
Data Driven Threshold and Potential Initialization for Spiking Neural
Networks

Velibor Bojković1,*, Srinivas Anumasa1,*, Giulia De Masi2,3, Bin Gu4,1, † Huan Xiong5,1, †

1 Mohamed bin Zayed University of Artificial Intelligence, UAE
2 ARRC, Technology Innovation Institute, UAE

3 BioRobotics Institute, Sant’Anna School of Advanced Studies Pisa, Italy
4 School of Artificial Intelligence, Jilin University, China

5 Harbin Institute of Technology, China
†Correspondence to: huan.xiong.math@gmail.com, jsgubin@gmail.com. *Equal Contributions

Abstract

Spiking neural networks (SNNs) present an
increasingly popular alternative to artificial
neural networks (ANNs), due to their
energy and time efficiency when deployed on
neuromorphic hardware. However, due to
their discrete and highly non-differentiable
nature, training SNNs is a challenging task
and remains an active area of research. Some
of the most prominent ways to train SNNs
are based on ANN-to-SNN conversion where
an SNN model is initialized with parameters
from the corresponding, pre-trained ANN
model. SNN models trained through ANN-
to-SNN conversion or hybrid training show
state of the art performance among SNNs on
many machine learning tasks, comparable to
those of ANNs. However, the top performing
models need high latency or tailored ANNs to
perform well, and in general are not using the
full information available from ANNs. In this
work, we propose novel method to initialize
SNN’s thresholds and initial membrane
potential after ANN-to-SNN conversion,
using distributions of ANN’s activation
values. We provide a theoretical framework
for feature distribution-based conversion
error, providing theoretical results on optimal
membrane initialization and thresholds which
minimize this error, as well as a practical
algorithm for finding these optimal values.
We test our method, both as a stand-alone

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

ANN-to-SNN conversion and in combination
with other methods, and show state of the
art results on high-dimensional datasets such
as CIFAR10, CIFAR100 and ImageNet and
various architectures. Our code is available at
https://github.com/srinuvaasu/data_driven
_init

1 INTRODUCTION

Spiking neural networks (SNNs) are dubbed third gen-
eration neural networks [Maass, 1997]. Inspired and
designed by how biological neurons process and share
information [McCulloch and Pitts, 1943, Hodgkin and
Huxley, 1952, Izhikevich, 2003], they have seen increas-
ing popularity and success in the past decade, due
to their promising energy efficiency. Unlike in arti-
ficial neural networks (ANNs) [Braspenning et al.,
1995], neurons in an SNN model communicate through
a stream of spikes, emulating the communication be-
tween neurons in biological brain which is through elec-
tric pulses. An SNN neuron accumulates the incoming
spikes in the form of membrane potential, and emits
a spike only when the potential reaches a threshold,
making the processing of information event-driven and
binary. On the other side, processing information in
ANNs involves floating point operations, which on large
scale results in an energy inefficient deep learning mod-
els [Roy et al., 2019]. The advantage of SNN models is
further emphasized through the recent advancements
in production of neuromorphic chips [Pei et al., 2019,
DeBole et al., 2019], which are dedicated to supporting
and embedding SNN models into hardware in an energy
efficient way. The invention of neuromorphic hardware
gave a new boost in popularity of SNNs, challenging
the traditional neural networks in different domains,
like object detection [Kim et al., 2020a, Cheng et al.,

Data Driven Threshold and Potential Initialization for Spiking Neural Networks

2020], object tracking [Yang et al., 2019], video recon-
struction [Zhu et al., 2022], generative models [Kamata
et al., 2022], just to name a few.

The ever-growing popularity of SNNs would not be pos-
sible without efficient ways to train them. There are
two standard approaches to training an SNN model: di-
rect training (supervised and unsupervised) and ANN-
to-SNN conversion based approaches. In supervised
direct training [Wu et al., 2018, Neftci et al., 2019,
Zenke and Vogels, 2021, Mukhoty et al., 2023, Anumasa
et al., 2024], an SNN model with randomly initialized
weights is trained via backpropagation where the non-
differentiability of spikes is overcome by using surrogate
gradients or by taking one-sided derivatives. The un-
supervised direct training [Diehl and Cook, 2015] is
biologically inspired and uses local learning rules and
timing of spikes to update the weights. In particular,
unsupervised methods are hardware friendly, but SNN
models thus trained still lag in performance compared
to supervised or ANN-to-SNN conversion based meth-
ods. In the ANN-to-SNN conversion approach [Cao
et al., 2015, Diehl et al., 2015, Deng and Gu, 2021], an
already trained ANN model is used to initialize the cor-
responding SNN model through a series of operations.
In general, these operations include copying the weights
(sometimes normalized in a suitable way), replacing
the ANN neurons and activation functions with SNN
neurons and their dynamics, to replicate the output
and performance of ANNs. Moreover, such obtained
SNN models may be further tuned to increase their
performance.

Although both these approaches have shown impres-
sive results on computer vision tasks in recent years,
they come with their own drawbacks. For example,
supervised direct training requires a lot of computa-
tional and energy resources due to the time-recursive
nature of SNNs and the fact that training still has to be
performed on standard GPUs which are not adapted
to the spiking nature of SNNs. On the other hand,
ANN-to-SNN conversion based methods, in general,
suffer from long latency needed to approximate ANN
performance [Li et al., 2021a, Rathi et al., 2019, Han
et al., 2020], or they need tailored trained ANN models
with non-standard activation functions to optimize the
conversion [Bu et al., 2021, Deng and Gu, 2021].

Drawing our motivation from the fact that present
ANN-to-SNN methods do not fully exploit ANN mod-
els to initialize SNN models, we propose a new way
to initialize SNN thresholds and initial membrane po-
tential in SNNs, further exploiting the corresponding
ANN model. Namely, thhe SNN model weights are
initialized with the weights of the ANN model while
the spiking neuron membrane thresholds for each layer
are set by inferring the knowledge from the statistics

of the features in each layer of the ANN model. To the
best of our knowledge, this is the first time that the full
statistics of ANN layer’s outputs have been exploited
in the SNN setting.

Our contributions in this work can be summarized as
follows:

• We formulate and study activation-distribution
based, layer-wise conversion error. The conversion
error is expressed in dependence of the probabil-
ity measure (corresponding to the distribution of
ANN activation values), and for latency T = 1
we characterize optimal potential and membrane
initialization in terms of this probability measure,
while in higher latency we show an intrinsic rela-
tion between these two optimal values.

• Based on our theoretical findings, we propose prac-
tical algorithms to find optimal values of thresh-
olds and potential initialization in each layer using
the knowledge inferred from the ANN activation
values.

• We show through experiments that our models
show state-of-the-art performance on several pop-
ular benchmarks such as CIFAR10, CIFAR100,
ImageNet and deep architectures such as VGG16,
ResNet18, ResNet19 and CIFARNet.

2 RELATED WORK

Training SNNs through ANN-to-SNN conversion is an
alternative to direct training of SNNs achieving top
performance in supervised learning problems. First
works in this direction, [Diehl et al., 2015] and [Cao
et al., 2015] outline the general procedure of ANN-to-
SNN conversion, while [Diehl et al., 2015] introduces
weight and threshold balancing, i.e. weight normaliza-
tion and threshold initialization based on the maximal
activation values of layers of ANN (further explored
in [Sengupta et al., 2019]). Other improvements of
the method came with [Rueckauer et al., 2017] where
a reset-by-subtraction (also known as soft-reset as in
[Han et al., 2020]) in SNN neurons is used to eliminate
information loss during membrane potential resetting.
More generally, [Rueckauer et al., 2016] provides a
theoretical justification for the ANN-to-SNN proce-
dure, explicitly describing the equations underlying
conversion (summarized above), but also suggesting
the 99.9th percentile method to initialize SNN neuron
thresholds to further reduce the conversion error. The
weight and threshold normalization is also used in [Kim
et al., 2020b] (where it is applied channel-wise) and in
[Li et al., 2022], where authors introduced dynamics of
bistable SNN neurons adapted for ANN-to-SNN con-
version using temporal encoding. In [Li et al., 2022]

Velibor Bojkovi, Srinivas Anumasa,Giulia De Masi, Bin Gu,Huan Xiong

the authors also study the part of the conversion error
coming from the properties of spike trains (thus, not di-
rectly related to the conversion process). We point out
that all the work mentioned suffers from long latency
SNNs need to achieve near ANN accuracy.

In an attempt to reduce the SNN latency, other meth-
ods have been proposed that do not necessarily follow
the general procedure. For example, [Rathi et al., 2019]
uses a hybrid method (conversion for initialization of
weights and thresholds as described before, followed
by direct training). In a similar way, [Li et al., 2021a]
proposes weights and threshold calibration after the
conversion, as well as a grid search for the threshold
initialization for SNNs during the conversion process.
In [Deng and Gu, 2021] authors study in detail the
conversion error. Further, a shift of the bias while
converting ANNs to SNNs is proposed as well as a
truncated ReLU activation while training ANNs, to
reduce the conversion error. In [Bu et al., 2021] a new
activation function for ANNs has been proposed which
reduces the conversion error, while threshold initial-
ization is learned during the training of ANNs. In a
continuation of this work [Hao et al., 2023], authors
further improve on the accuracy of the method through
sample-based, layer-wise membrane potential initializa-
tion, but increasing latency proportional to the number
of activation layers in ANNs. Although, [Deng and Gu,
2021] and [Bu et al., 2021] achieve high SNN accuracy
through ANN-to-SNN conversion, these methods suffer
from the need to train the corresponding ANN models
using their respective proposed activation functions.

When it comes to threshold initialization, all the above
methods either use the maximal activation values layer-
wise to derive the corresponding membrane threshold
or the threshold is learned during the training.

3 BACKGROUND

We use integrate-and-fire (IF) neurons in SNNs, which
are widely used in the setting of ANN-to-SNN conver-
sion. At every time step, each neuron receives spikes
from the previous layers weighted with the network
weights, and accumulates membrane potential. If the
potential reaches the membrane threshold, the neuron
fires a spike (weighted by the threshold value) and re-
sets by subtracting the membrane threshold [Rueckauer
et al., 2016]. The process is repeated at discrete time
steps throughout the simulation time.

To describe the neuronal dynamics and ANN-to-SNN
conversion process precisely, we introduce some no-
tations. We will use v[t] to denote the membrane
potential (voltage) at time step t, s[t] will denote a
binary variable, 1 or 0, according to whether there is a
spike at time step t or not, W will denote the network

weight while Vth stands for the membrane threshold.
The superscripts will stand for the layer index while
the subscripts will denote the neuron index in a given
layer. Finally, T will stand for the simulation time.
With this notation, at each time step t the membrane
voltage is updated accordingly as

v[t] = v[t− 1] +WV
(−1)
th s(−1)[t]− Vths[t− 1], (1)

s[t] = H(v[t]− Vth),

where H is the Heaviside function.

3.1 General ANN-to-SNN conversion
procedure

We follow the general conversion procedure outlined in
[Diehl et al., 2015] and [Cao et al., 2015], by copying
ANN weights to SNN. Furthermore, we use constant
rate encoding of inputs, where an input value is con-
verted into a length T spike train by repeating its
value T times. This generalizes to deeper layers as a
real value is encoded into a spike train via firing rate,
where the number of spikes during the simulation time
averaged over T , approximates the value.

In more detail, let us consider equation (1). Summing
up all the equations for t = 1, . . . , T , initializing the
voltage with v(l)[0] (which has the same value denoted
by v(l)[0] for each neuron in the layer l) and averaging
over T , we obtain

V
(l)
th

∑T
t=1 s

(l)[t]

T
= W(l)V

(l−1)
th

∑T
t=1 s

(l−1)[t]

T
(2)

+
v(l)[T]− v(l)[0]

T
. (3)

On the ANN side of things, a passage between the
layers takes the form

a(l) = A(l)(W(l)a(l−1)), (4)

where A(l) is the activation function. In ANN-to-SNN
conversion process, the most commonly used choice for
A is the ReLU function, due to its simplicity and non-
negative output which relates well to the properties of
IF neurons. We adopt this choice so that, comparing
equations (2) and (4), it becomes clear that the activa-
tion value is approximated with the averaged output of
the corresponding SNN neuron (firing rate) [Rueckauer
et al., 2016]

a
(l)
i ≈ V

(l)
th

∑T
t=1 s

(l)
i [t]

T
. (5)

3.2 Conversion error

The conversion error between the outputs of an ANN
and the corresponding SNN is an intricate function

Data Driven Threshold and Potential Initialization for Spiking Neural Networks

of the layer-wise approximations coming from (5) and
accumulated error from the previous layers. Namely,
for a given input sample, the error at a particular
layer l (accumulated sum of differences at neuronal
level) depends on the conversion errors made at all
the previous layers as well as the error made when
approximating ANN outputs with firing rate of SNN
neurons. For a detailed discussion, one may refer to
[Deng and Gu, 2021].

When dealing with layer-wise conversion, which mea-
sures how well the firing rate approximates the ANN
ReLU output, one assumes that both the ANN
and SNN layers receive the same input: a(l−1) =

V
(l−1)
th

∑T
t=1 s(l−1)[t]

T . Then, the conversion error made
in the layer l for the output a(l) follows from the ex-
pression (3) above and is given by

C(a(l)) :=
N(l)∑
i=1

(v(l)
i [T]− v(l)[0]

T

)
, (6)

where N (l) is the number of neurons in the layer. From
the previous expression it becomes evident the im-
portance of the potential initialization v(l)[0] and the
membrane threshold Vth during the conversion. Both
parameters have to be set in a way to minimize (the
absolute value of) the overall conversion error, when
a(l) ranges through the activation values.

For the threshold parameter V
(l)
th , clas-

sically one takes M (l) := max{a(l)i |
a(l) is an activation vector vector} [Diehl et al.,

2015, Sengupta et al., 2019], usually after the weight
normalization, or V

(l)
th is taken to be some fraction of

M (l) [Rueckauer et al., 2016]. A different approach is
taken in [Bu et al., 2021] where V

(l)
th is learned during

necessary training of ANN. In Section 4 we propose
to choose V

(l)
th based on the distribution of activation

values a(l) showing how it optimizes the conversion
error (6).

For the voltage initialization v(l)[0], both [Deng and
Gu, 2021] and [Bu et al., 2021] use the intuition coming
from Figure 1. where one can notice that the conver-
sion error minimizes when slightly shifting the ReLU
function (through the bias) or using some carefully
chosen nonzero v(l)[0]. The former paper proposes
shifting of the ReLU while the latter suggests taking
v(l)[0] = 1

2V
(l)
th , proving that this particular value mini-

mizes the expectation of the error under the assumption
(not explicitly stated in the paper) that the activation
values follow a uniform distribution, or, more precisely,
the activation values are linear. The reader can refer
to Figure 1 A. for the graphical representation of the
conversion error under these assumptions.

We revisit the term v(l)[0] in Section 4 providing both
practical and theoretical results on how to find its
optimal value.

4 PROPOSED APPROACH

We propose an ANN-to-SNN conversion method of
training SNNs, where not only the weights of the ANN
model are used, but also the distribution of its layer-
wise activation values. We show that these distributions
can be used to find optimal membrane potential ini-
tialization and threshold, which play prominent role in
minimizing the conversion error.

4.1 Activation values and threshold
initialization

The feature distributions of layers in ANNs, when a rep-
resentative set of samples of training dataset are passed
to the network, are far from being regular/uniform1.
In Figure 5 we show an example of a distribution and a
plot of sorted features for ResNet18 ANN model (for a
VGG16 model the corresponding figures can be found
in the supplementary material). One can get a glimpse
at the highly non-linear structure of the activation val-
ues. We also note here that, due to the high number
of activation values (∼ 106 − 108) and their density,
the obtained distributions and sorted arrays appear, at
least visually, as continuous functions, but nonetheless
they are discrete. However, at least as far as the theo-
retical results are concerned, discrete and continuous
cases should be treated in a unified manner.

With this in mind, we revisit the steps of Sections 3.

4.1.1 Layer-wise conversion error

Generally speaking, layer-wise conversion error is a
measure of difference between outputs at a particular
layer of an ANN model and the corresponding SNN
model.

We consider a layer l of ANN model with ReLU activa-
tion, and the corresponding SNN model initialized with
weights of ANN. Let a(l) := a(l)(x) be an output of

ANN layer l and let ã(l) := ã(l)(x) = V
(l)
th

∑T
t=1 s

(l)
i (x)[t]

T
be the corresponding output in SNN model (equation
(5)) (here x is an input sample, so both outputs should
be seen as functions of the input sample).

Let λ(l) be the distribution of activation vectors of
ANN and let Λ(l) be the associated probability measure.

1Since the set of all activation values is discrete, by reg-
ularity we mean that the sorted activation values do not
follow a linear pattern, or that they do not form an arith-
metic sequence. We will keep this terminology throughout
the paper

Velibor Bojkovi, Srinivas Anumasa,Giulia De Masi, Bin Gu,Huan Xiong

A B C

Figure 1: The plots show conversion error under different assumptions (green regions correspond to overlapping
of the blue and yellow regions): A. The error obtained when assuming that the activation values are uniformly
distributed; B. The error obtained taking into account activation values’ distribution. The activation values are
assumed to be sorted; C. The error made in one time step.

A.

B.

Figure 2: The feature distributions and plots of sorted
feature values extracted at second ReLU layer of ResNet18
architecure using CIFAR10 dataset: The plots suggest that
even discarding the outlier feature values, the remaining
features are far from being uniformly distributed.

Then, the (signed) conversion error takes the form

C(l) =

∫ (
a(l) − ã(l)

)T
· JM(l),1dΛ

(l), (7)

where JM(l),1 is an M (l)-dimensional column vector of
ones. In the case of a discrete (finite) distribution, the
previous expression specifies to:

C(l) =
1

N

N∑
j=1

M(l)∑
i=1

((
a
(l)
j

)
i
−
(
ã
(l)
j

)
i

)
,

where N is the number of samples (counted with mul-
tiplicities) in distribution λ(l).

In this full generality, studying (7) and optimizing it in
terms of parameters V

(l)
th and v(l)[0] becomes a rather

difficult challenge. To make things more tractable, we

look for parameters V
(l)
th and v(l)[0] that only depend

on layers and not on a particular neuron in a layer,
hence, we will consider a 1-dimensional distribution
λ(l) (and its corresponding probability measure Λ(l))
which is a distribution of all the activation values of
all ANN neurons in the layer l, regarded independently
of each other. Furthermore, similarly as in [Deng and
Gu, 2021], we consider layer-wise conversion error with-
out dependence on the accumulated error from the
previous layers, which amounts to assuming that the
SNN receives at layer l the same inputs a(l−1) as ANN,
repeated at each time step t = 1, . . . , T (see Section 3).

In particular, we consider: a ∼ λ(l), ã := V
(l)
th

∑T
t=1 s[t]

T ,
where s[t] is binary (0 or 1) output of the IF neuron
(with potential threshold V

(l)
th and membrane initial-

ization v(l)[0]), at a time step t, when the input a is
coming at each time step. The conversion error (7) is
then simplified to

C(l) = C(l)
(
V

(l)
th , v(l)[0], T

)
:=

∫
(a− ã)dΛ. (8)

The previous expression does naturally correspond to
the signed error made during conversion. More gener-
ally, one may consider the more informative functions

C(l)
m = C(l)

n

(
V

(l)
th , v(l)[0], T

)
:=

∫
|a− ã|mdΛ, (9)

where m is a positive integer (for example, m = 2
corresponds to the mean square conversion error).

4.1.2 Main results

As was already seen in equation (6), the parameters
V

(l)
th and v(l)[0] play a prominent role in minimizing

the conversion error. As they are the only parameters
in (8), our problem is to find

argmin
V

(l)
th ,v(l)[0]

Cm(V
(l)
th , v(l)[0], T), (10)

Data Driven Threshold and Potential Initialization for Spiking Neural Networks

where Cm(V
(l)
th , v(l)[0], T) is as in equation (9). We note

that the previous is a non-convex optimization problem
and we refer to Figure 1 B. for a visual insight into C1.

We split the situation in two cases, depending on the
latency, T = 1 and T > 1. In the former case, we
provide a complete characterization of the optimal
values for V (l)

th and v(l)[0], while in the latter, we provide
enough theoretical understanding to provide practical
algorithms for ANN-to-SNN conversion.

Case T = 1. In the first theorem that follows we
consider continuous distribution λ, as it is easier to
track the notation and it motivates the second result.
Theorem 4.1. Suppose that λ(l) is a continuous dis-
tribution with support [0,M] and let Λ(l) be the cor-
responding CDF. Then, there exists x0 ≤ x1 ∈ (0, 1)

such that V (l)
th =

(
Λ(l)

)−1
(x1), v(l)[0] =

(
Λ(l)

)−1
(x1)−(

Λ(l)
)−1

(x0), is a solution to (10). Moreover,

v(l)[0] =
1

2
V

(l)
th and x1 =

1

2
(1 + x0).

In the discrete case, we have the following analogue.

Theorem 4.2. Let
(
a(n)

)N
n=1

be the non-decreasing
sequence of all the activation values, and let V (l)

th and
v(l)[0] be a solution to optimization problem (10). Then,
there exist indices n0 and n1 such that V

(l)
th = a(n1)

and v(l)[0] = a(n1)− a(n0).

Moreover, n0 is such that |a(n0)− 1
2a(n1)| is minimal,

while n1 = n0 +
⌊
1
2 (N − n0)

⌋
.

Both of these results are proved in the supplementary
material, but for the idea one can refer to Figure 3.2
and notice, for example, that by increasing the index
n1, the error increases or decreases, depending on the
values of N − n1 and n1 − n0. Similarly, the error
increases or decreases with increasing n0 depending on
how far a(n0) is from 1

2a(n1).

Although both results have their merits, the second
theorem allows for an O(N) algorithm to find optimal
V

(l)
th and v(l)[0].

Case T > 1. This case presents a challenge in it-
self even for small latencies T . Nonetheless, the re-
lation between V

(l)
th and v(l)[0] that we present next

and prove in the supplementary material, allows for
the O(N2 log(N)) algorithm, which is still useful in
practice.
Theorem 4.3. Keeping the assumptions and notation
of Theorem 7.1, we have that v(l)[0] = 1

2V
(l)
th .

Theorem 4.4. Keeping the assumptions and nota-
tion of Theorem 7.2, we have that |a(n0)− 1

2a(n1)| is
minimal.

One may note that in the case of a uniform distribution
λ, our theorem Theorem 4.3 recovers the main finding
of [Deng and Gu, 2021].

4.2 Algorithms

Theorems 7.2 and Theorem 4.4 are what allows us to
find optimal values for V

(l)
th and v(l)[0] in terms of T

and distributions of activation values λ. We present
two algorithms, for the above cases T = 1 and T > 2.
In both cases, the distribution λ is “given” in terms of
sorted array of the ANN activation values. More details
on both algorithms are given in the supplementary
material.

In the first algorithm, E is the conversion error when
using the current index i0 to calculate the inner and
outer threshold, while Emin and corresponding imin

are used to keep track of the optimal values.

Algorithm 1 Algorithm for computing optimal V (l)
th

and v(l)[0] for C1(V (l)
th , v(l)[0]) and T = 1

Input: Sorted array of positive activation values a, of
length N

Output: V
(l)
th and v(l)[0]

Initialize: imin, i0 := 1, i1 := imin + (N − imin)//2,
E,Emin :=

∑i0−1
i=1 a[i] + a[i1](N − i0) −∑i1−1

i=i0
a[i] +

∑N
i=i1+1 a[i]

for i0 = 2, . . . , N − 2 do:
if N − i0 mod 2 = 0 do:
E+ = 2a[i0]− a[i1]
if E < Emin:
Emin := E, imin := i0, i1 := imin + (N − imin)//2

else:
E+ = 2a[i0]− a[i1]− 2a[i1 + 1]
+(N − i0)(a[i1 + 1]− a[i1]), i1+ = 1
if E < Emin:
Emin := e, imin := i0, i1 := imin + (N − imin)//2

return a[i1], a[i1]− a[imin]

For the second algorithm, given the index i of the
sorted array of activation values a, we denote by E(i)
the conversion error obtained when using a[i] as a
threshold and a[i]

2 as the initial value of the membrane
potential.

4.3 SNN calibration

Once the parameters of the model are initialized in
the first part of the training, the model is already
performing better in low latency than some of the
state-of-the-art models. However, the true power of
the proposed initialization lies in the fact that the
converted model only needs a few epochs of training
to drastically improve its performance (Figure 5).

The training is performed in a latency-increasing fash-

Velibor Bojkovi, Srinivas Anumasa,Giulia De Masi, Bin Gu,Huan Xiong

Algorithm 2 Algorithm for computing optimal V (l)
th

and v(l)[0] for C1(V (l)
th , v(l)[0]) and T > 1

Input: Sorted array of positive activation values a, of
length N

Output: V
(l)
th and v(l)[0]

Initialize: Nstart, Nend,
indmin = Nstart, Emin := E(Nstart)

for i = Nstart + 1, . . . , Nend do:
Calculate E(i) (∼ N log(N) computational steps)

if E(i) < Emin:
Emin := E, imin := i

return a[imin], 1
2
a[imin]

ion for both computational and performance reasons
(see [Deng et al., 2021]). More precisely, first initialized
SNN model is trained for T = 1. After this, SNN
model following the same architecture and the same
potential and threshold initialization, but using the
weights of T = 1 SNN model is trained for T = 2 and
so on. The advantages of this way of training are shown
experimentally in the following section.

5 EXPERIMENTS

We assess the effectiveness of our proposed method
for classifying high-dimensional datasets such as CI-
FAR10, CIFAR100 [Krizhevsky and Hinton, 2009] and
ImageNet [Russakovsky et al., 2015]. We train on these
datasets on deep learning architectures such as VGG16,
ResNet18, ResNet19 and CIFARNet. More details of
experimental setup can be found in the supplementary.
We compare our approach with the state-of-the-art
ANN-SNN conversion methods (using ReLU as an acti-
vation in ANN models), but also in combination with
other ANN-to-SNN conversion methods using auxiliary,
ReLU -like activation functions. Finally, we also test
our proposed method in combination with direct train-
ing, and the results can be found in the supplementary
material.

5.1 ANN-to-SNN conversion: ReLU ANN
activation

Firstly, we compare our method with SOTA methods
based on ANN-to-SNN conversion, where ANN mod-
els use ReLU activation functions. on CIFAR10 and
CIFAR100 datasets. For the baselines, we report the
earliest reported accuracy until latency T = 128. For
our method, we report the results for latencies from
T = 2 until T = 128 (successive powers of 2). The
results are presented in Table 3.

We emphasize that our method is able to obtain rea-
sonable accuracies early on (especially in the case of
CIFAR10) which we attribute to the method, as the

thresholds are adapted to the dataset itself. Except
for the few cases our method performs better than all
the baselines in all the latencices (the exceptions are
methods AP [Li et al., 2021a] and SNM+NN [Wang
et al., 2022] for the case VGG16 and CIFAR100 (but
we point to somewhat higher ANN accuracy of their
models), and AP [Li et al., 2021a] for VGG16 and CI-
FAR10 for latency T = 64, but again with higher ANN
accuracy of the baseline). Additionally, our method
of initialization significantly improves the performance
of SNM+NN model, as shown by Ours+SNM in the
Table3.

5.2 Data driven initialization in combination
with other methods

We test our method in combination with other methods
used to train SNNs. We divide the baselines in two
categories: ANN-to-SNN method, where ANN models
use auxiliary activation functions, and direct training
SNN methods, where one trains SNN models, either
after ANN-to-SNN converison, either directly from
scratch.

For the first category, we use our method in combina-
tion with Opt method [Deng and Gu, 2021] and QCFS
method [Bu et al., 2021], where in the former case a
truncated ReLU activation function is used instead
of ReLU to train ANN models, while in the latter, a
stairs-like function is used instead of ReLU . Both of
the activation functions are designed to facilitate ANN-
to-SNN conversion (that is, to reduce the conversion
error). The first method does it by eliminating outliers
from the distribution of activation values while the
second one simplifies the distribution itself.

However, when using our method of initialization of
SNNs from ANNs trained with QCFS method (stairs
activation function), we recover the thresholds that are
intrinsic to this method (related to the step size of the
activation function, and depending on the latency). In
particular, the performance of our method is identical
to the one of QCFS, hence we do not report these results
here (the details are in the supplementary material).

On the other side, we compare our method Opt [Deng
and Gu, 2021]. We used their available pretrained mod-
els with truncated ReLU activation function, and we
use our method to initialize the corresponding SNN. In
Table 2, we compare the two methods’ resulting SNN
accuracies for different latencies. We once again con-
clude that our method vastly outperforms the baseline
for the low latency, while in the top latency T = 128
the performances are comparable.

Finally, we tested our method in combination with
direct training in ultra-low latency. Namely, the con-
verted SNN models are further trained for few epochs,

Data Driven Threshold and Potential Initialization for Spiking Neural Networks

Table 1: Comparison of our method with SOTA ANN-to-SNN conversion methods with ReLU ANN activation,
on CIFAR10 and CIFAR100 datasets

CIFAR100

Method Architecture ANN acc. T =2 T =4 T =8 T =16 T =32 T =64 T =128

RMP [Han et al., 2020] ResNet20 68.72 - - - - 27.64 46.91 57.69
TSC [Han and Roy, 2020] ResNet20 68.72 - - - - - - 58.42

AP [Li et al., 2021a] ResNet20 77.16 - - - - 76.32 77.29 77.73
SNM+NN [Wang et al., 2022] ResNet18 78.26 - - - - 74.48 77.59 77.97

Ours ResNet18 79.87 18.25 47.88 66.21 74.58 77.15 78.85 79.69
Ours ResNet19 81.28 20.97 44.15 65.23 76.30 79.84 80.63 80.97

RMP [Han et al., 2020] VGG16 71.22 - - - - - - 63.76
TSC [Han and Roy, 2020] VGG16 71.22 - - - - - - 69.86

AP [Li et al., 2021a] VGG16 77.89 - - - - 73.55 76.64 77.40
SNM+NN [Wang et al., 2022] VGG16 74.13 - - - - 71.8 73.69 73.95

Ours VGG16 75.49 42.24 51.21 53.65 57.12 61.61 70.44 73.82

CIFAR10

RMP [Han et al., 2020] ResNet20 91.47 - - - - - - 87.60
TSC [Han and Roy, 2020] ResNet20 91.47 - - - - - 69.38 88.57

AP [Li et al., 2021a] ResNet20 95.46 - - - - 94.78 95.30 95.42
RateNorm [Ding et al., 2021] ResNet18 93.06 - - - - 83.95 91.96 93.27
SNM+NN [Wang et al., 2022] ResNet18 95.39 - - - - 94.03 94.01 95.19

Ours ResNet18 96.80 56.64 81.24 90.90 94.17 95.66 96.39 96.56
Ours ResNet19 97.24 66.39 82.47 92.80 95.44 96.41 96.83 96.98

HT [Rathi et al., 2019] VGG16 92.81 - - - - - 91.13
RMP [Han et al., 2020] VGG16 93.63 - - - - 60.30 90.35 92.41

TSC [Han and Roy, 2020] VGG16 93.63 - - - - - 92.79 93.27
AP [Li et al., 2021a] VGG16 95.72 - - - - 93.71 95.14 95.65

RateNorm [Ding et al., 2021] VGG16 92.20 - - - - 85.40 91.15 92.51
SNM+NN [Wang et al., 2022] VGG16 94.09 - - - - 93.43 94.07 94.07

Ours VGG16 95.89 65.62 77.63 87.99 91.27 94.24 94.95 95.64
Ours+SNM VGG16 95.89 70.29 85.44 92.57 94.64 95.25 95.57 95.53

Table 2: Data driven initialization in combination with ANN models with truncated ReLU on CIFAR100 and
CIFAR10 datasets.

CIFAR100

Method Architecture ANN acc. T =2 T =4 T =8 T =16 T =32 T =64 T =128

Opt [Deng and Gu, 2021] ResNet20 69.81 1.00 1.00 1.00 29.13 67.23 69.27 69.72
Ours ResNet20 69.81 48.13 58.61 63.86 67.42 69.03 69.61 69.67

Opt [Deng and Gu, 2021] VGG16 70.38 1 1 1 5.85 58.24 70.15 70.46
Ours VGG16 70.38 51.25 60.25 66.25 68.73 69.91 70.40 70.37

CIFAR10

Opt [Deng and Gu, 2021] ResNet20 93.25 10.00 10.00 10.00 11.22 72.88 92.84 93.1

Ours ResNet20 93.25 75.00 88.14 91.32 92.60 92.92 93.15 93.26

Opt [Deng and Gu, 2021] VGG16 92.18 10.00 10.00 10.00 15.03 92.08 92.33 92.30

Ours VGG16 92.18 84.50 90.13 91.89 92.14 92.26 92.22 92.20

the idea being that the additional training helps to
adjust the weights to compensate for the accumulated
error and inability of the SNN model to capture the
ANN information in few time-steps. The details of this
simple calibration procedure are presented in the sup-
plementary material, along with the report on perfor-
mance of such obtained SNN models, where we obtain
many SOTA results in ultra-low latency.

6 CONCLUSION

In this work, we propose a novel approach for the
ANN-to-SNN conversion where we argue that an al-
ready trained ANN model can be utilized not only for
initializing the weights of the SNN model, but also for
determining optimal initial neuron membrane poten-
tial and neuron membrane threshold values at different

layers. We provide a theoretical framework for the
distribution-based conversion error, and several results
that characterize the inquired optimal values. Based
on our theoretical findings, we propose practical algo-
rithms to find the optimal values, and through experi-
mental evaluations, we demonstrate that the converted
SNN models can produce results that could surpass
the baselines. Additionally, we also showed that our
approach can be easily integrated with a tailored ANN
model trained with a specific activation function.

We believe that our method can be further improved
by applying it channel-wise instead of layer-wise, where
the ANN activation value distributions are collected
for every channel.

Velibor Bojkovi, Srinivas Anumasa,Giulia De Masi, Bin Gu,Huan Xiong

Acknowledgements

This work is part of the research project "ENERGY-
BASED PROBING FOR SPIKING NEURAL NET-
WORKS" performed at Mohamed bin Zayed University
of Artificial Intelligence (MBZUAI), in collaboration
with Technology Innovation Institute (TII) (Contract
No. TII/ARRC/2073/2021).

References

S. Anumasa, B. Mukhoty, V. Bojkovic, G. De Masi,
H. Xiong, and B. Gu. Enhancing training of spiking
neural networks with stochastic latency. In Proceed-
ings of the AAAI conference on artificial intelligence,
2024.

L. Bottou. Stochastic gradient descent tricks. In
Neural networks: Tricks of the trade, pages 421–436.
Springer, 2012.

P. J. Braspenning, F. Thuijsman, and A. J. M. M.
Weijters. Artificial neural networks: an introduction
to ANN theory and practice, volume 931. Springer
Science & Business Media, 1995.

T. Bu, W. Fang, J. Ding, P. Dai, Z. Yu, and T. Huang.
Optimal ANN-SNN conversion for high-accuracy and
ultra-low-latency spiking neural networks. In Interna-
tional Conference on Learning Representations, 2021.

Y. Cao, Y. Chen, and D. Khosla. Spiking deep con-
volutional neural networks for energy-efficient object
recognition. International Journal of Computer Vi-
sion, 113(1):54–66, 2015.

X. Cheng, Y. Hao, J. Xu, and B. Xu. Lisnn: Improving
spiking neural networks with lateral interactions for
robust object recognition. In IJCAI, pages 1519–1525,
2020.

M. V. DeBole, B. Taba, A. Amir, F. Akopyan, A. An-
dreopoulos, W. P. Risk, J. Kusnitz, C. O. Otero, T. K.
Nayak, R. Appuswamy, et al. Truenorth: Accelerating
from zero to 64 million neurons in 10 years. Computer,
52(5):20–29, 2019.

S. Deng and S. Gu. Optimal conversion of conventional
artificial neural networks to spiking neural networks.
International Conference on Learning Representations,
2021.

S. Deng, Y. Li, S. Zhang, and S. Gu. Temporal efficient
training of spiking neural network via gradient re-
weighting. In International Conference on Learning
Representations, 2021.

P. U. Diehl and M. Cook. Unsupervised learning of
digit recognition using spike-timing-dependent plas-
ticity. Frontiers in computational neuroscience, 9:99,
2015.

P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and
M. Pfeiffer. Fast-classifying, high-accuracy spiking
deep networks through weight and threshold balancing.
In 2015 International Joint Conference on Neural
Networks (IJCNN), pages 1–8. ieee, 2015.

J. Ding, Z. Yu, Y. Tian, and T. Huang. Optimal
ann-snn conversion for fast and accurate inference in
deep spiking neural networks. In International Joint
Conference on Artificial Intelligence, pages 2328–2336,
2021.

C. Duan, J. Ding, S. Chen, Z. Yu, and T. Huang. Tem-
poral effective batch normalization in spiking neural
networks. Advances in Neural Information Processing
Systems, 35:34377–34390, 2022.

W. Fang, Z. Yu, Y. Chen, T. Huang, T. Masquelier,
and Y. Tian. Deep residual learning in spiking neural
networks. Advances in Neural Information Processing
Systems, 34:21056–21069, 2021.

B. Han and K. Roy. Deep spiking neural network:
Energy efficiency through time based coding. In Com-
puter Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part
X, pages 388–404. Springer, 2020.

B. Han, G. Srinivasan, and K. Roy. Rmp-snn: Resid-
ual membrane potential neuron for enabling deeper
high-accuracy and low-latency spiking neural network.
In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 13558–
13567, 2020.

Z. Hao, J. Ding, T. Bu, T. Huang, and Z. Yu. Bridging
the gap between ANNs and SNNs by calibrating offset
spikes. In The Eleventh International Conference
on Learning Representations, 2023. URL https://
openreview.net/forum?id=PFbzoWZyZRX.

A. L. Hodgkin and A. F. Huxley. A quantitative
description of membrane current and its application
to conduction and excitation in nerve. The Journal
of physiology, 117(4):500, 1952.

E. M. Izhikevich. Simple model of spiking neurons.
IEEE Transactions on neural networks, 14(6):1569–
1572, 2003.

H. Kamata, Y. Mukuta, and T. Harada. Fully spiking
variational autoencoder. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages
7059–7067, 2022.

S. Kim, S. Park, B. Na, and S. Yoon. Spiking-yolo:
spiking neural network for energy-efficient object de-
tection. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pages 11270–11277,
2020a.

https://openreview.net/forum?id=PFbzoWZyZRX
https://openreview.net/forum?id=PFbzoWZyZRX

Data Driven Threshold and Potential Initialization for Spiking Neural Networks

S. Kim, S. Park, B. Na, and S. Yoon. Spiking-yolo:
Spiking neural network for energy-efficient object de-
tection. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 34(07):11270–11277, Apr. 2020b.
doi: 10.1609/aaai.v34i07.6787. URL https://ojs.
aaai.org/index.php/AAAI/article/view/6787.

A. Krizhevsky and G. Hinton. Learning
multiple layers of features from tiny images.
https://www.cs.toronto.edu/ kriz/cifar.html, 2009.

Y. Li, S. Deng, X. Dong, R. Gong, and S. Gu. A free
lunch from ann: Towards efficient, accurate spiking
neural networks calibration. In International Confer-
ence on Machine Learning, pages 6316–6325. PMLR,
2021a.

Y. Li, Y. Guo, S. Zhang, S. Deng, Y. Hai, and S. Gu.
Differentiable spike: Rethinking gradient-descent for
training spiking neural networks. Advances in Neu-
ral Information Processing Systems, 34:23426–23439,
2021b.

Y. Li, D. Zhao, and Y. Zeng. Bsnn: Towards faster and
better conversion of artificial neural networks to spik-
ing neural networks with bistable neurons. Frontiers in
Neuroscience, 16, 2022. ISSN 1662-453X. doi: 10.3389/
fnins.2022.991851. URL https://www.frontiersin.
org/articles/10.3389/fnins.2022.991851.

I. Loshchilov and F. Hutter. Sgdr: Stochastic gra-
dient descent with warm restarts. In International
Conference on Learning Representations, 2016.

W. Maass. Networks of spiking neurons: The
third generation of neural network models. Neu-
ral Networks, 10(9):1659–1671, 1997. ISSN 0893-
6080. doi: https://doi.org/10.1016/S0893-6080(97)
00011-7. URL https://www.sciencedirect.com/
science/article/pii/S0893608097000117.

W. S. McCulloch and W. Pitts. A logical calculus of
the ideas immanent in nervous activity. The bulletin
of mathematical biophysics, 5(4):115–133, 1943.

B. Mukhoty, V. Bojkovic, W. de Vazelhes, X. Zhao,
G. De Masi, H. Xiong, and B. Gu. Direct training
of snn using local zeroth order method. In A. Oh,
T. Neumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, editors, Advances in Neural Information
Processing Systems, volume 36, pages 18994–19014.
Curran Associates, Inc., 2023.

E. O. Neftci, H. Mostafa, and F. Zenke. Surrogate
gradient learning in spiking neural networks: Bringing
the power of gradient-based optimization to spiking
neural networks. IEEE Signal Processing Magazine,
36(6):51–63, 2019.

J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu,
G. Wang, Z. Zou, Z. Wu, W. He, et al. Towards
artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Ste-
fanini, D. Sumislawska, and G. Indiveri. A reconfig-
urable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128k synapses. Frontiers
in neuroscience, 9:141, 2015.

N. Rathi and K. Roy. Diet-snn: A low-latency spiking
neural network with direct input encoding and leakage
and threshold optimization. IEEE Transactions on
Neural Networks and Learning Systems, 34(6):3174–
3182, 2023. doi: 10.1109/TNNLS.2021.3111897.

N. Rathi, G. Srinivasan, P. Panda, and K. Roy. En-
abling deep spiking neural networks with hybrid con-
version and spike timing dependent backpropagation.
International Conference on Learning Representations,
2019.

K. Roy, A. Jaiswal, and P. Panda. Towards spike-
based machine intelligence with neuromorphic com-
puting. Nature, 575(7784):607–617, 2019.

B. Rueckauer, I.-A. Lungu, Y. Hu, and M. Pfeif-
fer. Theory and tools for the conversion of
analog to spiking convolutional neural networks.
ArXiv, abs/1612.04052, 2016. URL https://api.
semanticscholar.org/CorpusID:17743384.

B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and
S.-C. Liu. Conversion of continuous-valued deep net-
works to efficient event-driven networks for image
classification. Frontiers in neuroscience, 11:682, 2017.

O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recog-
nition challenge. International journal of computer
vision, 115:211–252, 2015.

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy.
Going deeper in spiking neural networks: VGG and
residual architectures. Frontiers in neuroscience, 13:
95, 2019.

Y. Wang, M. Zhang, Y. Chen, and H. Qu. Signed
neuron with memory: Towards simple, accurate and
high-efficient ann-snn conversion. In International
Joint Conference on Artificial Intelligence, 2022.

Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi.
Spatio-temporal backpropagation for training high-
performance spiking neural networks. Frontiers in
neuroscience, 12:331, 2018.

https://ojs.aaai.org/index.php/AAAI/article/view/6787
https://ojs.aaai.org/index.php/AAAI/article/view/6787
https://www.frontiersin.org/articles/10.3389/fnins.2022.991851
https://www.frontiersin.org/articles/10.3389/fnins.2022.991851
https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://api.semanticscholar.org/CorpusID:17743384
https://api.semanticscholar.org/CorpusID:17743384

Velibor Bojkovi, Srinivas Anumasa,Giulia De Masi, Bin Gu,Huan Xiong

Y. Wu, L. Deng, G. Li, J. Zhu, Y. Xie, and L. Shi.
Direct training for spiking neural networks: Faster,
larger, better. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 1311–1318,
2019.

Y. Yang, W. Zhang, and P. Li. Backpropagated neigh-
borhood aggregation for accurate training of spiking
neural networks. In International Conference on Ma-
chine Learning, pages 11852–11862. PMLR, 2021.

Z. Yang, Y. Wu, G. Wang, Y. Yang, G. Li, L. Deng,
J. Zhu, and L. Shi. Dashnet: A hybrid artificial and
spiking neural network for high-speed object track-
ing. ArXiv, abs/1909.12942, 2019. URL https://
api.semanticscholar.org/CorpusID:203593170.

X. Yao, F. Li, Z. Mo, and J. Cheng. Glif: A uni-
fied gated leaky integrate-and-fire neuron for spiking
neural networks. Advances in Neural Information
Processing Systems, 35:32160–32171, 2022.

F. Zenke and T. P. Vogels. The remarkable robustness
of surrogate gradient learning for instilling complex
function in spiking neural networks. Neural computa-
tion, 33(4):899–925, 2021.

W. Zhang and P. Li. Temporal spike sequence learning
via backpropagation for deep spiking neural networks.
Advances in Neural Information Processing Systems,
33:12022–12033, 2020.

H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li. Go-
ing deeper with directly-trained larger spiking neural
networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 11062–11070,
2021.

L. Zhu, X. Wang, Y. Chang, J. Li, T. Huang,
and Y. Tian. Event-based video reconstruction via
potential-assisted spiking neural network. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 3594–3604, 2022.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

https://api.semanticscholar.org/CorpusID:203593170
https://api.semanticscholar.org/CorpusID:203593170

Data Driven Threshold and Potential Initialization for Spiking Neural Networks

Supplementary

7 PROOFS OF THEORETICAL RESULTS FROM SECTION 4.1.2 AND
FURTHER DISCUSSION

7.1 Proofs

Theorem 7.1. Suppose that λ(l) is a continuous distribution with support [0,M] and let Λ(l) be the corresponding
CDF. Then, there exists x0 ≤ x1 ∈ (0, 1) such that V (l)

th =
(
Λ(l)

)−1
(x1), v(l)[0] =

(
Λ(l)

)−1
(x1)−

(
Λ(l)

)−1
(x0), is

a solution to Equation 10(Main paper). Moreover,

v(l)[0] =
1

2
V

(l)
th and x1 =

1

2
(1 + x0).

Proof. Clearly, both V
(l)
th and v(l)[0] have to take values in [0,M], where M is the maximum of the support of

λ(l). Since (Λ(l))−1 is continuous and surjectively maps onto [0,M], the first part of the theorem follows. As for
the next part, we can express the conversion error as (see Figure 3)

C(l)
m =

∫ x0

0

(
(Λ(l))−1(x)

)m

dx (11)

+

∫ x1

x0

(
(Λ(l))−1(x1)− (Λ(l))−1(x)

)m

dx (12)

+

∫ 1

x1

(
(Λ(l))−1(x)− (Λ(l))−1(x1)

)m

dx. (13)

Let us fix x1 and look for the x0 which minimizes the previous expression, which is equivalent to minimizing the
sum of the expressions (11) and (12). Taking the derivative of this sum with respect to x0 (using Leibniz integral
rule), we obtain that it is equal to(

(Λ(l))−1(x0)
)m

−
(
(Λ(l))−1(x1)− (Λ(l))−1(x0)

)m

.

This last expression is 0 precisely when (Λ(l))−1(x0) =
1
2 (Λ

(l))−1(x1).

Similarly, let us fix x0 and look for x1 which minimizes the error. This in turn is equivalent to minimizing the
sum of (12) and (13). We can rewrite the sum as∫ (Λ(l))−1(x1)

(Λ(l))−1(x0)

(
Λ(l)(x)− x0

)m

dx+

∫ (Λ(l))−1(1)

(Λ(l))−1(x1)

(
(Λ(l))−1(1)− Λ(l)(x)

)m

dx.

Again taking the derivative with respect to x1 and equating it with 0 we obtain that x1 = 1
2 (1 + x0).

Theorem 7.2. Let
(
a(n)

)N
n=1

be the non-decreasing sequence of all the activation values, and let V (l)
th and v(l)[0]

be a solution to optimization problem Equation 10(Main paper). Then, there exist indices n0 and n1 such that
V

(l)
th = a(n1) and v(l)[0] = a(n1)− a(n0).

Moreover, n0 is such that |a(n0)− 1
2a(n1)| is minimal, while n1 = n0 +

⌊
1
2 (N − n0)

⌋
.

Velibor Bojkovi, Srinivas Anumasa,Giulia De Masi, Bin Gu,Huan Xiong

Figure 3: Plot of the inverse CDF function
(
Λ(l)

)−1
(x).

Proof. Suppose that v(l)[0] and V
(l)
th is the solution of the problem Equation 10(Main paper), and put v :=

V
(l)
th − v(l)[0]. Then,

C(l)
m =

∑
a(i)<v

(
a(i)

)m
+

∑
a(i)≥v

a(i)≤V
(l)
th

(
V

(l)
th − a(i)

)m

+
∑

a(i)≥V
(l)
th

(
a(i)− V

(l)
th

)m

. (14)

Since the points a(i) take values in a discrete set, one can see that we can take v′ := max{a(i) | a(i) < v} which
still minimizes the problem Equation 10(Main paper).

Now, if
#{a(i) | ai ≥ V

(l)
t h} > #{a(i) | a(i) ≥ v, a(i) ≤ V

(l)
th },

then moving V
(l)
th to min{a(i) | a(i) ≥ V

(l)
th } will further reduce the error, while if

#{a(i) | ai ≥ V
(l)
t h} ≤ #{a(i) | a(i) ≥ v, a(i) ≤ V

(l)
th },

then moving V
(l)
th to max{a(i) | a(i) ≤ V

(l)
th } will reduce the error. This finishes the proofs of the statement

related to V
(l)
th . Finally, one can notice that the taking v such that | 12V

(l)
th − v| is minimal, makes the sum of first

two terms in (14), hence the overall error.

Theorems 4.3 and 4.4 in main paper are proved in the same fashion as the corresponding statements of theorems
7.1 and 7.2, respectively.

7.2 Further discussions

In this section, we provide some further insight into our results, as well as a discussion concerning results in
higher latency. We provide some questions that the research community may find interesting in order to further
push the methods of this paper.

We consider the situation from two aspects, theoretical and practical. Theoretical one deals with insights about
general distributions (continuous or not) and the minimization problem that we stated in the paper, while the
practical aspect is concerned with efficient ways to solve the minimization problems on discrete distributions.

Theoretical considerations: To say a bit more, let λ be our distribution, Λ the corresponding CDF and let
Θ = Λ−1 (This is the function we used in the proofs of our main results). So, the function Θ is defined on the
segment [0, 1] and we assume that Θ(1) = M < ∞, as this is the case of interest. Now let T be the latency and
Vth the threshold used for that particular latency. Note that the optimal initial membrane potential is 1

2Vth as
follows from Theorem 4.3 in our paper. Before writing the precise conversion error formula, we refer to Figure 1
(b) (The indices in this figure correspond to the segment [0,1], the vertical axes contains the image of function Θ.

Data Driven Threshold and Potential Initialization for Spiking Neural Networks

The conversion error will be the area of green and blue curved triangles). Then, let us denote by, for i = 0, . . . , T
the set Ai = {ξ | i · Vth ≤ Θ(ξ) ≤ i · Vth + 1

2Vth}. The region Ai contains those values of ξ for which Θ(ξ) is
approximated with i · Vth (green triangles and their x-axis support in Figure 1. B in the article). Similarly, let us
denote for i = 1, . . . , T , by Bi := {ξ | i · Vth − 1

2Vth ≤ Θ(ξ) ≤ i · Vth} and note that Bi contains precisely those
values of ξ for which Θ(ξ) is approximated by i · Vth (blue triangles and their x-axis support in Figure 1. B in the
article). Note that regions Ai and Bi partition the segment [0,1] and may overlap only at endpoints. With this
notation, the conversion error can be written as

Cm(Vth, T) =

T∑
i=0

∫
Ai

(Θ(ξ)− i · Vth)
m
dξ +

T∑
i=1

∫
Bi

(i · Vth −Θ(ξ))
m
dξ. (15)

The peculiarity of the latency T = 1 lies in the fact that only three regions appear A0, B1 and A1, which means
the whole situation can be described with two points in the segment [0, 1] (these two points are basically the
endpoints of the segment B1. Their images under the Θ map are precisely v[0] and Vth). When considering the
solution of the minimization problem - find Vth such that Cm(Vth, T) is minimal-, because of the simplicity of
the situation, one is able to determine further relations between the two points of interest (in our paper these
two points are x0 (and Θ(x0) =

1
2Vth) and x1 (and Θ(x1) = Vth). Besides the relation Θ(x0) =

1
2Θ(x1) we are

able to note also the relation x1 = 1
2 (1 + x0). In particular, this is sufficient to have an efficient implementation

algorithm in the case of discrete distributions.

In this situation, we may still pose the following question

1. Do the two relations provided in Theorem 4.1 determine the solution of the minimization problem? We
expect the answer to be no. In fact, it is not clear to us whether the solution of the minimization problem is
unique or not.

When considering higher latency T ≥ 2, one may notice the significant complication of the situation in that there
are 2T + 1 regions to consider which are determined with 2T points. We are not able to provide any insight in
this general situation beyond our theorem 4.3. More precisely, when considering the solution of the minimization
problem, on the vertical axis we have the relation v[0] = 1

2Vth. But, we are not able to determine any relation
that would hold among the points on the x-axis (if we denote these points by x0, x1, x2, . . . , note that we have
v[0] = Θ(x0) =

1
2Vth = 1

2Θ(x1), 3
2Vth = Θ(x2) and so on...).

2. In this general situation, and for Vth that is the solution of the minimization problem, do we have any relation
among the points x0, x1, . . . ? When λ is a uniform distribution, that is when Λ and Θ are linear functions
on their domain, this problem can be tackled with standard Lagrange multipliers techniques (at least for
m = 1 as all the integrals involved can be explicitly solved) and as you may suspect, we recover the solution
which is the most intuitive one.

In a little shift of perspective, one could somewhat simplify the situation with assuming that v[0] = 0 and assume
that we are approximating the function Θ from “bellow” (meaning each value Θ(ξ) is approximated with some
i · Vth < Θ(ξ)). Note that the integrands in the above equation all have the same sign so the situation somewhat
simplifies.

3. The same as question 2. Again as before, in the situation of uniform distributions we can answer this question
rather straightforwardly.

Finally, the above questions all fall under the umbrella of a very simple, but abstract one:

4. How to approximate arbitrary distributions with discrete ones having fixed support, so that the error of the
approximation (however we define it) is minimal?

Practical considerations: When considering situation of discrete distributions coming from activation values
of ANN models, ideally one would like to have an efficient algorithm that receives as input the list of activation
values, and outputs the optimal threshold for a particular latency T . This is in particular important as the sets

Velibor Bojkovi, Srinivas Anumasa,Giulia De Masi, Bin Gu,Huan Xiong

(a) (b)

Figure 4: Training and test accuracy plots of the VGG16 SNN models with T=1 on CIFAR10 (no augmentation)
dataset, initialized with VGG16 ANN weights. Figure 4(a) shows the performance of SNN model over epochs
with threshold values initialized with our approach. Figure 4(b) shows the performance of SNN model over epochs
with threshold values initialized using the max activation value computed at the corresponding ReLU layer.

of activation values can be of the size anywhere to 108 or more. When we are in situation T = 1, the relation
among the points x0 and x1 (when translated to indices of the list) allow us to have such an algorithm which
scales linearly with the size of the input list. Because of the the lack of such relations in higher latency, we were
not able to find a corresponding efficient algorithm. The algorithm for higher latency implemented in this article
scales quadratically with the number of activation values, hence it is impractical when they are more than 106 in
number. Hence the question:

5. Find an efficient algorithm that solves the minimization problem in higher latency.

8 ADDITIONAL DISCUSSION ON EXPERIMENTS

8.1 Experimental Setup

We trained all the models for 300 epochs, the initial learning rate for CIFAR10 dataset is 0.1 and for CIFAR100
dataset is 0.02. The stochastic gradient descent(SGD) [Bottou, 2012] optimizer is used to learn the weights of the
model; the weight decay is set to 5e-4 and the momentum parameter is set to 0.1. Similar to [Li et al., 2021a, Bu
et al., 2021, Hao et al., 2023], we adopt data-augmentation techniques for CIFAR10 and CIFAR100 when training
for VGG16, ResNet18 and ResNet19 architectures to further improve the performance of the models. Over epochs,
the learning rate is adjusted using the cosine decay scheduler [Loshchilov and Hutter, 2016]. After the models are
trained, we extract the activation values at each ReLU layer. We use 3000 data points for CIFAR10, CIFAR100
and 500 datapoints for ImageNet from the training data for computing the membrane threshold and potential
initialization values for each layer. NVIDIA’s A100 is used to train all the models.

For T = 1 latency, we used the full activation values array obtained from the samples passed, while for T > 1 we
reduced the number of elements by taking every 10th or every 100th element of the array, so that in the end we
end up with ∼ 106 elements in the array. SNN model is then obtained by copying the weights and biases of the
ANN model, and replacing the ReLU layer with a Spike layer. The thresholds and membrane initialization are
set to the values which are computed using the activation values at different layers, for T = 1 we used the first
algorithm from the main paper, while for other latencies we used the second algorithm.

Data Driven Threshold and Potential Initialization for Spiking Neural Networks

(a) (b)

(c) (d)

Figure 5: The feature distributions and plots of sorted feature values extracted at second ReLU layer of different
architectures using CIFAR10 dataset: 5(a) and 5(c) ResNet18,5(b) and 5(d) VGG16 architectures. The plots
suggest that even discarding the outlier feature values, the remaining features are far from being uniformly
distributed.

8.2 Data driven initialization in spiking neural networks and direct training

The SNN models initialized with our method, need higher latency in order to be comparable with the corresponding
ANN models, if the ANN models are . This is due to the fact that the float point outputs of the ANN activations
cannot be matched with few spikes emanated in lower latency. Nonetheless, even in lower latency they are able
to capture substantial information about the ANN model, which does not necessarily show in the immediate
performance after the conversion, but rather in the potential obtained after training for a few epochs, which we
explain next.

To start with, we compared training for 50 epochs of two SNN models, both having latency T = 1. Both of the
models have been obtained by ANN-to-SNN conversion, from a pretrained VGG16 ANN model on CIFAR10
dataset. However, one model has been initialized with our method, while for the other we use the maximum
activation method to set up the threshold and initial membrane potential. With our approach just after conversion
the test accuracy was 40%, and after training (or better say fine-tuning) just for few epochs the accuracy reached
85%. On the other side, the alternative model even after 50 epochs did not reach the accuracy of our model at 10
epochs. Figure 4 contains the details of this experiment.

In conclusion, this experiment demonstrates the effectiveness of our proposed approach for initializing the threshold
and initial membrane potential values with optimal values. To further use this property of our method in lower
latency, we devised a simple training procedure - calibration - to use our method of conversion in combination
with direct training of SNNs.

8.2.1 SNN-Calibration

In general, we start by training the converted SNN model with T = 1 for 50 epochs using surrogate method 2

(with a learning rate of 5e−3). We obtain the SNN models with higher latency (T = 2, 3, 4) after training for
additional 20 epochs. The weights of the SNN model with latency T are initialized with the weights of already
trained SNN model with T = 1 latency.

2 ds(l)[t]

dv(l)[t]
= sign(|v(l)[t]− V

(l)
th | < a)

Velibor Bojkovi, Srinivas Anumasa,Giulia De Masi, Bin Gu,Huan Xiong

8.2.2 Results for CIFAR10, CIFAR100 and ImageNet datasets

Table 3 shows the performance of the proposed model compared with state-of-the-art ANN-to-SNN conversion
based and directly trained models for CIFAR100 and ImageNet dataset. For the baselines, we report the accuracy
achieved for the reported latency closest to ours. For ultra-low latency values (T ≤ 4), for all the architectures
our proposed model exhibits exceptional performance in terms of SNN accuracy. For the complex dataset such as
ImageNet with 1000 classes, our approach achieved a test accuracy of 69.28 with latency as low as T = 2 for
VGG16 architecture, the accuracy achieved by our model is higher than all the baselines. (Although the baseline
QCFSC [Hao et al., 2023] reported their test accuracies for T = 1, they require few additional post-processing
steps(ρ) for each input at each layer, resulting in latency needed to obtain the predictions which is approximately
ρL, where L is the number of activation layers in the model. This is the latency that we report in the tables,
using their reported values for ρ).

Table 3: Comparison with the state-of-the-art direct training methods on different datasets. For the baselines, we
report the accuracy achieved for the reported latency closest to ours or the best reported.

Dataset Methods Model Architecture T Accuracy

ANN2SNN RMP [Han et al., 2020] ResNet20 2048 67.82
ANN2SNN Opt [Deng and Gu, 2021] ResNet20 512 72.34
ANN2SNN QCFS [Bu et al., 2021] ResNet18 4 75.64

2 70.79
ANN2SNN QCFS [Bu et al., 2021] VGG16 4 69.62

2 63.79
CIFAR100 Hybrid training HC[Rathi et al., 2019] VGG-11 125 67.87

Direct-Training Dspike [Li et al., 2021b] ResNet-18 6 74.24
4 73.35
2 71.68

Direct-Training Diet-SNN[Rathi and Roy, 2023] ResNet-20 5 64.07
Direct-Training STBP[Zheng et al., 2021] ResNet-19 6 71.12

4 70.86
2 69.41

Direct-Training TET[Deng et al., 2021] ResNet-19 6 74.72
4 74.47
2 72.87

Direct-Training TEBN[Duan et al., 2022] ResNet-19 6 78.76
4 78.71
2 78.07

Hybrid training Ours ResNet-19 4 79.58
2 77.83
1 74.63

Hybrid-Training Ours ResNet18 4 76.32
2 74.37
1 72.35

Hybrid-Training Ours VGG16 4 72.58
2 71.28
1 68.43

ImageNet Hybrid-Training HC[Rathi et al., 2019] ResNet-34 250 61.48
ANN2SNN QCFS [Bu et al., 2021] VGG16 32 68.47
ANN2SNN QCFSC [Hao et al., 2023] VGG16 ≈ 8 63.84

Direct-Training STBP-tdBN[Zheng et al., 2021] Spiking-ResNet-34 6 63.72
Direct-Training SEW[Fang et al., 2021] SEW-ResNet 4 67.04
Direct-Training TET[Deng et al., 2021] SEW-ResNet34 4 68.00
Direct-Training TEBN[Duan et al., 2022] SEW-ResNet34 4 68.28
Direct-Training Dspike[Li et al., 2021b] VGG-16 5 71.24
Direct-Training GLIF[Yao et al., 2022] ResNet-34 4 67.52
Hybrid-Training Ours VGG16 2 69.28
Hybrid-Training Ours VGG16 3 70.15

Table 4 provides the performance of the proposed approach with different baselines, both ANN-2-SNN approaches

Data Driven Threshold and Potential Initialization for Spiking Neural Networks

and direct training approaches. When compared to ANN-2-SNN models our approach has a better test accuracy
both for VGG16 and ResNet18. When compared with the direct training models our approach with ResNet19,
CIFARNet and AlexNet architectures shows a better performance in terms of SNN test accuracy at ultra low
latency values.

Table 5 provides train accuracies of different datasets trained on different architectures. For ImageNet on VGG16
we downloaded already trained model3. If we compare the ANN accuracies from 5 and SNN test accuracies in
Tables 3 and 4, the loss in test accuracy after the conversion is only around 2− 3%. With this simple and effective
approach a trained ANN model can be converted to SNN model following few calibration steps. It saves lot of
time in training an SNN model from scratch when there is need to train a model for a huge dataset such as
ImageNet.

Table 4: Comparison with the state-of-the-art direct training methods on CIFAR10 dataset.
Dataset Methods Model Architecture T Accuracy

ANN2SNN RMP[Han et al., 2020] VGG16 32 60.30
ANN2SNN Opt [Deng and Gu, 2021] VGG16 32 76.24
ANN2SNN QCFS [Bu et al., 2021] ResNet18 4 93.83

2 91.75
ANN2SNN TSC[Han and Roy, 2020] VGG16 64 92.79
ANN2SNN SNNC-AP[Li et al., 2021a] VGG16 32 93.71
ANN2SNN QCFS [Bu et al., 2021] VGG16 4 93.96

2 91.18
CIFAR10 Hybrid Traning HC[Rathi et al., 2019] ResNet-20 250 92.22

Direct-Training Diet-SNN[Rathi and Roy, 2023] ResNet-20 10 92.54
Direct-Training Diet-SNN[Rathi and Roy, 2023] CIFARNet 5 91.54
Direct-Training STBP[Wu et al., 2018] CIFARNet 12 89.83
Direct-Training STBP NeuNorm[Wu et al., 2019] CIFARNet 12 90.53
Direct-Training BAAT[Yang et al., 2021] AlexNet 5 91.76
Direct-Training TSSL-BP[Zhang and Li, 2020] CIFARNet 5 91.41
Direct-Training STBP[Zheng et al., 2021] ResNet-19 6 93.16

4 92.92
2 92.34

Direct-Training TET[Deng et al., 2021] ResNet-19 6 94.50
4 94.44
2 94.16

Direct-Training TEBN[Duan et al., 2022] ResNet-19 6 95.60
4 95.58
2 95.45

Hybrid-Training Ours ResNet-19 4 96.04
2 95.55
1 94.86

Hybrid-Training Ours CIFARNet 2 92.50
Hybrid-Training Ours AlexNet 2 92.59
Hybrid-Training Ours ResNet18 4 94.19

2 93.32
1 93.00

Hybrid-Training Ours VGG16 4 93.96
2 92.97
1 92.45

8.3 Algorithms

In the main article, we presented two algorithms that are used in the experiments. Here, we describe the procedure
behind the second second algorithm, which we used for finding optimal threshold initial membrane potential in
latency T > 2.

Namely, the input of the algorithm is a sorted array a of feature values (ReLU activation values of an ANN
3https://pytorch.org/hub/pytorch_vision_vgg/

Velibor Bojkovi, Srinivas Anumasa,Giulia De Masi, Bin Gu,Huan Xiong

model at a particular layer without zeros) of length N , and desired latency T . We start by going through the
indices (Nstart, . . . , Nend), where Nstart and Nend are chosen indices from 1 to N (in the experiments, we used
Nstart = N//2 and Nend = N − 5). Then, for each i = Nstart, . . . , Nend:

1. We find the the T indices in the array that correspond to the values j · a[i]/T , j = 1, . . . , T . Since the array
is discrete, we are looking for the closest values. This step approximately takes logN computational steps.

2. We calculate the conversion error E(i) which is the error obtained if we were to use a[i]/T and 1
2a[i]/T for

the threshold and initial membrane potential and when passing the elements of the array through the spiking
neuron (the average firing rate multiplied with the threshold is then the approximation for the value. See the
article for the details). This error is rather straightforward to calculate, and it requires one passing through
the array, so approximately N computational steps.

3. Finally, we record that index i for which the error E(i) was minimal, and use the corresponding values for
initial membrane potential and threshold during the inference.

Table 5: ANN accuracies of CIFAR10,CIFAR100 and ImageNet datasets on different Architectures
Dataset Architecture ANN-Test-Accuracy

CIFAR10 VGG16 95.89
ResNet18 96.80
CIFARNet 93.99
ResNet19 97.25
AlexNet 93.09

CIFAR100 VGG16 75.49
ResNet18 79.87
ResNet19 81.28

ImageNet VGG16 73.27

9 ENERGY ESTIMATION

To estimate the energy efficiency of our models, we used formula from [Rathi and Roy, 2023], Section 5 (at each
layer one records the averege spikes per neuron during the latency when a sample image is presented. This
number is then multiplied by the number of operations in that particular layer, and all the numbers are summed
up over layers. The result estimates the number of synaptic operations (SOP) of the network when classifying the
image). We use the energy values for FLOP and SOP reported in [Qiao et al., 2015]

For T = 1 the average energy consumption of our model VGG16, with CIFAR100 is 0.0064 mJ. For the ANN
model following the same architecture, the energy consumption is 7.85 mJ. When comparing with baselines,
for the QCFS model, for the latency T = 2 (the earliest latency for which they report the energy), the energy
consumption is 0.007 mJ. However, we note that their accuracy for this latency is 63.79 while ours (for T = 1) is
68.43. The energy consumption for higher latency is then approximately proportional to the latency itself.

