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Abstract

We study the problem of meta-learning several
contextual stochastic bandits tasks by leverag-
ing their concentration around a low dimensional
affine subspace, which we learn via online prin-
cipal component analysis to reduce the expected
regret over the encountered bandits. We propose
and theoretically analyze two strategies that solve
the problem: One based on the principle of opti-
mism in the face of uncertainty and the other via
Thompson sampling. Our framework is generic
and includes previously proposed approaches as
special cases. Besides, the empirical results show
that our methods significantly reduce the regret
on several bandit tasks.

1 Introduction

In several real-world applications, such as website design
and healthcare, the system recommends an item to a user
upon observing some side information depending on the
user and the corresponding item. Upon receiving the rec-
ommendation, the user sends feedback to the system that
captures his interest in the recommendation (Glowacka
et al., 2019; Bouneffouf et al., 2020; Atan et al., 2023).
One can interpret the feedback as a reward that charac-
terizes the suitability of the selected recommendation or
action with the final objective of maximizing the cumu-
lative payoff over time. At the same time, such a selec-
tion might be suboptimal due to the incomplete knowledge
of the environment. This exploration-exploitation trade-
off, along with the side information, is formalized by the
contextual multi-armed bandit (CMAB) problem (Langford
and Zhang, 2007; Li et al., 2010; Chu et al., 2011; Abbasi-
Yadkori et al., 2011; Nourani-Koliji et al., 2022), a no-
table extension of the multi-armed bandit (MAB) problem
(Thompson, 1933; Robbins, 1952).
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In the applications mentioned above, the tasks often relate
to each other despite being different. For instance, sub-
groups of patients have comparable features. As another
example, holidays or discount periods promote similar in-
terests in the products of an e-commerce website. That ob-
servation motivates us to look beyond a single task to un-
cover a relation between different ones to accelerate learn-
ing on newly encountered tasks. That problem, referred
to as meta-learning or learning-to-learn (LTL), has mainly
appeared in the offline learning literature so far (Hutter
et al., 2019). Nevertheless, an emergent body of literature
combines LTL and MAB to accelerate learning and reduce
the average regret per task (Cella et al., 2020; Cella and
Pontil, 2021; Bilaj et al., 2023). In the linear contextual
setting, an assumption about the preference vectors cap-
tures the relation between the tasks.

In this work, we assume that the feature vectors stem from
a distribution that concentrates around a low dimensional
subspace, i.e., its variance is explained by a limited num-
ber of principal components. We propose learning this
structure using online principal component analysis (PCA).
We then exploit that knowledge to develop two decision-
making policies. The first policy relies on the principle
of optimism in the face of uncertainty for linear bandits
(OFUL) (Chu et al., 2011; Abbasi-Yadkori et al., 2011),
and the second is a Thompson sampling policy (Russo
et al., 2018; Agrawal and Goyal, 2013). Analytically, we
establish per-task regret upper bounds for both strategies
that theoretically prove the benefit of learning such a struc-
ture. Moreover, our empirical evaluations of our methods
using simulated and real-world data sets confirm their ben-
efits.

Our paper is organized as follows. We review meta-
learning and related themes for bandit problems in Sec-
tion 2. Then we formulate our problem in Section 3. We
describe the subspace learning procedure in Section 4 to
use in our proposed algorithms in Sections 5 and 6. Finally,
we empirically assess our algorithms in Section 8.

2 Related Work

Learning to learn was first developed for offline learning
(Thrun, 1998; Baxter, 2000; Hutter et al., 2019) as a sub-
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field of transfer learning. In this paradigm, one seeks to
learn a structure shared by many tasks to generalize to new
ones. That structure can be encoded in several ways such
as a prior over the task distribution (Amit and Meir, 2018;
Rothfuss et al., 2021), a kernel (Aiolli, 2012), a common
mean around which tasks concentrate (Denevi et al., 2018),
or an approximate low dimensional manifold (Jiang et al.,
2022), to name a few.

Recently, meta-learning received attention in the online
setting (Finn et al., 2019), more precisely, in the case of
bandit feedback. The main idea is that the learner in-
teracts sequentially with bandit problems, so the meta-
learned shared structure accelerates exploration for upcom-
ing tasks. In this setting, the objective is to improve the
regret guarantees compared to those achievable by consid-
ering each task separately. The notion of regret can capture
such guarantees; nevertheless, it has several definitions de-
pending on the line of work. We distinguish mainly two
regret types in a multi-task scenario: transfer regret and
meta regret. The former depends on the number of learned
tasks, whereas the latter takes an expectation on a possibly
infinite number of tasks.

Concerning transfer regret, the goal is to prove sub-linear
regret in the number of tasks. If the learner considers each
task independently, the total regret over tasks is linear in the
number of tasks. Within a task, the expected transfer regret
is linear in the number of rounds. References Cella and
Pontil (2021) and Cella et al. (2022a) prove that if pref-
erence vectors have a low-rank structure, then learning it
improves performance.

In the setting of Bayesian bandits, instead of assuming that
the agent knows the true prior over tasks, a recent line
of work proposes to learn that distribution. For example,
Bastani et al. (2019) studies the dynamic pricing problem
and proposes a Thompson sampling approach. Reference
Kveton et al. (2021) generalizes the scope of the stochastic
MAB problem by developing a meta-Thompson Sampling
(meta-TS) algorithm. Basu et al. (2021) improves the guar-
antees of Kveton et al. (2021) via a modification of meta-
TS. It also generalizes the core idea to other bandit settings,
such as linear and combinatorial bandits. While Basu et al.
(2021) and Kveton et al. (2021) study learning the mean
of the tasks with a known covariance matrix, Peleg et al.
(2022) relaxes that assumption. It proposes a general mul-
tivariate Gaussian prior learning framework that applies to
several prior-update-based bandit algorithms. In the non-
linear contextual bandit case, Kassraie et al. (2022); Schur
et al. (2022) investigate learning a shared kernel. Concern-
ing the second type of guarantees, Cella et al. (2020) proves
that the regret expectation over a potentially infinite num-
ber of tasks shrinks to O provided that the ridge regulariza-
tion parameter is inversely proportional to the tasks’ vari-
ance, and that said variance approaches 0.

Another line of work (Boutilier et al., 2020; Kveton et al.,
2020; Yang and Toni, 2020) takes inspiration from the pol-
icy gradient methods (Williams, 1992) and aims to learn
hyperparameters of policies to maximize the expected cu-
mulative reward. Besides, meta-learning is also applica-
ble to solve problems in other settings concerning the re-
ward generating mechanism, such as the non-stationary
case (Azizi et al., 2022), and more generally the adversarial
case (Balcan et al., 2022).

Multi-task learning is a field closely related to meta-
learning. The main difference between the two is the fol-
lowing: The former is about simultaneously learning over
a finite family of bandit tasks without being concerned
with generalization over future ones. That method is ap-
plied to solve the unstructured stochastic bandit case (Azar
et al., 2013), where although the interaction with tasks is
sequential, they are finite. Therefore, the agent might en-
counter the same bandit problem more than once and can
leverage the previous experience. Besides, In the case of
contextual bandits, a low dimensional structure (Cella and
Pontil, 2021; Cella et al., 2022b; Yang et al., 2020a) or
prior knowledge of the relations between tasks (Yang et al.,
2020b) provably reduces the regret

In this work, we borrow the concept of low dimensional
structure from multi-task learning and leverage it with the
concentration of tasks around some space region to im-
prove the regret bound over a family of contextual linear
bandits tasks. Indeed, assumptions such as high task con-
centration around a mean or strictly belonging to a low-
dimensional subspace are restrictive. Thus, we aim at re-
laxing them. Finally, our approach is interpretable as learn-
ing an approximation of the covariance matrix of the tasks
where the total variance is dominated by the contributions
of a few principal components that span the subspace so it
tightly relates to Peleg et al. (2022); Nevertheless, one of
our proposed algorithms does not rely on the prior update.

3 Problem Formulation

We consider an agent (learner, interchangeably) that se-
quentially interacts with several contextual bandit tasks.
While learning one task over n rounds, at each round k,
the learner selects an arm aj from a dynamic set of arms
Ay, with associated context vector x,, € R? satisfying
|%a, || < 1. Then it receives a reward rj, = x, 6" + €,
where 8 € R? is the true task parameter to estimate. For
different tasks, 8 is independently drawn from a proba-
bility distribution p over R? (i.i.d.) with mean u. Be-
sides, they are bounded, formally, ||0*| < V for some
V> 0.! Moreover, ¢, is the zero-mean 1-subgaussian
noise such that {e;}}_, are independent and identically
distributed (i.i.d).

'Throughout the paper, ||-|| denotes the Euclidean norm.
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Our main assumption is that the distribution p has low vari-
ance along certain directions in space which ought to be
learnt. Assumption 1 states this requirement formally. Be-
sides, an illustration of a sampling from such a task dis-
tribution in 3 dimensions appears in Figure 1. Finally, we
denote the covariance of p as ¥ with ordered eigenvalues
012204

Assumption 1. There exists an orthogonal projection ma-
trix P € R with rank p such that:

Var, i= Eg-y [|(1-P) (0" = )]
< Boeny [P (6" — )|’]

< Vatuas = Bo-ny [[6° = i)

V%g,<:Egmw[HPOﬂF}.

Figure 1: Sample of task parameters (blue points) from a distri-
bution with low variance along one dimension.

Our goal is to learn P and p as well as bound the expected
transfer regret R(n) adapted from Cella et al. (2020) de-
fined as:

n T .
R(n) =Eg«n, |E Z (Xar —Xa,) 6 ]] , (D
k=1
where a} = argmax,c 4, x, 0" is the optimal arm at

round k. We propose two different approaches to exploit
the knowledge of P. First we present a variation of the
standard LinUCB algorithm (Abbasi-Yadkori et al., 2011)
by adjusting the regularization term in the regularized least
squares optimization problem. Our second approach is
a variation of the linear Thompson Sampling algorithm
(Agrawal and Goyal, 2013), where we adjust the covari-
ance term of the normal distribution from which a task pa-
rameter is sampled from after every task according to the
learned projection.

4 Subspace Learning

We use an online PCA version, namely, Candid
Covariance-Free Incremental Principal Component Anal-
ysis (CCIPCA) Cardot and Degras (2015), to learn the un-
derlying subspace structure from estimated task parame-
ters. The core idea is to find an approximation of a set

of orthonormal vectors that represent the principal compo-
nents of a vertically concatenated data set @ = [(6(i)) —

0) icq1,.. 4y, with 0 = %Z;Zl 0(i). Vector 8(i) denotes
the 7th task, which was estimated after a total of at least n
rounds. Upon finishing a task after n rounds, the agent up-
dates the learned projection matrix. Nevertheless, applying
PCA is costly in the long run, whereas an online estimation
mitigates the costs while offering sufficient estimations on
the learned projection. Starting with a set of orthonormal
eigenvectors {uy,...,us} and their corresponding eigen-
values {071, ..., 04} based on the covariance matrix %@TG,
we define v; := o;u; for j € {1,...,d} as the set of scaled
principal components. Here we assume 8 = 0, for the gen-
eral case, the task parameters have to be centralized. Each
additional task parameter 0(7) adjusts the estimation of v ;
i.e. after every round, every principal component v; will
be updated as

) 1 T Vi
Viigl = ——Vii+ ——Z;11%; 1 —>— 2
e e 7
with z; determined to ensure orthogonality of the eigenvec-
tor estimations. Formally, to compute v; ;1 we have:

j—1

zip1 =0(i+1)— > (BT(Z' + 1)uj’,i) uji .

=1

CCIPCA is especially beneficial as it is hyperparameter-
free. Besides, it estimates the eigenvalues and the corre-
sponding eigenvectors of all principal components. The
eigenvalue estimations are essential when choosing the
rank p of the projection, which is generally unknown. The
vectors u; with the p highest values o; are selected as prin-
cipal components. We define their horizontal concatenation
as U = [ujleq1,..p) € RéxP,

Remark 1. The choice of p depends on the respective
eigenvalues, a common choice would be to maximize the
eigengap, thus p = arg max,, oy — 0p/41.

The projection matrix P with rank p as well as the orthog-
onal projection P+ with rank ¢ = d — p can then be con-
structed using of the principal components as

P=UU', Pt=1I-P 3)
We will use the learned projections to exploit the low di-

mensional subspace structure in both LinUCB and Thomp-
son sampling setting.

5 Projection Meta learning with LinUCB

In this section, we present our contextual bandit algorithms
based on LinUCB.
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5.1 Basics of LinUCB

In classic LinUCB, at each round k, the agent uses
the collection of previously selected actions Dj =
[Xl]ie{o,..i,k—l} and the corresponding rewards y, =
[7iic{o,... k—1} to estimate the task parameter 6}, by solv-
ing the following regularized least squares optimization
problem:

0y :argminHDka—}’kHz+)\H0H2» “
6cRd

with A > 0 being the regularization parameter. The solu-
tion of (4) is the ridge estimator. Given that, the learner
selects an action that maximizes the UCB index

UCB(a) :XIO}C—F’YICHXQHA;172 5)

with Ay == \I + D/ Dy, 0, = A 'D]y; and v, > 0
as an upper bound on the confidence set radius proposed
in Abbasi-Yadkori et al. (2011). The additional term scal-
ing is essential for exploration as ||x|| A" s maximized for
context vectors that have the least correlation with already
explored arms.

5.2 LinUCB with Projection Bias

In our first proposal, we enhance the LinUCB by including
the knowledge of the projection matrix P. The agent learns
P by an online PCA algorithm using the parameters of ¢ al-
ready learned tasks. To enforce the knowledge of the affine
subspace during learning, we formulate the following opti-
mization problem for a given task, where we define ék as
the minimizer over @ € R in the following objective:

IDk6 = yill* + A [ P46 - 9>H2 + |[Po| . ®

with P~ := T — P, \; > 0 and )\ > 0. Besides,
_ 1
0= —
timators of the t previous tasks. We justify the explicit

choice of the regularization parameters in the analysis.
Problem (6) has a closed form solution given by

Zle 0(7) is the mean of the ridge regression es-

0r = (D Dy + MPL + XP) L (D, + Mw), (7)

with w := P16. The second regularization term in eq. (6)
scaling with A5 is necessary so that our closed form solu-
tion (7) is well defined i.e., it enables us to determine the
inverse of

By = D/ Dy + M Pt + Pt (®)

The case P = I, which implies that all tasks are highly
concentrated around the vector w = @, would correspond
to the setting of Cella et al. (2020).

*Throughout the paper, |||, denotes the weighted norm:

x|l = VxT Ax.

Action selection is based on the principle of optimism in
the face of uncertainty (OFUL), we propose an alternative
UCB index by estimating the difference between mean re-
ward r and estimated reward 7:

|7 —E(rlx)| =[x (6 — 6")]

< |6, — 6" x[g-1 < vllxlg-1,
B k k
. :

with v, > Hék -0 We provide an upper bound

k
on the confidence set of the current estimation 6, in Sec-
tion 5.3. The UCB function is then given by

UCB(a) = x, 6, + Vel Xallg1- )

5.3 Analysis

We start by providing a confidence set bound on the cur-
rent estimation of our task parameter. We make use of
an adapted concentration inequality provided by Abbasi-
Yadkori et al. (2011) in the following lemma.

Lemma 1 (Self-normalized bound for vector-valued mar-
tingales). Let T be a stopping time with respect to a fil-
tration {F,}22, and define n;, = D] €, with € € R” as
subgaussian noise vector. Then, for every § € (0,1), with
probability at least 1 — § we have

2 det(Bx)
17ellpr < log(w :

To emphasize the dimension of the subspace and the resid-
ual, in the lemma below, we bound the ratio of determinants
in Lemma 1.

Lemma 2. Let A1, Ao > 0 and B be defined as in eq. (8).
Then

det(Bk)
det (Alf)J‘ + )\215)

k k
S,i‘l’)‘Q = plog<1 + p)\2> + qlog(l + q)q)

log <

In the following lemma, we formulate the confidence set
bound in our setting.

Lemma 3. At round k, and with probability of at least 19,
the confidence set bound for 0y, is given by

Hék—e*

1
B, < \/S,;\l’)‘2 + 10g<62> + \/)TQV +

At
—W,
VA2

where W = HISJ-(H* - é)H
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Ideally, we want to show that the confidence set bound is
tightened with the knowledge of the shared subspace and
the corresponding projection matrix. That can be observed

k]

in the regularization terms scaling with HIA)J- (@ - 0*)

which is small with high probability due to Assumption 1.
The second regularization based term scales with Hf’@*

and )\, and guarantees our problem to be well posed. In
addition, the choice of \s < A; enforces leveraging our
assumption on p.

Before establishing an upper bound for the expected trans-
fer regret, we deliver an error estimation on our projection
matrices. For this purpose, we use the eigengap A, =
0p — Op+1, Which is assumed to be positive, where p is the
dimension of the low dimensional subspace. A projection
P depends on the number p of selected eigenvectors, thus it
can be assigned a specific eigengap. The following results
shows the benefit of large eigengaps.

Lemma 4. Ler 6 = 1 St 6(i) be the empirical mean
of Lo regularized task parameter estimations 0(i) of true
parameters 0*(i) ~ p. Assume that each (i) was esti-
mated after the selection of at least n arms. Let P+ and
A, > 0 be the estimation of P+ and the eigengap of X,
respectively. We have

(@) (\/Varp +b252 + €, + ce%) ,

. _ 2log(2t) 2log(2t)Var, 2 _  Clog(2t)
with €, = —5— +\/ =72, 5 = —5 7, C

2 2
is an absolute constant, b = 1 + 64\/2pX—, c = %,

Bq = \/ﬁ [\/dlog(l + #y?) +2+ \/E} and Apin is
the smallest of the minimal eigenvalues of matrices A.,.

Eo-y [E [P+ (0 - 6)

In what follows, we define

V22 128pe2 V2
Y = Var, + B2 <1 + 64\/2pA> + ei + %

The mean concentration error is €,, that converges to zero
for a sufficiently large number of tasks. Besides, €5 gives
us the concentration error bound of the covariance esti-
mated by the true task parameters 8" and converges to zero.
The bound depends heavily on the eigengap of the true co-
variance. Larger eigengaps reduce the expected error term
and increase the reliability of the projection estimation. For
the analysis, we assume A, > 0 for the chosen value of p.
By assumption, Var, is relatively small. Thus, the com-
plete term is mostly dominated by (37, which is an upper
bound on the mean squared error (MSE) of the ridge esti-
mator from the standard linUCB case. By selecting A ~ %,
the MSE of the ridge estimator converges to the estimator’s
variance. This variance, in turn, scales with the subgaus-
sian noise term added on the rewards and also depends on

the singular values of the respective data covariance matrix
D D. Ideally, we would prefer non-zero singular values.
That implies that the set of context vectors yield informa-
tion along any dimension, which would minimize the vari-
ance of the ridge estimator; Nevertheless, our setting does
not guarantee this.

We establish an upper bound on the transfer regret in the
following theorem.

Theorem 1. Assuming that P and p are known, the ex-
pected transfer regret of the projected LinUCB algorithm
is upper bounded by

R(n) =

o (v {1+ 27) 1 2] ).

If the assumptions of Lemma 4 hold, the expected transfer
regret is upper bounded by

R(n) =

@ <\/ﬁ (plog(l + n‘p/2> +q10g<1 + TL\:T/))) .

Remark 2. The case p = d,q = 0 yields the expected
transfer regret O (ﬁd log(l + %‘;2)) when no actual

meta learning takes place and each task is learnt indepen-
dently by the LinUCB algorithm.

The results show that our approach is at most beneficial
when p is as low as possible such that Assumption 1 still
holds. In that case, increasing A; in the algorithm reduces
the overall regret bound, further supporting the argument
that we made while discussing the confidence set bound in
Lemma 3. By setting \; = %, the term S)1*2 defined
in Lemma 2 changes such that only the p dependent term
becomes relevant as Y significantly decreases and in turn

log(l + %) as well, essentially reducing the effective

dimension of the problem to p and indicating that less ex-
ploration is required within the g-dimensional subspace.

6 Projection Meta Learning with Linear
Thompson Sampling

6.1 Basics of Linear Thompson Sampling

LinUCB and linear Thompson sampling have the same re-
quirements and assumptions concerning the linear relation
between expected rewards and context vectors. Their dif-
ference lies in the decision-making process: In the former,
the learner maximizes a UCB function by selecting the ac-
tion at every round, whereas in the latter, it utilizes a Gaus-
sian posterior calculated as N8y, v2A '), with @), esti-
mated through solving the regularized least squares as done
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in LinUCB. From which, the learner then samples a param-
eter vector . It then selects the actions as

a = argmaxx, 0.

The posterior is built from the prior of the previous instance
given by ./\/(Ok_l,UQA,;ll). This means that at k = 1,
during the initialization, we have Ay = I. The sampling
process reflects the uncertainty of the current estimation
0;. and directly indicates the exploration behaviour of the
learner. A low variance across a specified dimension indi-
cates a high confidence of the current estimation and vice
versa. Thus during initialization with Ay = I, there is
equal exploration potential along any direction.

6.2 Thompson Sampling with Linear Payoffs within
an Affine Subspace

Our second proposal is a variation of the linear Thompson
sampling: We change the posterior from which 6 is sam-
pled. The mean of the new distribution is the biased regu-
larization solution @ of eq. (6), and its covariance matrix is
B~!. Thus, )

6 ~ N(0,,°B1). (10)
In eq. (10), v is a hyper-parameter that we determine in the
analysis. During initialization, we have By = Ay PLA,P
and its inverse as covariance for the prior distribution. By
choosing A\; >> A, similar to the projected LinUCB setting,
we embed our knowledge of the affine subspace into the
prior. That way, the sampling process of 8 incorporates the
low variance along the orthogonal subspace.

6.3 Analysis

The analysis in inspired by Agrawal and Goyal (2013).
First, we define the following two events:

Definition 1. The event E,. occurs if
XI (ék — 0*>

with l,, == \/2 log(%)(d + 2)log(n) + 2K? and

A
K = \/)\Q—IW-l-\/)qV.

The event Fg occurs if
Va € A [x] (8~ 01)| < V2d+ Glog(n)vllxall,

with v = 4y /log(3) 2 and a € (0, 1).

[e3%

Va € Ap :

< ln”Xa”B;la

The event E). essentially reflects the confidence set bound
discussed for the projected LinUCB case. It gives the
probability that our current estimation 6K lies within the
bound. The event Eg is directly linked to the sampling
procedure of 0. It gives the probability that the reward es-
timation of the sampled @}, is within some limited range of
the estimated reward of ék. Below, we define a filtration,
containing all necessary information for the algorithm.

Definition 2. We define the filtration {Fy}peq,...,
sub-o-algebras Fy,_1 at round k generated by the current
action set and the history up to round k — 1: Fp_1 =
{Ag, Hi—1}, with the history being recursively defined as:

Hi, = { Ay, 01, By, \|Xa\|B;17N(9k,B;Zl)} UHp—1.

The next lemma states the probability of the events E,. and
Eg.

Lemma 5. For all § € (0,1), the probability of event
E, is bounded from below as follows: Pr(E,) > 1 —
%. Moreover, for all possible filtrations Fy_1, the prob-
ability of event FEg is bounded from below as follows:
Pr(Eg|Fr—1) > 1 — .

In the following theorem, we establish an upper-bound for
the transfer regret of the projected Thompson sampling al-
gorithm

Theorem 2. The expected transfer regret of the projected
Thompson sampling algorithm verifies

R(n) = O((dg log(n) + \/glog(n)Q) nSnVIYVIQ>

Remark 3. With p = d,q = 0, the meta learn-
ing does not take place, i.e, the agent learns
each task independently by the linear TS algo-
rithm.  As such, the expected transfer regret yields

o <(d2 log(n) + dlog(n)2> nlog(1+ ”52)>.

The results shows a the dependency on the dimensions p
and ¢, and the variance related term Y. For a sufficiently
small Y, the terms scaling with p would dominate the re-
gret, so we expect greater improvements with decreasing
p. The term scaling with ¢ would benefit from the low
variance within the respective subspace. As suggested in
Agrawal and Goyal (2013), we chose a@ = @ in the
proofs.

7 Algorithms

The projected LinUCB and projected TS algorithms share
many steps. Thus, we unify them and use sub-procedures.
We introduce an initialization phase for learning the sub-
space, as it may only be well-defined after including suf-
ficient task parameters. Enforcing the subspace learning
already from the first task might lead to zero-dimensional
subspace with P = 0 that would degrade the overall per-
formance. In the projected LinUCB algorithm, we require
the estimation of ~y; taken from Lemma 2, which in turn

requires the value of W = HPL (0* — 9)
tractable but we work around this issue by using the simple
bound W < 2V. Since -y, acts more as exploration scaling

, which is in-




1

2
3
4
5

[3

—

-

Steven Bilaj, Sofien Dhouib, Setareh Maghsudi

Algorithm 1: Projected LinUCB/Thompson Sampling

Initialize: v > 0,0 € (0,1), Ay > A2 > 0, A > 0,
5 €(0,1);

fort € {1,..,T} do

Initialize: Ay = AL, by = 0;

Sample new task 8* ~ p;

if t < d then
LP:I,PL:O,W:O;
else

Determine principal components and calculate
P and P with [0(i)]icq1,....sy according to
egs. (2) and (3) and w = %PL P IOR
Initialize Bg = \{PL + AP, by = \;P1w,
éo = Balbo;
fork € {0,...,n—1} do
Select arm aj, according to respective arm
selection strategy (Algorithm 2 or 3);
Collect immediate reward 7},
Bj+1 = By + x4, %, ;
A1 =Ar+ xakx,jk;
bii1 = by + 76Xq,
b;chl =Db) + rpXq,;

A~ 1 .
L 01€+1 = Bk+1bk+1a

0(t) = A 'bl;

n’

Algorithm 2: Projected LinUCB Arm Selection Rou-
tine

Input: ék, By;
= log (5B ) + VRV + 2L W
Select arm a;, = arg max, UCB(a) from (9);

Algorithm 3: Projected TS arm selection routine
Input: 0., By, a € (0,1);

v=ay/log(}) £2;
sample 0 ~ N (0, v*B,1);
Select arm aj, = arg max, XI ék;

factor, we do not lose any benefit from the meta learning
as the actual knowledge transfer becomes relevant in the
calculations of By, and 0,

8 Numerical Experiments

We test our algorithms experimentally on synthetic data
and on real world data taken from the MovieLens data set.

8.1 Synthetic Data Experiments

We sampled the context vectors from a zero mean normal
distribution with a diagonal covariance matrix whose el-
ements followed a uniform distribution. Following Mez-
zadri (2006), we used a randomly generated orthogonal
matrix to define a subspace. We project the randomly gen-
erated task parameters onto the subspace and add a multi-
variate Gaussian noise term in the orthogonal direction to
the given subspace to simulate the variance of the task dis-
tribution. One drawback of this approach is that it misses
the benefits of subspace learning during the first tasks. That
is because a subspace with dimension p that ought to be
learned requires at least ¢ = d — p data points or task pa-
rameters to use the PCA algorithms successfully. Thus, we
also implement an initialization phase to prevent subspace
learning until learning at least d task parameters. Note that
we require at least d tasks as we do not use our knowledge
of p. We consider a task as finished after at least n = 250
rounds.

Figure 2a shows the expected transfer regret for d = 30 and
p = 15, with the oracle and the algorithms of Cella et al.
(2020) (B-OFUL), Peleg et al. (2022) (M-TS) as bench-
marks. The projected Thompson sampling (P-TS) ap-
proach performs as well as projected LinUCB (P-LinUCB),
while the oracle using the true projection and mean is the
most efficient one. Our algorithms are significant improve-
ments the other baselines. The superiority of our approach
mainly stems from its generality compared to Cella et al.
(2020). The algorithm provided by Peleg et al. (2022) has
the worst performance mainly due to the regret contributed
by the required forced exploration within a task. Addition-
ally, Figure 2b shows the total cumulative regret over tasks,
which does not suffer from overlapping error bars as they
become negligible. To further emphasize the benefit of ex-

°
S, LinUCB . 80000 LinUCB
@ 200 5}
o B-OFUL I5) B-OFUL
5] 2 60000
% P-TS % g P-TS b
I P-LinUCB | 2 40000 P-LinUCB
= 100 I T k]
- Oracle 35 Oracle 7
2 — MTS  —t—t € 20000{ —— MTS _—
2 o o
u% 0 r 0 /
0 100 200 0 100 200 300 400
Rounds Number of Tasks

(a) Synthetic data plots of the
expected transfer regret as a
function of number of rounds.

(b) Synthetic data plots of
the cumulative regret over the
number of tasks.

Figure 2: Expected transfer and total cumulative regret plots of
the LinUCB and Thompson sampling methods compared to their
projection counterparts and additional baselines.

ploiting the knowledge on any dimensional low variance,
Figure 3a shows the total accumulated regret of the pro-
jected LinUCB algorithm after 7" tasks with n rounds of
learning each as a function of ¢ = rank(P.). Note that
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ter 400 tasks as a function of Eg«,[E[W]]*> as a func-

tion of number of tasks in a
logarithmic scale.

rank(P).

Figure 3

at ¢ = 0, the plot shows the total regret using classic Lin-
UCB. As expected, the regret reaches its minimum when ¢
is equal to the rank of the true projection, which is ¢ = 15
in this case. Nevertheless even for different values of ¢,
there is a clear benefit over the classic approach. In Fig-
ure 3b we plot |Eg-,[E[W]]?/Var, — 1] as a function of
number of tasks. As expected the curves for P-LinUCB and
P-TS imply that Eg- ., [E[W]]? is close to Var),. The curve
for the B-OFUL algorithm assumes P+ = I, disregarding
the covariance and thus resulting into higher values. Note
that lower values imply greater transfer in between sequen-
tial tasks as the projection matrix would be well estimated.

8.2 Real Data Experiments

We use MovieLens data to test our algorithms in a real-
world environment. MovieLens data contains information
about over 6000 users that represent the tasks in our setting.
Besides, it includes over 3000 movies, which are the arms
with their corresponding context vectors. The context vec-
tors are 18-dimensional, each denoting a possible genre. If
a movie has a label for a specific genre, the corresponding
entry for that genre in the context vector is 1. With at most
six different genres assigned to a single movie, we normal-
ize the context vectors such that we have ||x,|| < 1. Each
movie has some available ratings between 1 and 5, given
by a user who has watched that movie. Each rating rep-
resents a reward for our algorithm. We normalize all such
ratings so that » € [0,1]. We further process the data by
grouping the users by their profession or gender and run the
algorithm within that set of users. That method stems from
the assumption that groups of similar users might share an
affine subspace. For every user (task), we run the algo-
rithms for at least n = 250 rounds. We do not include the
algorithm developed in Peleg et al. (2022) as baseline for
experimentation using the real data set as it requires con-
texts from a distribution with an invertible covariance. The
reason is that the authors do not use a regularizer on the
minimum least squares solution for 8, and thus find the in-

5 40 -
? — 1 LinucB Fs000] T LinuCB
T3 B-OFUL 5 B-OFUL
B g @ 6000 —— P-TS -
2 P-TS *
§20{ —— P-LinUCB 2 —— P-LinUCB =7
= % 4000 T
5 - =] s
10 = 1{ —1 £ 2000 g —
@ :‘: — | — o /
Qo o
X - 0
w o
0 100 200 0 100 200 300 400

Rounds Number of users

(a) Real data plots of the ex-
pected transfer regret as a func-
tion of number of rounds.

(b) Real data plots of the cumu-
lative regret over tasks/users.

Figure 4: Expected transfer regret and total regret plots of our
algorithms and baselines applied to the MovieLens data set. We
have included 400 users in the simulations.

verse of DD after every finished task. However, in the
MovieLens data set, that condition does not hold for many
users, making the estimation of @ ill-posed. In the real data
experiments, we observe significant improvements of our
models over the baselines in Figure 4a showcasing the ex-
pected transfer regret, and in Figure 4b, showcasing the to-
tal cumulative regret over users, which does not suffer from
overlapping error bars. A significant point is that we did
not perform data preprocessing besides normalizing the re-
wards and dividing the users into male and female. That
would also explain the performance gap to the algorithm of
Cella et al. (2020), as our assumption is more general and
widely applicable.

9 Discussion and Outlook

Our work shows that obtaining knowledge about the un-
derlying subspace structure in a meta-learning setting im-
proves sequential task learning. More precisely, assuming
a low variance along certain dimensions in the task dis-
tribution, we proposed two decision-making policies that
exploit the knowledge of the subspace structure for se-
quential arm selection and significantly improve the per-
formance of widely used algorithms, namely LinUCB and
linear Thompson sampling. We provided an improved re-
gret bound that manifests the dependency on the lower di-
mension, the low variance term, and the eigengap at the
considered low dimension. We evaluated our methods nu-
merically through experimentations on synthetic and real-
world datasets, confirming their better performance than
traditional benchmarks. The results are significant in the
real data environments as the rewards do not necessarily
follow a linear relation.

Possible extensions of this work include further general-
ization of our model by learning the variance of the task
distribution along all dimensions. Another direction is to
generalize our methods to non-linear settings, i.e., when
tasks concentrate around a low dimensional manifold.
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A Notations

Notation Meaning

a, a* Arm and optimal arm yielding highest mean reward respectively

Ay, Set of available arms

Xq Context vector associated with arm a

d Dimension of the context vectors

n Horizon

Tk Immediate reward at round k

€k Subgaussian noise added to the reward at round k&

Dy Vertical concatenation of up to round & collected context vectors x|
Yk Concatenation of up to round k collected rewards

Vi Upper confidence set bound of LinUCB or projected LinUCB algorithm in round &
v Scaling factor for the covariance of the Thompson Sampling posterior
A, A1, Ag Regularization parameters for ridge and projection based estimators

p Task distribution

3 True covariance of p

{o}jequ,....ay | Eigenvalues of X

Ao Eigengap of 3

P, P True subspace projection and its estimation respectively

PL, Pt I-PandI-P respectively

S,’:“AZ plog(l—l—&)—f—qlog(l—qufl)

0",0,0 True task parameter, its ridge estimator and projections based estimator respectively
0 Mean of t collected ridge estimations of true task parameters: 1 Zf 0(i)
P Rank of P

q Rank of P+

w Po

Ay M+ D/ Dy

B, AP+ + P + D/ Dy,

by, D; yi

by, DZYk + )\115Lé

\%4 Upper Bound on the norm of any true task parameter

W [P -0)|

Y Upper bound of Eg- ., [E [HPJ- (0—07) m?

@ Hyper parameter of Thompson Sampling algorithm

ln \/2log(%)(d+2)log(n) +2K2

In 2d 4 6log(n)v + I,

R Expected transfer regret

Il Euclidean norm

-1l o Weighted norm: ||x||, = VxTAx

Table 1: Table of Notations
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B Proof of Theorem 1

In order to prove Theorem 1 in the main paper we provide proofs of additional Lemmas here or refer to the original works:
Proof of Lemma 1. Given Lemma 9 of Abbasi-Yadkori et al. (2011), we have:

det(Bk)
52 det ()\1].SJ‘ + )\QP)

Inillp+ < log (in

where the term det ()\1 P+ Azf’) can be further evaluated knowing the eigenvalues of the matrix A; P+ )\215. With

orthogonal projections Pand PLand PL = I-Pit holds that for any eigenvector ep of P we have: Plep =
(I — P)ep = 0 and vice versa for any eigenvector ep. of P+: Pep. = 0. Thus any eigenvector of P or P is also an
eigenvector of \; PL + \,P:

(MPL 4+ XoP)ep = (04 \o)ep,
(MPL + XoPlepr = (A1 + 0)epo,

with eigenvalues A, and A,. Lastly we require the multiplicities of both eigenvalues given by the dimension of nullspaces
of the matrices \{PL + \oP — M1 = (A — )\1)P for \; and \{PL + \oP — \oI = (M — )\Q)PJ— for Ao, which are
q = rank(P~) and p = rank(P) respectively. Thus we get:

det (Alﬁi + AQP) = \IND, (12)

finalizing our proof. O

Proof of Lemma 2. Let \, be the singular values of D™D and ||x,|| < 1 then we have:

log det(B) <Zlog(1+ ) Zlog(1+ )

det (Alfu + /\QP) P i
1 d
<plog|1+—S"N log [ 14+ — X,
pog<+ Z >+qog +3 PR

1=p+1
k k
< plog(l + ]7)\) +qlog<1 + )\1>

where we applied the Jensen inequality in the second inequality and bounded the trace by k||, ||2 < k in the last
inequality. O

Proof of Lemma 3. We leave out the subscript k& during the proof for readability purposes. Our estimation of 8* for the
projected LinUCB algorithm yields:

6=B ' (D'y+M\w), (13)
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thus we can write:

0—6"

=B DTy 4w 6,

=B (DT(DO" +€) + \w) — 07| 5

= B (@7e+aw) - B (uPL+P) 07|
- HDTe + AW — (Alf’i + )\215) 0"
B-1
< D€l + A [P @0 sf|Po|
o P R R I
6\/det (Alfn + /\215) min min

< |2log det(B) + VAV + \j;»w

\ 6\/det (Alf’l + Azf’) 2

k k 1 A
< \/p10g<1+ p)\2> +q10g(1 + q>\1) —Hog((p) + VAV + T;\VV,
2

where we used Lemma 1 in the second inequality. Here, A\, () is a function returning the minimal eigenvalue of a given
matrix. O

For the upper bound on the projection based error term in Lemma 4, need to make some definitions: We denote p as
the true mean of the distribution of tasks p, 0" = % Zle 0 (i) as the mean estimated by the true task parameters and

0 =1 22:1 6(i) as the mean estimated by the L2—regularized ridge estimators. We define oy > o2 > ... > 04 as

ordered eigenvalues of the true covariance matrix 32 and A = 6* — p as random variable with mean zero and € = p — 0 as

difference between the estimated and true mean, furthermore we define the covariance matrices 33, " = % 25:1 (0" (3) —

0" (0" (i) —0")T, % = 1 Zle(e(z) —0)(8(i) — @) T as the true covariance matrix, the covariance estimated by 8* (i)
. . Y . . _ T1T _ T1T

and the covariance estimated by 6(i). We also define vertical concatenations U = [u;];c; 0. U =[uj iy

and U = [ﬁ;};—e{l,.‘.,p}’ with {uy, ..., u, }, {uj, ..., us}, {Q, ..., 0, } being the eigenvectors corresponding to the p largest

eigenvalues of 3, X% and 3 respectively. Similarly we define P = UUT,P* = U*U*T, P = UUT as the true
projection, the projection estimated by the true task parameters 6* (i) and the projection estimated by 6(i) respectively.
For the following parts we need to define the matrix norms: We denote the matrix norm ||-|| as the spectral norm and |-||
as the Frobenius norm. We also require some auxiliary Lemmas:

Lemma 6 (Smale and Zhou (2007)). Let 8*(1),...,0(t)* € R? be vector valued random variables sampled from a distri-
bution p with true mean p and ||0* (3)|| <V, Vi € {1, ..., t}. Then the following holds with probability 1 — 6:

2 2
Hé* | < 210g£5)V N 210g(61\/armax7

with Varpax = E {||A||2} = tr(X) as the total variance of distribution p.

Lemma 7 (Corollary 5.50 of Vershynin (2012)). Consider a subgaussian distribution in R? with true covariance ¥ and
the covariance 3 estimated from t samples as it was defined above. Let § € (0,1), then we have with probability 1 — §:

5w < oD

with C as an absolute constant.
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Lemma 8 (Theorem 2 in Yu et al. (2015)). Let X2, > € R4 pe two symmetric matrices with eigenvalues o1 > ... > 04
and 61 > ... > 64 respectively. Fix 1 < p < dand let U = [uy, ..., up] and U= [Q1, ..., Op] with eigenvectors u,; and 0
of matrices 3 and Y respectively. Assume that the eigengap satisfies N, = 0, —0p11 > 0, then there exists an orthogonal
matrix O such that the the following holds:

)

(] 5] 5],

vo-vo], <
F

Proof of Lemma 4. For the proof we will use the triangular inequality to express the bound in terms of the true variance
along the orthogonal subspace, the projected mean estimation error and the projection estimation error. For the mean
estimation error we apply an additional triangular inequality in order to estimate it with respect to the true mean estimation
error ||P+(p — 67)|| and the error ||@" — 6|, with the former being a simple concentration bound and the latter being
estimated from the oracle inequality for 8. We intend to express the projection error with respect to the estimation error on

the covariance matrix. Bounding the term HP — f’H requires the Davis-Kahan Theorem. Thus we begin the proof:

[P~ < [B+ — P[0~ 8]| + [PHo" - 0)| (14)
< |[B+—p||l6" - 8] + [P+a| + [P as)
<2v||P - P|| + [P + [P, (16)

where we used P+ — Pj- = P; — P; for all projection matrices P;, P in the last inequality. We deliver an upper bound
on all of these terms separately: The second term being straight forward with P as the true orthogonal projection:

Eo-p | [P+ A]] = Var,, 17)

with Var, denoting the low variance of distribution p along the orthogonal subspace. This holds simply due to our problem
setting.

The last term yields the mean estimation error of tasks along the orthogonal subspace which was similarly discussed in
Cella et al. (2020):

1P (k= O)[| < [|P* (1 — 67)

@ ) as

The first term can simply be bounded by a concentration inequality which was also discussed in Lemma 3 of Cella et al.
(2020) by using Lemma 6 we state with probability of 1 — § that the following holds:

< 2log(%) n 2log(§)Varp.

By choosing 6 = 1/t and taking the expectation value with respect to the task distribution, we have:

Eg-p [||P+ (1 —07)

B 2log(2t) 2log(2t)Var,
=0 ( ——+ p ) .

We will denote €, = 2 10%(%) + 4/ 2 log@tt)var” for the rest of the proof As for the second term in eq. (18), we assume that
all previously learnt tasks were running for at least n rounds and use the subscript i € {1, ..., ¢} to refer to a given task:
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6" — 6| < miaXHG(i)* —6(i)| 19)
0*(i)—0 )
< max 1607 (1) = 6()l ., i) 20)
¢ Amin (An (7))

< \/ligw <\/dlog(1 n %) —|—log(512> v ﬁv) : @1)

where we used a linear regression result Apin (A,,) > log(n) from Lai and Wei (1982). For the most general case, we will
keep Amin = min; Apmin(A,, (7)) Choosing 6 = 1/n, A = mlfz and taking the expectation with respect to the arm selection
process yields:

e - 1 n2V?2 1
E[||6 0H]§O<)\min\/dlog<1+ y >+2+\/;>. (22)

We denote 3 = — \/ dlog(1+ ™V2) +2 + \/% We note that this upper bound is independent from the task distribu-
tion.

What is left is to upper bound the term HP -P H

HP _ PH ~|luuT - fJfJTH
= |luuT = fJoonjTH
- |uuT + TouT — YouT — fJOOTfJTH

— [touT™—0TUT) + (U - ﬂO)UT“

IN

vouT - onJT)H + H(U - ﬂO)UT"

oo,
F

where we used Cauchy-Schwarz in the last inequality and the fact that O is a orthogonal matrix and UTU = UTU=1
Now we are able to apply Lemma 8:

o (] - 3] - 3],

P-P| < 23
H = A, (23)
Using the triangular inequality we bound the term HE — 2”

HE—EH §||2—2*||+H2*—2H. (24)

The first term in eq. (24) is a simple concentration inequality for covariance matrices. Using Lemma 7 we have with
probability 1 — 4:

[ -3 <

)

Clog(%)
t

with an absolute constant C'. Setting § = 1/t and taking the expectation value yields:
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. C'log(2t)
Eo-ny 127~ 3] =0< el
We denote ex; = Cl#(%). Finally we need to bound HE* - ﬁ)H We denote @ = [(0*(2) - é*)TL , and
g i€1,.. 0t
O = [(0(1) — 9) T} Loty with vertically concatenated vectors, such that we have:
ie{l,..,t
= - =] <= -2
F
1 AT A
o RG]
t F
1 * T % * T A * T A AT A
~-|eTe -e "6+ T0-6 0|
1 A . R
—.[e (e -6)+(e7-0")6
t F
1 N N
7 (197l + o], ) e -
<< (Ielx+]e]|, i
We can further bound this while also taking the expectation, using:
) ¢
E [H@* - @HF} <E [\1B2+ | S_1167G) — 0)° | < 2ViBa.
i=1
where we used the result of eq. (22). The same estimation can be done for the term ||@*|| . + Hé) HF
10711+ |[©] < V& (max]le*(i) ~ 67 + max [66) - 6]|| < 4viv
Thus we conclude:
o[- 5] <o
Inserting the results into eq. (23) gives:
ol o) < v

After estimation of every term of our original expression we can summarize it by taking the expectation and applying
Jensen’s inequality:

. _ 2\ 2 2 172
Eg-~p [E [HPL(B*—Q)HH:O \/Varp+ﬂ§ (1+64\/%Z> +eg+128pA?V) (26)

O

Lemma 9. (Abbasi-Yadkori et al., 2011, Lemma 11) Let X,, be a sequence in R? with ||X,, || < 1 and B defined as usual.
Then we have:

n
Z Hxak—l ||2kaj] < 2521’1)\2
k=1
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Proof of Theorem 1. First we denote & = ||x||g_. 6—6* H as exploration term. Then we continue by estimating the
B
peudo regret R(n):
n T .
R(n) = Z (Xa; . xa,ﬁl) 0
k=1
< Z x;rk—lék*1 +&k—1 — Xak—le*
k=1

1 k-1 1 k-1 A
! 5 PAb . 5 A a -1
\/p og(5+m25>+q og(6+qA15>+\/ QVJF\/EW)HX k71||Bk7]
1 n 1 n A
< log( < + ——— log( = + — ) A
(\/P0g<5+m25>+qOg(5+qA15>+\FzV+\/EW)
- 2
nZHXGkAHB;jl
k=1
<( lo <1+n>+ lo (1+n>+10 (1>+\KV+ A1 W)
< plog o qlog Y g 52 9 7\/5

2n<plog(1 + n) + qlog<1 + n))
PA2 qA1

The first and second inequality make use of the OFUL principle and the definition of the UCB function. We used Lemma
3 in the third inequality and Lemma 9 in the last inequality. This regret holds with probability 1 — 4.

V2 Y 1
Eg«~, [E[R(n)]] < plog (1 + np) + gqlog <1 + 7{) + 10g<62> +1+V

2
2n (plog(l + W) +qlog<1 + M))
p q

We obtain the final results by setting § = 1/n, take the expectation value, followed by an additional expectation value with
respect to the task distribution: Eg- ., [E [R(n)]], setting \; = ﬁ, A2 = 7z and application of Jensen’s inequality. [

C Proof of Theorem 2

The following proofs are adapted from Agrawal and Goyal (2013) and are required to finish the proof on the regret bound.
Before proceeding, we define the concept of a saturated arm, which is basically a measurement of the required exploration
for any arm.

Definition 3. We call an arm a saturated if g||%q|lg-1 < In||Xa+|lg-1 and unsaturated otherwise, with g, =
2d + 6log(n)v + l,,. The set of saturated arms at round k is denoted as C,.

We will also utilize the following Lemma from Hsu et al. (2012), which is a special case of the inequality in Hanson and
Wright (1971):
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Lemma 10 (Proposition 1.1 in Hsu et al. (2012)). Letx € R? be a d-dimensional standard normal variable and C € R%*?
a matrix. Then we have for all t > 0:

Pr (cxn2 > tr(CTC) + 24/t ((CTO) )t + 2||cTc||t> <et

Proof of Lemma 5. The probability of event F,. is determined using Lemma 3: we have with probability 1 — 4:

T * O a
] (07— 00) | < Ixals 2|0 — 04
< Ixallgr (]85 +10g( = ) + 22 v
~ a B; k g 62 /Tl 1 9
by substituting 6 — -5 9. and further upper bounding 521,/\2 we get:

2

S)‘l’/\z—l—l plog 1—1—— + qlog 1—&-i + log =

A1 02
| 2/d ) ( )2/d
plog ” +qlog 5
1
]

\/log< ) (d+ 2)log(n),

IN

IN

and therefore we have:

* s 1 A
|XI (0 _ Bk) | < <\/log<5>(d+2) log(n) + \/—%W-ﬁ- \/EV> ||Xa||ka1

1
< \/2 1og(5> (d+ 2)log(n) + 2K2HXGHB;17

with K = \;\LW + /A1 V. Since we substituted § — 2, this event has a probability of at least 1 — %
For proof of the bound on the probability of event Fjy we have for all a € Ay:

X(;T (ék — ék>’ = ‘XIB;%BE (ék — ék)’

1
< v4/ xJB;lxa -
v

1 7/~ ~
By definition, the term %B i (0k — Gk) is d-dimensional standard normal variable, such that we can apply Lemma 10,

B; (61— 0)

where we set C = I and ¢ = 2log(n):

Pr (Hin (61— 64)

‘ > \/CH- \/m+410g(n)> < ni
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Thus the following inequality holds with probability of at least 1 — # forall a € Ay:

x) (ék - ékﬂ < vHxaHB;l \/d+ v/8dlog(n) + 4log(n)
< UHXa‘|B;1\/2d+GIOg(n)7

where we used the inequality of arithmetic and geometric means in the last step. O

Lemma 11. For any filtration Fi,_1 such that E,. is true, we have:

Pr(x;r:ék > X;E 6" + I ||xaz

B;l) > Cn

and:
1 1
Pr(ax € C|Fi-1) < C—Pr(ak ¢ Cp|Fr—1) + PR

: 1
with ¢, = teTmne

Proof. Assuming the event E, holds and X;r*é is a Gaussian random variable with mean x;é and variance v||z =
we can apply the anti-concentration inequality such that:

B 1»

X;rz (ék — ék) X;E (0* — ék> + lnHXaz

-1
B,

PI‘(XI;@]C > X(Izék + lnHXaZ o

B;1|]:k—1) =Pr

U”X‘li B;! UHXHZ B; '

1 2
2 17 =2,
with
xl; (07— 01) + 1w
k k

vl|zay

-1
7 — B,

-1
B,

2Z”Hma2 B;!

e,
k1B

) 2\/2 log(1)(d + 2) log(n) + 2K>

) 4/log(3) %22
< [ Zlog(n) + oK
=2 BT Slog (D) (d+ 2)

< wlglog(n) +1.

Thus we have

1
szl ‘fkfl) >

T 4e/TN™

The proof of the second inequality is provided in Lemma 3 of Agrawal and Goyal (2013).

Pr(x;r;;ék > X;'—Zék + lnHXa;;
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Lemma 12. Let regret, = (X,. — )0* be defined as the instantaneous regret at round k and regret) = regret, I (E;).
Define

29n 2gn

B, ' cnn? ” ak”B_l

X} = regret] — z—nl(ak ¢ C) ||xar

n

and
k
Y = Z X,
t=1

then (Yi; k = 1,...,n) is a super-martingale process with respect to filtration Fi,_1.

Proof. The proof is provided in Lemma 4 of Agrawal and Goyal (2013). O

Proof of Theorem 2. Each value in Xy, is bounded by - g" which implies a bounded difference on the super-martingale

Yy with |V, — Yk 1l < g {- allowing us to apply Azuma—Hoeffdmg s inequality during the proof. Thus we have with
probability 1 — 5.

Zregret,c < Z < (ar ¢ Cillwax|lg

292 < 892 2
+ TN g, [l + 2 2nlog(>

) )>+ 29n

cpn?

Cnln Cnln 1)
k=1
~( 9, 2gn
gz( o Gl ) ) + 22
nln
k=1
2 2
+ gl" 2nlog(5>
39, 2gn, 89n 2
< 23 g + oy + 20 o3

S 3gn / Skl, 2-9” omn 10g(§>

2 2 20,
— 9n ( 180512 + 128n10g(6> + 2

Cnln cnn?

ln +24/2d+ 61 (2d + 61 v? /1, / / 2gn
< + + 6log(n)v + (2d + 6log(n))v?/ 18n S,\I,A2 128n1og( = ) g a
cpM

CTL

o 2\/2d210g((15) + 6dlog () log(n) \/103 (5) 6\/dlog (5) log(n W
. T B

We used our definition for saturated arms in the second inequality and Lemma 9 in the fourth inequality. Now similar as
done in Theorem 1 we set § = % and take the expectation value. Additionally we set o =

1 .
log(n) *

=0 ((dg log(n) + \/(jlog(n)Q) \/ nSQl’M)

Inserting Ao = 1/V2 and \; = %, while taking the second expectation value with respect to the task distribution and
applying Jensen’s inequality, gives the final result:

n

Z regret),

k=1

E
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R(n) = O( (4 og(rn) + Valogn)?) J” <p1°g(1 +1) +an (1 ' %}7)))
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