample complexity under constraints). The stopping time τ of any δ-PAC learner
satisfy

Eµrτ s ě TF pµqklpδ||1 ´ δq. (12)

Proof. Let µ and λ P ΛF pµq be two bandit models with K arms such that they do not share optimal policy, i.e.
π˚

µ ‰ π˚
λ.

Let E denote the event of recommending π˚
µ for any bandit instance at stopping using some δ-PAC algorithm.

Then using Lemma 3, and δ-correctness of π˚
µ for µ, we have

K
ÿ

a“1

EµrNa,τ sdpµa, λaq ě klp1 ´ δ||δq “ klpδ||1 ´ δq.

Further, we multiple and divide by Eµrτ s which yields

K
ÿ

a“1

EµrNa,τ sdpµa, λaq “ Eµrτ s

K
ÿ

a“1

EµrNa,τ s

Eµrτ s
dpµa, λaq

“ Eµrτ s

K
ÿ

a“1

wadpµa, λaq ě klpδ||1 ´ δq ,

where wa fi
EµrNa,τ s

Eµrτs
, and

řK
a“1 wa “ 1.

Since the above inequality is true for any λ P ΛF pµq, we have

inf
λPΛF pµq

Eµrτ s

K
ÿ

a“1

wadpµa, λaq “ Eµrτ s inf
λPΛF pµq

K
ÿ

a“1

wadpµa, λaq ě klpδ||1 ´ δq .

The equality is due to the fact that Eµrτ s is independent of λ.

Now, we further maximise over wa to get

Eµrτ s sup
wPΠ

inf
λPΛF pµq

K
ÿ

a“1

wadpµa, λaq ě klpδ||1 ´ δq.

Finally, using the definition of the characteristic time TF pµq yields

Eµrτ s ě TF pµqklpδ||1 ´ δq .
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B.1 Projection lemma for Dpw,µ,Fq: Proof of Lemma 1

To derive the key properties of the optimal solution and the set of optimal allocations, as presented in Lemma 1,
we first explicate the set of optimal solutions, and then, use Berge’s theorem (Theorem 6).

Step 1: Recall that

ΛF pµq “ tλ P D : λ R N pπ˚qu ,

where the normal cone is expressed as

N pπ˚q “
č

π1PVF pπ˚q

!

λ P D : λJ
pπ˚ ´ π1q ě 0

)

.

This is due to the fact that if π˚ is not the optimal policy under the environment λ, there exists an improving
direction in the simplex algorithm, i.e. a neighbor π1, such that λJ

pπ˚ ´ π1q ă 0.

Now, since the set of alternative hypotheses is the compliment of the normal cone, we write

ΛF pµq “
ď

π1PVF pπ˚q

!

λ : λJ
pπ˚ ´ π1q ă 0

)

. (13)

Applying Equation (13) in Dpw,µ,Fq leads to,

Dpw,µ,Fq “ inf
λPΛF pµq

K
ÿ

a“1

wadpµa, λaq “ min
π1PVF pπ˚q

inf
λ:λJpπ1´π˚qă0

K
ÿ

a“1

wadpµa, λaq .

Step 2: What remains to be shown is that the inf is attained by some λ on λJ
pπ1 ´ π˚q “ 0.

For some π1 P VF pπ˚q take an arbitrary λ1
P

!

λ : λJ
pπ1 ´ π˚q ă 0

)

. There exists an λ2
P

!

λ P D : λJ
pπ˚ ´ π1q “ 0

)

such that |µa ´ λ1
a| ě |µa ´ λ2

a| @a due to the convexity of D. The mapping
y Ñ dpx, yq is an increasing function on the domain y ą x and a decreasing function on y ă x which implies that

K
ÿ

a“1

wadpµa, λ
1
aq ě

K
ÿ

a“1

wadpµa, λ
2
aq. (14)

There exists a sequence tλtu
8
t“1 Ă

!

λ : λJ
pπ˚ ´ π1q ă 0

)

such that λ0 “ λ1 and limtÑ8 λt “ λ2. Hence, we

can for any λ1 get arbitrary close to some λ2 such that Equation (14) holds.

Due to continuity of dpx, .q, the inf is attained by some λ2
P

!

λ P D : λJ
pπ˚ ´ π1q “ 0

)

. Hence, we conclude
the proof.

B.2 Properties of Dpw,µ,Fq: Proof of Theorem 1

Property (a-b). We first note that the function Dpw,µ,λq fi
řK

a“1 wadpµa, λaq is continuous in all elements.
Take any pw,µq such that the optimal policy in F is unique. Let pwt,µtqtě1 be a sequence in Π ˆ D such that

pwt,µtq
tÑ8

ÝÝÝÑ pw,µq.

Further, for any ϵ ą 0 there exists a t1 ě 1 such that ||pw,µq ´ pwt,µtq||2 ă ϵ and ΛF pµq “ ΛF pµtq @t ě t1. By
continuity of Dpw,µ,λq we have that for any ϵ1 ą 0 there exists exists an t2 ě 1 such that for t ě t2, we have

|Dpwt,µt,λq ´ Dpw,µ,λq| ď ϵ1,@λ P RK .

Thus, by taking t ě t1, t2 leads to

|Dpw,µ,Fq ´ Dpwt,µt,Fq| “

ˇ

ˇ

ˇ

ˇ

inf
λPΛF pµq

Dpw,µ, λq ´ inf
λPΛF pµtq

Dpwt,µt, λq

ˇ

ˇ

ˇ

ˇ
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ď

ˇ

ˇ

ˇ

ˇ

inf
λPΛF pµq

pDpw,µ, λq ´ Dpwt,µt, λqq

ˇ

ˇ

ˇ

ˇ

ď ϵ1 ,

which establishes the continuity properties.

Property (c). The upper hemicontinuity of w˚pµq and continuity of Dpµ,Fq follows from Berge’s maximum
theorem, see Theorem 6, by letting fpx, θq “ Dpw,µ,Fq and Cpθq “ Π. As a consequence of Berge’s theorem
(Theorem 6), we substitute the supw with maxw.

Property (d). The convexity of the set w˚pµq follows from the fact that it is the set of optimal solutions to
maxwPΠ Dpw,µ,Fq and Dpw,µ,Fq is concave (Specifically, it is linear in w).

B.3 Projective representation of characteristic time for Gaussians: Proof of Theorem 2

For two bandit instances µ and λ consisting of Gaussian distributions with same variance σ2, we have

Dpw,µ,Fq “ min
λ:λJpπ˚´π1q“0

K
ÿ

a“1

wa
1

2σ2
pµa ´ λaq2 .

Now, by introducing the Lagrange multiplier γ, we obtain

Lpγ,λq fi
1

2σ2

K
ÿ

a“1

wapµa ´ λaq2 ´ γλJ
pπ˚ ´ π1q. (15)

For brevity, we denote v fi pπ˚ ´ π1q.

Computing the gradient ∇λLpγ,λq and equating it to 0 yields

λa “ µa `
γσ2

wa
va.

Substituting λa in Equation (15) yields

Lpγq “ min
λ

Lpγ,λq “
σ2γ2

2

K
ÿ

a“1

v2a
wa

´ γµJv ´

K
ÿ

a“1

γ2σ2

wa
v2a

“ ´
σ2γ2

2

K
ÿ

a“1

v2a
wa

´ γµJv . (16)

Maximizing over γ yields

γ “
´µJv

σ2
ř

a
v2
a

wa

,

and putting it back in Equation (16) gives the final expression of λa

λa “ µa ´
va
wa

˜

µJv
ř

a
v2
a

wa

¸

. (17)
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B.4 Upper and lower bounding the characteristic time: Proof of Corollary 1

Lower bound on the characteristic time: To lower bound TF pµq, we need to upper bound the RHS in
Equation (5), i.e. TF pµq´1 “ supw minλ

ř

a wadpµa, λaq.

Step 1: We first observe that

sup
w

min
λ

ÿ

a

wadpµa, λaq “ max
w

min
λ

ÿ

a

wadpµa, λaq,

due to Berge’s theorem. Further, the max-min inequality gives

max
w

min
λ

ÿ

a

wadpµa, λaq ď min
λ

max
w

ÿ

a

wadpµa, λaq.

Step 2: We proceed to upper bound maxw
ř

a wadpµa, λaq for each neighbor π1 P VF pπ˚q independently.

For a fixed π1 P VF pπ˚q, Theorem 2 tells us that

min
λ:λJpπ˚´π1q“0

K
ÿ

a“1

wadpµa, λaq “
γ2

2σ2

K
ÿ

a“1

pπ˚ ´ π1q2a

wa

“

˜

µJ pπ˚ ´ π1q
ř

a
pπ˚´π1q2

wa

¸2
1

2σ2

K
ÿ

a“1

pπ˚ ´ π1q2a

wa

“
1

2σ2

`

µJ pπ˚ ´ π1q
˘2

řK
a“1

pπ˚´π1q2a
wa

.

Step 3: We further minimize the expression pπ˚
´π1

q
2
a

wa
under the constraint

ř

a wa “ 1.

Using Langrange multiplier technique, we get

wa “
|pπ˚ ´ π1q|a

řK
a“1 |pπ˚ ´ π1q|a

which yields that pπ˚
´π1

q
2
a

wa
ě }π˚ ´ π1}21. Hence,

1

2σ2

`

µJ pπ˚ ´ π1q
˘2

řK
a“1

pπ˚´π1q2a
wa

ď
1

2σ2

`

µJ pπ˚ ´ π1q
˘2

}π˚ ´ π1}21
ď

1

2σ2

`

µJ pπ˚ ´ π1q
˘2

}π˚ ´ π1}22
.

Here, the last part is exactly , 1
2d

2
π1 , i.e. the squared distance between µ and the hyperplane π˚ ´ π “ 0.

Thus, we conclude the lower bound.

Upper bound on the characteristic time: To obtain the upper bound, we aim to lower bound the inverse
TF pµq´1 “ supw minλ

ř

a wadpµa, λaq.

We let wa “ 1
K ,@a, and observe that

max
w

min
λ

ÿ

a

wadpµa, λaq ě min
λ

1

K

ÿ

a

dpµa, λaq.

For some π1 P Vpπ˚q and using Theorem 2 with wa “ 1
K ,@a, we get

1

K

ÿ

a

dpµa, λaq “
1

2σ2K

`

µJ pπ˚ ´ π1q
˘2

}π˚ ´ π1}22
“ d2π1

1

2σ2K

This concludes the upper bound on the characteristic time.
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B.5 Impact of linear constraints: Proof of Corollary 2

Step 1: Neighboring policies and rank-1 update. let B̂ P RKˆK be a set of linearly independent constraints
at π˚ and ĉ be the corresponding values in c such that π˚ “ B̂´1ĉ. For any π1 P VF pπ˚q we let B1´1 and c1 be
the constraints such that π1 “ B1´1c1.

Specifically, B1 and c1 can be retrieved from the following rank-1 updates

B1 “ B̂ ` erpb1
r ´ b̂rqJ ,

c1 “ pc ` pc1
r ´ crqer ,

where b̂r a column vector corresponding to the constraint on the r-th row of B̂ that we swap with b1
r in order to

get B1 and er a column vector with all elements equal to 0 except the r-th element which is equal to 0. Similarly,
pc1

r ´ crq ‰ 0 is the change that we perform on the r-th element in ĉ to get c1.

Step 2: From perturbation in constraints to perturbations in policies. Now, we observe that

B1π1 ´ B̂π˚ “ pc1
r ´ crqer .

Since B̂ is invertible, further rearrangement yields

π1 ´ π˚ “ B̂´1
´

pc1
r ´ crqer ` erpb̂r ´ b1

rqJπ1
¯

“ B̂´1
´

pc1
r ´ crqer ` erb̂

J

r π
1 ´ erb

1J
r π1

¯

“ B̂´1
´

pc1
r ´ crqer ` erb̂

J

r π
1 ´ c1

rer

¯

“ B̂´1
´

pb̂
J

r π
1 ´ crqer

¯

The last part is the slack of π1 at the r-th constraint in B̂, hereby referred to as ξ.

We bound the norm of B̂´1er as follows

σminpB̂´1q “ inf
v:}v}2“1

}B̂´1v}2 ď }B̂´1er}2 ď sup
v:}v}2“1

}B̂´1v}2 “ σmaxpB̂´1q

where σminpB̂´1q and σmaxpB̂´1q denote the smallest and largest singular value of B̂´1. From the properties of
the inverse, we get

1

σmaxpB̂q

ď }B̂´1er}2 ď
1

σminpB̂q

.

Thus, we obtain a lower and upper bound on the perturbation in policies

|ξ|

σmaxpB̂q

ď }π1 ´ π˚}2 ď
|ξ|

σminpB̂q

. (18)

Now, using this new representation of change in policy in terms of the slacks in the constraints, we derive our two
results.

Step 3 for Part (a): A perspective of the zero-sum game. To get the expression in Equation (8) we simply
take the expression for π˚ ´ π1, developed in the previous step, and plug into the expression of the characteristic
time in Theorem 2. Hence,

1

2σ2

}π˚ ´ π1}2µµJ

}π˚ ´ π1}2Diagp1{waq

“
1

2σ2

}B̂´1
´

pb̂
J

r π
1 ´ crqer

¯

}2µµJ

}B̂´1
´

pb̂
J

r π
1 ´ crqer

¯

}2Diagp1{waq

“
1

2σ2

}B̂´1 pξerq }2µµJ

}B̂´1 pξerq }2Diagp1{waq
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“
1

2σ2

}B̂´1 perq }2µµJ

}B̂´1 perq }2Diagp1{waq

“
1

2σ2

p∆JB̂´1 perqq2

}B̂´1 perq }2Diagp1{waq

.

This gives the following expression for the characteristic time

TF pµq´1 “ max
wPΠ

min
π1PVF pπ˚q

1

2σ2

´

∆JB̂´1
π˚er1

¯2

}B̂´1
π˚er1 }2Diagp1{waq

.

This formulation of the inverse characteristic time allows us to perceive it as a zero-sum max´min game, where
the max-player chooses an exploration allocation and the min-player swaps one of the active constraints, at the
optimal policy, with one inactive constraint.

Step 3 for Part (b): Bounds on characteristic time from perturbation in policies. From Corollary 1
we have

1

2σ2

`

µJ pπ˚ ´ π1q
˘2

}π˚ ´ π1}22
“

1

2σ2

`

µJ pπ˚ ´ π1q ´ µ˚1J pπ˚ ´ π1q
˘2

}π˚ ´ π1}22

“
1

2σ2

pµ ´ µ˚1q
J

pπ˚ ´ π1q
2

}π˚ ´ π1}22

“
1

2σ2

´

∆JB̂´1er

¯2

}B̂´1er}22

ď
}∆}22

2σ2

σ2
maxpB̂q

σ2
minpB̂q

.

Step 4 for Part (b): Concluding with complexity of bandit instance and constraints. By referring to
κpB̂q fi

σmaxpB̂q

σminpB̂q
as the condition number of B̂, and H fi 2σ2

}∆}22
as the quantifier complexity of bandit instance µ,

we get

TF pµq´1 ď min
π1PVF pπ˚q

κ2pB̂q

H
.

Hence, for any µ, we have that TF pµq ě H
κ2 , where κ2 is the minimum condition number of any sub-matrix

B̂ P RKˆK of B consisting of K linearly independent active constraints at π˚. This leads to a lower bound

Erτ s ě Ω

ˆ

H

κ2
klpδ||1 ´ δq

˙

.

B.6 Theorem 2 reduces to the standard BAI bounds with simplex constraints

Recall the theorem statement:
If the arms follow Gaussian distributions with identical variance σ2 and wa ą 0 @a, we have that the projection
minλPD:λJpπ˚´π1qď0

řK
a“1 wadpµa, λaq for any π1 P VF pπ˚q is satisfied by

λa,π1 “ µa ´ γ
pπ˚ ´ π1qa

wa
, (19)

for γ “
µJpπ˚

´π1q
ř

a
pπ˚´π1q2

wa

, and the characteristic time is

TF pµq´1 “ max
wPΠ

min
π1PVF pπ˚q

1

2σ2

`

µJ pπ˚ ´ π1q
˘2

ř

a
1
wa

pπ˚ ´ π1q2a
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“ max
wPΠ

min
π1PVF pπ˚q

1

2σ2

}π˚ ´ π1}2µµJ

}π˚ ´ π1}2Diagp1{waq

Here, Diagp1{waq is a diagonal matrix with a-th entry of the diagonal as 1{wa.

In the case of simplex constraints all extreme points corresponds to deterministic policies and we let πa corresponds
to the policy that only plays arm a and let π˚ “ π1. For some πa we have, due to Equation (19),

λa1,πa “ µa1 ,@a1 ‰ 1, a

we further have γ “ ∆a
1

w1
` 1

wa

and

λ1,πa
“ µ1 ´

µ1 ´ µa
1
w1

` 1
wa

1

w1
“ µ1 ´ wa

µ1 ´ µa

w1 ` wa
“

1

w1 ` wa
pw1µ1 ` waµaq

λa,πa
“ µa `

µ1 ´ µa
1
w1

` 1
wa

1

wa
“ µa ` w1

µ1 ´ µa

w1 ` wa
“

1

w1 ` wa
pw1µ1 ` waµaq .

Hence, λ1,πa
“ λa,πa

and these are exactly the confusing instance one gets, for each arm a, in the BAI
setting (Kaufmann et al., 2016). Plugging back into the expression for the characteristic time yields

TF pµq´1 “ max
w

min
a

w1wa

w1 ` wa
∆2

a.
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C UPPER BOUNDS ON SAMPLE COMPLEXITY

C.1 Stopping criterion

Lemma 4 (Magureanu et al. (2014)). @γ ą K ` 1 and t P N it holds

P

˜

K
ÿ

a“1

Na,tdpµ̂a, µaq ě γ

¸

ď e´γ

ˆ

rγ log tsγ

K

˙K

eK`1

The correctness of our stopping rule in Equation (10) follows easily from Lemma 4. Let πτ be our recommendation
at stopping

P pπτ ‰ π˚q ď P

˜

Dt P N :
K
ÿ

a“1

Na,tdpµ̂a,t,µaq ě cpt, δq

¸

ď

8
ÿ

t“1

e´cpt,δq

ˆ

rcpt, δq log tscpt, δq

K

˙K

eK`1.

We plug in cpt, δq “ log tαC
δ and choose C such that

8
ÿ

t“1

ˆ

rcpt, δq log tscpt, δq

K

˙K

eK`1 ď C

which yields

P pπτ ‰ π˚q ď δ.
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C.2 Upper bound for CTnS

Proof of Theorem 3.
Step 1: Defining Good Event. Let T P N. For ϵ ą 0 and hpT q “

?
T , let ET be the event

ET fi

T
č

t“hpT q

t}µ̂t ´ µ}8 ď ξpϵqu ,

where ξpϵq ă maxπ1PVF pπ˚q
1

4
?
K
µJ pπ˚ ´ π1q is such that

}µ1 ´ µ}8 ď ξpϵq ùñ sup
w1Pw˚pµ1q

sup
wPw˚pµq

}w1 ´ w} ď ϵ

This ξpϵq exists due to the upper hemicontinuity of w˚pµq, Theorem 1.

Step 2: Concentrating to Good Event. We will make use of the following Lemma from Garivier and
Kaufmann (2016) which bounds the probability of the compliment Ec

T .

Lemma 5 (Concentration around means (Garivier and Kaufmann, 2016)). There exist two constants B,C such
that

P pEc
T q ď BT exp

´

´CT
1
8

¯

This Lemma is due to the fact that C-tracking ensure that each arm has been played at least
?
t times at each

time t, see next Lemma.

Lemma 6 (Garivier and Kaufmann (2016)). For all t ě 1 and @a, C-Tracking ensures Na,t ě
?
t ` K2 ´ K and

max
a

ˇ

ˇ

ˇ

ˇ

ˇ

Na,t ´

t
ÿ

s“1

wa,s

ˇ

ˇ

ˇ

ˇ

ˇ

ď Kp1 `
?
tq (20)

We now leverage to following tracking Lemma of Degenne and Koolen (2019) which holds whenever we are
tracking a set of optimal weights.

Lemma 7 (Concentration in allocations (Degenne and Koolen, 2019)). Under ET , there exists a Tϵ such that for
T where hpT q ě Tϵ C-tracking will satisfy

inf
wPw˚pµq

}
Nt

t
´ w}8 ď 3ϵ,@t ě 4

K2

ϵ2
` 3

hpT q

ϵ

This shows that C-tracking is eventually going to produce an empirical distribution of plays that is close to an
optimal allocation and the empirical distribution will converge to a point in w˚pµq as t Ñ 8. We need Lemma 7
instead of the original tracking result in Garivier and Kaufmann (2016) since the optimal allocation does not
need to be unique. However, we know from Theorem 1 that the set of optimal allocations w˚pµq is convex and
we can thus apply Lemma 7.

There exists a Tϵ such that under ET and t ě maxpTϵ, hpT qq we have

|pµ ´ µ̂tq
Jπ˚| ď

?
Kξ ă

1

4
max

π1PVF pπ˚q
µJ

`

π˚ ´ π1
˘

which implies that π˚ “ argmaxπPF µ̂J
t π. This ensures that we will be computing the stopping criterion w.r.t.

to the correct Alt-set ΛF pµq.

Step 3: Complexity given the Good Event. Assume T ě Tϵ and let

Cϵ,F pµq fi inf
µ1:}µ1

´µ}8ďξpϵq

w1:}w1
´w}8ď3ϵ,@wPw˚

pµq

Dpw1,µ1,Fq.
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This Cϵ,F pµq gives the worst-case characteristic time we might compute in the algorithm due to the fact that our
estimates are not exact.

Assuming ET , Lemma 7 gives for t ě Tϵ

DpN t, µ̂t,Fq ě tCϵ,F pµq.

Step 4: Bounding the Stopping Time for Good and Bad Events. Let τδ be the stopping time, then

minpτδ, T q ď
?
T `

T
ÿ

t“Tϵ

Iτδąt

and plugging in our stopping rule, i.e. DpN t, µ̂t,Fq ą cpt, δq yields

Tϵ `

T
ÿ

t“Tϵ

IpDpN t, µ̂t,Fq ď cpt, δqq ď
?
T `

T
ÿ

t“Tϵ

IptCϵ,F pµq ď cpT, δqq

ď
?
T `

cpT, δq

Cϵ,F pµq
.

We define Tδ :“ inf
!

T P N :
?
T `

cpT,δq

Cϵ,F pµq
ď T

)

. Hence,

Erτδs ď Tϵ ` Tδ `

8
ÿ

T“1

BT exp
´

´CT
1
8

¯

ď Tϵ ` Tδ ` T 1

where
ř8

t“1 BT exp
´

´Ct
1
8

¯

ď T 1 ă 8. We bound Tδ in the same way as Garivier and Kaufmann (2016). Let

Cpηq “ inftT : T ´
?
T ě T 1

1`η u for some η ą 0. Then

Tδ ď Cpηq ` inf

"

T P N : T
Cϵ,F pµq

1 ` η
ě cpT, δq

*

.

Step 5: Obtaining the Asymptotic Bound. Dividing Equation 21 with log 1
δ and taking the limit yields

lim
δÑ0

inf
Erτδs

log 1
δ

ď
αp1 ` ηq

Cϵ,F pµq
.

Cϵ,F pµq is continuous due to Theorem 1 and taking the limits η, ϵ Ñ 0 yields

lim
δÑ0

inf
Erτδs

log 1
δ

ď αTF pµq,@α ą 1.
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C.3 Upper bound for CGE

The proof follows the same structure as the proof of Theorem 2 in Degenne et al. (2019) and we use the same
concentration analysis. The main difference is that we have to adjust the definition of approximate optimistic
saddle point algorithm.

Proof of Theorem 4.
Step 1: Defining Good Event. We start by defining the good event

ET fi t@t ď T @a,Na,tdpµ̂a,t, µtq ď fptqu

where fptq “ 3 log t ` log log t.

Step 2: Concentration of Good Event.

We can bound
ř8

t“1 P pEc
T q using Lemma 4. Hence, for any t P N and arm a

P pNa,tdpµ̂a,t, µtq ě fptqq ď e´fptqp1 ` fptq log tqfptq

“
e2

t3 log t
pfptq ` fptq2 log tq.

Summing yields

K
ÿ

a“1

8
ÿ

t“1

P pEc
T q ď K ` K

8
ÿ

t“2

e2

t3 log t

`

fptq ` fptq2 log t
˘

ď KC ă 8. (21)

Here a constant C “ 21 is sufficient.

Step 3: Starting from the Stopping Criterion The main idea of the proof is to work with the stopping
criterion

cpt, δq ě inf
λPΛF pµ̂tq

K
ÿ

a“1

Na,tdpµ̂a,t, λaq

and show that if we have the event ET , our current recommendation at some t is the correct policy π˚ and we
haven’t stopped yet, we can lower bound cpt, δq in a way that depends on the characteristic time and properties
of the no-regret learners. We start with assuming our current recommendation at some t is the correct policy π˚

and we have the event ET ,

cpt, δq ě inf
λPΛF pµ̂tq

t
ÿ

s“1

K
ÿ

a“1

wa,sdpµ̂a,t, λaq ´ p1 `
?
tqK

which follows from Tracking Lemma 6. We now use a concentration result, originally in Appendix D.1 of Degenne
et al. (2019),

cpt, δq ě inf
λPΛF pµ̂tq

t
ÿ

s“1

K
ÿ

a“1

wa,sdpµ̂a,s, λaq ´ p1 `
?
tqK ´ Op

a

t log tq. (22)

This steps follows from the Lipschitz property of the KL and the fact we have conditioned on ET (see Step 8 for
further details). Hence,

|dpµa, λaq ´ dpµ̂a,s, λaq| ď L

d

2σ2
fpsq

Na,s

which implies that

t
ÿ

s“1

K
ÿ

a“1

wa,sdpµ̂a,t, λaq ě

t
ÿ

s“1

K
ÿ

a“1

wa,sdpµa, λaq ´ L
a

2σ2Ktfptq.
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Using the same result one more time yields

t
ÿ

s“1

K
ÿ

a“1

wa,sdpµ̂a,t, λaq ě

t
ÿ

s“1

K
ÿ

a“1

wa,sdpµ̂a,s, λaq ´ L
a

2σ2Ktfptq ´ 2L
a

2σ2fptq
´

K2 ` 2
?
2Kt

¯

which gives the result in Equation (22).

Step 4: Defining Approximate Optimistic Saddle Point under Constraints. We now introduce concepts
and properties that will help us to further lower bound the RHS in Equation (22). We extend the definition of an
approximate optimistic saddle point algorithm from Degenne et al. (2019) to the constraint setting.

Definition 1. An algorithm playing sequences of pws,λsqsďt P pΠ ˆ ΛF q
t is said to be an approximate optimistic

saddle point algorithm with slack xt if

inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1

ws,adpµ̂a,s, λaq ě max
wPΠ

K
ÿ

a“1

t
ÿ

s“1

waUa,s ´ xt, (23)

where xt is defined in Eq. (26) and the confidence bound

Ua,s “ max

"

fptq

Na,s
, max
ξPrαa,s,βa,ss

dpξ, , λa,sq

*

.

The difference in Definition 1 compared to the definition of an approximate optimistic saddle point algorithm in
Degenne et al. (2019) is that we in Equation 23 take the maximum over Π and instead of arms as in Degenne et al.
(2019). This is due to the fact that maximum over arms might not be in the set of feasible exploration policies Π.

Step 5: Definition of Regret of the Two Players. We define the regret of the allocation player, i.e. AdaGrad,
as

Rw
t “ max

wPΠ

t
ÿ

s“1

K
ÿ

a“1

waUa,s ´

t
ÿ

s“1

K
ÿ

a“1

wa,tUa,s (24)

and note that AdaGrad has an regret scaling of Rt
w ď Op

?
Qtq where Q is an upper bound on the losses such

that Q ě maxx,yPrµmin,µmaxs dpx, yq. For the instance player we define the regret as

Rλ
t “

t
ÿ

s“1

K
ÿ

a“1

wa,sdpµ̂a,s, λa,sq ´ inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1

wa,sdpµ̂a,s, λaq (25)

and note that Rt
λ ď 0 since the instance player is performing a best-response against ws at each s.

Step 6: CGE is an Approximate Optimistic Saddle Point Algorithm We now show that the CGE is an
approximate optimistic saddle point algorithm. From the regret properties of λ player we have

inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1

ws,adpµ̂a,s, λaq ě inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1

ws,adpµ̂a,s, λa,sq

since Rt
λ ď 0.

Let Ca,s “ Ua,s ´ dpµ̂a,s, λa,sq. We have

inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1

ws,adpµ̂a,s, λaq ě inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1

ws,aUa,spλq ´

t
ÿ

s“1

K
ÿ

a“1

ws,aCa,s.

Now, we can combine Eq. (22) and (24) to get

cpt, δq ě inf
λPΛFµ

t
ÿ

s“1

K
ÿ

a“1

ws,aUa,spλq ´

t
ÿ

s“1

K
ÿ

a“1

ws,aCa,s ´ p1 `
?
tqK ´ Op

a

t log tq



Emil Carlsson, Debabrota Basu, Fredrik D. Johansson, Devdatt Dubhashi

Now we use the properties of Rw
t to get

inf
λPΛF pµq

t
ÿ

s“1

K
ÿ

a“1

ws,adpµ̂a,s, λsq ě max
wPΠ

K
ÿ

a“1

t
ÿ

s“1

waUa,s ´ Rt
w ´

t
ÿ

s“1

K
ÿ

a“1

wa,sCa,s

which shows that CGE is an approximate optimistic saddle point algorithm with slack

xt “ Rw
t `

t
ÿ

s“1

K
ÿ

a“1

ws,aCa,t. (26)

Step 7: Plug slack xt into Equation (22). We now use the fact that CGE is an approximate optimistic saddle
point algorithm in Equation (22)

cpt, δq ě max
wPΠ

K
ÿ

a“1

t
ÿ

s“1

waUa,s ´ Rw
t ´

t
ÿ

s“1

K
ÿ

a“1

ws,aCa,t ´ p1 `
?
tqK ´ Op

a

t log tq (27)

Step 8: Concentration of
řK

a“1 ws,aCa,t

Assume the event ET . We have

|dpµa, λaq ´ dpµ̂a,s, λaq| ď Ldpµ̂a,s, µaq

due to the Lipschitz property of the KL-divergence and under the event ET we have

|dpµa, λaq ´ dpµ̂a,s, λaq| ď L

d

2σ2
fpsq

Na,s
.

This implies that

sup
ξPrαa,s,βa,ss

Ua,s ´ dpξ, λa,sq ď max

#

2L

d

2σ2
fpsq

Na,s
,
fpsq

Na,s

+

since either Ua,s “ maxξPrαa,s,βa,ss dpξ, , λa,sq and the above is equal to the width of the confidence interval, or
Ua,s “

fpsq

Na,s
and the above is trivially bounded fpsq

Na,s
since the KL divergence is non-negative. Hence,

t
ÿ

s“K`1

K
ÿ

a“1

ws,aCa,s ď

t
ÿ

s“K`1

K
ÿ

a“1

ws,a

˜

fpsq

Na,s
` 2L

d

2σ2
fpsq

Na,s

¸

ď fptq
t
ÿ

s“K`1

K
ÿ

a“1

ws,a

Na,s
` 2L

a

2σ2fptq
t
ÿ

s“K`1

K
ÿ

a“1

ws,a
a

Na,s

ď fptq

ˆ

K2 ` 2K log
t

K

˙

` 2L
a

2σ2fptq
´

K2 ` 2
?
2Kt

¯

ď Op
a

t log tq.

We have

cpt, δq ě max
wPΠ

K
ÿ

a“1

t
ÿ

s“1

waUa,s ´ Rw
t ´ Op

a

t log tq ´ p1 `
?
tqK ´ Op

a

t log tq.

Step 9: Optimism

We now use the fact that Ua,s ě dpµa, λaq under the event ET . Hence,

cpt, δq ě max
wPΠ

K
ÿ

a“1

t
ÿ

s“1

wadpµa, λa,sq ´ Rw
t ´ Op

a

t log tq ´ p1 `
?
tqK ´ Op

a

t log tq.
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Step 10: Get the Characteristic Time We note that

max
wPΠ

K
ÿ

a“1

t
ÿ

s“1

wadpµa, λa,sq ě t inf
λPΛF pµq

max
wPΠ

K
ÿ

a“1

wadpµa, λaq

ě max
wPΠ

inf
λPΛF pµq

K
ÿ

a“1

wadpµa, λaq “ tT´1
F pµq.

Rearanging yields

t ď TF pµqcpt, δq ` Rw
t ` Op

a

t log tq

Step 11: Current Recommendation is the Wrong Policy. The above result is conditioned on the fact that
our current recommendation is correct. We now bound the number of time steps where the current recommendation
is wrong, using similar argument as in Degenne et al. (2019).

We define the Chernoff information as chpx, yq fi infuPD : dpu, xq ` dpu, yq. Assumption 1 gives that there D ϵ ą 0
such that @λ P ΛF pµq, Da1 such that chpλa1 , µa1 q ą ϵ.

Assume that π˚ ‰ argmaxπPF µ̂J
t π, i.e. if we stop we would recommend the wrong policy. This implies that

µ̂t P ΛF pµq and chpµ̂a,t, µaq ě ϵ for some arm a. Under the good event ET we have Na,tdpµ̂a,t, µaq ď fptq which
implies that fptq

Na,t
ě ϵ, since chpµ̂a,t, µaq ď dpµ̂a,t, µaq.

Let πs fi argmaxπPF µ̂J
s π, let nπ1 ptq be the number of stages where πs “ π1. Our goal is to upper bound nπ1 ptq

for all extreme points π1 P F such that 1π1 ‰ π˚. For any λ such that π1 “ argmaxπPF λJπ we have that
µ P ΛF pλq which gives

ϵt “

t
ÿ

s“1,πs‰π˚

K
ÿ

a“1

wa,sdpµ̂a,s, µaq ě
ÿ

π1‰π˚

inf
λ:π1‰argmaxπ λJπ

t
ÿ

s“1,πs“π1

K
ÿ

a“1

wa,sdpµ̂a,s, λaq.

We use the fact that on the time steps where πs “ π1 CGE is a optimistic saddle point algorithm with slack
x “ Rw

nπ1 ptq `
řt

s“1,πs“π1

řK
a“1 ws,aCa,t. Hence,

inf
λ:π1‰argmaxπ λJπ

t
ÿ

s“1,πs“π1

K
ÿ

a“1

wa,sdpµ̂a,s, λaq ě

max
πPΠ

t
ÿ

s“1,πs“π1

K
ÿ

a“1

waUa,s ´ Rw
nπ1 ptq ´

t
ÿ

s“1,πs“π1

K
ÿ

a“1

wa,sCa,s.

Under the event ET , and s ď t such that πs “ π1 there is an arm as such that Uas,s ě ϵ. This implies that
the sum maxπPΠ

řt
s“1,πs“π1

řK
a“1 waUa,s is increasing linearly in nπ1 ptq since it is at least ϵnπ1 ptq under the

concentration event ET . Thus,

inf
λ:π1‰argmaxπ λJπ

t
ÿ

s“1,πs“π1

K
ÿ

a“1

wa,sdpµ̂a,s, λaq ě ϵnπ1 ptq ´ Rw
nπ1 ptq ´

t
ÿ

s“1,πs“π1

K
ÿ

a“1

wa,sCa,s

and we know that Rw
nπ1 ptq “ Op

a

Qnπ1 ptqq and
řt

s“1,πs“π1

řK
a“1 wa,sCa,s “ Op

a

nπ1 ptq log nπ1 ptqq. This shows
that ϵT increases at least linear in nπ1 ptq and thus also linearly in the number of time steps for whitch πs ‰ π˚.
However, we have

ϵt “

t
ÿ

s“1,πs‰π˚

K
ÿ

a“1

wa,sdpµ̂a,s, µaq ď

t
ÿ

s“1

K
ÿ

a“1

wa,s
fpsq

Na,s

ď fptqpK2 ` 2K log
t

K
q.
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This implies that the current recommendation πs “ argmax µ̂J
t π differs from π˚ at most Op

?
t log tq number of

times.

Step 12: Final Bound. We know from the concentration of ET that the number of times the compliment
happens is upper bounded by CK where C is some problem independent constant. Putting it all together, we get
that Erτ s ď T0pδq ` CK, where

T0pδq :“ max
!

t P N : t ď TF pµqcpt, δq ` Op
a

tQq ` Op
a

t log tq
)

.
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D FINDING ϵ-GOOD POLICIES UNDER LINEAR CONSTRAINTS

In some cases one might be more interested in finding a policy that is ϵ-close to the optimal one, i.e. finding π1

such that µJpπ˚
µ ´ π1q ď ϵ, since this might have a much smaller sample complexity compared to searching for

the optimal policy, see for example (Garivier and Kaufmann, 2021) and (Kocák and Garivier, 2021). Both CTnS
and CGE can in principle be extended to this case by changing the definition of the Alt-set. Given an instance µ
let ΩF,ϵpµq :“ tπ P NF : µJpπ˚ ´ πq ď ϵu be the set of ϵ-good policies where NF is the set of all extreme points
in the polytope F . For each π P ΩF,ϵpµq we get the following Alt-set

ΛF,ϵpµ,πq :“
!

λ : λJ
pπ˚

λ ´ πq ą ϵ
)

.

Hence, the sample complexity might be different depending on which near-optimal policy the learner is considering.
To handle this we would have to augment CTnS and CGE with the “sticky” approach developed in (Degenne
and Koolen, 2019), where the learner commits to a recommendation since otherwise the learner might oscillate
between near-optimal policies and a mixture of their optimal allocations might not be optimal since w˚pµq is no
longer ensured to be convex. Furthermore, due to ϵ ą 0 it is no longer sufficient to project onto the normal cone
and a naive implementation would have to optimize over |NF | convex sets which might only be tractable for a
small set of constraints and/or arms.
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E ADDITIONAL EXPERIMENTAL ANALYSIS

In Figure 6 and 7 we present results for arms with Bernoulli distributions and in Figure 8 and 9 we present
additional results for arms with Gaussian distributions. CTnS and CGE outperforms the uniform baseline in all
cases and are usually on par with or better than the learner that always sample according to the asymptotically
optimal allocation. We also see that the algorithms tend to be close to the lower bound in all cases. An interesting
observation, which we commented on already in the main text, is that there tend to be a larger difference between
all sampling rules for end-of-time constraints compared to anytime constraints. This is due to the fact that
anytime constraints can be very restrictive on which sampling allocations are allowed and there might not be less
room for an adaptive learner.

In the case of arms with Bernoulli distributions we did not use a close-form projection, as for Gaussian distributions,
and instead computed the projection numerically by minimizing the KL-divergence subject to λJ

pπ˚ ´ π1q “ 0,
which is a convex problem. We discuss the effect of this in Section E.1
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(a) End-of-time constraints
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(b) Anytime constraints

Figure 6: End-of-time and Anytime constraints with Bernoulli arms. The reward vector is µ “

p0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2q and the constraints are π1 ` π2 ď 0.5 and π3 ` π4 ď 0.5. Average over 500
seeds and δ “ 0.1. Optimal policy is π1 “ 0.5 and π3 “ 0.5.
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(a) End-of-time constraints
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(b) Anytime constraints

Figure 7: End-of-time and Anytime constraints with Bernoulli arms. The reward vector is µ “ p0.8, 0.7, 0.6, 0.5, 0.4q

and the constraints are 4π1 ´ π5 ď 1 and 3π2 ´ π4 ď 1. Average over 500 seeds and δ “ 0.1. Optimal policy is
π1 “ 0.25, π2 “ 0.33 and π3 “ 0.42.

E.1 Running Times

In Table 2 we present the average time it take for the algorithms to check the stopping criterion and select a new
arm to play. The test was performed on 1 core of a Intel Xeon Gold 6130 CPU with 2.1 GHz. Gaussian indicates
the experiments in Figure 8a, Bernoulli the experiments in Figure 6a and IMDB the experiments in Figure 5b.
As expected CTnS is the algorithm requiring most computational time and the excessive running time it has on
the experiment with Bernoulli distributions is due to the fact that we numerically solve the projection instead of
relying on a close-form expression as in the case of Gaussian distributions. In contrast, we see that CGE has a
relatively light computational footprint in all cases. Another advantage of CGE is that it performs a finite number
of max calls at each iteration which can easily be parallelized for larger bandit instances with many constraints.

Algorithm Bernoulli Gaussian IMDB

CTnS 1.00 ˘ 0.244 0.030 ˘ 0.006 0.033 ˘ 0.015

CGE 0.02 ˘ 0.001 0.005 ˘ 0.001 0.008 ˘ 0.001

Uniform 0.009 ˘ 3 ˆ 10´4 0.001 ˘ 1 ˆ 10´4 0.002 ˘ 2 ˆ 10´4

Table 2: Average time, in seconds, it takes to check the stopping criterion and select a new arm for the different
algorithms. The˘ indicates one standard deviation. We omitted the optimal sampler since this one has the same
running time as the uniform sampler.
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Figure 8: End-of-time and Anytime constraints with Gaussian arms σ2 “ 1. The reward vector is µ “

p2.0, 1.5, 1.45, 0.5, 0.3,´1.0,´1.0q and the constraints are 4π1 ` π2 ď 0.7 and π2 ` 2π3 ď 0.5. Average over 1000
seeds and δ “ 10´4. Optimal policy is π1 “ 0.05, π2 “ 0.5 and π4 “ 0.45.

E.2 IMDB environment

For resproducibility, here we provide the specifics of the IMDB data in the Table 3 as used in the experiments
(Figure 5).

Movie Average Rating σ Action Drama Family

The Net 3.67 1.26 1 1 0

Happily N’Ever After 2.97 1.30 0 0 1

Tomorrowland 2.94 1.31 1 0 1

American Hero 3.52 1.33 1 1 0

Das Boot 3.18 1.30 0 1 0

Final Destination 3 2.02 0.93 0 0 0

Licence to Kill 2.79 1.22 1 0 0

The Hundred-Foot Journey 2.97 1.31 0 1 0

The Matrix 2.32 1.14 1 0 0

Creature 2.53 1.20 0 0 0

The Basket 2.55 1.19 0 1 0

Star Trek: The Motion Picture 2.54 1.16 0 0 0

Table 3: Movies used in the experiments presented in Figure 5. The optimal policy is π˚
1 “ 0.3, π˚

2 “ 0.3 and
π˚

5 “ 0.4. We used the maximum σ in the algorithms. This means that the algorithms didn’t have access to the
true σ of each arm and instead modelled them all as Gaussian distributions with σ “ 1.33 but the rewards were
sampled from the environment using the true σ.
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Figure 9: End-of-time and Anytime constraints with Gaussian arms σ2 “ 1. The reward vector is µ “

r1.0, 0.5, 0.4, 0.3, 0.2, 0.1s and the constraints are π1 ´ π4 ´ π5 ´ π6 ď 0.3 and π2 ď 0.7. Average over 1000 seeds
and δ “ 10´3. Optimal policy is π1 “ 0.65 and π4 “ 0.35.
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F FURTHER DISCUSSION ON THE SUB-OPTIMALITY OF PTnS
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Figure 10: Problem instance with 8 Gaussian arms with σ “ 1. The arm means are µ “

r1.0, 0.7, 0.3, 0.0,´0.5,´1.0,´2.0,´3.0s and we have one constraint 7π1 ` 7π2 ` π3 ď 0.5. The optimal pol-
icy is π3 “ π4 “ 0.5. Results for δ “ 0.1 and 1000 random seeds.

In Figure 10, we consider an eight-armed bandit with Gaussian reward distributions with means

µ “ r1.0, 0.7, 0.3, 0.0,´0.5,´1.0,´2.0,´3.0s,

variance 1, and the constraint 7π1 ` 7π2 ` π3 ď 0.5.

We observe that PTnS performs the worst on this instance, specially in the end-of-time setting. This reflects the
fact that the optimal allocation w.r.t. classical BAI bound does not have to be close to the optimal allocation
given by the constraint version of the lower bound.

In Figure 10b, the optimal allocation for the constraint problem is

w˚ “ r0.09, 0.02,0.43,0.36, 0.03, 0.02, 0.02, 0.02s,

while the unconstrained optimal BAI allocation with the same µ is

ŵ “ r0.43,0.42, 0.05, 0.03, 0.02, 0.02, 0.02, 0.02s.

Hence, PTnS focuses on exploring arm 1 and 2 the most, which makes sense without any constraints. In contrast,
the optimal allocation under constraint, i.e. w˚, suggests that one should focus on arm 3 and 4 as the constraint
puts a disproportional cost on arm 1 and 2.

In the anytime scenario, Figure 10a, the optimal allocation is

w˚ “ r0.02, 0.01,0.32,0.54, 0.03, 0.03, 0.03, 0.03s.

In this scenario, the allocation ŵ, computed by PTnS, is no longer feasible and PTnS instead converges to the
projected version

w1 “ r0.03, 0.02, 0.12, 0.18,0.16,0.16,0.16,0.16s.

We observe that the previous issue is now mitigated by the projection, PTnS is no longer overly obsessed with
arm 1 and 2. However, another issue arises as the projection distributes a substantial probability to the arms
5´ 8, which are highly sub-optimal. These phenomena lead to worse performance of PTnS w.r.t. CTnS and CGE,
as shown in Figure 10a.



Pure Exploration in Bandits with Linear Constraints

G USEFUL DEFINITIONS AND RESULTS

Definition 2 (Upper hemicontinuity). We say that a set-valued function C : Θ Ñ Ω is upper hemicontinuous
at the point θ P Θ if for any open set S Ă Ω with Cpθq P S there exists a neighborhood U around θ, such that
@x P U , Cpxq is a subset of S.

Theorem 6 (Berge’s maximum theorem (Berge, 1963)). Let X and Θ be topological spaces. Let f : X ˆ Θ Ñ R
be a continuous function and let C : Θ Ñ X be a compact-valued correspondence such that Cpθq ‰ H @θ P Θ. If
C is continuous at θ then f˚pθq “ supxPCpθq fpx, θq is continuous and C˚ “ tx P Cpθq : fpx, θq “ f˚pθqu is upper
hemicontinuous.

Below we restate the upper bound on the sample complexity of the Gamified Explorer (GE) of Degenne et al.
(2019).

Theorem 7 (Theorem 2 in Degenne et al. (2019)). The sample complexity of GE is

Erτ s ď T0pδq `
eK

a

where

T0pδq “ maxtt P N : t ď T pµqcpt, δq ` CµpRλ
t ` Rw

t ` Op
a

t log tqqu

where Rλ
t is the regret of the instance player, Rw

t the regret of the allocation player and Cµ an instance-dependent
constant.
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