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Abstract

The out-of-sample error (OO) is the main
quantity of interest in risk estimation and
model selection. Leave-one-out cross valida-
tion (LO) offers a (nearly) distribution-free
yet computationally demanding method to
estimate OO. Recent theoretical work showed
that approximate leave-one-out cross valida-
tion (ALO) is a computationally efficient and
statistically reliable estimate of LO (and OO)
for generalized linear models with twice dif-
ferentiable regularizers. For problems in-
volving non-differentiable regularizers, de-
spite significant empirical evidence, the theo-
retical understanding of ALO’s error remains
unknown. In this paper, we present a novel
theory for a wide class of problems in the
generalized linear model family with the non-
differentiable ℓ1 regularizer. We bound the
error |ALO−LO| in terms of intuitive metrics
such as the size of leave-i-out perturbations
in active sets, sample size n, number of fea-
tures p and signal-to-noise ratio (SNR). As a
consequence, for the ℓ1 regularized problems,
we show that |ALO − LO| p→∞−−−→ 0 while n/p
and SNR remain bounded.

1 INTRODUCTION

Suppose we observe a dataset D =
{(y1, x1), . . . , (yn, xn)} where xi ∈ Rp and yi ∈ R de-
note the features and response of the ith observation,
respectively. We assume observations are independent
and identically distributed draws from some unknown
joint distribution q(yi|x⊤

i β∗)p(xi). We estimate β∗
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using the optimization problem

β̂ := argmin
β∈Rp

{
n∑

i=1
ℓ(yi|x⊤

i β) + λr(β)
}

(1)

where ℓ(y|z) is the loss function, and r(β) is the reg-
ularizer. Consider the problem of estimating the out-
of-sample prediction error (OO), which is defined as

OO := E[ϕ(ynew, x⊤
newβ̂)|D]

where ϕ(y, z) is another loss function (possibly but not
necessarily the same as ℓ(y|z)), (ynew, xnew) is a sample
from the same joint distribution q(y|x⊤β∗)p(x), but is
independent of the training set D. As demonstrated
through empirical and theoretical studies, in high-
dimensional settings (n, p → ∞ while n/p is fixed),
the leave-one-out cross validation (LO) estimator

LO := 1
n

n∑
i=1

ϕ(yi; x⊤
i β̂/i) (2)

where

β̂/i = argmin
β∈Rp

∑
j ̸=i

ℓ(yj |x⊤
j β) + λr(β)

 , (3)

provides an accurate estimation of the risk: (Rah-
nama Rad et al., 2020; Patil et al., 2021).

A significant limitation of LO is its necessity to fit
the model repeatedly n times, making it computa-
tionally impractical for many high-dimensional prob-
lems. As a result, several recent researches have con-
sidered the problem of approximating LO (Beirami
et al., 2017; Stephenson and Broderick, 2020; Rah-
nama Rad and Maleki, 2020; Giordano et al., 2019b,a;
Wang et al., 2018; Rahnama Rad et al., 2020; Patil
et al., 2021, 2022). For instance in (Rahnama Rad
and Maleki, 2020; Rahnama Rad et al., 2020) it was
theoretically and empirically shown that for twice dif-
ferentiable regularizers and loss functions, the approx-
imate leave-one-out cross validation (ALO) is a statis-
tically reliable and computationally efficient approach
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for estimating LO and OO in high-dimensional settings
where n, p → ∞ while n/p and SNR remain fixed and
bounded. Regarding non-differentiable regularizers,
while the extensive simulations in (Wang et al., 2018;
Rahnama Rad and Maleki, 2020) provided empirical
evidence, the theoretical understanding of ALO’s er-
ror remains unknown.

In this paper, we present a novel theory for non-
differentiable regularizers applied to a wide class of
problems, e.g., linear regression, as well as general-
ized linear models like Poisson and logistic regression.
Using intuitive metrics such as the size of leave-i-
out perturbations in active sets we bound the error
|ALO − LO| in terms of fundamental quantities such
as sample size n, number of features p, and signal-to-
noise ratio (SNR). For ℓ1 regularized least-square prob-
lems, we place bounds on the size of leave-i-out per-
turbations in active sets, and as a consequence, show
that |ALO − LO| p→∞−−−→ 0 when n/p and SNR remain
bounded 1.

The remainder of this paper is organized as follows. In
the first two subsections of Section 2 we briefly present
and review the key idea of ALO and the challenge to
use it for non-differentiable regularizers. We review
related work in section 2.3. In section 2.4 we briefly
describe the main theoretical contributions of this pa-
per. Section 3 presents Theorem 1 which allows us to
bound the error |ALO−LO| in terms of the typical size
of leave-i-out perturbations in active sets. In Section 4
we present Theorem 2 which bounds metrics related to
the size of leave-i-out perturbations in active sets for ℓ1
regularized problems. Next we explain how Theorem
1 and Theorem 2 together lead to |ALO−LO| p→∞−−−→ 0
when n/p and SNR remain bounded for ℓ1 regularized
least squares problems.

Concluding remarks are given in section 5. Detailed
proofs can be found in the online supplementary ma-
terial.

2 APPROXIMATE
LEAVE-ONE-OUT CROSS
VALIDATION

In this section, we briefly review the key idea of ALO
and the challenges to use it for non-differentiable reg-
ularizers.

1In Section 1.3 of the online supplementary mate-
rial we rigorously discuss what we mean by a bounded
SNR. Roughly speaking, we mean that var[x⊤

j β∗] and
var[yi|x⊤

j β∗] are stochastically bounded away from 0 and
∞, regardless of problem dimensions.

2.1 ALO for twice-differentiable losses and
regularizers

ALO replaces the computationally demanding proce-
dure of repeatedly fitting the model with finding an
approximate model that is easy to compute. Instead
of exactly computing β̂/i as in (3), ALO adjusts the
estimate β̂ based on the entire dataset D, and uses
one Newton step to compute the approximation β̃/i

as follows:

β̃/i := β̂

+

∑
j ̸=i

xjx⊤
j ℓ̈(yj |x⊤

j β̂) + λ∇2r(β̂)

−1

xiℓ̇(yi|x⊤
i β̂),

(4)

where ℓ̇(y|z) and ℓ̈(y|z) denote the first and second
derivatives of ℓ(y|z) with respect to its second argu-
ment. Furthermore,

[∇2r(w)]ij := ∂2r(β)
∂βi∂βj

∣∣∣∣
β=w

.

It might seem that the matrix inversion required in (4)
is computationally (nearly) as demanding as refitting
the model, but this can actually be bypassed by using
the Woodbury lemma (see Lemma 10 in the online
supplement), leading to the following approximation

ALO := 1
n

n∑
i=1

ϕ(yi; x⊤
i β̃i) (5)

= 1
n

n∑
i=1

ϕ

(
yi; x⊤

i β̂ +
(

ℓ̇(yi|x⊤
i β̂)

ℓ̈(yi|x⊤
i β̂)

)(
Hii

1 − Hii

))

where Hii is the (i, i) element of the matrix H defined
as

H := X
(
X⊤[diag(ℓ̈(β̂))]X+λ∇2r(β̂)

)−1X⊤ diag[ℓ̈(β̂)]

with ℓ̈(w) :=
[
ℓ̈(y1|x⊤

1 w), · · · , ℓ̈(yn|x⊤
n w)

]⊤ and
diag[ℓ̈(β̂)] being the diagonal matrix with ℓ̈(w) as its
diagonal elements. Most of the theoretical work about
the consistency of ALO in estimating LO (and OO) has
focused on differentiable regularizers, such as ridge,
smoothed LASSO and Huber loss when n/p remain
fixed (Rahnama Rad et al., 2020; Rahnama Rad and
Maleki, 2020; Patil et al., 2022; Xu et al., 2021).

2.2 ALO for non-differentiable regularizers

The ALO formula above and the corresponding theory
supporting it require twice differentiability but some
of the most important loss functions and regularizers,
such as elastic net, nuclear norm, or hinge loss are not
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twice-differentiable. For example, consider the follow-
ing estimate:

β̂ := argmin
β∈Rp

h(β), (6)

where h(β) :=
∑n

i=1 ℓ(yi|x⊤
i β) + λ(1 − η)∥β∥1 +

λη∥β∥2
2, and suppose that as before our goal is to ap-

proximate

LO := 1
n

n∑
i=1

ϕ(yi; x⊤
i β̂/i) (7)

where

β̂/i :=

argmin
β∈Rp

∑
j ̸=i

ℓ(yj |x⊤
j β) + λ(1 − η)∥β∥1 + λη∥β∥2

2

 .

(8)

Due to the regularizer’s non-differentiability we cannot
use the one step Newton approximation as proposed in
the previous section. However, the following heuristic
argument serves as a motivation of our new method.
Let S denote the active set of β̂, i.e.,

S = {i : β̂i ̸= 0}.

Suppose that the active set of β̂/i remains the same
as S for all i. Then, we can solve (3) on the set S
only. The validity of this heuristic assumption, and
our remedies when it is mildly violated, are discussed
in later sections. For now, since the regularizer is twice
differentiable on S, we can use the Newton method
to obtain the following approximation for LO of the
elastic-net:

ALO = 1
n

n∑
i=1

ϕ

(
yi, x⊤

i β̂ +
(

ℓ̇i(β̂)
ℓ̈i(β̂)

)(
Hii

1 − Hii

))
(9)

where Hii is the (i, i) element of

H := XS

(
2ληI + X⊤

S diag[ℓ̈(β̂)]XS

)−1
X⊤

S diag[ℓ̈(β̂)].

with XS contains the columns of X that are in S.

Unfortunately, the assumption that led to (9), i.e., the
assumption that the active set does not change when a
data point is removed, is not correct. While it is true
that some of leave-i-out estimated coefficients retain
the active set, most estimated active sets do change.
Figure 1 confirms this claim.

Despite the observation in Figure 1, extensive empir-
ical results presented in (Beirami et al., 2017; Wang
et al., 2018; Rahnama Rad and Maleki, 2020; Stephen-
son and Broderick, 2020) confirm that (9) offer an ac-
curate estimation of LO (and OO).
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Figure 1: The histogram above shows the size of the differ-
ence in active sets when performing linear regression with
the elastic net penalty on the entire dataset, vs leave-i-
out (i.e., leaving out the i-th observation for i = 1, . . . , n).
The parameters are n = 500, p = 1000 with 20% of the
true coefficients being non-zero. The design matrix X
has iid N(0, 1/n) rows, and the nonzero coefficients are
iid N(0, 1). The penalty strengths are λ = 2, η = 0.5.
We use the ElasticNet function from the Python library
scikit-learn.

To understand these two contradictory observations,
we ran another simulation that appears in Figure 2.
In this figure we find that, while the active set does
change, the number of changes in the active set (de-
noted by ∆p) scales at a sub-linear rate with respect
to p (and hence n) as p, n increases. Indeed, the com-
parable points in the boxplots (e.g., the median, max-
imum) of the logarithms, lie on a line that has slope
smaller than one. A linear regression of the medians of
log(∆p) on log(p) showed a slope of 0.43 when p = n
and 0.52 when p = 2n.

This implies that ∆p/p → 0 as p, n increases. As will
be clarified later, this sub-linear rate of growth that
will be proved in Theorem 2, is the main reason that
the simulation results confirm the accuracy of (9).

2.3 Related work

Various approaches to estimating the out-of-sample er-
ror have been proposed. Examples include (but are
not limited to) cross validation (Stone, 1974), pre-
dicted residual error sum of squares (Allen, 1974), and
generalized cross validation (Craven and Wahba, 1979;
Golub et al., 1979), just to name a few.

In the past, the use of n-fold cross validation (also
known as LO) has been limited due to the high compu-
tational cost of repeatedly refitting the model n times,
and due to concerns about the high variance, especially
when n and p grow unboundedly. Recently, these con-
cerns have been (mostly) alleviated by a large body
of work that showed: 1) that the variance of LO in
estimating OO goes to zero as n and p grow (Kumar
et al., 2013; Bayle et al., 2020; Rahnama Rad et al.,
2020; Patil et al., 2022; Luo et al., 2023), and 2) that
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Figure 2: The figure shows boxplots of the change in sizes
of leave-i-out active sets (denoted by ∆p), plotted against
the dimension, (on a logarithmic scale) when performing
linear regression with the elastic net penalty. The upper
and lower edges of the box in each boxplot represent the
1st and the 3rd quartiles respectively, and the black line
represents the median. The whiskers extend up to the most
extreme value in 1.5 times the interquartile range. The
parameters are taken as p = n (left) and p = 2n (right),
and in either figure p is then varied from 1000 to 10000
with six equal increments on the log scale. We take 20%
of the true coefficients to be non-zero. The design matrix
X has iid N(0, 1/n) rows, and the nonzero coefficients are
iid N(0, 1). The penalty strengths are λ = 2, η = 0.5.
We use the ElasticNet function from the Python library
scikit-learn.

computationally efficient approximations to the leave-
one-out cross validation (can) provide statistically re-
liable estimates of LO and OO (Beirami et al., 2017;
Wang et al., 2018; Rahnama Rad and Maleki, 2020;
Rahnama Rad et al., 2020; Patil et al., 2022; Stephen-
son and Broderick, 2020; Obuchi and Sakata, 2019;
Opper and Winther, 2000; Cawley and Talbot, 2008;
Meijer and Goeman, 2013; Vehtari et al., 2017, 2016;
Obuchi and Kabashima, 2016, 2018; Xu et al., 2021).
Most theoretical work about the consistency of ALO
in estimating LO has focused on differentiable regular-
izers, such as ridge, smoothed LASSO and Huber loss
(Rahnama Rad et al., 2020; Rahnama Rad and Maleki,
2020; Patil et al., 2022). Assuming that the SNR grows
unboundedly, as n grows, (Stephenson and Broderick,
2020) considered ℓ1 regularizers. In this regime the op-
timal value of the regularization parameter λ goes to
zero, and tuning becomes (nearly) irrelevant because
of the unbounded SNR.

Despite significant empirical evidence, to the best of
our knowledge, there is no theoretical study of the con-
sistency of ALO for non-differentiable regularizers in
a regime where n and p grow to infinity while n/p
and SNR remains bounded, a framework typical in
high dimensional risk estimation problems (Donoho
et al., 2011; Donoho and Montanari, 2016; Maleki,
2011; Mousavi et al., 2018; Wang et al., 2020, 2022;
Xu et al., 2021; Guo et al., 2022; Rahnama Rad et al.,

2020; Rahnama Rad and Maleki, 2020; Patil et al.,
2022). Given the importance of risk estimation for
non-differertiable estimation problems, this paper ad-
dresses the problem in the finite-SNR regime where
tuning significantly impacts the selected model and
estimated coefficients (as we discuss in Section 3.2).

2.4 Our technical contributions

In this paper, our primary focus is on risk estimation
for ℓ1 regularized problems within the generalized lin-
ear model family. Specifically, we aim to establish an
upper bound for the error |ALO − LO| under the con-
ditions of large n and p, while maintaining fixed and
bounded values for n/p and SNR. In the following, we
outline some of the key theoretical innovations that
have enabled us to undertake a comprehensive analy-
sis of |ALO − LO| in this context. For detailed proofs
and further insights, please refer to the supplementary
material available online.

Our initial step involves a smooth approximation rα(z)
for the ℓ1-norm ∥z∥1, where α is a parameter such that,
as α approaches infinity, this approximation becomes
increasingly accurate. While smoothing techniques
have been extensively employed for deriving approx-
imate minimizers of non-differentiable convex func-
tions, their application as proof techniques in high-
dimensional statistics has been unexplored. The pri-
mary challenge arises from the fact that as α → ∞, it
becomes considerably difficult to bound the quantities
that are of particular interest to statisticians, such as
|ALOα − LOα| in our specific problem. Here, ALOα

and LOα represent the smoothed approximations of
ALO and LO, respectively.

In our paper (in the proof of Theorem 1), we have de-
vised an innovative method to bound such quantities,
which we anticipate to have broader applications in
studying non-differentiable losses and regularizers in
high-dimensional settings.

Our smoothing technique, in essence, simplifies the
task of bounding |ALO − LO| by transforming it into
the challenge of limiting the changes in the active set
between the full-data estimate and the leave-one-out
estimate. Hence, in this paper, we develop new tech-
niques for understanding the relationships between
two estimates that are using the same samples (proof
of Theorem 2). As an example of our approach, we em-
ploy our technique to establish an upper bound for the
disparity between S and S/i, where roughly speaking,
S and S/i denote the locations of non-zero coefficients
in β̂ and β̂/i, respectively. We anticipate that this
technique will prove valuable for other problems, such
as the analysis of ensemble methods within the context
of high-dimensional settings.
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3 MAIN THEORETICAL RESULT

We begin by introducing our notations in Section 3.1
and assumptions in Section 3.2. We discuss the as-
sumptions in Section 3.3 and show these assumption
encompass a large class of typical problems. Then we
present our main theorem in Section 3.4.

3.1 Notations

In this manuscript, vectors are denoted with boldfaced
lowercase letter, such as x. Matrices are represented
with boldfaced capital letters, such as X. Calligraphic
letters, such as F are used for sets and events. For a
matrix X, σmin(X), ∥X∥, ∥X∥HS , Tr(X) denote the
minimum singular value, the spectral norm (equal to
the maximum singular value σmax(X)), the Hilbert-
Schmidt norm, and the trace of the matrix X respec-
tively. Suppose F represents a subset of indices corre-
sponding to the columns of matrix X. In such a case,
the notation XF refers to a matrix formed by select-
ing only those columns of X whose indices belong to
the set F . The subscript “/i” refers a quantity related
to the leave-i-out model, e.g. X/i refers to matrix
X after deleting the ith row, and β̂/i, β̂α

/i refer to the
leave-i-out estimate and the smoothed leave-i-out esti-
mate, respectively. For two probability measures µ, ν,
Wq(µ, ν) denote their Wasserstein-q distance. More-
over, we use the following definitions in this paper:

ℓ̇i(β) := ∂ℓ(yi|z)
∂z

∣∣∣∣
z=x⊤

i
β

, ℓ̈i(β) := ∂2ℓ(yi|z)
∂z2

∣∣∣∣
z=x⊤

i
β

ℓ̇/i(β) :=
[
ℓ̇1(β), · · · , ℓ̇i−1(β), ℓ̇i+1(β), · · · , , ℓ̇n(β)

]⊤
,

ℓ̈/i(β) :=
[
ℓ̈1(β), · · · , ℓ̈i−1(β), ℓ̈i+1(β), · · · , , ℓ̈n(β)

]⊤
.

We also denote any polynomials of log(n) by
PolyLog(n). For x, y ∈ R, we write x ∧ y and x ∨ y to
denote min{x, y} and max{x, y} respectively.

3.2 Assumption group A

The following assumptions have been extensively used
in the literature of high-dimensional statistics. We will
explain the rationale for making these assumptions in
the next section.

A1 X = (x1, · · · , xn)⊤ where xi ∈ Rp are iid N(0,Σ).
Moreover, there exist constants 0 < cX ≤ CX

such that p−1cX ≤ σmin(Σ) ≤ σmax(Σ) ≤
p−1CX .

A2 n/p = γ0 ∈ (0, ∞).

A3 ϕ has continuous derivative ϕ̇, and ℓ(y|z) has con-
tinuous second derivative w.r.t. z.

A4 There exists ⋆
ϵ> 0, and qn, q̌n, q̄n ∈ [0, 1), such

that

P

 sup
1≤i≤n

v∈D

ℓ̇i(v) ≤ PolyLog(n)

 ≥ 1 − q̌n, (10)

P

 sup
1≤i≤n

v∈D

ℓ̈i(v) ≤ PolyLog(n)

 ≥ 1 − qn, (11)

P

 sup
1≤i≤n,
v,v′∈D

∥ℓ̈i(v) − ℓ̈/i(v′)∥
∥v − v′∥2

≤ PolyLog(n)


≥ 1 − q̄n (12)

where

D := ∪
1≤i≤n

∪
t∈[0,1]

B(tβ̂ + (1 − t)β̂/i,
⋆
ϵ),

B(w, r) := {z : ∥z − w∥2 ≤ r} .

A5 η ∈ (0, 1), and λ ∈ (0, λmax] for an arbitrary con-
stant λmax > 0.

3.3 Discussion of the assumptions

In the previous section, we made five assumptions
that will be used for our theoretical results. In this
section, we clarify our rationale for making these
assumptions.

3.3.1 About assumption A1 and A2

Assumptions A1 and A2 ensure that x⊤
i β∗ remains

finite as n and p grow unboundedly as long as ∥β∗∥2/p
is bounded:

cX

p
∥β∗∥2 ≤ E(x⊤

i β∗)2 ≤ CX

p
∥β∗∥2.

For instance, if each element of β∗ remains bounded,
then x⊤

i β∗ will be Op(1).

In addition to the aforementioned rationale for As-
sumptions A1 and A2, there is another compelling jus-
tification that we explain below.

Let λ∗(n, p) denote the value of λ that minimizes the
prediction error of β̂. Suppose that we are interested in
the asymptotic setting n, p → ∞, such that n/p = γ0
remains fixed. Then, if Assumption A1 holds, for
many problems it has been shown that λ∗(n, p) → λ̄,
in probability, where λ̄ is a fixed number in the range
(0, ∞). See for instance (Mousavi et al., 2018; Wang
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et al., 2020, 2022). Intuitively speaking, if under an-
other scaling λ∗(n, p) goes to zero as n, p → ∞, then it
indicates that the estimation problem is becoming eas-
ier as p grows and hence a regularizer is not required.
Similarly, if under another scaling λ∗(n, p) goes to in-
finity as n, p → ∞, it indicates that the estimation
problem is becoming so difficult that we end up choos-
ing zero estimator as the best one. Hence, the scaling
we have chosen here seems to be one of the most useful
scalings for practice.

In summary, we believe that Assumptions A1 and
A2 provide a good scaling regime for studying risk
estimation (or the related problem of hyperparameter
tuning) problem.

3.3.2 About assumption A4

Assumption A4 introduces a regularity condition for
the data generating mechanism and the loss function
ℓ. To clarify this point, we present a proposition be-
low, which outlines a sufficient condition based on sim-
pler regularity conditions for ℓ and the data generation
mechanism to satisfy A4.
Proposition 1. Suppose that P(|yi| > PolyLog(n)) ≤
qy

n for some qy
n = o(1/n). Furthermore, suppose that

ℓ(y|z) is three times differentiable with respect to z and
that ℓ(y|z), ℓ̇(y|z), ℓ̈(y|z), and

...
ℓ (y|z) grow polynomi-

ally in y, z, i.e., there exists a positive integer m and
a constant C > 0 such that

max{|ℓ(y|z)|, |ℓ̇(y|z)|, |ℓ̈(y|z)|, |
...
ℓ (y|z)|}

≤ C(1 + |y|m + |z|m). (13)

for all (y, z). Then, Assumption A4 holds.

The proof of the above proposition can be found in
Section 2 of the online supplementary material.

The condition of polynomial growth for the loss func-
tion is not unduly restrictive, as it encompasses many
commonly used loss functions.

To illustrate this point, we present a few examples
of popular loss functions, viz., squared error, logistic,
and Poisson. Therefore, Assumption A4 holds for the
majority of loss functions encountered in applications.

For simplicity we assume xi ∼ N(0, 1
n Ip), but the ex-

amples are still valid for a general covarance matrix as
in Assumption A1.
Example 3.1 (Linear regression). Suppose yi|xi ∼
N(x⊤

i β∗, σ2), then yi ∼ N(0, σ2 + 1
n ∥β∗∥2). Denote

ν2 := σ2 + 1
n ∥β∗∥2, we then have, for arbitrary q > 1:

P(|yi| > ν
√

2q log(n)) ≤ 2e− 2qν2 log(n)
2ν2 = n−q.

If we use negative log-likelihood as loss function, then
ℓ(y|z) and its derivatives w.r.t. z are:

ℓ(y|z) = 1
2σ2 (y − z)2,

ℓ̇(y|z) = 1
σ2 (z − y) ; ℓ̈(y|z) = 1

σ2 ;
...
ℓ (y|z) = 0,

and hence they are all dominated by 1
σ2 (1 + y2 + z2).

Example 3.2 (Logistic regression). Suppose yi|xi ∼
Bernoulli(1/(1 + e−x⊤

i β∗)), then the boundedness of
|yi| is natually satisfied since yi ∈ {0, 1}. The negative
log-likelihood loss and its derivatives w.r.t. z are

|ℓ(y|z)| =
∣∣y log(1 + e−z) + (1 − y) log(1 + ez)|

∣∣
≤ 2 log(2) + 2|z|,

|ℓ̇(y|z)| =
∣∣∣∣ ez

1 + ez
− y

∣∣∣∣ ≤ 1 + |y|,

|ℓ̈(y|z)| =
∣∣∣∣ e−z

(1 + e−z)2

∣∣∣∣ ≤ 1,

|
...
ℓ (y|z)| =

∣∣∣∣ ez − e−z

(e−z + ez + 2)2

∣∣∣∣ ≤ 4.

The bound of ℓ(y|z) uses the fact that y ∈ {0, 1}.
Example 3.3 (Poisson regression). Suppose yi ∼
Poisson(λ) where λ = log(1+ex⊤

i β∗), then we have, by
the Chernoff bound (see, e.g., Exercise 2.3.3 of (Ver-
shynin, 2018)) that:

P(yi > log(n)) ≤

(
C√

log(n)

)log(n)

= o(n−1).

Since x⊤
i β∗ ∼ N(0, 1

n ∥β∗∥2), we have

P(|x⊤
i β∗| > 2ν

√
log(n)) ≤ n−2

where ν2 = 1
n ∥β∗∥2. So we have, with probability at

least 1 − n−2, that

λ = log(1 + ex⊤
i β∗

) log(2) + 2n−1/2∥β∗∥
√

log(n).

It can be checked that the negative log-likelihood loss is

|ℓ(y|z)| = | log(y!) + log(1 + ez) − y log log(1 + ez)|
≤ C(y2 + z2 + 1)

where C = 1 + log log(2) + (2 log(2))−1.

The derivatives of the loss function w.r.t. z satisfy

|ℓ̇(y|z)| =
∣∣∣∣ 1
1 + e−z

− yez

(1 + ez) log(1 + ez)

∣∣∣∣ ≤ 1 + |y|,

|ℓ̈(y|z)| =
∣∣∣∣y( ez

(1 + ez) log(1 + ez)

)2

− yez

(1 + ez)2 log(1 + ez) + ez

(1 + ez)2

∣∣∣∣
≤ 1 + 2|y|,

|
...
ℓ (y|z)| ≤ 3 + 14|y|.
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We use the fact that ((1 + e−z) log(1 + ez))−1 ≤ 1 for
all z ∈ R. We omit the exact expression for

...
ℓ (y|z)

for brevity.

3.4 Main theorem

Based on Assumptions A1-A5, we would like to state
our main theorem. However, our main theorem uses
two important sets. We first require the notion of the
subgradient vector g(β) defined as

g(β) := 1
λ(1 − η)

n∑
i=1

ℓ̇(yi|x⊤
i β) − 2η

1 − η
β (14)

It can be directly verified that g(β̂) ∈ ∂∥β̂∥1, i.e. g(β̂)
belongs to the subgradient of ℓ1-term in (6). In fact,
the first order derivative of the elastic net problem (6)
gives:

0 ∈
n∑

i=1
ℓ̇(yi|x⊤

i β̂) + λ(1 − η)∂∥β̂∥1 + 2ληβ̂

where ∂∥β̂∥1 denotes the subgradient of ∥β∥1 evalu-
ated at β̂. We then obtain (14) by rearranging the
terms. Hence we hereafter refer to g(β̂) as “the” sub-
gradient of ∥β̂∥1.

The active set of β̂ is A := {k ∈ [p] : |β̂k| > 0}, and
similarly the non-active set is Ac = {k ∈ [p] : |β̂k| =
0}. It is well known that |g(β̂)k| = 1 for k ∈ A and
|g(β̂)k| < 1 for k ∈ Ac. We now define two sets which,
heuristically speaking, stand for “strongly active” and
“strongly non-active” sets. We gather the active large
coefficients into S(1) ⊂ A, and the non-active small
sub-differential coefficients into S(0) ⊂ Ac. That is,

S(1) := {k ∈ [p] : |β̂k| > κ1(n)},

S(0) := {k ∈ [p] : |g(β̂)k| ≤ 1 − κ0(n)}, (15)

where κ1(n) and κ0(n) both are o(1) as n → ∞.2 We
will clarify our choice of these parameters later. Like-
wise, we define S(1)

/i , S(0)
/i for the leave-i-out problems.

Note that S(1) is a subset of the active set of β̂ by only
including active elements that are not too close to zero.
On the one hand, the condition κ1(n) → 0 implies that
S(1) is close to the active set. On the other hand, when
the gap κ1(n) is selected to be sufficiently large (the
choice will be clarified later), it is intuitively expected
that only a very small fraction of the indices in S(1)

will move out of the active set (i.e. the corresponding
coefficient becomes zero) in the leave-i-out problem.

2eg. κ0(n) = (log p)1/6p−δ where δ ∈ (0, 1
6 ), and

κ1(n) = p−1/12.

These two points makes S(1) a good substitution of
the active set discussed in Section 2.2.

To understand S(0), consider the non-active set of β̂,
i.e. the indices of zero coefficients of β̂. S(0) is actually
a subset of the non-active set, which only includes ele-
ments with sub-gradients bounded away from 1, as in-
dicated by its definition {k ∈ [p] : |g(β̂)k| ≤ 1−κ0(n)}.
Again κ0(n) → 0 makes S(0) close to the non-active
set, and by setting the right rate of the convergence
of κ0(n), it should be expected that only a very small
number of regression coefficients corresponding to in-
dices in S(0) will become nonzero in the leave-i-out
problem.

To sum up, our choice of S(1) and S(0) serve as prox-
ies of the active and non-active set of β̂ that are more
resilient to the leave-i-out procedure. In other words,
we expect the size of (S(1) ∪ S(0))c to be small com-
pared to p. As is clear from the above discussion, the
speed at which κ1(n) and κ0(n) go to zero must be
carefully selected to satisfy the two contrasting objec-
tives. On the one hand, we want them both to go to
zero as slowly as possible so that S(1) and S(0) only
include elements from which we have strong evidence
to be active and non-active, respectively. On the other
hand, we want κ1(n) and κ0(n) to go to zero as fast as
possible, so that (S(1) ∪ S(0))c is as small as possible.
The details are presented in Theorem 2.

To describe our theoretical result, consider the follow-
ing sets:

B1,i := S(1) ∩ S(1)
/i , B0,i := S(0) ∩ S(0)

/i

B1,i,+ := B1,i ∩ {k : β̂k · β̂/i,k > 0} (16)

Heuristically, B1,i contains the indices of large co-
efficients that remain large after leaving the ith

observation out, and B0,i contains the indices of
zero coefficients with small subderivative (of LASSO
component) that remain so after leaving the ith

observation out. Note that B1,i and B0,i are mutually
exclusive, and B1,i,+ is the subset of B1,i that rules
out the coefficients with flipped signs. Ideally we
wish leaving-i-out would not change the fact of each
coefficient being zero or non-zero, i.e., B1,i ∪B0,i = [p].
This is clearly not true according to Figure 1, but the
violation is actually controllable. Indeed, Figure 2
shows that the size of the leave-i-out perturbations,
i.e., |(B0,i ∪ B1,i,+)c| scale at a rate which is slower
than p. Our main theoretical result proves that the
difference between LO and the ALO formula of (9) is
proportional to |(B0,i ∪B1,i,+)c|/n and thus disappears
for large p, n.

Theorem 1. Under Assumptions A1-A5, let 1 ≤ dn ≤
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p/C for some sufficiently large C be such that

max
1≤i≤n

|(B0,i ∪ B1,i,+)c| ≤ dn

with probability at least 1 − q̃n. Then we have

|ALO − LO|

≤ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn

nλη
+ dnPolyLog(n)

nλ2η2 + PolyLog(n)√
nλη

with probability at least 1 − (n + 1)e−p − (n + 2)p−dn −
2qn − 2q̌n − 2q̄n − 2q̃n.

We present the proof of Theorem 1 in Section 3 of the
online supplementary material.

Let us now clarify the statement of the theorem. First
note that while the bound we have obtained for the
difference between ALO and LO is a finite sample
bound, one way to interpret and understand the result
is through the asymptotic setting we described in Sec-
tion 3.3.1, i.e. n, p → ∞ while n/p = γ0. Theorem 1
shows that ALO, while being computationally much
more tractable, is a valid approximation to LOOCV in
the regime we have considered. Indeed, according to
Theorem 1, suppose λ, η remain fixed and dn = o(pζ)
with some ζ < 1, then the upper bound of Theorem 1 is
o(p 1

2 (ζ−1)PolyLog(n)), which goes to zero as n, p → ∞.
Thus, ALO provides a computationally efficient, con-
sistent estimate of the out-of-sample risk.

4 THE EXAMPLE OF LINEAR
REGRESSION

Theorem 1 shows that if dn grows slowly enough (e.g.
dn = pζ for ζ < 1), then the difference between ALO
and LO will go to zero in probability. To see what
the growth rate of dn in terms of p is, in this section
we focus on the concrete example of linear regression
and obtain an upper bound for |(B0,i ∪ B1,i,+)c|. Even
though the result of this section is given for the lin-
ear models, it is expected that a similar conclusion
holds for more general models and under more general
assumptions. However, given the length of the cur-
rent paper, the complete investigation of the size of
(B0,i ∪ B1,i,+)c under the generalized linear model is
left for a future research. Let us start with our mod-
elling assumptions. In addition to Assumption group
A we also assume the following:

Assumption group B

B1 y = Xβ∗ + w, where w ∼ N(0, σ2
wI) is the noise

or error in the observations.

B2 The loss function l(y|x⊤β) = 1
2 (y − x⊤β)2.

B3 The true coefficients β∗ satisfy 1
p ∥β∗∥2

2 ≤ ξ for
some constant ξ > 0.

B4 X has iid entries Xij ∼ N(0, 1
n ).

B5 λ2(1 − η)2 = ω(p− 7
12 ).

Note that Assumptions B1-B3 are standard in the
literature of linear regression. Assumption B4 is
also frequently encountered in the high-dimensional
asymptotic analysis of estimators (Miolane and Mon-
tanari, 2021; Bradic and Chen, 2015; Donoho et al.,
2009; Bayati and Montanari, 2012; Weng et al., 2018;
Dobriban and Wager, 2018; Wang et al., 2020; Maleki
et al., 2013; Thrampoulidis et al., 2015; Rangan, 2011;
Li and Wei, 2021). However, it is expected that this
assumption can be relaxed as well given the more
recent results in the literature (Celentano et al., 2020).
Finally, Assumption B5 is a technical assumption
on the rate of λ and η. We note here that it shows
that for large values of p, one can choose λ to be
quite small. The following theorem uses Assumptions
B1-B5 to find an upper bound for |(B0,i ∪ B1,i,+)c|.

Theorem 2. Under Assumptions A1-A5 and B1-B5,
in (15) set κ0 = ( 8 log p

c0p )1/6 and κ1 = p−1/12(log p)1/4

where c0 is a positive constant.3 Then there exist con-
stants C, C ′ > 0 such that

max
1≤i≤n

|(B0,i ∪ B1,i,+)c| ≤ Cp11/12(log p)1/4

with probability at least 1 − C ′p−6 − qn − e−c0p.

The proof of Theorem 2 can be found in Section 4 of
the online supplementary material.

5 CONCLUSION

In this paper, we have introduced a novel theoretical
framework that offers error bounds for the disparity
between the computationally intensive leave-one-out
risk estimate (LO) and its more computationally ef-
ficient approximation (ALO). We focus in a regime
where n/p and SNR remain bounded regardless of
how large n and p grow. For problems in the gen-
eralized linear model family such as linear Gaussian,
Poisson and logistic, we bound the error between ALO
and LO in terms of intuitive metrics such as pertur-
bation size of leave-i-out active sets. Next, for least
squares problems with elastic-net regularization, we
show that these purturbations scales sub-linearly with
n and p, and consequently, the difference |ALO − LO|
approaches zero as n, p → ∞.

3The specific choice of c0 can be found in Section 4 in
the supplementary material.
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Léo Miolane and Andrea Montanari. The distribution
of the Lasso: Uniform control over sparse balls and
adaptive parameter tuning. The Annals of Statis-
tics, 49(4):2313–2335, 2021.

Ali Mousavi, Arian Maleki, and Richard G. Baraniuk.
Consistent parameter estimation for LASSO and ap-



Approximate Leave-one-out Cross Validation for Regression with ℓ1 Regularizers

proximate message passing. The Annals of Statis-
tics, 46(1):119 – 148, 2018.

Tomoyuki Obuchi and Yoshiyuki Kabashima. Cross
validation in LASSO and its acceleration. Journal
of Statistical Mechanics: Theory and Experiment,
2016(5), 2016.

Tomoyuki Obuchi and Yoshiyuki Kabashima. Acceler-
ating Cross-Validation in Multinomial Logistic Re-
gression with ℓ1-Regularization. The Journal of Ma-
chine Learning Research, 19(1):2030–2059, 2018.

Tomoyuki Obuchi and Ayaka Sakata. Cross validation
in sparse linear regression with piecewise continuous
nonconvex penalties and its acceleration. Journal
of Physics A: Mathematical and Theoretical, 52(41):
414003, 2019.

Manfred Opper and Ole Winther. Gaussian processes
and SVM: Mean field results and leave-one-out.
2000.

Pratik Patil, Yuting Wei, Alessandro Rinaldo, and
Ryan Tibshirani. Uniform Consistency of Cross-
Validation Estimators for High-Dimensional Ridge
Regression. In Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics,
volume 130 of Proceedings of Machine Learning Re-
search, pages 3178–3186. PMLR, 2021.

Pratik Patil, Alessandro Rinaldo, and Ryan Tibshi-
rani. Estimating Functionals of the Out-of-Sample
Error Distribution in High-Dimensional Ridge Re-
gression. In Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics,
volume 151 of Proceedings of Machine Learning Re-
search, pages 6087–6120. PMLR, 2022.

Kamiar Rahnama Rad and Arian Maleki. A scalable
estimate of the out-of-sample prediction error via
approximate leave-one-out cross-validation. Journal
of the Royal Statistical Society Series B: Statistical
Methodology, 82(4):965–996, 2020.

Kamiar Rahnama Rad, Wenda Zhou, and Arian
Maleki. Error bounds in estimating the out-of-
sample prediction error using leave-one-out cross
validation in high-dimensions. In International
Conference on Artificial Intelligence and Statistics,
pages 4067–4077. PMLR, 2020.

Sundeep Rangan. Generalized approximate message
passing for estimation with random linear mixing.
In 2011 IEEE International Symposium on Infor-
mation Theory Proceedings, pages 2168–2172. IEEE,
2011.

William Stephenson and Tamara Broderick. Approxi-
mate cross-validation in high dimensions with guar-
antees. In International Conference on Artificial In-
telligence and Statistics, pages 2424–2434. PMLR,
2020.

Mervyn Stone. Cross-validatory choice and assessment
of statistical predictions. Journal of the Royal Sta-
tistical Society, 36(2):111–147, 1974.

Christos Thrampoulidis, Samet Oymak, and Babak
Hassibi. Regularized Linear Regression: A Precise
Analysis of the Estimation Error. In Proceedings
of The 28th Conference on Learning Theory, vol-
ume 40, pages 1683–1709, 2015.

Aki Vehtari, Tommi Mononen, Ville Tolvanen, Tuo-
mas Sivula, and Ole Winther. Bayesian leave-
one-out cross-validation approximations for gaus-
sian latent variable models. The Journal of Machine
Learning Research, 17(1):3581–3618, 2016.

Aki Vehtari, Andrew Gelman, and Jonah Gabry. Prac-
tical Bayesian model evaluation using leave-one-out
cross-validation and WAIC. Statistics and Comput-
ing, 27(5):1413–1432, 2017.

Roman Vershynin. High-dimensional probability: An
introduction with applications in data science, vol-
ume 47. Cambridge university press, 2018.

Shuaiwen Wang, Wenda Zhou, Arian Maleki, Haihao
Lu, and Vahab Mirrokni. Approximate leave-one-
out for high-dimensional non-differentiable learning
problems. arXiv preprint arXiv:1810.02716, 2018.

Shuaiwen Wang, Haolei Weng, and Arian Maleki.
Which bridge estimator is the best for variable selec-
tion? The Annals of Statistics, 48(5):2791 – 2823,
2020.

Shuaiwen Wang, Haolei Weng, and Arian Maleki. Does
SLOPE outperform bridge regression? Information
and Inference: A Journal of the IMA, 11(1):1–54,
2022.

Haolei Weng, Arian Maleki, and Le Zheng. Overcom-
ing the limitations of phase transition by higher or-
der analysis of regularization techniques. The An-
nals of Statistics, 46(6a):3099–3129, 2018.

Ji Xu, Arian Maleki, Kamiar Rahnama Rad, and
Daniel Hsu. Consistent risk estimation in mod-
erately high-dimensional linear regression. IEEE
Transactions on Information Theory, 67(9):5997–
6030, 2021.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes, all such descriptions can be found im-
mediately preceding our main results, i.e.,
Theorems 1 and 2.]



Arnab Auddy, Haolin Zou, Kamiar Rahnama Rad, Arian Maleki

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
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Approximate Leave-one-out Cross Validation for Regression with ℓ1
Regularizers:

Supplementary Materials

This supplement is organized as follows. In Section 1, we restate our main results for the reader’s convenience.
In Sections 2, 3 and 4, we present the proofs of Proposition 1, Theorem 1 and Theorem 2 respectively. Section 5
contains the proofs of lemmas and auxiliary theorems. Finally, the Appendix 6 prepares some results on the
elastic net regularized least squares optimization problem which we use in the proof of Theorem 2.

1 MAIN RESULTS

Before providing the proofs, we restate the results in the main paper for completeness.

Approximate Leave One out (ALO) replaces the computationally demanding procedure of repeatedly fitting the
model with finding an approximate model that is easy to compute. Instead of exactly computing the leave-
one-out estimate β̂/i, ALO adjusts the estimate β̂ based on the entire dataset D, and uses one Newton step to
compute the approximation β̃/i as follows:

β̃/i = β̂ +

∑
j ̸=i

xjx⊤
j ℓ̈(yj |x⊤

j β̂) + λ∇2r(β̂)

−1

xiℓ̇(yi|x⊤
i β̂) (1)

We use the following approximation for LO of the elastic net.

ALO = 1
n

n∑
i=1

ϕ

(
yi,x⊤

i β̂ +
(
ℓ̇i(β̂)
ℓ̈i(β̂)

)(
Hii

1 −Hii

))
(2)

where
H := XS

(
2ληI + X⊤

S diag[ℓ̈(β̂)]XS

)−1
X⊤

S diag[ℓ̈(β̂)].

1.1 Assumption group A

The following assumptions have been extensively used in the literature of high-dimensional statistics. We will
explain the rationale for making these assumptions in the next section.

A1 X = (x1, · · · ,xn)⊤ where xi ∈ Rp are iid N(0,Σ). Moreover, there exist constants 0 < cX ≤ CX such that
p−1cX ≤ σmin(Σ) ≤ σmax(Σ) ≤ p−1CX .

A2 n/p = γ0 ∈ (0,∞).

A3 ϕ has continuous derivative ϕ̇, and ℓ(y|z) has continuous second derivative w.r.t. z.

A4 There exists ⋆ϵ> 0, and qn, q̌n, q̄n ∈ [0, 1), such that

P

 sup
1≤i≤n

v∈D

ℓ̇i(v) ≤ PolyLog(n)

 ≥ 1 − q̌n, (3)
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P

 sup
1≤i≤n

v∈D

ℓ̈i(v) ≤ PolyLog(n)

 ≥ 1 − qn (4)

P

 sup
1≤i≤n,
v,v′∈D

∥ℓ̈i(v) − ℓ̈/i(v′)∥
∥v − v′∥2

≤ PolyLog(n)

 ≥ 1 − q̄n (5)

where

D := ∪
1≤i≤n

∪
t∈[0,1]

B(tβ̂ + (1 − t)β̂/i,
⋆
ϵ),

B(w, r) := {z : ∥z − w∥2 ≤ r} .

A5 η ∈ (0, 1), and λ ∈ (0, λmax] for an arbitrary constant λmax > 0.

where

D := ∪
1≤i≤n

∪
t∈[0,1]

B(tβ̂ + (1 − t)β̂/i,
⋆
ϵ), and B(w, r) := {z : ∥z − w∥2 ≤ r} .

To show that our assumptions are satisfied for a wide range of regression models, we state
Proposition 1. Suppose that P(|yi| > PolyLog(n)) ≤ qyn for some qyn = o(1/n). Furthermore, suppose that
ℓ(y|z) is three times differentiable with respect to z and that ℓ(y|z), ℓ̇(y|z), ℓ̈(y|z), and

...
ℓ (y|z) grow polynomially

in y, z, i.e., there exists a positive integer m and a constant C > 0 such that

max{|ℓ(y|z)|, |ℓ̇(y|z)|, |ℓ̈(y|z)|, |
...
ℓ (y|z)|} ≤ C(1 + |y|m + |z|m)

for all (y, z). Then, Assumption A4 holds.

Next, let us define g(β) as

g(β) := 1
λ(1 − η)

n∑
i=1

ℓ̇(yi|x⊤
i β) − 2η

1 − η
β (6)

Finally, we have the main theorem which proves that the difference of ALO and LO goes to zero in the asymptotic
regime considered in the paper. Based on the subgradient, define the following subsets of [p] = {1, 2, 3, . . . , p}:

S(1) := {k ∈ [p] : |β̂k| > κ1(n)},
S(0) := {k ∈ [p] : |g(β̂)k| ≤ 1 − κ0(n)}, (7)

We also consider the following sets:

B1,i := S(1) ∩ S(1)
/i ,B0,i := S(0) ∩ S(0)

/i

B1,i,+ := B1,i ∩ {k : β̂k · β̂/i,k > 0} (8)

Theorem 1. Under Assumptions A1-A5, for a sufficiently large constant C > 0, let 1 ≤ dn ≤ p/C be such that

max
1≤i≤n

|(B0,i ∪ B1,i,+)c| ≤ dn

with probability at least q̃n. Then we have

|ALO − LO| ≤ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn
nλη

+ dnPolyLog(n)
nλ2η2 +

√
PolyLog(n)

nλη

with probability at least 1 − (n+ 1)e−p − (n+ 2)p−dn − 2qn − 2q̌n − 2q̄n − 2q̃n.

Finally, we consider the example of multiple linear regression, with the elastic net penalty, and show that in this
case, with high probability, |(B0,i ∪ B1,i,+)c| indeed grows at a sub-linear rate as n, p → ∞. Let us start with
our modelling assumptions:



1.2 Assumption group B

B1 y = Xβ∗ + w, where w ∼ N(0, σ2
wI) is the noise or error in the observations.

B2 The loss function l(y|x⊤β) = 1
2 (y − x⊤β)2.

B3 The true coefficients β∗ satisfy:
1
p

∥β∗∥2
2 ≤ ξ

for some constant ξ > 0.

B4 X has iid entries Xij ∼ N(0, 1
n ).

B5 λ2(1 − η)2 = ω(p− 7
12 ).

Theorem 2. Under Assumptions A1-A5 and B1-B5, in (7) set κ0 = ( 8 log p
cp )1/6 and κ1 = p−1/12(log p)1/4 where

c is a constant c > 0. Then there exist constants C,C ′ > 0 such that

max
1≤i≤n

|(B1,i,+ ∪ B0,i)c| ≤ Cp11/12(log p)1/4

with probability at least 1 − C ′p−6 − qn − e−cp.

1.3 Bounded Signal to Noise Ratio

We here briefly revisit and explain the issue of ‘bounded signal to noise ratio (SNR)’ mentioned in Section 1 of
the main paper. Although our method and the conclusion of this paper do not rely explicitly on the SNR, the
notion of keeping a delicate balance between the signal and noise is one of the most important foundations of
our theory. We define the signal to noise ratio as

SNR = var(x⊤
i β

∗)
var(yi|x⊤

i β
∗)
.

It can be shown that the SNR is Op(1) in the three GLM examples in the previous section. In fact, under
Assumption A1

var(x⊤
i β

∗) = (β∗)⊤Σβ∗ ≤ CX
p

∥β∗∥2
2 = O(1)

and for the three generalized linear models (linear, logistic, and Poisson regression) in Section 3 of the main
paper, we have

1
var(yi|x⊤

i β
∗))

=


σ−2 for linear(

e−
x⊤

i
β∗

2 + e
x⊤

i
β∗

2

)2
for logistic

(log(1 + x⊤
i β

∗))−1 for Poisson

all of which are Op(1) using the fact that

x⊤
i β

∗ ∼ N(0, CX∥β∗∥2
2/p) = Op(1),

2 ≤ e−x⊤
i β∗

+ ex⊤
i β∗

+ 2 ≤ 2(e|x⊤
i β∗| + 1) = Op(1).

Moreover if we fix 1
p∥β∗∥2

2 = ξ, then SNR−1 is also Op(1).
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2 Proof of Proposition 1

Without loss of generality we assume C = 1. The first step is to show that x⊤
i β̂/i = Op(PolyLog(n)). Throughout

this proof we use the following notations:

h(β) =
n∑
j=1

ℓ(yi; x⊤
i β) + λ(1 − η)

p∑
i=1

|βi| + ληβ⊤β,

h/i(β) =
n∑
j ̸=i

ℓ(yi; x⊤
i β) + λ(1 − η)

p∑
i=1

|βi| + ληβ⊤β,

hα(β) =
n∑
j=1

ℓ(yi; x⊤
i β) + λrα(β),

hα,/i(β) =
n∑
j ̸=i

ℓ(yi; x⊤
i β) + λrα(β). (9)

(a) First note that for all i,

λη∥β̂/i∥2
2 ≤

∑
j

ℓ(yj |xj⊤β̂/i) + λ(1 − η)∥β̂/i∥1 + λη∥β̂/i∥2
2 ≤

∑
j

ℓ(yj |0),

where the last inequality is due to the fact that h/i(β̂/i) ≤ h/i(0). Under the event that ∀i, |yi| ≤ PolyLog(n)
which holds with probability at least 1 − nq

(y)
n according to the assumptions, we have

max
i

∥β̂/i∥2 ≤ 1
λη

∑
j

ℓ(yj |0) ≤ 1
λη

∑
j

(|yj |m + 1) ≤ n(PolyLog(n))m.

Therefore

P(max
i

|x⊤
i β̂/i| > t) ≤

∑
i

EP(|x⊤
i β̂/i| > t|X/i,y/i)

=
∑
i

EP(|N(0,
∥β̂/i∥2

n
)| > t|X/i,y/i)

=
∑
i

EP(|N(0, 1)| > t
√
n

∥β̂/i∥
|X/i,y/i)

≤ P(max
i

∥β̂/i∥2 > n(PolyLog(n))m)

+ nP
(

|N(0, 1)| > t

(PolyLog(n))m/2

)
. (10)

Let t = (PolyLog(n))m/2 · 2
√

log(n) := PolyLog(n). Then, we can use (10) to obtain

P(max
i

|x⊤
i β̂/i| > PolyLog(n)) ≤ nq(y)

n + 2ne− 1
2 (2

√
log(n))2

≤ nq(y)
n + 2

n
. (11)

With a similar strategy we can also prove that for any α we have

P(max
i

|x⊤
i β̂

α
/i| > PolyLog(n)) ≤ nq(y)

n + 2
n
. (12)

(b) Now we set α = 1 and work within the event Ξ under which all the following hold:

(a) maxi |yi| ≤ PolyLog(n),
(b) maxi |x⊤

i β̂/i| ≤ PolyLog(n),
(c) maxi |x⊤

i β̂
1
/i| ≤ PolyLog(n).



(d) maxi ∥xi∥ ≤ 2
√
CX .

Note that by combining the assumption of theorem with (11), (12), and Lemma 17 we have

P(Ξ) ≥ 1 − 3nq(y)
n − 4

n
− ne−p/2.

Under Ξ we have

ℓ̇i(β̂1
/i) = ℓ̇i(yi|x⊤

i β̂
1
/i)

≤ 1 + (PolyLog(n))m + (PolyLog(n))m

= PolyLog(n).

Next, consider the following first order optimality conditions for β̂1 and β̂1
/i:∑

j

xj ℓ̇i(β̂1) + λṙα(β̂1) = 0,

∑
j ̸=i

xj ℓ̇i(β̂1
/i) + λṙα(β̂1

/i) = 0

By subtracting the two equations and using mean value theorem we have

X⊤ diag(ℓ̈j(ξ))X(β̂1 − β̂1
/i) + λ diag(r̈α(ξ))(β̂1 − β̂1

/i) = −xiℓ̇i(β̂1
/i), (13)

where ξ and ξ̃ are convex combinations of β̂1 and β̂1
/i. Therefore

β̂1
/i − β̂1 =

[
X⊤ diag(ℓ̈j(ξ))X + λ diag(r̈α(ξ̃))

]−1 xiℓ̇i(β̂1
/i).

Hence, it is straightforward to see that

∥β̂1 − β̂1
/i∥ ≤ 1

2λη ∥xi∥|ℓ̇i(β̂1
/i)| ≤ 1

2λη 2
√
CXPolyLog3(n) = PolyLog(n) (14)

given that 1
λη = O(PolyLog(n)). We can now use (14) to obtain

∥β̂ − β̂/i∥ ≤ ∥β̂ − β̂1∥ + ∥β̂1 − β̂1
/i∥ + ∥β̂1

/i − β̂/i∥

≤ PolyLog(n) + 2

√
4p log(2)

η
. (15)

Recall that
D := ∪1≤i≤n,t∈[0,1]B(tβ̂ + (1 − t)β̂/i,

⋆
ϵ),

where B(x, r) is the ball with center x and radius r. Hence we can conclude that ∀i,∀v ∈ D:

∥v − β̂/i∥ ≤ ∥v − β̂∥ + ∥β̂ − β̂/i∥ ≤ ⋆
ϵ +PolyLog(n) + 8

√
p log(2)

η
, (16)

and

|x⊤
i v| ≤ |x⊤

i β̂/i| + |x⊤
i (v − β̂/i)|

≤ PolyLog(n) + ∥xi∥∥v − β̂/i∥

≤ PolyLog(n) + 2
√
CX(⋆ϵ +2PolyLog(n)) + 8

√
4Cxp log(2)

η

= PolyLog(n).
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Hence,

ℓ̇i(v) ≤ 1 + |yi|m + |x⊤
i v|m

≤ 1 + (PolyLog(n))m + (PolyLog(n))m

= PolyLog(n)

Using the same arguments one can show that

ℓ̈i(v) ≤ PolyLog(n) ,
...
ℓ i(v) ≤ PolyLog(n).

This completes the proof.

3 Proof of Theorem 1

As we mentioned in the introduction, one of ingredients of the proof is the smoothing idea that we would like to
describe first. Define

h(β) :=
{

n∑
i=1

ℓ(yi|x⊤
i β) + λ(1 − η)∥β∥1 + λη∥β∥2

2

}
. (17)

If h(β) were a differentiable function we could use one step of the Newton method to obtain an approximate
leave-one-out estimate. However, the main issue here is the non-differentiability of ∥ · ∥1. For that reason we
start with approximating the ∥ · ∥1 with a smooth function. Let

r(1)
α (z) = 1

α

(
log(1 + eαz) + log(1 + e−αz)

)
(18)

denote the α-smoothed l1 regularizer. The following lemma proved in (Rahnama Rad and Maleki, 2020) shows
the accuracy of this approximation:
Lemma 1 (Lemma 13 in (Rahnama Rad and Maleki, 2020)). If r(1)

α (z) denotes the α-smoothed l1 regularizer.
Then we have

r(1)
α (z) ≥ |z|,

and
sup
z

|r(1)
α (z) − |z|| ≤ 2 log 2

α
.

This lemma suggests that for large values of α, r(1)
α (z) can be a good approximation of |z|. Hence, based on this

approximation we now introduce the smoothed cost function

hα(β) =
n∑
j=1

ℓ(yi; x⊤
i β) + λrα(β), (19)

where

rα(β) := (1 − η)
p∑
i=1

r(1)
α (βi) + ηβ⊤β (20)

denotes the smoothed regularizer. If we define

β̂α = arg min
β
hα(β), (21)

and β̂α/i as its leave-one-out estimate, then we can use Theorem 3 of (Rahnama Rad and Maleki, 2020) to prove
that

max
1≤i≤n

∣∣∣∣∣x⊤
i β̂

α
/i − x⊤

i β̂
α −

(
ℓ̇i(β̂α)
ℓ̈i(β̂α)

)(
Hα
ii

1 −Hα
ii

)∣∣∣∣∣ ≤ C0(α)PolyLog(n)
√
p

, (22)

where Hα is defined as
X
(

λdiag[r̈α(β̂α)] + X⊤[diag(ℓ̈(βα))]X
)−1

X⊤diag[ℓ̈(β̂α)]. (23)



For completeness we have mentioned Theorem 3 of (Rahnama Rad and Maleki, 2020) in Section 5 (Theorem
6). The main issue in the approximation of (22) is that C0(α) → ∞ as α → ∞. This creates a dilemma. On
one hand we would like α to be large to make |r(1)

α (z) − |z|| small. But on the other hand, the upper bound in
Theorem 3 of (Rahnama Rad and Maleki, 2020) goes to infinity as α → ∞. In addition to these two problems, as
will be discussed later, some of the elements of diag[r̈α(β̂α)] go to infinity as α → ∞ that may cause inaccuracies
and instabilities if this procedure is used in practice. Despite the fact that smoothing idea is not useful for
approximating the leave-one-out risk of the elastic net, as will be shown in this proof, it still serves as a good
theoretical tool for proving the accuracy of (2). Hence, we pursue two goals here:

• Use a different strategy than the one pursued in (Rahnama Rad and Maleki, 2020) to find an upper bound

on max
1≤i≤n

∣∣∣∣x⊤
i β̂

α
/i − x⊤

i β̂
α −

(
ℓ̇i(β̂α)
ℓ̈i(β̂α)

)(
Hα

ii

1−Hα
ii

)∣∣∣∣. Our new bounds will not go off to infinity as α → ∞.

• We will then prove that for large values of α, Hα
ii is close to Hii used in (2).

To understand the challenge for achieving the above two goals, let us start with the following lemma:
Lemma 2 (Lemma 14 in (Rahnama Rad and Maleki, 2020)). r(1)

α (z) is infinitely many times differentiable, and

ṙ(1)
α (z) = eαz − e−αz

eαz + e−αz + 2 ,

r̈(1)
α (z) = 2α

(eαz + e−αz + 2)2 .

Suppose that zα = O( 1
α ). Then, as α → ∞, r̈(1)

α (z) → ∞. It may seem to the reader that zα = O( 1
α ) is a

condition that may not happen and hence it won’t cause any issues. However, this is not the case. In fact, as
will be shown in the next lemma, many of the regression coefficients satify the condition |β̂α/i,k| = O( 1

α log p).
For these elements as α → ∞, r̈(β̂α/i,k) → ∞.

Lemma 3. Suppose Assumptions A1-A5 hold. Let S(1) and S(0) be as defined in (7). Then we have:

1. max
1≤i≤n

∥β̂/i − β̂α/i∥ ≤
√

4 log(2)p
αη

.

2. ∥β̂α − β̂α/i∥ ≤ |ℓ̇(β̂α)|∥xi∥
2λη

3. ∥β̂ − β̂/i∥ ≤ |ℓ̇(β̂)|∥xi∥
2λη .

4. max
1≤i≤n

∥g(β̂) − g(β̂/i)∥ ≤ PolyLog(n)
λ2η(1−η) with probability at least 1 − qn − e−p − q̌n − ne−p/2.

5. Suppose α = ω
(

p
κ2

1η

)
, then for large enough p, min

0≤i≤n
min
k∈S(1)

/i

|β̂α/i,k| ≥ κ1
2 .

6. Suppose α = ω
(
nPolyLog(n)
κ2

0λ
2(1−η)η

)
, then for large enough p, with probability at least 1 − qn − e−p:

max
0≤i≤n

max
k∈S(0)

/i

|β̂α/i,k| ≤ 1
α

log
(

4
κ0

)
.

The proof of this lemma is presented in Section 5.2.

A source of difficulty in handling the smoothed regularizer is that we do not have much control over the curvature,
r̈

(1)
α (β̂α/i,k) when k ∈ (S(1)

/i ∪ S(0)
/i )c. Keeping this issue in mind, let us first simplify the error between the leave-

one-out cross validation risk and the ALO for the smoothed problem. To simplify the calculations we introduce
the following notations. Let ṙα(θ) denote the vector [ṙα(θ1), ṙα(θ2), . . . , ṙα(θp)]⊤. Similarly,

ℓ̇(θ) := [ℓ̇(y1; x⊤
1 θ), ℓ̇(y2; x⊤

2 θ), . . . , ℓ̇(yn; x⊤
n θ)]T
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and ℓ̇/i(θ) is the same vector as ℓ̇(θ) except that its ith element is removed. Furthermore, define f/i(θ) as the
gradient of hα(·) at θ, i.e.,

f/i(θ) := λṙα(θ) + X⊤
/iℓ̇/i(θ). (24)

Notice that f/i(β̂α/i) = 0, where β̂α/i is the true LO estimate. Similarly, define th Hessian of hα(·) and its
leave-one-out coounter part as

J(θ) = λdiag(r̈α(θ)) + X⊤diag[ℓ̈(θ)]X, (25)
and

J/i(θ) = λdiag(r̈α(θ)) + X⊤
/idiag[ℓ̈/i(θ)]X/i. (26)

By using the first order optimality conditions, we have

f(β̂α) = 0,
f/i(β̂α/i) = 0. (27)

Define ∆α
/i := β̂α/i − β̂α. Using the multivariate mean-value theorem we have

0 = f/i(β̂α/i)

= f/i(β̂α + ∆∗
/i)

= f/i(β̂α) +
(∫ 1

0
J/i(β̂α + t∆α

/i)dt
)

∆α
/i. (28)

Moreover,

0 = λṙ(β̂α) +X⊤ℓ̇(β̂α) = f/i(β̂α) + ℓ̇i(β̂α)xi. (29)

Combining (28) and (29) we have

∆α
/i = β̂α/i − β̂α

= −ℓ̇i(β̂α)
(∫ 1

0
J/i(tβ̂α + (1 − t)β̂α/i)dt

)−1

xi. (30)

As is clear from (1), the ALO approximation of ∆α
/i is given by

∆̂α
/i = ℓ̇i(β̂α)

(
J/i(β̂α/i − ∆α

/i)
)−1

xi. (31)

Also, it is straightforward to see that

|ALOα − LOα|

= 1
n

n∑
i=1

(ϕ(yi,x⊤
i β̂

α
/i) − ϕ(yi,x⊤

i (β̂α + ∆̂α
/i))

≤ max
1≤i≤n

∣∣ϕ̇(yi,x⊤
i β̃

α
i )
∣∣ · 1
n

·
n∑
i=1

∣∣∣x⊤
i ∆α

i − x⊤
i ∆̂α

/i

∣∣∣, (32)

where β̃αi is a point on the line that connects β̂α and β̂α/i. Similar to the proof of Proposition 1, we can see that
for many reasonable models, max1≤i≤n

∣∣ϕ̇(yi,x⊤
i β̃

α
i )
∣∣ = Op(PolyLog(n)). Hence, it is enough to obtain an upper

bound for x⊤
i ∆α

i − x⊤
i ∆̂α

/i. From equations (30) and (31), we have∣∣∣x⊤
i ∆α

/i − x⊤
i ∆̂α

/i

∣∣∣
≤ |ℓ̇i(β̂α)| x⊤

i

[(∫ 1

0
J/i(tβ̂α + (1 − t)β̂α/i)dt

)−1

−
(

J/i(β̂α/i − ∆α
/i)
)−1

]
xi

≤ |ℓ̇i(β̂α)|x⊤
i

[(∫ 1

0
J/i(tβ̂α + (1 − t)β̂α/i)dt

)−1

−
(

J/i(β̂α/i)
)−1

]
xi

+ |ℓ̇i(β̂α)|x⊤
i

[(
J/i(β̂α/i)

)−1
−
(

J/i(β̂α/i − ∆α
/i)
)−1

]
xi. (33)



We again emphasize that we cannot let α → ∞ in these expressions, since some of the elements of J matrix go
to infinity. Hence we have to find proper ways for obtaining an upper bound for (33) for large values of α. As
is clear from this discussion, we have to be careful about r̈α(β̂α/i,k). The next lemma provides some information
about these quantities:
Lemma 4. Suppose the assumptions of Lemma 3 hold, and assume α = ω

(
nPolyLog(n)
κ2

0λ
2(1−η)η ∨ p

κ2
1η

)
. Then the

following statements hold with probability at least 1 − qn − e−p:

1. ∀i,∀k ∈ B0,i: ∫ 1

0
r̈α(β̂α/i,k − t∆α

/i,k)dt ≥ 2η + 1
8α(1 − η)κ0

2. ∀i,∀k ∈ B0,i:

r̈α(β̂αk ), r̈α(β̂α/i,k) ≥ 2η + 1
8α(1 − η)κ0.

3. ∀i,∀k ∈ B1,i,+: ∣∣∣∣∫ 1

0
r̈α(β̂α/i,k − t∆α

/i,k)dt− 2η
∣∣∣∣ ≤ 2αe− 1

2ακ1 .

4. ∀i,∀k ∈ B1,i,+: ∣∣∣r̈α(β̂αk ) − 2η
∣∣∣ ≤ 2αe− 1

2ακ1 ;
∣∣∣r̈α(β̂α/i,k) − 2η

∣∣∣ ≤ 2αe− 1
2ακ1 .

Note that the rate assumption on α ensures that both rates hold in both Part 5 and Part 6 of Lemma 3. The
proof of Lemma 4 is presented in Section 5.3. This lemma confirms that we have some control over the curvature
of the regularizer on sets B0,i and B1,i,+. The following lemma enables us to obtain an upper bound for the error
between the leave-one-out estimate and ALO by finding an upper bound on the error over the set Bc0. In other
words, the next lemma enables us to remove the indices k for which we are certain r̈α(β̂αk ) converge to infinity
from our analysis.

Theorem 3. Suppose Assumptions A1-A5 hold, the conclusions of Lemma 3 are true, and α ≥ 4p log(2)
(⋆ϵ)2η(1 − η)

.

Then we have∣∣∣∣x⊤
i

(∫ 1

0
J/i(tβ̂α + (1 − t)β̂α/i)dt

)−1
xi − x⊤

i,Bc
0,i

(
λdiag(r̈α/iBc

0,i
) + X⊤

/i,Bc
0,i

diag(ℓ̈α/i)X/i,Bc
0,i

)−1xi,Bc
0,i

∣∣∣∣
≤ 16∥xi∥2

λα(1 − η)κ0

(PolyLog(n)∥X⊤X∥
2λη + 1

)2
, (34)

and similarly ∣∣∣∣x⊤
i

(
J/i(β̂α)

)−1
xi − x⊤

i,Bc
0,i

(λdiag(r̈˜α/iBc
0,i

) + X⊤
Bc

0,i
diag(ℓ̈˜α/i)XBc

0,i
)−1xi,Bc

0,i

∣∣∣∣
≤ 16∥xi∥2

λα(1 − η)κ0

(PolyLog(n)∥X⊤X∥
2λη + 1

)2
(35)

Here r̈
α/i
k :=

∫ 0
−1(r̈α(β̂α/i + t∆α

/i))kdt, ℓ̈
α/i

k :=
∫ 0

−1(ℓ̈/i(β̂α/i + t∆α
/i))kdt, r̈˜α/i := r̈α(β̂α/i − ∆α

/i) and ℓ̈˜α/i :=
ℓ̈/i(β̂α/i − ∆α

/i).

The complete proof of this theorem is presented in Section 5.4.

Applying (33) and Theorem 3, we have reduced the problem to the quadratic forms on the subset Bc0. The main
remaining difficulty is that for the indices outside Bc0,i \ B1,i,+ we do not have much control over r̈α(β̂αk ). So
the question is whether those terms can cause any issue in our approximations or not. Our next theorem will
show that these elements will not cause any issue if there are not too many of them. More specifically, in the
asymptotic regime we are interested in, i.e. the asymptotic regime in which n, p grow at the same rate, if the
size of the set |B0,i \ B1,i,+| is sublinear in n, then the difference between ALO and LO converges to zero.
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Theorem 4. Suppose the assumptions of Lemma 3 hold, and assume α = ω
(
nPolyLog(n)
κ2

0κ
2
1λ(1−η))η

)
. Moreover, for a

sufficiently large constant C > 0, let 1 ≤ dn ≤ p/C be such that

max
1≤i≤n

|Bc0,i \ B1,i,+| ≤ dn

with probability at least 1 − q̃n. Let F denote a set such that B1,i,+ ⊂ F ⊂ Bc0,i. Then we have

∣∣∣∣x⊤
i,F (λdiag(r̈α/iF ) + X⊤

F diag(ℓ̈α/i)XF )−1xi,F − x⊤
i,F (λdiag(r̈˜α/iF

) + X⊤
F diag(ℓ̈˜α/i)XF )−1xi,F

∣∣∣∣
≤ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn
nλη

+ Cdn
nλ2η2 +

√
C log p
nλη

with probability at least 1 − (n+ 1)e− p
2 − (n+ 2)p−dn − 2qn − 2q̌n − 2q̄n − 2q̃n, for sufficiently large p.

The proof of this claim is long and will be presented in Section 5.5. We will now use this theorem to complete
the proof of Theorem 1.

First note that the leave-one-out cross validation risk of elastic net and smoothed elastic-net are

LO(λ) = 1
n

n∑
i=1

ϕ(yi,x⊤
i β̂/i).

LOα(λ) = 1
n

n∑
i=1

ϕ(yi,x⊤
i β̂

α
/i). (36)

Hence the difference of the two is

|LO(λ) − LOα(λ)| ≤ max
i,zi

|ϕ̇(yi, zi)||x⊤
i (β̂/i − β̂α/i)|

≤ max
i,zi

|ϕ̇(yi, zi)|∥xi∥∥β̂/i − β̂α/i)∥

≤ max
i,zi

|ϕ̇(yi, zi)|∥xi∥

√
4 log 2p
αη

. (37)

According to (32) we have

|ALOα − LOα| ≤ max
1≤i≤n

∣∣ϕ̇(yi,x⊤
i β̃

α
i )
∣∣ · 1
n

·
n∑
i=1

∣∣∣x⊤
i ∆α

i − x⊤
i ∆̂α

/i

∣∣∣, (38)

Combining (36), (37), and (38), we have

|ALOα − LO| ≤ max
i,zi

|ϕ̇(yi, zi)|∥xi∥

√
4 log 2p
αη

+ max
1≤i≤n

∣∣ϕ̇(yi,x⊤
i β̃

α
i )
∣∣ · 1
n

·
n∑
i=1

∣∣∣x⊤
i ∆α

i − x⊤
i ∆̂α

/i

∣∣∣. (39)

Furthermore, according to (33), Theorem 3, and Theorem 4 we have that with probability at least 1 − (n +



1)e− p
2 − (n+ 2)p−dn − 2qn − 2q̌n − 2q̃n − 2q̄n:∣∣∣x⊤

i ∆α
/i − x⊤

i ∆̂α
/i

∣∣∣ (40)

≤ |ℓ̇i(β̂α)| x⊤
i

[(∫ 1

0
J/i(tβ̂α + (1 − t)β̂α/i)dt

)−1

−
(

J/i(β̂α/i)
)−1

]
xi

+ |ℓ̇i(β̂α)|x⊤
i

[(
J/i(β̂α/i)

)−1
−
(

J/i(β̂α/i − ∆α
/i)
)−1

]
xi,

≤|ℓ̇i(β̂α)|
∣∣∣x⊤
i,Bc

0,i
(λdiag(r̈α/iBc

0,i
) + X⊤

/i,Bc
0,i

diag(ℓ̈α/i)X/i,Bc
0,i

)−1xi,Bc
0,i

− x⊤
i,Bc

0,i
(λdiag(r̈˜α/iBc

0,i

) + X⊤
Bc

0,i
diag(ℓ̈˜α/i)XBc

0,i
)−1xi,Bc

0,i

∣∣∣
+ 32|ℓ̇i(β̂α)|∥xi∥2

λα(1 − η)κ0

(PolyLog(n)∥X⊤X∥
2λη + 1

)2

≤ |ℓ̇i(β̂α)|
(

PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn log2 p

nλη
+ Cdn
nλ2η2 +

√
C log p
nλη

)

+ 32|ℓ̇i(β̂α)|∥xi∥2

λα(1 − η)κ0

(PolyLog(n)∥X⊤X∥
2λη + 1

)2
. (41)

As is clear from this equation, as α → ∞, and for large values of n, p, if dn grows slowly enough in n (or
equivalently in p) the difference |ALOα − LO| will be negligible. The last step of the proof, is to show that the
difference between |ALOα − ALO| is also negligible. Note that our approximate ALO formula for elastic net can
be written as

ALO = 1
n

n∑
i=1

ϕ(yi,x⊤
i,S β̂S + x⊤

i,S∆̂/i), (42)

where
∆̂/i = ℓ̇(β̂)(2ληI + X⊤

S diag(ℓ̈(β̂))XS)−1xi,S .

Hence, we have

|ALO − ALOα|

= 1
n

n∑
i=1

|ϕ(yi,x⊤
i,S(β̂S + ∆̂/i)) − ϕ(yi, (x⊤

i β̂
α + ∆̂α

/i))|

≤ max
i,zi

|ϕ̇(yi, zi)||(x⊤
i β̂

α − x⊤
i,S β̂S | + max

i,zi

|ϕ̇(yi, zi)||x⊤
i,S∆̂/i − x⊤

i ∆̂α
/i|

≤ max
i,zi

|ϕ̇(yi, zi)|∥xi∥

√
4 log 2p
αη

+ max
i,zi

|ϕ̇(yi, zi)||x⊤
i,S∆̂/i − x⊤

i ∆̂α
/i|, (43)

where to obtain the last inequality we have used the first part of Lemma 3.

Similar to the proof of Theorem 4 we can prove that

|x⊤
i,S∆̂/i − ℓ̇(β̂)x⊤

i,B1,i,+
(2ληI + X⊤

B1,i,+
diag(ℓ̈(β̂))XB1,i,+)−1xi,B1,i,+ |

≤ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn log2 p

nλη
+ Cdn
nλ2η2 +

√
C log p
nλη

(44)

with probability at least 1 − (n+ 1)e− p
2 − (n+ 2)p−dn − 2qn − 2q̌n − 2q̃n − 2q̄n, for sufficiently large p. Similarly,

|x⊤
i ∆̂α

/i − ℓ̇(β̂α)x⊤
i,B1,i,+

(λdiag(r̈α(β̂α)) + X⊤
B1,i,+

diag(ℓ̈(β̂α))XB1,i,+)−1xi,B1,i,+ |

≤ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn log2 p

nλη
+ Cdn
nλ2η2 +

√
C log p
nλη

(45)
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with probability at least 1 − (n + 1)e− p
2 − (n + 2)p−dn − 2qn − 2q̌n − 2q̃n − 2q̄n, for sufficiently large p. In the

rest of the proof, for the notational simplicity, we use the notation B+ instead of B1,i,+.

|x⊤
i,S∆̂/i − x⊤

i ∆̂α
/i|

≤ |ℓ̇(β̂)x⊤
i,B+

(2ληI + X⊤
B+

diag(ℓ̈(β̂))XB+)−1xi,B+

−ℓ̇(β̂α)x⊤
i,B+

(λdiag(r̈α(β̂α)) + X⊤
B+

diag(ℓ̈(β̂α))XB+)−1xi,B+ |

+ 2PolyLog(n)
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√
dn log2 p

nλη
+ Cdn
nλ2η2 +

√
C log p
nλη

≤ |ℓ̇(β̂)|×
×
∣∣x⊤
i,B+

(2ληI + X⊤
B+

diag(ℓ̈(β̂))XB+)−1xi,B+

− x⊤
i,B+

(λdiag(r̈α(β̂α)) + X⊤
B+

diag(ℓ̈(β̂α))XB+)−1xi,B+

∣∣
+ |ℓ̇(β̂) − ℓ̇(β̂α)|×
× x⊤

i,B+
(λdiag(r̈α(β̂α)) + X⊤

B+
diag(ℓ̈(β̂α))XB+)−1xi,B+

+ 2PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn log2 p

nλη
+ Cdn
nλ2η2 +

√
C log p
nλη

(46)

Since the minimum eigenvalue of (λdiag(r̈α(β̂α)) + X⊤
B+

diag(ℓ̈(β̂α))XB+) is larger than 2λη, we can conclude
that

|ℓ̇(β̂) − ℓ̇(β̂α)|x⊤
i,B+

(λdiag(r̈α(β̂α)) + X⊤
B+

diag(ℓ̈(β̂α))XB+)−1xi,B+

≤∥xi∥2
2

2λη |ℓ̇(β̂α) − ℓ̇(β̂)| (a)= ∥xi∥2
2

2λη |ℓ̈(θ)(x⊤
i (β̂ − β̂α))|

≤∥xi∥3
2

2λη |ℓ̈(θ)|∥β̂ − β̂α∥

(b)
≤ ∥xi∥3

2
2λη |ℓ̈(θ)|

√
4 log(2)p
αη

(c)
≤ PolyLog(n)

λη

√
p

αη
, (47)

with probability larger than 1 − ne−p − qn − q̌n. To obtain Equality (a) we have used the mean value theorem
and θ = tβ̂ + (1 − t)β̂α for some t ∈ [0, 1]. To obtain inequality (b) we have used Part 1 of Lemma 3. Inequality
(c) is based on Assumption A.4 along with Lemma 17.

Also, using Lemma 13 we have that

|x⊤
i,B+

(2ληI + X⊤
B+

diag(ℓ̈(β̂))XB+)−1xi,B+

− x⊤
i,B+

(λdiag(r̈α(β̂α)) + X⊤
B+

diag(ℓ̈(β̂α))XB+)−1xi,B+ |

≤ ∥xi∥2λmax(Γ)
(2λη)2 + ∥xi∥2λ2

max(Γ)
(2ηλ)2(2λη − λmax(Γ)) , (48)

where

Γ := λdiag(r̈α(β̂α)) + X⊤
B+

diag(ℓ̈(β̂α))XB+ − 2ληI + X⊤
B+

diag(ℓ̈(β̂))XB+). (49)



Therefore, by using Weyl’s theorem

λmax(Γ) ≤ λmax(λdiag(r̈αB+
(β̂α)) − 2ληI) + λmax(diag(ℓ̈(β̂)) − diag(ℓ̈(β̂α))∥X⊤X∥

≤ 2λαe− 1
2ακ1 + ∥β̂α − β̂∥∥X⊤X∥PolyLog(n)

≤ 2λαe− 1
2ακ1 +

√
4 log 2p
αη

∥X⊤X∥PolyLog(n)

≤ 1
√
p
, (50)

with probability larger than 1 − e−p − q̃n. To obtain the two penultimate two inqualities we have used Lemma 4
and (3). The last inequality uses α = ω

(
pPolyLog(n)

η ∧ PolyLog(n)
κ1

)
, where we use the fact Lemma 19 to conclude

that ∥X⊤X∥ ≤ (√γ0 + 3)2CX with probability at least 1 − e−p.

Plugging in these bounds into (46) we obtain

|x⊤
i,S∆̂/i − x⊤

i ∆̂α
/i|

≤ |ℓ̇(β̂)|
(

∥xi∥2

p(2λη)2 + ∥xi∥2

(2pηλ)2(λη)

)

≤ PolyLog(n)
√
p(λη)(1 ∨ λη)

(
1 + 1

pλη

)
+ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn log2 p

nλη
+ Cdn
nλ2η2 +

√
C log p
nλη

where we use α = ω
(
pPolyLog(n)

η ∧ PolyLog(n)
κ1

)
.

Returning to (43) we thus write

|ALO − ALOα| ≤ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn
nλη

+ dnPolyLog(n)
nλ2η2 +

√
PolyLog(n)

nλη
,

by the assumption ϕ̇(yi, zi) = Op(PolyLog(n)). To conclude the proof of the theorem, note that

|ALO − LO|
≤ |ALO − ALOα| + |ALOα − LO|

≤ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn
nλη

+ dnPolyLog(n)
nλ2η2 +

√
PolyLog(n)

nλη

provided α = ω
(
nPolyLog(n)
κ2

0κ
2
1λ(1−η))η ∧ PolyLog(n)

κ1

)
, with probability at least 1 − (n+ 1)e−p − (n+ 2)p−dn − 2qn − 2q̌n −

2q̃n − 2q̄n.

4 Proof of Theorem 2

One of the main components of this proof uses concentration results on the empirical distribution of β̂, the
subgradient of ℓ1-regularizer (see below for precise definition), and the sparsity of β̂, where β̂ is the minimizer of

1
2∥y − Xβ∥2

2 + λη∥β∥2
2 + λ(1 − η)∥β∥1.

In order to state the results, we first introduce the following terms:

• Let µ̂ denotes the empirical distribution of β̂.

• Let Θ be a random variable with its value uniformly distributed among the elements of β∗, and let Z ∼
N(0, 1) and independent of Θ.
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• Let soft(x, r) denote the soft thresholding function

soft(x, r) = (|x| − r)+sign(x).

• For a couple (τ, b), define

ŵf (τ, b) = b

b+ 2λητ soft
(
τZ + Θ, λ(1 − η)τ

b

)
− Θ.

• Let the couple (τ∗, b∗) be the unique solution of the following equations:∗

τ2 = σ2 + 1
γ0

E[ŵf (β, τ)]2, (51)

β = τ − 1
γ0

EZ · ŵf (β, τ). (52)

• Let µ∗ denote the law of the random variable ŵf (τ∗, b∗) + Θ.

• Let s∗ be defined as
s∗ = P

(
|Θ + τ∗Z| ≥ λτ∗

b∗

)
.

Lemma 5 (stated and proved later as Theorem 8). Under Assumptions A1-A5 and B1-B5, there exist constants
C, c > 0 such that for all ε ∈ (0, 0.5]:

P
(
W2(µ̂, µ∗)2 > ε

)
≤ Cε−2e−cpε3(log ε)−2

,

where W2 denotes the Wasserstein 2-distance.

We can now start the proof of the theorem. By the definition of B0,i and B1,i we have, for each fixed i that:

(B1,i ∪ B0,i)c

=
{
k :
(

|β̂k| ≤ κ1 or |β̂/i,k| ≤ κ1

)
and(

|g(β̂k)| > 1 − κ0 or |g(β̂/i,k)| > 1 − κ0

)}
⊂
{
k : 0 < |β̂k| ≤ κ1

}
∪
{
k : 0 < |β̂/i,k| ≤ κ1

}
∪
{
k : 1 − κ0 ≤ |g(β̂k)| < 1

}
∪
{
k : 1 − κ0 ≤ |g(β̂/i,k)| < 1

}
∪
{
k : |β̂k| > κ1; |g(β̂/i,k)| ≤ 1 − κ0

}
∪
{
k : |β̂/i,k| > κ1; |g(β̂k)| ≤ 1 − κ0

}
:= K1 ∪ K′

1 ∪ K2 ∪ K′
2 ∪ K3 ∪ K′

3. (53)

We can now bound the sizes of each of the above sets. Since the full model and the leave-one-out models are the
same in nature, we only bound the sets (K1,K2,K3) related to the full model, since the same proofs apply also
to the leave-one-out models (K′

1,K′
2,K′

3).

1. Bounding |K1|: The following lemma helps us bound the size of this set:
∗The uniqueness of the solution is proved in Lemma 23.



Lemma 6. Suppose κ1 = o(p− 1
12 (log p) 1

4 ). Then, then there exists constants C,C ′ such that for all 0 ≤ k ≤
n, ∣∣∣{k : 0 < |β̂/i,k| ≤ κ1}

∣∣∣ ≤ Cp
11
12 (log p) 1

4

with probability at least 1 − C ′p−7. It then follows from a union bound over i that

max
0≤i≤n

∣∣∣{k : 0 < |β̂/i,k| ≤ κ1}
∣∣∣ ≤ Cp

11
12 (log p) 1

4

with probability at least 1 − C ′p−6.

Note that the size of the set
∣∣∣{k : 0 < |β̂k| ≤ κ1}

∣∣∣ can be calculated from the empirical distribution µ̂. Also,
Lemma 5 connects µ̂ with µ∗. Hence, it is expected that we should be able to find a concentration result
for
∣∣∣{k : 0 < |β̂k| ≤ κ1}

∣∣∣. However, there are several technical issues that need to be addressed in order to
prove Lemma 6. Hence, the complete proof of this lemma will appear in Section 5.6.
Using Lemma 6, it is straightforward to confirm that

|K1| ≤ Cp11/12(log p)1/4

with probability at least 1 − C ′p−7 for some C,C ′ > 0.

2. Bounding K2: To find an upper bound for the size of the set K2, consider the following two sets:

T1 = {k : β̂k ̸= 0}

and
T2(κ0) = {k : |g(β̂)k| ∈ [1 − κ0, 1]}.

First note that
T1 ⊂ T2 and K2 = T2/T1.

Our first goal is to show that 1
p |T1| and 1

p |T2| are close to each other. The following two lemmas enable us
to compare the two sets.
Lemma 7 (restated and proved later as Theorem 10). Under Assumptions A1-A5 and B1-B5, there exist
constants C,C ′, c > 0 such that for all ε ∈ (0, 1],

P

(
1
p

p∑
k=1

1{|g(β̂)k|≥1−ε} ≥ s∗ + Cε

)
≤ C ′ε−3e−cnε6

.

Lemma 8 (restated and proved later as Theorem 11). Under the same assumptions as the above theorem,
there exist constants C, c > 0 such that for all ε ∈ (0, 1] we have

P
(∣∣∣∣1p∥β̂∥0 − s∗

∣∣∣∣ ≥ ε

)
≤ Cε−6e−cnε6

.

We should mention that the above two lemmas were originally proved in (Miolane and Montanari, 2021)
for the LASSO problem. Theorems 10 and 11 are the extensions of the results of (Miolane and Montanari,
2021) and their proof strategies are the same.
From Lemma 8 and Lemma 7, it follows that, for some constant C, c1, c2,∣∣∣∣1p |T1| − s∗

∣∣∣∣ ≤ κ0 and 1
p

|T2(κ0)| − s∗ ≤ Cκ0

with probability at least 1 − 2c1
κ6

0
exp(−c2pκ

6
0). Here s∗ ∈ [0, 1] is the constant in Lemma 7. Setting

κ0 = ( 8 log p
c2p

)1/6, using the above concentration, we obtain

|K2| ≤ |T1 \ T2| ≤ Cp5/6(log p)1/6

with probability at least 1 − C ′p−7.
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3. To obtain an upper bound for |K3|, let g(β̂), g(β̂/i) denote the sub-gradients of the LASSO penalty defined
in (6). Note that |g(β̂)k| = 1 and |g(β̂/i,k)| ≤ 1 − κ0 for k ∈ K3, and hence

|g(β̂)k − g(β̂/i)k| ≥ κ0 for k ∈ K3.

Thus √
κ2

0|K3| ≤
√∑
k∈K3

|g(β̂)k − g(β̂/i)k|2

≤
∥∥∥g(β̂) − g(β̂/i)

∥∥∥
≤ 2|ℓ̇i(β̂)|∥xi∥

λ(1 − η)

≤ CPolyLog(p)
λ(1 − η)

with probability at least 1 − qn − e−cp. The penultimate line follows from Part 4 of Lemma 3, and the last
line uses Assumption A4 and Lemma 17. Therefore

|K3| ≤ CPolyLog(p)
κ2

0λ
2(1 − η)2 = CPolyLog(p)

λ2(1 − η)2 p
1
3 ≤ Cp

11
12

with probability at least 1 − qn − e−cp, provided λ2(1 − η)2 = ω(p− 7
12 )

Note that the same arguments hold for all 1 ≤ i ≤ n. By cases 1-3 above, along with (53), we have proved that

max
1≤i≤n

|(B1,i ∪ B0,i)c| ≤ Cp11/12(log p)1/4 (54)

with probability at least 1 − Cp−6 − qn − e−cp, for sufficiently large p.

The last step of the proof is to bound |B1,i/B1,i,+| := |B1,i,−|. The proof follows the arguments made for K3
above. More precisely, note that

|g(β̂)k − g(β̂/i)k| = 2 for k ∈ B1,i,−.

Thus

max
1≤i≤n

√
4|B1,i,−|

= max
1≤i≤n

√ ∑
k∈B1,i,−

|g(β̂)k − g(β̂/i)k|2

≤ max
1≤i≤n

∥g(β̂) − g(β̂/i)∥

≤ 2∥xi∥|ℓ̇i(β̂)|
λ(1 − η)

≤ CPolyLog(p)
λ(1 − η)

with probability at least 1 − qn − e−cp, for sufficiently large p. The last inequality again follows from Part 4 of
Lemma 3. Hence with probability at least 1 − qn − e−cp we have

max
1≤i≤n

|B1,i,−| ≤ CPolyLog(p)
λ2(1 − η)2 ≤ Cp

7
12 PolyLog(p)

provided λ2(1 − η)2 = ω(p− 7
12 ). Since B1,i,+ = B1,i \ B1,i,−, we therefore have from (54) that

max
1≤i≤n

|(B1,i,+ ∪ B0,i)c| ≤ Cp11/12(log p)1/4

with probability at least 1 − Cp−6 − qn − e−cp, for sufficiently large p. This finishes the proof.



5 PROOF OF LEMMAS AND OTHER THEOREMS

5.1 Preliminaries

5.1.1 Basic Linear Algebra Results

Lemma 9 (Weyl’s Theorem). [Theorem 4.3.1 in (Horn and Johnson, 1994)] Let A,B ∈ Rn×n be symmetric,
and let the eigenvalues of A,B and A + B be {λi(A)}ni=1, {λi(B)}ni=1 and {λi(A + B)}ni=1, in increasing order.
Then

|λi(A + B) − λi(A)| ≤ λ1(B)

for i = 1, . . . , n.
Lemma 10 (Woodbury Inversion Formula). Suppose A ∈ Rn×n is nonsingular, and M = A + UBV, then

M−1 = A−1 − A−1U(B−1 + VA−1U)−1VA−1

provided that all relevant inverse matrices exist.
Lemma 11. Let M ∈ Rn×n be non-singular, and partitioned as a 2-by-2 block matrix

M =
(

A B
B⊤ C

)
where A ∈ Rn1×n1 , C ∈ Rn2×n2 with n1 + n2 = n. Then

M−1 =
(

A−1 + A−1BDB⊤A−1 −A−1BD
−DB⊤A−1 D

)
where D = (C − B⊤AB)−1, provided that all relevant inverse matrices exist.
Lemma 12. Suppose that A ∈ Rp×p is an invertible matrix. Furthermore, assume that C ∈ Rn×n is a diagonal
matrix. Finally, B ∈ Rp×n. If A + BCB⊤ is invertible, then its inverse is:

(A + BCB⊤)−1 = A−1 − A−1B⊤CBA−1

+ A−1BCB⊤(A + BCB⊤)−1BCB⊤A−1

Proof. First assume C is invertible. Applying Woodbury formula twice yields

(A + BCB⊤)−1

=A−1 − A−1B(C−1 + B⊤A−1B)−1B⊤A−1

=A−1 − A−1BCB⊤A−1 + A−1BCB⊤(A + BCB⊤)−1BCB⊤A−1

If C is not invertible, WLOG assume it has non-zero diagonal elements, i.e. by rearranging its rows and columns
there is a diagonal matrix C1 ∈ Rk×k such that

C = diag(C1, 0, .., 0)

Split B in the same way:
B = (B1,B2)

where B1 ∈ Rp×k and B2 ∈ Rp×(n−k), and we have

A + BCB⊤ = A + B1C1B⊤
1

so we can still use the above formula by replacing B,C by B1,C1 respectively.

Lemma 13. Suppose that A,Γ ∈ Rn×n and that both A+Γ and Γ are invertible. Then for any v ∈ Rn we have

|v⊤(A + Γ)−1v − v⊤(A)−1v| ≤ λmax(Γ)v⊤v
λ2

min(A) + λ2
max(Γ)v⊤v

λ2
min(A)(λmin(A) − λmax(Γ))
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Proof. Using Lemma 11 we obtain

|v⊤(A + Γ)−1v − v⊤(A)−1v|
≤ |v⊤A−1ΓA−1v| + |v⊤A−1Γ(A + Γ)−1ΓA−1v|

≤ λmax(Γ)v⊤v
λ2

min(A) + λ2
max(Γ)v⊤v

λ2
min(A)(λmin(A) − λmax(Γ)) .

In the last inequality, we have used Weyl’s theorem for bounding the maximum eigenvalue of (A + Γ)−1.

5.1.2 Basic Probability and Statistics

Lemma 14 (Stirling’s approximation). For 1 < s ≤ p ∈ Z and p > 2, we have(
p

s

)
≤ es log ep

s

Proof. By (Robbins, 1955),
n! =

√
2πnn+ 1

2 e−nern

with
1

12n+ 1 ≤ rn ≤ 1
12n

So (
p

s

)
=

√
2πpp+ 1

2 e−perp

√
2πss+ 1

2 e−sers

√
2π(p− s)(p−s)+ 1

2 e−(p−s)er(p−s)

= 1√
2π

√
p

s(p− s)

(p
s

)s( p

p− s

)p−s

ern−rs−rn−s (55)

The last term satisfies
ern−rs−rn−s = e

1
12n − 1

12s+1 − 1
12(n−s)+1 ≤ 1 (56)

Furthermore, if we asuume that 1 < s < p, and p > 2 then
p

p(p− s) < 2.

Hence,
1√
2π

√
p

p− s
≤
√

1
π

≤ 1. (57)

Finally, (
p− s

s

)p−s

= e(p−s) log p
p−s = e(p−s) log(1+ s

p−s ) ≤ es. (58)

Combining (55), (56), (57), and (58) we conclude the result:(
p

s

)
≤ es log ep

s .

Lemma 15. (Theorem 1.1 in (Rudelson and Vershynin, 2013)) Let x ∈ Rp be a random vector with independent
sub-Gaussian entries that satisfy Exi = 0 and ∥xi∥ψ2 ≤ K. Let A ∈ Rp×p. Then for every t > 0,

P(|x⊤Ax − Ex⊤Ax| > t) ≤ 2e
−cmin{ t

K2∥A∥
, t2

K4∥A∥2
HS

}
,

where ∥A∥, and ∥A∥HS denote, respectively, the spectral norm and the Hilbert-Schmidt norm of matrix A.



Lemma 16 (Lemma 6 of (Jalali and Maleki, 2016)). Let x ∼ N(0, Ip), then

P(x⊤x ≥ p+ pt) ≤ e− p
2 (t−log(1+t))

Lemma 17. Let x1, . . . ,xn
iid∼ N(0,Σ) ∈ Rp×p and suppose ρmax(Σ) ≤ p−1CX for some constant CX > 0, then

P( max
1≤i≤n

∥xi∥ ≥ 2
√
CX) ≤ ne−p/2

Proof. Let z = Σ− 1
2 x, then z ∼ N (0, Ip) and

P(∥x∥ ≥ 2
√
CX) = P(z⊤Σz ≥ 4CX)

≤ P(z⊤z ≥ 4p)
≤ e− p

2 (3−log(4)) ≤ e−p/2

The last line uses Lemma 16. A union bound over all 1 ≤ i ≤ n finishes the proof.

Lemma 18 (Lemma 12 in (Rahnama Rad and Maleki, 2020)). X ∈ Rp×p is composed of independently distributed
N(0,Σ) rows, with ρmax = σmax(Σ), where Σ ∈ Rp×p. Then

P(∥X⊤X∥ ≥ (
√
n+ 3√

p)2ρmax) ≤ e−p.

Lemma 19. If ρmax ≤ p−1CX and n/p = γ0, then

P(∥X⊤X∥ ≥ (√γ0 + 3)2CX) ≤ e−p.

This is a straightforward application of Lemma 18.
Lemma 20 (Lemma 4.10 of (Chatterjee, 2014)). Let V1, V2, . . . , Vp denote dependent zero mean Gaussian random
variables with mean zero and variances σ2

1 , σ
2
2 , . . . , σ

2
p. We then have

E(max
i
Vi) ≤

√
2 log 2p

(
max
i
σi

)
.

Lemma 21 (Borell-TIS inequality). Let V1, V2, . . . , Vp denote dependent zero mean Gaussian random variables
with mean zero and variances σ2

1 , σ
2
2 , . . . , σ

2
p. Then,

P(| max
i
Vi − E(max

i
Vi)| > t) ≤ 2e− t2

2σ2 ,

where σ = max(σ1, σ2, . . . , σp).

Proof. It is a special case of the original Borell-TIS inequality, see Theorem 2.1.1 of (Adler and Taylor, 2007).

Corollary 5. Let v ∈ Rp be an N(0,Σ) random vector. Let ρmax denotet the maximum eigenvalue of Σ. We
then have

P(∥v∥∞ >
√

2ρmax log 2p+ t) ≤ 2e− t2
2ρmax .

Proof. This corollary is a direct application of the previous two lemmas and using the fact that maxi σ2
i <

ρmax.

5.1.3 Accuracy of ALO for Smooth Loss Functions and Regularizers

Theorem 6 (Theorem 3 in (Rahnama Rad and Maleki, 2020)). Under assumptions A1-A5 and B1-B5, with
probability at least 1 − 4ne−p − 8n

p3 − 8n
(n−1)3 − qn the following bound is valid:

max
1≤i≤n

∣∣∣∣∣x⊤
i β̂/i − x⊤

i β̂ −

(
ℓ̇i(β̂)
ℓ̈i(β̂)

)(
Hii

1 −Hii

)∣∣∣∣∣ ≤ C0PolyLog(n)
√
p

for some constant C0 > 0.
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5.2 Proof of Lemma 3

The elastic net objective function is

h(β) =
n∑
j=1

ℓ(yi; x⊤
i β) + λ(1 − η)

p∑
i=1

|βi| + ληβ⊤β

and its surrogate smoothed objective function is

hα(β) =
n∑
j=1

ℓ(yi; x⊤
i β) + λ(1 − η)

p∑
i=1

r(1)
α (βi) + ληβ⊤β.

where r(1)
α is defined in (18).

1. According to Lemma 1,
sup
β

|h(β) − hα(β)| ≤ 2λ(1 − η)p(log 2)
α

Hence,

0 ≤ hα(β̂) − hα(β̂α)
=hα(β̂) − h(β̂α) + h(β̂α) − hα(β̂α)

≤ hα(β̂) − h(β̂) + 2λ(1 − η)p(log 2)
α

≤ 4pλ(1 − η)(log 2)
α

. (59)

In the first and second inequalities above, we have used the facts that β̂ and β̂α are the optimizers of h(β)
and hα(β) respectively. By the Taylor series expansion at z = β̂α, we obtain

hα(β̂) − hα(β̂α)

= ∇hα(β̂α)⊤(β̂ − β̂α) + 1
2(β̂ − β̂α)⊤∇2hα(ξ)(β̂ − β̂α)

= (β̂ − β̂α)⊤∇2hα(ξ)(β̂ − β̂α)/2
≥ λη∥β̂ − β̂α∥2. (60)

Here ξ = tβ̂α + (1 − t)β̂ for some t ∈ [0, 1]. Note that to obtain the second equality, we have used the fact
that ∇hα(β̂α) = 0 due to the optimality of β̂α. The last line of (60) is due to the existence of the ridge
penalty term λη∥β∥2 in hα. Comparing (60) and (59), one has that

∥β̂ − β̂α∥ ≤

√
4p(1 − η)(log 2)

αη
≤

√
4p(log 2)
αη

(61)

Using a similar approach we can also prove that

∥β̂/i − β̂α/i∥ ≤

√
4p(log 2)
αη

.

This finishes the proof of Part 1.

2. Consider the first-order optimality equations of β̂α and β̂α/i:∑
j

xj ℓ̇j(β̂α) + λ(1 − η)ṙ(1)
α (β̂α) + ληβ̂α = 0

∑
j ̸=i

xj ℓ̇j(β̂α/i) + λ(1 − η)ṙ(1)
α (β̂α/i) + ληβ̂α/i = 0.



By subtracting one from the other we have

0 =
∑
j ̸=i

xj [ℓ̇j(β̂α) − ℓ̇j(β̂α/i)] + xiℓ̇i(β̂α) + λ(1 − η)[ṙ(1)
α (β̂α) − ṙ(1)

α (β̂α/i)] + 2λη
(
β̂α − β̂α/i

)
.

It is straightforward to simplify this expression by using the mean value theorem for ℓ̇j(β̂α) − ℓ̇j(β̂α/i) and
ṙ

(1)
α (β̂α) − ṙ

(1)
α (β̂α/i):[

X⊤
/i diag (ℓ̈α/i)X/i + λ(1 − η) diag r̈(1)

α/i) + 2ληIp
] (

β̂α − β̂α/i

)
= −xiℓ̇i(β̂α). (62)

In this equation, X/i is identical to X, except for the removal of the ith row. As expected from the mean value
theorem, in each diagonal element of the two terms diag (ℓ̈α/i) and diag(r̈(1)

α/i) the second derivative of ℓ and
r are calculated at a point ξ = tβ̂α+(1−t)β̂α/i for some t ∈ [0, 1]. The choice of t can be different for different
diagonal elements and is dictated by the mean value theorem. Defining diag(r̈α) := (1−η) diag(r̈(1)

α/i)+2ηIp,
it is straightforward to use (62) and obtain

∥β̂α − β̂α/i∥

≤
∥∥∥∥[X⊤

/i diag (ℓ̈α/i)X/i + λ diag(r̈α)
]−1
∥∥∥∥∥xi∥|ℓ̇i(β̂α)|

≤ |ℓ̇i(β̂α)|∥xi∥
2λη ,

where the last inequality is because of the existence of 2ηIp in diag(r̈α).

3. According to Part 1, limα→∞ β̂α/i = β̂/i, ∀0 ≤ i ≤ n. The result then follows by letting α → ∞ in Part 2,
and using the fact that ℓ̇ is continuous.

4. By Part 3,

∥β̂ − β̂/i∥ ≤ |ℓ̇(β̂)|∥xi∥
2λη (63)

Note that the first order optimaility equations of β̂ and β̂/i are:∑
j

xj ℓ̇j(β̂) + λ(1 − η)g(β̂) + 2ληβ̂ = 0

∑
j ̸=i

xj ℓ̇j(β̂/i) + λ(1 − η)g(β̂/i) + 2ληβ̂/i = 0.

By subtracting one from another and applying the mean value theorem we have

λ(1 − η)[g(β̂) − g(β̂/i)]

= −
∑
j ̸=i

xj
(
ℓ̇j(β̂) − ℓ̇j(β̂/i)

)
− xiℓ̇i(β̂) − 2λη(β̂ − β̂/i)

= −
[
X⊤
/i diag[ℓ̈]X/i + 2ληIp

]
(β̂ − β̂/i) − xiℓ̇i(β̂).

Here, we have defined ℓ̈ as it was in the proof of Part 2. Under the event that

{sup
i

sup
j ̸=i

sup
t∈[0,1]

ℓ̈i(tβ̂ + (1 − t)β̂/i) ≤ PolyLog(n),

∥X⊤X∥ ≤ (√γ0 + 3)2CX ,

sup
i

∥xi∥ ≤ 2
√
CX ,

sup
i

|ℓ̇i(β̂)| ≤ PolyLog(n)}
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with probability at least 1 − qn − e−p − q̌n − ne−p/2 according to Assumption A4, Lemma 17 and Lemma
19, we have

λ(1 − η)∥g(β̂) − g(β̂/i)∥
≤ (PolyLog(n)∥X⊤X∥ + 2λη)∥β̂ − β̂/i∥ + ∥xi∥|ℓ̇i(β̂)|

≤
( (√γ0 + 3)2CXPolyLog(n)

2λη + 2
)

∥xi∥|ℓ̇i(β̂)|

≤ PolyLog(n)
λη

where in the second inequality we also used (63). Combining the above results we have

max
1≤i≤n

∥g(β̂) − g(β̂/i)∥ ≤ PolyLog(n)
λ2η(1 − η)

with probability at least 1 − qn − e−p − q̌n − ne−p/2.

5. (k ∈ S(1)) We only provide a proof for β̂ and β̂α, since the arguments are exactly the same for the leave-
one-out estimators β̂/i and β̂α/i.

For k ∈ S(1), we have |β̂k| > κ1 so

|β̂αk | ≥ |β̂k| − ∥β̂ − β̂α∥ ≥ κ1 −

√
4p(1 − η) log 2

αη
≥ κ1

2

provided that αηκ2
1 ≥ 16(1 − η)(log 2)p. The second inequality uses (61) to bound ∥β̂ − β̂α∥.

6. (k ∈ S(0)) From the first order optimality conditions on β̂/i and β̂α/i, we have∑
j ̸=i

xj ℓ̇j(β̂/i) + λ(1 − η)g(β̂/i) + 2ληβ̂/i = 0

∑
j ̸=i

xj ℓ̇j(β̂α/i) + λ(1 − η)∇r(1)
α (β̂α/i) + 2ληβ̂α/i = 0.

By subtracting the two equalities we obtain

∇r(1)
α (β̂α/i) − g(β̂/i) = 1

λ(1 − η)

∑
j ̸=i

xj(ℓ̇j(β̂/i) − ℓ̇j(β̂α/i)) + 2λη(β̂/i − β̂α/i)


= 1
λ(1 − η)

(
X⊤
/i diag[ℓ̈j(ξi)]j ̸=iX/i + 2ληIp

)
(β̂/i − β̂α/i). (64)

The last line follows from the mean value theorem applied to ℓ̇(·), and ξαi = tβ̂/i + (1 − t)β̂α/i for some
t ∈ [0, 1], where t can be different for different i, j. By Parts 1-3, we have ∀i, ξi lies in set D in Assumption
A4 for large enough p. To see this, let ξi := tβ̂/i + (1 − t)β̂/i. By definition of D, ξi ∈ D. Now since

∥ξαi − ξi∥2 = (1 − t)∥β̂α/i − β̂/i∥2 ≤

√
4p(log 2)
αη

,

the difference can be arbitrarily small for large p, when we assume αη = ω(p). So there exists p0 such that
∀p ≥ p0, ∥ξαi − ξi∥2 ≤⋆

ϵ, i.e. ξαi ∈ D.



So max0≤i≤n,j ̸=i ℓ̈j(ξi) ≤ PolyLog(n) with probabilty at least 1 − qn.† Then we have

max
0≤i≤n

∥∇r(1)
α (β̂α/i) − g(β̂/i)∥

≤ 1
λ(1 − η) ( max

0≤i≤n,j ̸=i
|ℓ̈j(ξi)|∥X⊤X∥ + 2λη)∥β̂/i − β̂α/i∥

≤ 1
λ(1 − η) (PolyLog(n)(√γ0 + 3)2CX + 2λη)

√
4p(1 − η)(log 2)

αη

≤PolyLog(n)
λ(1 − η)

√
p(1 − η)
αη

(65)

with probability at least 1 − qn − e−p. The second inequality uses Lemma 19 to bound ∥X⊤X∥ and Part
1 to bound ∥β̂ − β̂α∥. The last line uses boundedness of λ and η (Assumption A5) to absorb 2λη into the
constant C.

Without loss of generality we assume that 0 < g(β̂)k ≤ 1 − κ0 (negative subgradients can be handled similarly).
We first obtain

∇r(1)
α (β̂α/i)k − 1 = eαβ̂

α
/i,k − e−αβ̂α

/i,k

e
αβ̂α

/i,k + e
−αβ̂α

/i,k + 2
− 1 = − 2

1 + e
αβ̂α

/i,k

.

It follows from (65) that, with probability at least 1 − qn − e−p, ∀i ≥ 0, k ∈ [p]:

−PolyLog(n)
λ(1 − η)

√
p(1 − η)
αη

≤ 1 − g(β̂/i)k − 2

1 + e
αβ̂α

/i,k

≤ PolyLog(n)
λ(1 − η)

√
p(1 − η)
αη

(66)

By rearranging the terms in the second inequality of (66) and using the fact that 1 − g(β̂/i)k ≥ κ0, we obtain

κ0 − PolyLog(n)
λ(1 − η)

√
(1 − η)
αη

≤ 2

1 + e
αβ̂α

/i,k

≤ 2e−αβ̂α
/i,k

Therefore

β̂α/i,k ≤ 1
α

(
log 2 − log

[
κ0 − PolyLog(n)

λ(1 − η)

√
p(1 − η)
αη

])

By our assumption that α = ω
(
nPolyLog(n)
κ2

0λ
2(1−η)η

)
, we have

κ0 − PolyLog(n)
λ(1 − η)

√
p(1 − η)
αη

≥ 1
2κ0,

therefore with probability at least 1 − qn − e−p, ∀i ≥ 0, k ∈ S(0)
/i :

β̂α/i,k ≤ 1
α

(
log 2 − log

(
1
2κ0

))
= 1
α

log
(

4
κ0

)
.

Using a symmetric argument on the case of negative subgradients, we conclude that

max
0≤i≤n

max
k∈S(0)

/i

|β̂α/i,k| ≤ 1
α

log
(

4
κ0

)
with probability at least 1 − qn − e−p.

†Please note that for notational simplicity we use the same notation for all the terms that are polynomial functions of
log(n), and have dropped the subscript 2 of the term PolyLog(n) that appeared in Assumption A4.
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5.3 Proof of Lemma 4

Recall that the penalty function is

rα(z) = ηz2 + 1 − η

α
·
(
log(1 + eαz) + log(1 + e−αz)

)
,

It can be verified that
r̈α(z) = 2η + (1 − η) · 2α

eαz + e−αz + 2 . (67)

We have ∫ 1

0
r̈α(β̂α/i,k − t∆α

/i,k)dt =
ṙα(β̂αk ) − ṙα(β̂α/i,k)

β̂αk − β̂α/i,k
.

Note that ṙα(z) = 2ηz + (1 − η)
(

1 − 2
1+eαz

)
is an increasing odd function, concave on [0,+∞) and convex on

(−∞, 0]. Furthermore, using the fact that 1
4e

−x ≤ ex

(1+ex)2 ≤ e−x for x ≥ 0, we have, for z ≥ 0:

r̈α(z) ≥ 2η + 1
2α(1 − η)e−αz, (68)

and

r̈α(z) ≤ 2η + 2α(1 − η)e−αz. (69)

With this background, we can now state the proof of each part.

1. (k ∈ B0,i): By Part 6 of Lemma 3, for large enough p, with probability at least 1 − qn − e−p we have
∀i,∀k ∈ B0,i:

max
{

|β̂αk |, |β̂α/i,k|
}

≤ 1
α

log
(

4
κ0

)
.

With the same probability we then have∫ 1

0
r̈α(β̂α/i,k − t∆α

/i,k)dt
(a)
≥ r̈α( 1

α
log( 4

κ0
))

(b)
≥ 2η + 1

2α(1 − η)κ0
4

= 2η + 1
8α(1 − η)κ0.

Inequality (a) is because r̈α(z) is decreasing in |z|. Inequality (b) uses (69).

2. (k ∈ B0,i): An argument similar to the one presented for part (1) proves

r̈α(β̂αk ) ≥ 2η + 1
8α(1 − η)κ0.

with probability at least 1 − qn − e−p.

3. (k ∈ B1,i,+):

2η ≤
∫ 1

0
r̈α(β̂α/i,k − t∆α

/i,k)dt

≤ r̈α

(κ1
2

)
≤ 2η + 2αe− 1

2ακ1 .

4. (k ∈ B1,i,+): Similarly we have

2η ≤ r̈α(β̂αk ) ≤ 2η + 2αe− 1
2ακ1 .

5. (k ∈ B1,i,+): The proof is identical to 4) by substituting β̂α with β̂α/i.



5.4 Proof of Theorem 3

We begin with the proof of (34). To simplify notation we will use the compact notation L̈/i and R̈/i to denote
the diagonal matrices diag[

∫ 1
0 ℓ̈/i(θ(t))dt] and diag[

∫ 1
0 r̈α(θ(t))dt] respectively, where θ = tβ̂α + (1 − t)β̂α/i. We

also fix an index i and write B1,+ and B0 to denote B1,i,+ and B0,i respectively.

Plugging in θ = tβ̂α + (1 − t)β̂α/i, with a possible permutation of the rows and columns of J/i(θ), by (25), we
have that ∫ 1

0
J/i(θ(t))dt =:

(
A B

B⊤ C

)
=
(
λR̈/i,Bc

0
+ X⊤

/i,Bc
0
L̈/iX/i,Bc

0
X⊤
/i,Bc

0
L̈/iX/i,B0

X⊤
/i,B0

L̈/iX/i,Bc
0

λR̈/i,B0 + X⊤
/i,B0

L̈/iX/i,B0

)
.

By the block matrix inversion lemma, i.e. Lemma 11, we have(∫ 1

0
J/i(θ(t))dt

)−1

=
(

A−1 + A−1BDB⊤A−1 −A−1BD
−DB⊤A−1 D

)
where D := (C − B⊤A−1B)−1. We will now estimate the norms of each of these terms separately, using Lemma
4.

Bounding ∥A−1∥: Note that for θ(t) = tβ̂α + (1 − t)β̂α/i, we have

σmin(A) = σmin

(
λR̈/i,Bc

0
+ X⊤

/i,Bc
0
L̈/iX/i,Bc

0

)
(a)
≥ σmin

(
λR̈/i,Bc

0

)
≥ 2λη,

where for inequality (a) we have used the fact that the matrix X⊤
/i,Bc

0
L̈/iX/i,Bc

0
is positive semidefinite because

of the convexity of the loss function. Hence,

∥A−1∥ = 1
σmin(A) ≤ (2λη)−1. (70)

Bounding ∥B∥: If Sp−1 denotes the unit sphere in Rp, then we can write the cross term

∥B∥ = sup
u∈S|Bc

0|
,v∈S|B0|

u⊤Bv

≤ sup
u∈S|Bc

0|
,v∈S|B0|

u⊤
(

X⊤
/i,Bc

0
L̈/iX/i,B0

)
v

≤ sup
ũ,ṽ∈Sp

ũ⊤
(

X⊤
/iL̈/iX/i

)
ṽ

≤ max
j ̸=i

1∫
0

ℓ̈j(θ(t))dt∥X⊤
/iX/i∥

≤ PolyLog(n)∥X⊤X∥ (71)

In the third line above we define ũ and ṽ based on u and v as follows. Let Bc0 = {j1, . . . , j|Bc
0|}. Then we define

ũjk
= uk for k ∈ [|Bc0|], and ũj = 0 for all j ∈ B0. ṽ is defined similarly. Note that ũ, ṽ ∈ Sp−1 so that the
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supremum in the next line is justified. In the last line we use the second part of (3), in conjunction with part 1)
of Lemma 3.‡

Bounding ∥D∥: By the repeated use of Weyl’s theorem, i.e., Lemma 9, we have

σmin(C − B⊤A−1B)

≥ λmin
{∫ 1

0
r̈α(θ(t))kdt : k ∈ B0

}
− ∥B∥2∥A−1∥

≥ λmin
{∫ 1

0
r̈α(θ(t))kdt : k ∈ B0

}
− (PolyLog(n)∥X⊤X∥)2

2λη , (72)

where in the last line we use the upper bounds on ∥B∥ and ∥A−1∥ we obtained above. From Lemma 4 we have

min
k∈B0

∫ 1

0
r̈α(θ(t))kdt ≥ 2η + 1

8α(1 − η)κ0, (73)

By combining (72) and (73) we obtain

σmin(C − B⊤A−1B) ≥ λα

16 (1 − η)κ0. (74)

provided

2λη + λα

16 (1 − η)κ0 ≥ (PolyLog(n)∥X⊤X∥)2

2λη
Note that according to Lemma 19, ∥X⊤X∥ is bounded by a constant with probability at least 1 − e−p. By the
assumptions of this theorem, we know that α grows fast enough, and thus the above event holds with probability
at least 1 − e−p.

Hence, under the event ∥X⊤X∥ ≤ C, which occurs with probability at least 1 − e−p, we expect ∥D∥ to go to
zero as α → ∞. Therefore,

∥D∥ = ∥(C − B⊤A−1B)−1∥ = (σmin(C − B⊤A−1B))−1 ≤ 16
λα(1 − η)κ0

. (75)

By the block matrix inversion lemma,

∣∣x⊤
i

(∫ 1

0
J/i(tβ̂α + (1 − t)β̂α/i)dt

)−1

xi − x⊤
i,Bc

0
(λdiag(r̈α/iBc

0
)) + X⊤

/i,Bc
0
diag(ℓ̈α/i)X/i,Bc

0
)−1xi,Bc

0

∣∣
=
∣∣x⊤
i

(
A−1 + A−1BDB⊤A−1 −A−1BD

−DB⊤A−1 D

)
xi − x⊤

i,Bc
0
A−1xi,Bc

0

∣∣
≤ x⊤

i,Bc
0
A−1BDB⊤A−1xi,Bc

0
+ 2|x⊤

i,Bc
0
A−1BDxi,B0 | + x⊤

i,B0
Dxi,B0

≤ ∥xi,Bc
0
∥2∥A−1∥2∥B∥2∥D∥ + 2∥xi,Bc

0
∥∥A−1BDxi,B0∥ + ∥xi,B0∥2∥D∥

≤ ∥xi∥2∥A−1∥2∥B∥2∥D∥ + 2∥xi,Bc
0
∥∥A−1∥∥B∥∥D∥∥xi,B0∥ + ∥xi∥2∥D∥

≤ ∥xi∥2∥D∥(∥A−1∥2∥B∥2 + 2∥A−1∥∥B∥ + 1)
= ∥xi∥2∥D∥(∥A−1∥∥B∥ + 1)2

≤ 16∥xi∥2

λα(1 − η)κ0

(
PolyLog(n)∥X⊤X∥

2λη + 1
)2

.

‡Please note that as mentioned before, for notational simplicity, we have dropped the subscript 24 of the term
PolyLog(n) that appeared in the second part of Assumption A4, use the same notation for all the terms that are polynomial
functions of log(n).



In the last step we use the previously derived bounds on the operator norms of A−1, B and D, along with the
Cauchy-Schwarz inequality. As discussed before, this error will be small for large values of α.

To show (35), we define θ := β̂α/i−∆α
/i. The bounds then follow by the same steps with very minor modifications.

5.5 Proof of Theorem 4

We will use the notation

ωs := ∥X⊤X∥ sup
t∈[0,1]

max
1≤i≤n

ℓ̈i(tβ̂α + (1 − t)β̂α/i) ; ρ(α) := λ

(
2η + α(1 − η)κ0

8

)
. (76)

By the assumptions of the Theorem we define the following two events:

1. AL := {Assumption A4 holds}

2. As := {max1≤i≤n |Bc0,i \ B1,i,+| ≤ dn}

which hold with probabilities at least 1 − qn and 1 − q̃n respectively. We will prove the theorem assuming that
the two events above both hold, which by the union bound, happens with probability at least 1 − qn − q̃n.

Our strategy will be to bound the following quadratic forms:∣∣∣∣x⊤
i,F (λdiag(r̈α/iF ) + X⊤

F diag(ℓ̈α/i)XF )−1xi,F − x⊤
i,B1,i,+

(λdiag(r̈˜α/iB1,i,+
) + X⊤

B1,i,+
diag(ℓ̈˜α/i)XB1,i,+)−1xi,B1,i,+

∣∣∣∣
≤ f(dn), (77)

and similarly∣∣∣∣x⊤
i,F (λdiag(r̈˜α/iF

) + X⊤
F diag(ℓ̈˜α/i)XF )−1xi,F − x⊤

i,B1,i,+
(λdiag(r̈˜α/iB1,i,+

) + X⊤
B1,i,+

diag(ℓ̈˜α/i)XB1,i,+)−1xi,B1,i,+

∣∣∣∣
≤ f(dn) (78)

for a suitable function f(·) of dn, i.e., the cardinality of set differences.

In the rest of the proof, we fix an index i and write B1,+ and B0 to denote B1,i,+ and B0,i respectively. Consider
the following decomposition

H1 := λ diag(r̈α/iBc
0

) + X⊤
/i,F diag(ℓ̈α/i)X/i,F =

(
A1 B1
B⊤

1 C1

)
(79)

that is obtained by a permutation of rows and columns such that the rows and columns of A1 belong to B1,+,
and rows and columns of C1 belong to F \ B1,+. Define θ(t) = tβ̂α + (1 − t)β̂α/i. Then, we have

A1 = diag
[
λ

{∫ 1

0
r̈α(θ(t))dt

}
B1,+

]
+ X⊤

/i,B1,+
diag

[∫ 1

0
ℓ̈/i(θ(t))dt

]
X/i,B1,+

B1 = X⊤
/i,B1,+

diag
[∫ 1

0
ℓ̈/i(θ(t))dt

]
X/i,F\B1,+

C1 = diag
[
λ

∫ 1

0
r̈α(θ(t))F\B1,+)dt

]
+ X⊤

/i,F\B1,+
diag

[∫ 1

0
ℓ̈/i(θ(t))dt

]
X/i,F\B1,+ .

Similarly, we define A2,B2,C2 in the following way:

H2 := λ diag(r̈˜α/iF ) + X⊤
F diag(ℓ̈˜α/i)XF =

(
A2 B2
B⊤

2 C2

)
(80)
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where

A2 = diag
[
λ
{
r̈α(β̂α)

}
B1,+

]
+ X⊤

/i,B1,+
diag

[
ℓ̈/i(β̂α)

]
X/i,B1,+

B2 = X⊤
/i,B1,+

diag
[
ℓ̈/i(β̂α)

]
X/i,F\B1,+

C2 = diag
[
λ
{
r̈α(β̂α)

}
F\B1,+

]
+ X⊤

/i,F\B1,+
diag

[
ℓ̈/i(β̂α)

]
X/i,F .

We then obtain∣∣∣∣x⊤
i,F (λdiag(r̈α/iF ) + X⊤

F diag(ℓ̈α/i)XF )−1xi,F − x⊤
i,F (λdiag(r̈˜α/iF

) + X⊤
F diag(ℓ̈˜α/i)XF )−1xi,F

∣∣∣∣
= x⊤

i,F

[(
A1 B1
B⊤

1 C1

)−1
−
(

A2 B2
B⊤

2 C2

)−1
]

xi,F .

By matrix inversion of block diagonal matrices, Lemma 11, we have

H−1
k =

(
A−1
k + A−1

k BkDB⊤
k A−1

k −A−1
k BkDk

−DkB⊤
k A−1

k Dk

)
(81)

where for k = 1, 2 we define

Dk := (Ck − B⊤
k A−1

k Bk)−1.

From (81) we have∣∣∣∣x⊤
i,F (λdiag(r̈α/iF ) + X⊤

F diag(ℓ̈α/i)XF )−1xi,F − x⊤
i,F (λdiag(r̈˜α/iF

) + X⊤
F diag(ℓ̈˜α/i)XF )−1xi,F

∣∣∣∣
= x⊤

i,F

[(
A1 B1
B⊤

1 C1

)−1
−
(

A2 B2
B⊤

2 C2

)−1
]

xi,F

≤ |ψ01 − ψ02| + |ψ11 − ψ12| + |ψ21 − ψ22| + 2|ψ31 − ψ32|, (82)

where

ψ0k := x⊤
i,B1,+

A−1
k xi,B1,+ ,

ψ1k := x⊤
i,B1,+

A−1
k BkDkB⊤

k A−1
k xi,B1,+ ,

ψ2k := x⊤
i,F\B1,+

Dkxi,F\B1,+ ,

ψ3k := x⊤
i,B1,+

A−1
k BkDkxi,F\B1,+ .

The last inequality of (82) is the result of the triangle inequality. Our goal is to prove that all the terms in (82)
are small with high probability for large values of n, p. Towards this goal, we will first prove that ψ11, ψ12, ψ21,
ψ22, ψ31, and ψ32 are all individually small. Then, we finally show that the difference ψ01 − ψ02 is small too.

• Finding upper bounds for ψ21 and ψ22:
Note that

σmax(Dk) ≤ σmax(H−1
k ) = 1

σmin(Hk) . (83)

It is then straightforward to see that since H1 and H2 are summations of λdiag(r̈α/iBc
0

) and λdiag(r̈˜α/iBc
0

) with
a pair of positive semidefinite matrices, and that r has a ridge component in it, we have

σmin(H) ≥ 2λη.

Using this fact and (83) we obtain

∥Dk∥ ≤ (2λη)−1 for k = 1, 2. (84)



It then follows that

ψ2k ≤ ∥Dk∥ × ∥xi,F\B1,+∥2
(a)
≤

maxi supT :|T |=dn
∥xi,T ∥2

2λη . (85)

Note that the reason we have used the maximum on the set T in bounding ∥xi,F\B1,+∥2 is that F/B1,i
depends on xi and hence we cannot use standard concentration results for χ2 random variables (e.g., Lemma
16). Furthermore, when taking the supremum over sets T , we have to consider all the sets T whose sizes are
smaller than dn. But as is clear, in (85) we have only considered T with sizes equal to dn. This is because
the norm of ∥xi,T ′∥2 ≤ ∥xi,T ∥2 if T ′ ⊂ T . We have

P(max
i

sup
T :|T |=dn

∥xi,T ∥2 > dnρmax(1 + t))

≤
∑
i

∑
T :|T |=dn

P(∥xi,T ∥2 > dnρmax(1 + t))

≤ n

(
p

dn

)
e− dn

2 (t−log(1+t))

≤ ne
dn log

(
ep
dn

)
e− dn

2 (t−log(1+t)), (86)

where to obtain the last two inequalities we have used Lemma 16 and Lemma 14. Setting t = 8 log p in this
equation, we conclude that

P

(
max
i

sup
T :|T |=dn

∥xi,T ∥2 > dnρmax(1 + 8 log p)
)

≤ ne
dn log

(
ep
dn

)
e− dn

2 (8 log p−log(1+8 log p)). (87)

Combining (85) and (87) we conclude that

P
(
ψ2k >

ρmaxdn(1 + 8 log p)
2ηλ

)

≤ ne
dn log

(
ep
dn

)
e− dn

2 (8 log p−log(1+8 log p))

≤ e
log(n)+dn log

(
ep
dn

)
− dn

2 (8 log p−log(1+8 log p))

≤ np−dn , (88)

provided dn ≥ e
√

1 + 8 log p.

• Finding upper bounds for ψ11 and ψ12: For better readability, we defer the proof of this bound to
Lemma 22:

Lemma 22. For k = 1, 2 we have a sufficienty large constant C > 0 depending only on γ0 and CX such
that

ψ1k := x⊤
i,B1,+

A−1
2 BkB⊤

k A−1
k xi,B1,+

≤ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn
nλη

+ Cdn
nλ2η2 + dn log2 p

p− dn
+ C

pλη

with probability at least 1 − (n+ 1)e− p
2 − e−dn log p − qn − q̌n − q̄n − q̃n, for sufficiently large p.

• Finding upper bounds for ψ31 and ψ32:
We have

ψ3k ≤
√
ψ2k × x⊤

i,B1,+
A−1
k BkDkB⊤

k A−1
k xi,B1,+

≤
√
ψ2kψ1k ≤ (ψ1k + ψ2k)/2. (89)
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• Finding an upper bound for |ψ01 − ψ02|:

x⊤
i,B1,+

(A−1
1 − A−1

2 )xi,B1,+ .

The proof of this part is similar to our proof technique for bounding ψ11 and ψ12, with a few important differences.
As before, there are two sources of dependency between A1,A2 and xi: (i) The dependency of the input
arguments of ℓ̈ and r̈ on xi. (ii) the dependency between the set B1,+ and xi. The goal is to remove these
dependencies. We start with removing the dependency of the input argument of r on xi. Define

⋆

A2:= diag
[
λ
{
r̈α(β̂α/i)

}
B1,+

]
+ X⊤

/i,B1,+
diag

[
ℓ̈/i(β̂α)

]
X/i,B1,+ (90)

Define

⋆

∆1 =
⋆

A
−1
1 −A−1

1 ,

⋆

∆2 =
⋆

A
−1
2 −A−1

2 . (91)

The goal is to obtain a bound on ∥
⋆

∆1∥ and ∥
⋆

∆2∥. Since the proofs are similar and for notational simplic-

ity we show our claim for
⋆

∆2. Since
⋆

∆2= A−1
2 (A2−

⋆

A2)
⋆

A
−1
2 , and A2−

⋆

A2= diag
[
λ
{
r̈(β̂α/i)

}
B1,+

]
−

diag
[
λ
{
r̈(β̂α)

}
B1,+

]
, we have

∥
⋆

∆2∥ ≤ ∥A2−
⋆

A2∥

σmin(
⋆

A2)σmin(A2)
≤ 2λα(1 − η)e− 1

2ακ1

(2λη)2

= α(1 − η)e− 1
2ακ1

2λη2 . (92)

To obtain (92), we used Part (4) and (5) of Lemma 4 to find a bound on r̈α(β̂α/i,k) − r̈α(β̂αk ). Furthermore, given

the ridge part of the regularizer, the minimum eigenvalues of A2 and
⋆

A2 are 2λη. It is straight forward to see
that ∣∣∣x⊤

i,B1,+

(
A−1

2 −
⋆

A
−1
2

)
xi,B1,+

∣∣∣ ≤ ∥xi∥2∥
⋆

∆2∥ ≤ ∥xi∥2
2α(1 − η)e− 1

2ακ1

2λη2 . (93)

It is clear that as α → ∞, the upper bound in (93) goes to zero. By replacing A−1
2 ,A−1

1 −
⋆

A
−1
2 with

⋆

A
−1
2 ,

⋆

A
−1
1

we have removed the dependency between the input argument of r̈ and xi. As before to remove the dependency
of the set B1,+ we lift the problem to a higher dimensional space. Towards this goal, we define

Ã2 = diag
[
λ
{
r̈α(β̂α/i)

}
B+

]
+ X⊤

/i,B+diag
[
ℓ̈/i(β̂α)

]
X/i,B+ ,

where B+ := B1,+ ∪ B0. We write Ã2 as

Ã2 =
(

⋆

A2 B
B⊤ C

)

where

B = X⊤
B1,+

diag{ℓ̈α/i}XB1,+ ,

C = λ diag [{r̈α}B0 ] + X⊤
B0

diag{ℓ̈α/i}XB0 .



Using the block matrix inversion lemma, i.e. Lemma 11, we have

Ã−1
2 =

 ⋆

A
−1
2 +

⋆

A
−1
2 BHB⊤ ⋆

A
−1
2 −

⋆

A
−1
2 BH

−HB⊤ ⋆

A
−1

H


where H = (C − B⊤ ⋆

A
−1
2 B)−1. Then we have

|x⊤
i,B1,+

⋆

A
−1
2 xi,B1,+ − x⊤

i,B+Ã−1
2 xi,B+ |

≤ |x⊤
i,B1,+

⋆

A
−1
2 BHB⊤ ⋆

A
−1
2 xi,B1,+ | + 2|x⊤

i,B1,+

⋆

A
−1
2 BHxi,B0 | + |x⊤

i,B0
Hxi,B0 |

≤ ∥xi∥2∥
⋆

A
−1
2 ∥2∥B∥2∥H∥ + 2∥xi∥2∥

⋆

A
−1
2 ∥∥B∥∥H∥ + ∥xi∥2∥H∥

≤ ∥xi∥2∥H∥
(

∥
⋆

A
−1
2 ∥∥B∥ + 1

)2

To bound the matrix norms in the above equation, we have

• ∥
⋆

A
−1
2 ∥:

σmin(
⋆

A) ≥ 2λη and hence ∥
⋆

A
−1
2 ∥ ≤ 1

2λη .

• ∥B∥: It follows by definition of ωs in (76) that

∥B∥ ≤ ωs.

• ∥H∥: Using a derivation similar to (74), we have

σmin(C − B⊤ ⋆

A
−1
2 B) ≥ λα

16 (1 − η)κ0.

Inserting the above bounds for matrix norms, we have

|x⊤
i,B1,+

⋆

A
−1
2 xi,B1,+ − x⊤

i,B+Ã−1
2 xi,B+ |

≤ ∥xi∥2∥H∥
(

∥
⋆

A
−1
2 ∥∥B∥ + 1

)2

≤ 16∥xi∥2

λα(1 − η)

(
1 + ωs

2λη

)2
, (94)

with probability larger than 1 − qn. Again it is straightforward to check that as α → ∞, the upper bound in
(94) goes to zero. Hence, we can now focus on the term x⊤

i,B+Ã−1
2 xi,B+ . Note that in matrix Ã−1

2 , there are
ℓ̈(β̂α). In the next step, we would like to show that the difference between this term and ℓ̈(β̂α/i) is negligible for
large values of n, p and any α. Note that once ℓ̈(β̂α/i) the dependence between Ã−1

2 and xi reduces to only the
dependence of the two terms on B1,+. Define

Ǎ2 := diag
[
λ
{
r̈α(β̂α/i)

}]
+ X⊤

/i,B+diag
[
ℓ̈/i(β̂α/i)

]
X/i,B+ , (95)

The goal is to show that ∣∣∣x⊤
i,B+

(
Ǎ−1

2 − Ã−1
2

)
xi,B+

∣∣∣
is small. Towards this goal, define

∆ℓ := diag
[
ℓ̈/i(β̂α)

]
− diag

[
ℓ̈/i(β̂α/i)

]
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We have

Ã2 = Ǎ2 + X⊤
/i,B+∆ℓX/i,B+

According to Lemma 12

Ã−1
2

= Ǎ−1
2 − Ǎ−1

2 X⊤
/i,B+∆ℓX/i,B+Ǎ−1

2

+ Ǎ−1
2 X⊤

/i,B+∆ℓX/i,B+Ã−1
2 X⊤

/i,B+∆ℓX/i,B+Ǎ−1
2 .

Hence, if we define

v̌ = X/i,B+Ǎ−1
2 xi,B+

ǔ⊤ = xi,B+Ǎ−1
2 X⊤

/i,B+∆ℓX/i,B+Ã−1
2 X⊤

/i,B+ , (96)

then we have

|x⊤
i,B+(Ǎ−1

2 − Ã−1
2 )xi,B+ | ≤ |v̌⊤∆ℓv̌| + |ǔ⊤∆ℓv̌|

≤
√∑

i

∆2
ℓ,ii

√∑
i

ǔ2
i v̌2

i +
√∑

i

∆2
ℓ,ii

√∑
i

v̌4
i

(c)
≤
√∑

i

∆2
ℓ,ii(
∑
i

ǔ4
i )

1
4 (
∑
i

v̌4
i )

1
4 +

√∑
i

∆2
ℓ,ii(
∑
i

v̌4
i )

1
2

≤
√∑

i

∆2
ℓ,ii(
∑
i

ǔ2
i )

1
2 (max

i
|v̌i|)

1
2 (
∑
i

v̌2
i )

1
4 +

√∑
i

∆2
ℓ,ii(max

i
|v̌i|)(

∑
i

v̌2
i )

1
2 . (97)

By our assumptions (see (146) for a more detailed calculation), we have√∑
j

∆2
ℓ,ii ≤ PolyLog(n)∥xi∥2

2λη , (98)

with probability larger than 1 − q̃n − q̌n. Furthermore,

∥v̌∥2 = ∥X/i,B+Ǎ−1xi,B+∥

≤ ∥X∥∥xi∥2

σmin(Ǎ)
≤ ∥X∥∥xi∥2

2λη (99)

and

∥ǔ∥ ≤ ∥xi∥2
2∥X∥2∥∆ℓ∥
σ2

min(Ǎ)
≤ PolyLog(n)∥xi∥3

2∥X∥2

8λ3η3 , (100)

with probability larger than 1 − q̌n. Finally,

P
(

max
i

v̌i > γ5(n) + t
)

≤ e2dn log ep
dn

(
e−p + 2e− nληt2

(
√

n+3√
p)2ρmax

)
. (101)

For the definition of γ5(n) and the detailed derivation of (101), please check (156) and (161). Hence, if we set
t =

√
dn log2 p
ληn , and define

γ7(n) = γ5(n) +

√
dn log2 p

ληn



by combining (97), (98), (99), (100), (101), we obtain

P(|x⊤
i,B+(Ǎ−1

2 − Ã−1
2 )xi,B+ | > γ7(n))

≤ e2dn log ep
dn

(
e−p + 2e− dn log2 p

(
√

n+3√
p)2ρmax

)
+ qn + q̌n

≤ e−dn log p + qn + q̌n (102)

provided dn ≤ p

C
for a sufficiently large constant C > 0, where we use the fact that ρmax = O(p−1).

Note that we were originally interested in bounding |x⊤
1,B1,+

(A−1
1 − A−1

2 )x1,B1,+ |. We have

|x⊤
1,B1,+

(A−1
1 − A−1

2 )x1,B1,+ |

≤ |x⊤
1,B1,+

(A−1
1 −

⋆

A
−1
1 )x1,B1,+ |

+|x⊤
1,B1,+

(A−1
2 −

⋆

A
−1
2 )x1,B1,+ |

+|x⊤
1,B1,+

⋆

A
−1
1 x1,B1,+ − x⊤

1,B+Ã−1
1 x1,B1,+ |

+|x⊤
1,B1,+

⋆

A
−1
2 x1,B1,+ − x⊤

1,B+Ã−1
2 x1,B1,+ |

+|x⊤
1,B+

(
Ã−1

2 − Ǎ−1
2

)
x1,B+ |

+|x⊤
1,B+

(
Ã−1

1 − Ǎ−1
1

)
x1,B+ |. (103)

Hence, by combining (93), (94), (102) we obtain that if

γ8(n, α) := 2γ7(n) + 2∥xi∥2
2α(1 − η)e− 1

2ακ1

2λη2 + 2∥xi∥2

γs1(α)

(
1 + ωs

2λη

)2
,

then

P(|x⊤
1,B1,+

(A−1
1 − A−1

2 )x1,B1,+ | > γ8(n, α))

≤ e2dn log ep
dn

(
e−p + 2e− dn log2 p

(
√

n+3√
p)2ρmax

)
+ qn + q̌n + q̃n

≤ e−dn log p + qn + q̌n + q̃n, (104)

provided dn ≤ p

C
for a sufficiently large constant C > 0, where we use the fact that ρmax = O(p−1).

Equipped with the bounds on |ψ01 − ψ02|, ψ1k, ψ2k and ψ3k, we now return to equation (82) to obtain∣∣∣∣x⊤
i,F (λdiag(r̈α/iF ) + X⊤

F diag(ℓ̈α/i)XF )−1xi,F − x⊤
i,F (λdiag(r̈˜α/iF

) + X⊤
F diag(ℓ̈˜α/i)XF )−1xi,F

∣∣∣∣
= x⊤

i,F

[(
A1 B1
B⊤

1 C1

)−1
−
(

A2 B2
B⊤

2 C2

)−1
]

xi,F

≤ |ψ01 − ψ02| + |ψ11 − ψ12| + |ψ21 − ψ22| + 2|ψ31 − ψ32|

≤ γ8(n, α) + 2ρmaxdn(1 + 8 log p)
ηλ

+ 2(ψ11 + ψ12)

≤ 2ρmaxdn(1 + 8 log p)
ηλ

+ 2(ψ11 + ψ12) + 2

√
(
√
n+ 3√

p)2ρmax

nλη
log 2n

+ 2

√
dn log2 p

nλη
+ 16∥xi∥2

λα(1 − η)

(
1 + ωs

2λη

)2
+ αe− 1

2ακ1

λη2

≤ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn
nλη

+ Cdn log2 p

pλη
+ Cdn
nλ2η2 +

√
C log p
pλη
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with probability at least 1−(n+1)e− p
2 −(n+2)p−dn −2qn−2q̌n−2q̃n. This finishes the proof of Theorem 4.

5.6 Proof of Lemma 6

We prove the lemma only for β̂, because the same proof and constants apply to the leave-one-out estimators β̂/i.

Recall that in Lemmas 5, 7 and 8, µ̂ is the empirical distribution of β̂, µ∗ is the distribution of b∗
b∗+2λητ∗

soft(τ∗Z+

Θ, λ(1−η)τ∗
b∗

) with (Θ, Z) ∼ 1
p

p∑
k=1

δβ∗
k

⊗N(0, 1), and (b∗, τ∗) is the unique solution of the equations (51) and (52).

Note that by Lemma 24, there exists 0 < bmin < bmax and σ < τmax depending only on model parameters such
that σ < τ∗ < τmax and bmin < b∗ < bmax.

Let us first define a smoothed indicator function as follows:

hζ(x) =


0 , |x| ≥ κ1 + ζ

1 − |x| − κ1
ζ

, κ1 ≤ |x| < κ1 + ζ

1 , |x| < κ1

(105)

Note that hζ is 1
ζ -Lipschitz, and 1[−κ1,κ1] ≤ hζ ≤ 1[−κ1−ζ,κ1+ζ]. We then have

1
p

#{k : 0 < |β̂k| ≤ κ1}

= µ̂([−κ1, κ1]) − µ̂({0})

=
∫
1[−κ1,κ1](x)dµ̂(x) − µ̂({0})

≤
∫
hζ(x)dµ̂(x) − µ̂({0})

≤
∫
hζ(x)dµ∗(x) +

∣∣∣∣∫ hζ(x)dµ∗(x) −
∫
hζ(x)dµ̂∗(x)

∣∣∣∣
− µ̂({0})

≤ µ∗([−κ1 − ζ, κ1 + ζ]) − µ∗({0})

+
∣∣∣∣∫ hζ(x)dµ∗(x) −

∫
hζ(x)dµ̂∗(x)

∣∣∣∣
+ |µ∗({0}) − µ̂({0})|. (106)

We now aim to obtain upper bounds for the final three terms in (106). First note that 0 is the unique discontinuity
of µ∗, therefore

µ∗([−κ1 − ζ, κ1 + ζ]) − µ∗({0}) ≤ 2(κ1 + ζ) max
x ̸=0

f∗(x)

where f∗ is the density of the absolutely continuous part of µ∗ w.r.t. the Lebesgue measure. It can be verified
directly via definition that

f∗(x)

= 1
p

(
1
τ∗

+ 2λη
b∗

) p∑
k=1

ϕ

(
x

(
1
τ∗

+ 2λη
b∗

)
+ sign(x)λ(1 − η)

b∗
− β∗

k

τ∗

)
where ϕ(·) is the standard Gaussian density, and therefore

f∗(x) ≤ (
√

2π)−1
(

1
τ∗

+ 2λη
b∗

)
≤ (

√
2π)−1

(
1
σ

+ 2λmax
bmin

)
=: Cf

So we have
µ∗([−κ1 − ζ, κ1 + ζ]) − µ∗({0}) ≤ 2Cf (κ1 + ζ). (107)



To bound the term
∣∣∫ hζ(x)µ∗(x) −

∫
hζ(x)µ̂∗(x)

∣∣ in (106) we use the following approach. First, note that hζ is
1/ζ-Lipschitz. Thus, ∣∣∣∣∫ hζ(x)µ∗(x) −

∫
hζ(x)µ̂∗(x)

∣∣∣∣
≤ 1
ζ

sup
g∈L1

∣∣∣∣∫ g(x)dµ∗(x) −
∫
g(x)dµ̂∗(x)

∣∣∣∣
= W1(µ̂, µ∗)/ζ ≤ W2(µ̂, µ∗)/ζ. (108)

In these equations, Wq denotes the Wasserstein-q distance between two measures for q = 1, 2. The last inequality
uses monotonicity of Wq in q: for 0 < p < q:

Wp(µ, ν) := inf
X∼µ,Y∼ν

∥X − Y ∥Lp
≤ inf
X∼µ,Y∼ν

∥X − Y ∥Lq
=: Wq(µ, ν)

Furthermore, by Lemma 5, for any 0 < ϵ < 1
2 , we have

W2(µ̂, µ∗)/ζ ≤
√
ε/ζ (109)

with probability at least 1 − C1ε
−2e−c1pε

3(log ε)−2 , for some constants C1, c1. Combining (108) and (110) we
conclude that ∣∣∣∣∫ hζ(x)µ∗(x) −

∫
hζ(x)µ̂∗(x)

∣∣∣∣ ≤
√
ε/ζ (110)

with probability at least 1 − C1ε
−2e−c1pε

3(log ε)−2 .

For the last term of (106) we use Lemma 8 to get:

|µ̂(0) − µ∗(0)| = |∥β̂∥0 − s∗| < ε′ (111)

with probability at least 1 − C2ε
′−6e−c2pε

′6 .

Using (106), (107), (110), and (111) together we have

1
p

∣∣∣{k : 0 < |β̂k| ≤ κ1}
∣∣∣ ≤ 2Cf (κ1 + ζ) +

√
ε/ζ + ε′

with probability at least 1 −C1ε
−2e−c1pε

3(log ε)−2 −C2ε
′−6e−c2pε

′6 . We observe first that the bound is minimized
at ζ = (2Cf )− 1

2 ε
1
4 without changing the probability.

Next, we set ε = 2(c1p)− 1
3 log p and ε′ = 3 1

3 (c2p)− 1
6 (log p) 1

6 to get:∣∣∣{k : 0 < |β̂k| ≤ κ1}
∣∣∣

≤ 2Cfpκ1 + C3p
11
12 (log p) 1

4 + C4p
5
6 (log p) 1

6

≤ Cpκ1 + Cp
11
12 (log p) 1

4

≤ Cp
11
12 (log p) 1

4

with probability at least 1−C ′p−7, for sufficiently large p and some constants C,C ′, provided κ1 = o(p− 1
12 (log p) 1

4 )
By an identical argument, an analogous statement holds for β̂/i,k. The proof is completed by a union bound
over 1 ≤ i ≤ n.

5.7 Proof of Lemma 22

First note that by using (84) we obtain

x⊤
i,B1,+

A−1
k BkDkB⊤

k A−1
k xi,B1,+

≤ (2λη)−1x⊤
i,B1,+

A−1
k BkB⊤

k A−1
k xi,B1,+ .
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We will use the notation

ωs := ∥X⊤X∥ sup
t∈[0,1]

max
1≤i≤n

ℓ̈i(tβ̂α + (1 − t)β̂α/i ;

ρ(α) := λ

(
2η + α(1 − η)κ0

8

)
. (112)

In the rest of the proof, we focus on k = 2 and find an upper bound for |ψ2k|. The proof for k = 1 is similar and
will hence be skipped. Furthermore, for notational simplicity, we drop the subscripts of k from matrices Ak and
Bk.

Intuitively speaking, the matrix G = A−1BB⊤A−1 has rank dn. Hence, if G were independent of xi, we could
have used concentration of χ2 random variables to show that ψ1k = Op(dnρmax). However, there are multiple
sources of dependency between xi and G: (1) The input arguments of r̈, (2) the input arguments of ℓ̈, and (3)
The dependence of B1,+ and F on xi. In the rest of the proof, we aim to handle these three dependencies and
show that ψ1k is still small. We remind the reader that

A = diag
[
λ
{
r̈α(β̂α)

}
B1,+

]
+ X⊤

/i,B1,+
diag

[
ℓ̈/i(β̂α)

]
X/i,B1,+

B = X⊤
/i,B1,+

diag
[
ℓ̈/i(β̂α)

]
X/i,F\B1,+ .

We start by defining

⋆

A= diag
[
λ
{
r̈α(β̂α/i)

}
B1,+

]
+ X⊤

/i,B1,+
diag

[
ℓ̈/i(β̂α)

]
X/i,B1,+ . (113)

Note that in
⋆

A we have removed one source of dependence, i.e., the dependence of the input argument of r̈ on
xi. As the first step we would like to show that the difference∣∣∣∣x⊤

i,B1,+

(
A−1BB⊤A−1−

⋆

A
−1

BB⊤ ⋆

A
−1 )

xi,B1,+

∣∣∣∣
is negligible for large values of α. Define

⋆

∆= (A)−1 − (
⋆

A)−1 = A−1(
⋆

A −A)
⋆

A
−1

(114)

Since
⋆

A −A = diag
[
λr̈α(β̂α/i)B1,+

]
− diag

[
λr̈α(β̂α)B1,+

]
,

according to Lemma 4, ∥
⋆

A −A∥ ≤ 4λα(1 − η)e− 1
2ακ1 . We conclude that

∥
⋆

∆∥ ≤ ∥A−
⋆

A∥

σmin(A)σmin(
⋆

A)
≤ α(1 − η)e− 1

2ακ1

λη2 ,

where we have used the lower bound 2λη for σmin(A2) and σmin(
⋆

A). This lower bound is obtained from the
ridge part of the regularizer. Define

γs0(α) := α(1 − η)e− 1
2ακ1

λη2 . (115)

As we will discuss later, we will ensure that γs0(α) → 0 as α → ∞. Hence, ∥
⋆

∆ ∥ will be small too. Using this



result and the triangle inequality we have

|x⊤
i,B1,+

(
A−1BB⊤A−1−

⋆

A
−1

BB⊤ ⋆

A
−1 )

xi,B1,+ |

≤ |x⊤
i,B1,+

⋆

∆ BB⊤A−1xi,B1,+ | + |x⊤
i,B1,+

⋆

∆ BB⊤ ⋆

A
−1

xi,B1,+ |

≤ ∥xi∥2∥B∥2∥
⋆

∆∥

(
1

σmin(A) + 1

σmin(
⋆

A)

)

≤ ∥xi∥2∥B∥2∥
⋆

∆∥

(
1

σmin(A) + 1

σmin(
⋆

A)

)

≤ ∥xi∥2∥B∥2γs0(α)
(

1
λη

)
. (116)

Similar to the proof of (71), it is not hard to see that

∥B2∥ ≤ ωs

under event AL. Furthermore, given the scaling we have considered in our paper, as will be clarified later,
∥X⊤X∥ = Op(1). Hence, the term ∥xi∥2∥B∥2γs0(α)( 1

λη ) will go to zero with high probability as α → ∞.

In the rest of our proof, we will work with x⊤
i,B1,+

⋆

A
−1

BB⊤ ⋆

A
−1

xi,B1,+ . Still there are two sources of
dependency between the middle matrix and xi,B1,+ : (1) the input argument of ℓ̈, and (2) The dependence of
B1,+ and F on xi. In order to remove the dependence of F and B1,+, we lift the problem to a higher dimensional
problem for the reasons that will become clearer later. Define the two sets:

B+ := B1,+ ∪ B0,

B− := F \ B1,+. (117)

Use these two sets to define

Ã = diag
[
λ
{
r̈α(β̂α/i)

}
B+

]
+ X⊤

/i,B+diag
[
ℓ̈/i(β̂α)

]
X/i,B+

B̃ = X⊤
/i,B+diag

[
ℓ̈/i(β̂α)

]
X/i,B− ,

As will be clarified later, working with B+ and B− will be helpful when we would like to remove the dependancies
that are caused by B+ and B−. Hence, as the first step our aim is to obtain an upper bound on the difference

|x⊤
i,B1,+

⋆

A
−1

BB⊤ ⋆

A
−1

xi,B1,+ − x⊤
i,B+Ã−1B̃B̃⊤Ã−1xi,B+ |.

We write Ã as

Ã =
(

E F
F⊤ G

)
, (118)

where

E = diag
[
λ
{
r̈α(β̂α/i)

}
B1,+

]
+ X⊤

/i,B1,+
diag

[
ℓ̈/i(β̂α)

]
X/i,B1,+ ,

F = X⊤
/i,B1,+

diag
[
ℓ̈/i(β̂α)

]
X/i,B0 ,

G = diag
[
λ
{
r̈α(β̂α/i)

}
B0

]
+ X⊤

/i,B0
diag

[
ℓ̈/i(β̂α)

]
X/i,B0 .

Similar to the proof of (71) it can be checked that

∥F∥2 ≤ ωs (119)
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with probability at least 1 − qn. Using the matrix inversion of block matrices (Lemma 11) we have

Ã−1 =
(

E−1 + E−1FHF⊤E−1 −E−1FH
−H⊤F⊤E−1 H

)
, (120)

where
H = (G − F⊤E−1F)−1.

Furthermore, similar to the derivation in (74) we have

∥H∥ = (σmin(G − F⊤E−1F))−1 ≤ 1
ρ(α) − (ωs)2

2λη

, (121)

with probability 1−qn. Both ρ(α) and ωs are defined at the beginning of the proof. It follows from the definition
of ρ(α) that 1

ρ(α)− (ωs)2
2λη

goes to zero for large values of α and hence the norm of H should be considered as a
small number. If we define

Ā† :=
(

⋆

A
−1

0|B1×B0|
0|B0×B1| 0|B0×B0|

)
, (122)

and
∆ := Ā† − Ã−1,

then it is straightforward to show that

|x⊤
i,B1,+

⋆

A
−1

BB⊤ ⋆

A
−1

xi,B1,+ − x⊤
i,B+Ã−1B̃B̃⊤Ã−1xi,B+ |

= |x⊤
i,B+Ā†B̃B̃⊤Ā†xi,B+ − x⊤

i,B+Ã−1B̃B̃⊤Ã−1xi,B+ |
≤ |x⊤

i,B+∆B̃B̃⊤∆xi,B+ | + 2|x⊤
i,B+∆B̃B̃⊤Ā†xi,B+ |

≤ ∥xi∥2∥B̃∥2∥∆∥
(
∥∆∥ + 2∥Ā†∥

)
. (123)

To find an upper bound for (123) we have to bound ∥∆∥, ∥B̃2∥ and ∥Ā†∥. Similar to our previous calculations,
we have under event AL that

∥B̃2∥ ≤ ωs , ∥Ā†
2∥ = 1

σmin(
⋆

A2)
≤ 1

2λη . (124)

Finally, by using Weyl’s theorem (Lemma 9), we have

∥∆∥ ≤
∥∥∥∥(E−1FHF⊤E−1 0|B1×B0|

0|B0×B1| 0|B0×B0|)

)∥∥∥∥+
∥∥∥∥(0|B1×B1| 0|B1×B0|

0|B0×B1| H

)∥∥∥∥+
∥∥∥∥( 0|B1×B1| E−1FH

H⊤F⊤E−1 0|B0×B0|)

)∥∥∥∥
≤ ∥H∥∥F∥2

σ2
min(E) + ∥H∥ + 2∥F∥∥H∥

σmin(E)

≤ 1
ρ(α) − (ωs)2

2λη

(
1 + ωs

2λη + (ωs)2

(2λη)2

)
, (125)

under event AL. To obtain the last inequality we have used (119), and (121). Define

γs1(α) := 1
ρ(α) − (ωs)2

2λη

(
1 + ωs

2λη + (ωs)2

(2λη)2

)
. (126)

By combining (123), (124) and (125) we conclude that

|x⊤
i,B1,+

⋆

A
−1

BB⊤ ⋆

A
−1

xi,B1,+ − x⊤
i,B+Ã−1B̃B̃⊤Ã−1xi,B+ |

= ∥xi∥2∥B̃∥2∥∆∥
(
∥∆∥ + 2∥Ā†∥

)
≤ ∥xi∥2(ωs)2∥∆∥(∥∆∥ + 1

λη
),

≤ ∥xi∥2(ωs)2γs1(α)
(
γs1(α) + 1

λη

)
, (127)



under event AL. As discussed before, we eventually show that as α → ∞, γs1(α) → 0 and hence the upper bound
in (127) will go to zero. Hence, in the rest of the proof, we aim to show that x⊤

i,B+Ã−1B̃B̃⊤Ã−1xi,B+ is small.

In the next step we would like to remove the dependence of the input argument of ℓ̈ on xi. Define,

Ǎ := diag
[
λ
{
r̈(β̂α/i)

}]
+ X⊤

/i,B+diag
[
ℓ̈/i(β̂α/i)

]
X/i,B+ ,

B̌ := X⊤
/i,B+diag

[
ℓ̈/i(β̂α/i)

]
X/i,B− .

Define
∆ℓ := diag

[
ℓ̈/i(β̂α)

]
− diag

[
ℓ̈/i(β̂α/i)

]
We have

Ã = Ǎ + X⊤
/i,B+∆ℓX/i,B+

According to Lemma 12,

Ã−1 = Ǎ−1 − Ǎ−1X⊤
/i,B+∆ℓX/i,B+Ǎ−1 + Ǎ−1X⊤

/i,B+∆ℓX/i,B+Ã−1X⊤
/i,B+∆ℓX/i,B+Ǎ−1 (128)

Also, we have

B̃ − B̌ = X⊤
/i,B+∆ℓX/i,B− . (129)

Define δB = B̃ − B̌ and δA−1 = Ã−1 − Ǎ−1. Then, we have

x⊤
i,B+Ã−1B̃B̃⊤Ã−1xi,B+

= x⊤
i,B+Ã−1B̃B̃⊤δA−1xi,B+ + x⊤

i,B+Ã−1B̃δ⊤
BǍ−1xi,B+

+ x⊤
i,B+Ã−1δBB̌⊤Ǎ−1xi,B+ + x⊤

i,B+δA−1B̌B̌⊤
2 Ǎ−1xi,B+

+ x⊤
i,B+Ǎ−1B̌B̌⊤Ǎ−1xi,B+ . (130)

Our goal is to show that each of the terms in (130) are small for large values of n, p. The two terms
x⊤
i,B+Ã−1B̃B̃⊤

2 δA−1xi,B+ and x⊤
i,B+δA−1B̌B̌⊤Ǎ−1xi,B+ can be bounded in very similar ways and will have sim-

ilar upper bounds. Also, the two terms x⊤
i,B+Ã−1B̃δ⊤

BǍ−1xi,B+ and x⊤
i,B+Ã−1δBB̌⊤Ǎ−1xi,B+ can be handled

in similar fashion and will have similar upper bounds. Hence, we only study the following three terms:

1. Finding an upper bound for x⊤
i,B+Ǎ−1B̌B̌⊤Ǎ−1xi,B+ :

Note that if it were not for the dependance of B+ on xi we could claim that xi,B+ is independent of
Ǎ−1B̌B̌⊤Ǎ−1, and we could use the Hanson-Wright inequality (Lemma 15). So, in order to remove the
dependence to be able to use the Hanson-Wright inequality, we will use union bound on sets B+ and B− in
the following way. First note that |B+| ≥ p − dn and |B−| ≤ dn. Let T + and T − denote two fixed sets of
size larger than p− dn, and smaller than dn (not dependent on xi) respectively. We define

ˇ̌A := diag
[
λ
{
r̈α(β̂α/i)

}]
+ X⊤

/i,T +diag
[
ℓ̈/i(β̂α/i)

]
X/i,T + ,

ˇ̌B = X⊤
/i,T +diag

[
ℓ̈/i(β̂α/i)

]
X/i,T − . (131)

For fixed T + and T −, xi,T is independent of ˇ̌A and ˇ̌B. Therefore if

G = ˇ̌A−1 ˇ̌B ˇ̌B⊤ ˇ̌A−1,

then from the Hanson-Wright inequality, Lemma 15, we have:

P
(
|x⊤
i,T +Gxi,T + − E(x⊤

i,T +Gxi,T + | X/i,y/i)| > t | X/i,y/i
)

≤ 2e
−c
(

(p−dn)2t2

∥G∥2
HS

∧ (p−dn)t
∥G∥2

)
. (132)

To use this bound we have to calculate the three terms: ∥G∥2, ∥G∥HS , and E(x⊤
i,T +Gxi,T + | X/i,y/i):
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(a) ∥G∥2:
It is straightforward to see that (see e.g. the derivation of (71))

∥G∥2 ≤ ∥ ˇ̌B∥2

σ2
min( ˇ̌A)

≤ ωs

4λ2η2 , (133)

under event AL.
(b) ∥G∥2

HS :
The rank of matrix G is at most dn (the maximum size of T −). Hence,

∥G∥2
HS ≤ dn∥G∥2

2 = dn(ωs)2

16λ4η4 (134)

(c) E(x⊤
i,T +Gxi,T +):

Let ΣT the covariance matrix of xi,T . We have

|Ex⊤
i,T +Gxi,T + | =

∣∣∣Tr(Σ1/2
T GΣ

1/2
T )

∣∣∣
(a)
≤ dn∥Σ1/2

T GΣ
1/2
T ∥ ≤ dn∥ΣT ∥∥G∥

≤ dnρmax∥G∥ ≤ dnρmaxω
s

4λ2η2 , (135)

with probability 1 − qn. Here, to obtain Inequality (a), we used the fact that the rank of Σ1/2GΣ1/2

is less than or equal to the rank of G which is less than or equal to dn.

Furthermore, from Lemma 19 we have

P(σmax(X⊤X) ≥ (
√
n+ 3√

p)2ρmax) ≤ e−p, (136)

where ρmax = σmax(Σ). Let the event E denote the event σmax(X⊤X) < (
√
n+ 3√

p)2ρmax. We know that

P(E) > 1 − e−p.

We remind the reader that

ωs = ∥X⊤X∥ sup
t∈[0,1]

max
1≤i≤n

ℓ̈i(tβ̂α + (1 − t)β̂α/i.

Combining (132), (133), (134), (135), (136) and using the following definitions:

γ3 :=
(
√
n+ 3√

p)2ρmax

4η2λ2 (137)

we have

P(x⊤
i,T Gxi,T + > t+ Ex⊤

i,T +Gxi,T +)
≤ P(x⊤

i,T +Gxi,T + > t+ Ex⊤
i,T +Gxi,T + , E) + P(Ec)

≤ 2e
−c
(

(p−dn))2t2

dnγ2
3

∧ (p−dn)t
γ3

)
+ e−p. (138)

Hence, we have

P(x⊤
i,T +Gxi,T + > t+ dnγ3) ≤ 2e

−c
(

(p−dn)2t2

dnγ2
3

∧ (p−dn)t
γ3

)
+ e−p. (139)



If we define the event Ẽ as the event that (3) holds, then we have
P( max

T +
|T +|≥p−dn

max
T −

|T −|≤dn

x⊤
i,T +Gxi,T + > t+ dnγ3)

≤ P( max
T +

|T +|≥p−dn

max
T −

|T −|≤dn

x⊤
i,T +Gxi,T + > t+ dnγ3|E , Ẽ) + P(E) + P(Ẽ)

≤
∑
T +

|T +|≥p−dn

∑
T −

|T −|≤dn

P(x⊤
i,T +Gxi,T + > t+ dnγ3|E , Ẽ) + P(E) + P(Ẽ)

≤ 2dn
(
p

dn

)2
2e

−c
(

(p−dn)2t2

dnγ2
3

∧ (p−dn)t
γ3

)+ e−p + qn

(a)
≤ e4dn log ep

dn

2e
−c
(

(p−dn)2t2

dnγ2
3

∧ (p−dn)t
γ3

)+ e−p + qn, (140)

where to obtain inequality (a) we used Stirling approximation together with the assumption dn <

edn log(ep/dn). By setting t = dn log2 dn

p−dn
we can obtain

P(x⊤
i,B+Ǎ−1B̌B̌⊤Ǎ−1xi,B+ >

dn log2 p

p− dn
+ dnγ3) ≤ 2e

dn log ep
dn

−c
(

dn log4 p

γ2
3

∧ dn log2 p
γ3

)
+ qn + e−p. (141)

The probability in (141) is small for large values of dn and p.

2. Finding an upper bound for x⊤
i,B+Ã−1B̃B̃⊤δA−1xi,B+ :

Define
v̌ := X/i,B+Ǎ−1xi,B+ , (142)

and
u⊤ := −x⊤

i,B+Ã−1B̃B̃⊤Ǎ−1X⊤
/i,B+

ũ⊤ := x⊤
i,B+Ã−1B̃B̃⊤Ǎ−1X⊤

/i,B+∆ℓX/i,B+Ã−1X⊤
/i,B+ (143)

Using Lemma 12 we have
|x⊤
i,B+Ã−1B̃B̃⊤

2 δA−1xi,B+ |
(a)
≤ |x⊤

i,B+Ã−1B̃B̃⊤Ǎ−1X⊤
/i,B+∆ℓX/i,B+Ǎ−1xi,B+ |

+ |x⊤
i,B+Ã−1B̃B̃⊤Ǎ−1X⊤

/i,B+∆ℓX/i,B+Ã−1X⊤
/i,B+∆ℓX/i,B+Ǎ−1xi,B+ |

= |u⊤∆ℓv̌| + |ũ⊤∆ℓv̌|
(b)
≤
√∑

i

∆2
ℓ,ii

√∑
i

u2
i v̌2

i +
√∑

i

∆2
ℓ,ii

√∑
i

ũ2
i v̌2

i

(c)
≤
√∑

i

∆2
ℓ,ii(
∑
i

u4
i )

1
4 (
∑
i

v̌4
i )

1
4 +

√∑
i

∆2
ℓ,ii(
∑
i

ũ4
i )

1
4 (
∑
i

v̌4
i )

1
4

≤
√∑

i

∆2
ℓ,ii(
∑
i

u2
i )

1
2 (max

i
|v̌i|)

1
2 (
∑
i

v̌2
i )

1
4 +

√∑
i

∆2
ℓ,ii(
∑
i

ũ2
i )

1
2 (max

i
|v̌i|)

1
2 (
∑
i

v̌2
i )

1
4 . (144)

Note that since σmin(Ã) > 1
2λη and σmin(Ǎ) > 1

2λη we have

∥u∥2 ≤ ∥xi∥2
∥B̃∥2∥X∥

(2λη)2 ,

∥ũ∥2 ≤ ∥xi∥2
∥B̃∥2∥X∥2∥∆ℓ∥

2(λη)3 . (145)
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Furthermore,

∥∆ℓ∥ =
√∑

j

∆2
ℓ,ii

(a)
≤ PolyLog(n)∥β̂α − β̂α/i∥2

(b)
≤ PolyLog(n) |ℓ̇(β̂α)|∥xi∥2

2λη (146)

≤ PolyLog(n)∥xi∥
2ηλ (147)

under the event AL ∩ As. Here Inequality (a) is a result of (3) in Assumption A4. Note that we are using
the same notation for all the terms that are polynomial functions of log(n). To obtain Inequality (b) we
have used Part 2 of Lemma 3. Finally,

∥v̌∥2 = ∥X/i,B+Ǎ−1xi,B+∥ ≤ ∥X∥∥xi∥2

σmin(Ǎ)
≤ ∥X∥∥xi∥2

2λη . (148)

To finish our bound for (144) we have to bound ∥v̌∥∞. Note that

v̌ = X/i,B+Ǎ−1xi,B+ .

The main difficulty in bounding this term is that due to the dependence of B+ on xi it is hard to characterize
the distribution of the elements of v̌. To remove this dependency we again want to use the union bound on
the different choices of B+. Towards this goal, suppose that for a fixed set T of size larger than p− dn we
define:

ˇ̌v = X/i,T
ˇ̌A−1xi,T ,

where
ˇ̌A = diag

[
λ
{
r̈(β̂α/i)

}]
+ X⊤

/i,T diag
[
ℓ̈/i(β̂α/i)

]
X/i,T .

(149)

Note that the distribution of ˇ̌v given X/i,y/i is N
(

0, 1
nX/i,T

ˇ̌A−2X⊤
/i,T

)
. Furthermore, we have

∥X/i,T
ˇ̌A−2X⊤

/i,T ∥ ≤
∥X/iX⊤

/i∥
4η2λ2 .

Hence, using Corollary 5 we have

P

max
i

ˇ̌vi >

√
∥X/iX⊤

/i∥
nλη

log 2n+ t | X/i,y/i

 ≤ 2e
− 4nλ2η2t2

∥X/iX⊤
/i

∥
. (150)

It is straightforward to check that
max
i

∥X/iX⊤
/i∥ ≤ ∥XX⊤∥.

Furthermore, according to Lemma 19 with probability larger than e−p we have

P(∥X⊤X∥ ≥ (
√
n+ 3√

p)2ρmax) ≤ e−p. (151)

Define

γ4(n) :=

√
(
√
n+ 3√

p)2ρmax

nλη
log 2n, (152)

and let the event E denote the event that ∥X⊤X∥ ≤ (
√
n + 3√

p)2ρmax. Then, from (151) and (150) we
obtain

P
(

max
i

ˇ̌vi > γ4(n) + t
)

≤ P
(

max
i

ˇ̌vi > γ4(n) + t, E
)

+ P(Ec)

≤ e−p + 2e− 4nλ2η2t2

(
√

n+3√
p)2ρmax . (153)



Note that we expect ρmax = O( 1
p ). Hence, γ4(n) is expected to be O

(√
logn
n

)
. So far, we have only

considered a bound for ˇ̌v in which a fixed set T is only considered, despite the fact that the quantity we are
interested in is ∥v̌∥∞ in which T is replaced with set B+. To resolve the issue we use the union bound. We
have

P
(

max
T :|T |>p−dn

max
i

ˇ̌vi > γ4(n) + t

)
≤
∑

T :|T |>p−dn

P
(

max
i

ˇ̌vi > γ4(n) + t
)

≤ dn

(
p

p− dn

)(
e−p + 2e− nλ2η2t2

(
√

n+3√
p)2ρmax

)
≤ e2dn log ep

dn

(
e−p + 2e− 4nλ2η2t2

(
√

n+3√
p)2ρmax

)
. (154)

Hence, we conclude that

P
(

max
i

v̌i > γ4(n) + t
)

≤ e2dn log ep
dn

(
e−p + 2e− nλ2η2t2

(
√

n+3√
p)2ρmax

)
. (155)

Setting t = 1
λη

√
dn log2 p

n and combining this equation with (144), (145), (146), and (148), we conclude that
if we define

γ5(n) := PolyLog(n)∥xi∥2
2λη

γ4(n) + 1
λη

√
dn log2 p

n

 ∥X∥∥xi∥
2λη

∥xi∥∥B̃∥2∥X∥
4λ2η2

(
1 + ∥X∥c3(n)c4(n)

4λ2η2

)
,

(156)

then

P(|x⊤
i,B+Ã−1B̃B̃⊤δA−1xi,B+ | > γ6(n)) ≤ qn + q̌n + e2dn log ep

dn

(
e−p + 2e− dn log2 p

(
√

n+3√
p)2ρmax

)
. (157)

As discussed before, we have γ4(n) = O

(√
logn
n

)
. Also, all the norms ∥X∥, ∥xi∥, ∥B̃∥ are OP (1), hence we

expect γ5(n) to go to zero at the rate
√
dnPolyLog(n)/n. This heuristic argument will be be made rigorous

later.

3. x⊤
i,B+Ã−1B̃δ⊤

BǍ−1xi,B+ :
Using a similar argument as the one presented in (144) we obtain:

x⊤
i,B+Ã−1B̃δ⊤

BǍ−1xi,B+

= x⊤
i,B+Ã−1B̃X/i,B−∆ℓX/i,B+Ǎ−1xi,B+

= x⊤
i,B+Ã−1B̃X/i,B−∆ℓv̌ = ǔ∆ℓv̌

≤
√∑

i

∆2
ℓ,ii∥ǔ∥(max

i
|v̌i|)

1
2 ∥v̌∥ 1

2 . (158)

In the above equations we have used

ǔ⊤ := x⊤
i,B+Ã−1B̃X/i,B− ,

and
v̌ = X/i,B+Ǎ−1xi,B+ .
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According to (146) and (155) we have√∑
j

∆2
ℓ,ii ≤ PolyLog(n)∥xi∥2

2λη , (159)

with probability larger than 1 − qn − q̌n, and

∥v̌∥2 ≤ ∥X∥∥xi∥2
2λη , (160)

and

P
(

max
i

v̌i > γ5(n) + t
)

≤ e2dn log ep
dn

(
e−p + 2e− 4nλ2η2t2

(
√

n+3√
p)2ρmax

)
. (161)

Hence, the only remaining term to bound is ∥ǔ∥. It is straightforward to see that

∥ǔ∥2 ≤ ∥xi∥∥B̃∥∥X∥
σmin(Ã)

≤ ∥xi∥∥B̃∥∥X∥
2λη . (162)

Hence, combining (158), (159), (160), (161), and (162) we will have that if we set t = 1
λη

√
dn log2 p

n , and
define

γ6(n) := PolyLog(n)∥xi∥3∥B̃∥∥X∥2

(2λη)3

γ5(n) + 1
λη

√
dn log2 p

n

 , (163)

then

P(|x⊤
i,B+Ã−1B̃δ⊤

BǍ−1xi,B+ | > γ6(n)) ≤ qn + q̌n + e2s log ep
s

(
e−p + 2e− 4dn log2 p

(
√

n+3√
p)2ρmax

)
. (164)

Plugging in the bounds from equations (141),(164) and similarly bounding the remaining terms in (130), we
obtain

x⊤
i,B+Ã−1B̃B̃⊤

2 Ã−1xi,B+

≤ 2γ5(n) + 2γ6(n) + dn log2 p

p− dn
+ dnγ3

≤ dn log2 p

p− dn
+

(
√
n+ 3√

p)2dnρ
2
max

4η2λ2

+ PolyLog(n)∥xi∥3∥X∥2ωs

4λ3η3

(
1 + ωs

2λη + ωs∥X∥PolyLog(n)
8λ3η3

)√ (
√
n+ 3√

p)2ρmax

nλη
log 2n+ 1

λη

√
dn log2 p

n

 .

with probability at least

1 − edn log ep
dn

(
2e

−c
(

dn log4 p

γ2
3

∧ dn log2 p
γ3

))
− qn − q̌n − e−p − 2e2dn log ep

dn

(
e−p + 4e− dn log2 p

(
√

n+3√
p)2ρmax

)
≥ 1 − e−dn log p − qn − q̌n

provided e ≤ dn ≤ p
C for a sufficiently large constant C > 0, where we use the definition of γ3, γ4, γ5, γ6 along

with the fact that ρmax = O(p−1).



We now return to equations (116) and (127), along with the bound derived immediately above, to obtain

x⊤
i,B1,+

A−1BB⊤A−1xi,B1,+

≤ ∥xi∥2(ωs)2
(
γs0(α)
λη

+ (γs0(α))2 + (γs1(α))2
)

+ dn log2 p

p− dn
+

(
√
n+ 3√

p)2dnρ
2
max

4η2λ2

+ PolyLog(n)∥xi∥3∥X∥2ωs

4λ3η3

(
1 + ωs

2λη + ωs∥X∥PolyLog(n)
8λ3η3

)√ (
√
n+ 3√

p)2ρmax

nλη
log 2n+ 1

λη

√
dn log2 p

n


(165)

with probability at least 1 − p−dn − qn − q̌n. We now simplify the above bound by plugging in high probability
bounds on the respective parameters. To this end, we first state:

• By Assumption A1, ρmax = σmax(Σ) ≤ CX/p.

• By Lemmas 17 and 19,
max

1≤i≤n
∥xi∥ ≤ 2

√
CX and ∥X⊤X∥ ≤ (√γ0 + 3)2CX

with probability at least 1 − (n+ 1)e−p/2.

• Next,

ωs = ∥X⊤X∥ sup
t∈[0,1]

max
1≤i≤n

ℓ̈(tβ̂α + (1 − t)β̂α/i)

≤ (
√
n+ 3√

p)2ρmaxPolyLog(n)
≤ CX(√γ0 + 3)2PolyLog(n)

with probability at least 1 − e−p, by Lemma 19 and Assumption A4.

• By equation (115), we have

γs0(α) ≤ 1
p

provided α ≥ Cp/λ2η(1 − η)κ0 for sufficiently large p and a sufficiently large constant C > 0.

• By equation (126) and the above inequalities, we obtain

γs1(α) ≤ 16
λα(1 − η)κ0

(
1 + 1

λη
(CX)2(√γ0 + 3)4PolyLog(n)

)
≤ 1

p

provided α ≥ CpPolyLog(n)/λ2η(1 − η)κ0 for sufficiently large p and a sufficiently large constant C > 0.

Plugging in all these bounds into (165) we conclude that there is a sufficiently large numerical constant C > 0,
depending only on γ0, CX and such that

x⊤
i,B1,+

A−1BB⊤A−1xi,B1,+

≤ PolyLog(n)
λ3η3(1 ∧ λη)3

√
dn
nλη

+ Cdn
nλ2η2 + dn log2 p

p− dn
+ C

pλη

with probability at least 1 − (n+ 1)e− p
2 − p−dn − qn − q̌n.
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6 STUDY OF THE ELASTIC NET ESTIMATOR

6.1 Objective

As mentioned in Section 3 of the main part of the paper, our proofs use concentration of measure results for the
empirical distribution of the regression coefficeints and the subgradient vector. Some of the results we use in our
paper are due to (Miolane and Montanari, 2021). However, the results of (Miolane and Montanari, 2021) are
stated for the LASSO estimator and not the elastic-net. Hence, the results we require are different from those
presented in (Miolane and Montanari, 2021). However, the changes do not constitute significant advancements
that would warrant the derivation of elastic-net results as a major contribution. As a result, we have included
these findings in a dedicated section, which will serve as an online appendix to our paper. This section will not
be part of the formal submission to a journal but is included for the sake of completeness.

Throughout this appendix we will mainly focus on Theorem 3.1, Theorem E.5 and Theorem F.1 of (Miolane
and Montanari, 2021). For the sake of brevity we do not present the proof with every details, since the proof
technique is very similar to that of (Miolane and Montanari, 2021). We only focus on the differences. Consider
the elastic net problem:

β̂ := argmin
β∈Rp

L(β) = argmin
β∈Rp

1
2n∥y − Xβ∥2

2 + λ

n
(∥β∥1 − ∥β∗∥1) + η

n

(
∥β∥2

2 − ∥β∗∥2
2
)
.

Note that to simplify the proof we have subtracted ∥β∗∥1 and ∥β∗∥2
2 and used a different scaling than the one

presented in the paper. However, as is obvious, these changes do not have any effect on β̂. Furthermore, the
definition here is slightly different from the one in the main paper, where the LASSO penalty is λ(1 − η), and
the ridge penalty is λη. The difference is not substantial and is only for notational brevity. Let ŵ = β̂ − β∗

denote the estimation error. Using the assumption y = Xβ∗ + σz, the problem can be written as:

ŵ = argmin
w∈Rp

C(w)

= argmin
w∈Rp

1
2n∥σz − Xw∥2

2 + λ

n
(∥w + β∗∥1 − ∥β∗∥1) + η

n

(
∥w + β∗∥2

2 − ∥β∗∥2
2
)
. (166)

We assume there exist 0 < λmin < λmax, ηmax > 0 such that λ ∈ [λmin, λmax] and η ∈ (0, ηmax].

Suppose that we are interested in the asymptotic distribution of the elements of ŵ. The main approach that
can help us in characterizing the distribution is the convex Gaussian minimax theorem that we would like to
introduce briefly next.

1.2 Convex Gaussian Minimax Theorem

In this appendix, we require a few notations that we aim to introduce in this section. Consider the mean square
error of the elastic net, i.e. 1

p∥ŵ∥2
2. It has been shown in (Maleki, 2010; Donoho et al., 2011, 2009; Thrampoulidis

et al., 2015, 2018) that under the asymptotic settings n/p → δ and under Assumptions B1-B5 of our paper, the
mean square error converges to δ(τ2

∗ − σ2), where τ2
∗ is a saddle point of the following function:

ψ(τ, b) =
(
σ2

τ
+ τ

)
b

2 − b2

2 + 1
n
E min

w∈Rp

{
b

2τ ∥w∥2
2 − bg⊤w + λ (∥w + β∗∥1 − ∥β∗∥1)

}
+ η

(
∥w + β∗∥2

2 − ∥β∗∥2
2
)
. (167)

Define
ŵf (τ, b) := b

b+ 2ητ soft
(
τg + β∗,

λτ

b

)
− β∗

where g ∼ N(0, Ip) and
[soft(x, r)]i = ((|xi| − r)+ sgn(xi))pi=1

is the element-wise soft thresholding function. Let (τ∗, b∗) denote the unique saddle point of ψ(τ, b). Define

ŵf := ŵf (τ∗, b∗)

The following theorems state that the saddle point exists, is unique, and is bounded.



Lemma 23. maxb≥0 minτ≥σ ψ(τ, b) is achieved at a unique couple (τ∗, b∗) which is also the unique solution of
the following system: {

τ2 = σ2 + 1
nE∥ŵf∥2

2,
b = τ − 1

nEg
⊤ŵf .

(168)

Lemma 24. There exist bmin > 0, τmax > 0, bmax > 0 that depend only on δ, σ, ξ such that bmin ≤ b∗ ≤ bmax
and σ < τ∗ ≤ τmax

The proof of these theorems are postponed to Section 1.4.

The convex Gaussian minimax framework makes the connection between 1
p∥ŵ∥2

2 and τ2
∗ through a few steps that

we clarify below. Again consider the optimization problem:

ŵ = argmin
w∈Rp

C(w)

= argmin
w∈Rp

1
2n∥σz − Xw∥2

2 + λ

n
(∥w + β∗∥1 − ∥β∗∥1) + η

n

(
∥w + β∗∥2

2 − ∥β∗∥2
2
)
.

Note that we can rewite this optimization problem as the following saddle point problem using dual representation
of the l2 norm:

ŵ := arg min
w∈Rp

max
u

1
n

u⊤Xw − 1
2nu⊤u − 1

n
u⊤σz + λ

n
(∥w + β∗∥1 − ∥β∗∥1) + η

n

(
∥w + β∗∥2

2 − ∥β∗∥2
2
)
.

According to the Convex Gaussian minimax framework we can construct a simpler auxilary saddle point problem
that can provide useful information about ŵ. To clarify this point, define

Φ(X) := min
w∈Sw

max
u∈Su

1
n

u⊤Xw − 1
2nu⊤u − 1

n
u⊤σz + λ

n
(∥w + β∗∥1 − ∥β∗∥1)

+ η

n

(
∥w + β∗∥2

2 − ∥β∗∥2
2
)

(169)

= min
w∈Sw

max
u∈Su

1
n3/2 u⊤(X̃,−z)

(
w

−
√
nσ

)
− 1

2nu⊤u + λ

n
(∥w + β∗∥1 − ∥β∗∥1)

+ η

n

(
∥w + β∗∥2

2 − ∥β∗∥2
2
)

(170)

where Sw and Su are two convex, compact sets. Note that (X̃,−z) is a matrix with i.i.d. N(0, 1) entries. Define
the following auxillary optimization problem:

ϕ(g,h)

:= min
w∈Sw

max
u∈Su

1
n

√
∥w∥2

2
n

+ σ2h⊤u − 1
n3/2 ∥u∥g⊤w + 1

n
∥u∥g′σ − 1

2nu⊤u

+λ

n
(∥w + β∗∥1 − ∥β∗∥1) + η

n

(
∥w + β∗∥2

2 − ∥β∗∥2
2
)

(171)

where h ∼ N(0, In), g ∼ N(0, Ip), g′ ∼ N(0, 1), and all of them are independent and also independent of z.

According to the Gaussian minimax theorem, i.e. Theorem 3 of (Thrampoulidis et al., 2015) , when Sw and Su
are convex compact sets we have

P(Φ(X) < t) ≤ 2P(ϕ(g,h) < t) (172)
P(Φ(X) > t) ≤ 2P(ϕ(g,h) > t) (173)

Using this theorem, and by using a proper choice for Sw we can analyze certain properties of ŵ through the
minimizer of the easier auxillary function:

L(w) := 1
2

(√
∥w∥2

2
n

+ σ2 ∥h∥2√
n

− 1
n

g⊤w + g′σ√
n

)2

+

+ λ

n
(∥w + β∗∥1 − ∥β∗∥1)

+ η

n

(
∥w + β∗∥2

2 − ∥β∗∥2
2
)
. (174)
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Note that L(w) is obtained from ϕ(g,h), when the supremum with respect to u ∈ Rp is calculated.

Let us explain how L(w) can be connected with the scaler saddle point problem presented in (167). Actually
minw L(w) concentrates around maxb≥0 minτ≥σ ψ(τ, b). Below is a heuristic argument. For simplicity we denote
r(w) = λ(∥w + β∗∥1 − ∥β∗∥1) + η(∥w + β∗∥2 − ∥β∗∥2)

First notice that ∥h∥2√
n

concentrates around 1, and g′σ√
n

concentrates around 0, so heuristically, they can be removed
from the expression which lead to:

min
w

L(w) ≈ min
w

1
2

(√
∥w∥2

2
n

+ σ2 − 1
n

g⊤w
)2

+

+ 1
n
r(w)

Next we use the fact that a2
+ = maxb≥0 ab− 1

2b
2 and

√
∥w∥2

2
n + σ2 = minτ≥σ

∥w∥2
2

n +σ2

2τ + τ
2 to obtain

min
w

L(w) ≈ min
w

max
b≥0

min
τ≥σ

( ∥w∥2
2

n + σ2

2τ + τ

2 − 1
n

g⊤w
)
b− 1

2b
2 + 1

n
r(w)

(a)= max
b≥0

min
τ≥σ

(
σ2

τ
+ τ

)
b

2 − 1
2b

2 + 1
n

min
w

{
b

2τ ∥w∥2
2 − g⊤w + r(w)

}
:= max

b≥0
min
τ≥σ

F (τ, b,w)

Step (a) requires some delicate arguments which are omitted here. They intend to prove that the minimum ad
maximum operation are interchangeable. Finally, one can show that max

b≥0
min
τ≥σ

F (τ, b,w) concentrates around

max
b≥0

min
τ≥σ

EF (τ, b,w) = max
b≥0

min
τ≥σ

ψ(τ, b) = ψ(τ∗, b∗).

Therefore, minw L(w) concentrates around ψ(b∗, τ∗).

Now we will use the above arguments for a specific choice of Sw that allows us to obtain the mean square error
of ŵ. For this purpose we define Sw = D(ε) := {w ∈ Rp : 1

p∥w − ŵf∥2
2 > ε}. We first mention the roadmap of

the proof to help the readers navigate through the following theorems:

• We first show that the minimizer of L(w) is with high probability in a ball of radius ϵ2 around ŵf , and
hence minw L(w) is with high probability very close to ψ(b∗, τ∗). This is done in Lemma 25, Lemma 26,
and Corollary 7.

• In the next step we use the minimax theorem to show that the minimizer of C(w) defined in (166) is with
high probability in the complement of D(ϵ). This is proved in Lemmas 29 and 28. One can then use Lemma
28 to obtain information about 1

p∥ŵ∥2
2, which is the same as the mean square error of β̂.

Our first result aims to connect the minimizer of L(w) with ŵf .
Lemma 25. There exist γ,C, c > 0 depending only on Ω, such that ∀ε ∈ [0, 1],

P
(

min
w∈D(ε)

L(w) < min
w∈Rp

L(w) + γε

)
≤ C

ε
e−cnε2

where D(ε) := {w ∈ Rp : 1
p∥w − ŵf∥2

2 > ε}. §

The proof is essentially the same as the proof of Theorem B.1 of (Miolane and Montanari, 2021), up to minor
modifications to some constants. Hence, we do not repeat the proof here..

§Throughout the discussion, the term ‘constants’ refers to quantities that rely only on the following set of model
parameters Ω := (δ, σ, ξ, λmin, λmax, ηmax). Recall that δ = n/p, and ξ = 1√

p
∥β∗∥2; λmin, λmax control the scale of λ, and

ηmax controls the scale of η. We do not assume η to be bounded away from 0, to be consistent with our main text.



Lemma 26. There exist constants C, c > 0 such that for all ϵ ∈ [0, 1],

P
(
|L(ŵf ) − ψ(τ∗, b∗)| > ε

)
≤ Ce−cnε2

Proof. We only need to prove it for ε ≤ ε0 for some small constant ε0 depending only on model parmeters Ω .
The reason is that the probability is non-increasing in ε so we have a naive bound Ce−cnε2

0 for ε0 ≤ ε ≤ 1. This
flat bound, combined with the sub-Gaussian bound for small ε, is further bounded by Ce−cnε2

0ε
2 for all ε ∈ [0, 1]

and this is the bound we desire.

Using the fix point equations (168) we have the following simplification for ψ(τ∗, b∗):

ψ(τ∗, b∗) = 1
2b

2
∗ + λ

n
E∥ŵf + β∗∥1 − λ

n
∥β∗∥1 + η

n
E∥ŵf + β∗∥2

2 − η

n
∥β∗∥2

2

Define

b̂f :=
(√

∥ŵf∥2
2

n
+ σ2 ∥h∥2√

n
− 1
n

g⊤ŵf + g′σ√
n

)

And denote b̂f+ = b̂f1b̂f>0, we have

|L(ŵf ) − ψ(τ∗, b∗)| ≤ 1
2

∣∣∣(̂bf+)2 − b2
∗

∣∣∣
+ λ

n

∣∣∥ŵf + β∗∥1 − E∥ŵf + β∗∥1
∣∣

+ η

n

∣∣∥ŵf + β∗∥2
2 − E∥ŵf + β∗∥2

2
∣∣ (175)

The last two terms are relatively easy to bound. Notice that g → ŵf = b∗
b∗+2ητ∗

soft(τ∗g + β∗, λτ∗
b∗

) − β∗ is τmax
Lipschitz, so

1. ∥ŵf + β∗∥1 is Cn−1 sub-Gaussian, because g 7→ 1
n∥ŵf + β∗∥1 is Cn−1/2 Lipschitz.

2. ∥ŵf + β∗∥2
2 is Cn−1 sub-exponential because g → n−1/2∥ŵf + β∗∥2 is Cn−1/2-Lipschitz. Therefore

n−1/2∥ŵf + β∗∥2 is Cn−1-sub-Gaussian, and hence 1
n∥ŵf + β∗∥2

2 is Cn−1 sub-exponential.

Therefore for the second and third terms of (175), we have the following concentrations. For ε ∈ [0, 1], there
exist constants C, c > 0 such that

P
(
λ

n

∣∣∥ŵf + β∗∥1 − E∥ŵf + β∗∥1
∣∣ > ε

)
≤ Ce−cnε2

(176)

P
( η
n

∣∣∥ŵf + β∗∥2
2 − E∥ŵf + β∗∥2

2
∣∣ > ε

)
≤ Ce−cnε2

(177)

Now for the first term (̂bf+)2 − b2
∗, first we have

|̂bf − b∗|

=
∣∣∣∣∣
(√

∥ŵf∥2
2

n
+ σ2 −

√
E

∥ŵf∥2
2

n
+ σ2

)
∥h∥2√
n

+ τ∗

(
∥h∥2√
n

− 1
)

− 1
n

(g⊤ŵf − Eg⊤ŵf ) + σg′
√
n

∣∣∣∣∣ .
(178)

We aim to establish concentration results for each of the four terms that appear in (178). For the first term, we
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have

P

(∣∣∣∣∣
√

∥ŵf∥2
2

n
+ σ2 −

√
E

∥ŵf∥2
2

n
+ σ2

∣∣∣∣∣ ∥h∥2√
n

>
ε

4

)

≤ P(∥h∥2 > 2
√
n) + P

(∣∣∣∣∣
√

∥ŵf∥2
2

n
+ σ2 −

√
E

∥ŵf∥2
2

n
+ σ2

∣∣∣∣∣ > ε

8

)

≤ Ce−cn + P
(

1
n

∣∣∥ŵf∥2
2 − E∥ŵf∥2

2
∣∣ > ε

b
· 2σ

)
≤ Ce−cn + Ce−cnε2

for small ε. The second inequality above uses sub-Gaussian concentration of ∥h∥2, and the fact that
√
x+ σ2 is

1
2σ Lipschitz in x. To obtain the last inequality first note that g → ∥ŵf∥ is τmax-Lipschitz. Hence, ∥ŵf ∥2√

n
is C/n

sub-Gaussian, and 1
n∥ŵf∥2

2 is C/n sub-exponential. We can then use Bernstein inequality of sub-exponential
random variables (e.g. Theorem 2.8.1 of (Vershynin, 2018)) to establish the last inequaltiy.

This implies that
P(̂bf < 0) ≤ P(|̂bf − b∗| > b∗) ≤ Ce−cn

and similarly
P(̂bf > bmax + 1) ≤ Ce−cn

so
P(|̂bf+ − b∗| > ε) ≤ P(̂bf < 0) + P(|̂bf−b∗| > ε) ≤ Ce−cnε2

then we have

P
(

1
2 |(̂bf+)2 − b2

∗| > ε

4

)
= P

(
|̂bf+ − b∗| · |̂bf+ + b∗| > ε

2

)
≤ P(̂bf > bmax + 1) + P

(
|̂bf+ − b∗| > ε

2(2bmax + 1)

)
≤ Ce−cn + Ce−cε2

≤ Ce−cnε2
(179)

for small ε. Now inserting (176), (177), and (179) back into (175) we have our final result

P(|L(ŵf ) − ψ(τ∗, b∗)| > ε) ≤ Ce−cnε2

for small ε.

Lemma 27. For all R > 0 there exists constants C, c > 0 that only depend on (Ω, R) such that for all ε ∈ (0, 1],

P(L(ŵf ) > min
∥w∥2≤

√
nR
L(w) + ε) ≤ C

ε
e−cnε2

Proof. The proof is essentially the same as that of Proposition B.2 in (Miolane and Montanari, 2021) and thus
omitted.

We would now like to combine Lemma 25, Lemma 26 and Lemma 27 to prove the following result:
Corollary 7. There exist C, c > 0 depending only on Ω such that for all ε ∈ [0, 1],

P(| min
w

L(w) − ψ(b∗, τ∗)| > ε) ≤ C

ε
e−cnε2



Proof. L(w) is 2η
n -strictly convex and L(w) → +∞ when ∥w∥2 → +∞. Therefore L(w) possesses a unique

global minimizer w∗.

By Lemma 25, the event { 1
p∥w∗ − ŵf∥2

2 ≤ 1} has probability at least 1 − Ce−cn. On this event we have

∥w∗∥2 ≤ ∥ŵf∥2 + ∥w∗ − ŵf∥2 ≤ ∥ŵf∥2 + √
p

Recall that ∥ŵf ∥√
n

is C/n sub-Gaussian so P( 1√
p∥ŵf∥2 ≤ 1√

pE∥ŵf∥2 + 1) ≥ 1 − Ce−cn. Therefore

∥w∗∥2 ≤ E∥ŵf∥2 + C
√
n

≤
√
E∥ŵf∥2

2 + C
√
n

≤
√
n(τ2

max − σ2) + C
√
n

= C
√
n (180)

where the second inequality uses Jensen’s Inequality, and the third uses Lemma 23.

Let event A be the intersection of above events, i.e. A := { 1
p∥w∗ − ŵf∥2

2 ≤ 1, 1√
p∥ŵf∥2 ≤ 1√

pE∥ŵf∥2 + 1} then
A has probability at least 1 − Ce−cn. On event A we have:

min
w

L(w) = min
∥w∥2≤C

√
n
L(w).

This means

P
(
L(ŵf ) > min

w
L(w) + ε

2

)
≤ P

(
L(ŵf ) > min

∥w∥2≤C
√
n
L(w) + ε

2

)
+ Ce−cn (181)

So we have

P(| min
w

L(w) − ψ(b∗, τ∗)| > ε) ≤ P
(

| min
w

L(w) − L(ŵf )| > ε

2

)
+ P

(
|L(ŵf ) − ψ(b∗, τ∗)| > ε

2

)
≤ P

(
L(ŵf ) > min

w
L(w) + ε

2

)
+ Ce−cnε2

≤ Ce−cnε2
+ Ce−cn + P

(
L(ŵf ) > min

∥w∥2≤C
√
n
L(w) + ε

2

)
≤ Ce−cnε2

+ Ce−cn + Ce−cnε2

≤ Ce−cnε2

for small ε. The second inequality uses Lemma 26 and the fact that L(ŵf ) > minw L(w). The third inequality
use (181). The penultimate inequality uses Lemma 27 with R chosen to be the constant C in (180). Note that
all above constants C, c may vary line by line but depend only on model parameters in Ω.

Lemma 28. There exists C, c > 0 depending only on Ω such that for all ε ∈ [0, 1],

P
(∣∣∣min

w
C(w) − ψ(τ∗, b∗)

∣∣∣ ≥ ε
)

≤ C

ε
e−cnε2

Proof. Using the convex Gaussian minimax theorem stated in (172) and Corollary 7, we have

P
(∣∣∣min

w
C(w) − ψ(τ∗, b∗)

∣∣∣ ≥ ε
)

≤ 2P
(∣∣∣min

w
 L(w) − ψ(τ∗, b∗)

∣∣∣ ≥ ε
)

≤ C

ε
e−cnε2

.

Lemma 29. There exists constants C, c depending only on Ω such that for all closed set D ∈ Rp, ∀ε ∈ (0, 1]:

P( min
w∈Dϵ

C(w) ≤ min
w

C(w) + ε) ≤ 2P( min
w∈Dϵ

L(w) ≤ min
w

L(w) + 3ε) + C

ε
e−cnε2

Proof. The proof is essentially the same as the proof of Proposition C.1 in (Miolane and Montanari, 2021) and
thus omitted here.
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1.3 The Asymptotic Distribution and Sparsity

As we mentioned in our paper we need to evaluate a few quantities such as the number of non-zero elements β̂.
Clearly, the empirical disribution of β̂ can be used for this purpose. Hence, if we can evaluate what the empirical
distribution of β̂ converges to, then we can hopefully obtain accurate bounds on e.g., ∥β̂∥0.

Let µ̂ be the empirical distribution of the couple (β̂,β∗). According to the results that have appeared in the
approximate message framework and CGMT framework (Maleki, 2010; Donoho et al., 2011, 2009; Thrampoulidis
et al., 2015, 2018; Wang et al., 2022), we expect µ̂ to converge to µ∗ that is the distribution of the couple( b∗

b∗ + 2ητ∗
soft

(
τ∗Z + Θ, λτ∗

b∗

)
,Θ
)

where (Z,Θ) ∼ N (0, 1)
⊗ 1

p

∑
δβ∗

k
, and (τ∗, b∗) is the unique saddle point of ψ(τ, b) defined in (167). The

following theorem is a finite sample size confirmation of this claim:
Theorem 8. There exists constants C, c > 0 depending only on Ω such that for all ε ∈ (0, 1

2 ],

P
(
W2(µ̂, µ∗)2 ≥ ε

)
≤ Cε−2ecpε

3(log ε)−2

Proof. The proof of this Theorem is very similar to the proof of Theorem 3.1 of (Miolane and Montanari, 2021),
and hence will be skipped. Please note that there will be some minor changes due to the fact that our regulaizer
is elastic net, i.e. λ∥β∥1 + η∥β∥2

2 compared to LASSO in (Miolane and Montanari, 2021), i.e. λ∥β∥1. For
that reason as we described in Section 1.4, our scaler optimization function ψ(τ, b) is slightly different from the
corresponding function in (Miolane and Montanari, 2021).

As we described before, one of our goals is to use µ̂ to evaluate the properties of β̂. Hence, in most of our results
we are more interested in the empirical law of β̂, denotes as µ̂1, rather than µ̂. However, it turns out that we
can simply obtain a bound for W2(µ̂1, µ

∗
1)2, where µ∗

1 is the law of b∗
b∗+2ητ∗

soft(τ∗Z + Θ, λτ∗
b∗

) using Theorem 8.

Corollary 9. There exists constants C, c > 0 depending only on Ω such that for all ε ∈ (0, 1
2 ],

P
(
W2(µ̂1, µ

∗
1)2 ≥ ε

)
≤ Cε−2ecpε

3(log ε)−2

Proof. We have

W 2
2 (µ̂, µ∗) = inf

(X1, X2) ∼ µ̂
(Y1, Y2) ∼ µ∗

E[((X1 − Y1)2 + (X2 − Y2)2]

≥ inf
(X1, X2) ∼ µ̂
(Y1, Y2) ∼ µ∗

E(X1 − Y1)2

= inf
X1 ∼ µ̂1
Y1 ∼ µ∗

1

E(X1 − Y1)2

= W 2
2 (µ̂1, µ

∗
1) (182)

Hence, (182) combined with Theorem 8 completes the proof.

As we discussed in our main paper, we also need to bound the size of sets for which we have bounds on the
magnitude of the subgradients of the ℓ1-norm. The rest of this section is dedicated to explaining how the sizes
of such sets can be bounded. Define

v̂ := 1
λ

[
X⊤y − (X⊤X + ηIp)β̂

]
where Ip is the identity matrix on Rp×p. It can be shown that v̂ is a subgradient of ∥β̂∥1. In fact, the first order
condition of β̂ gives

0 ∈ X⊤(y − Xβ̂) + λ∂∥β̂∥1 + 2ηβ̂.



By simple algebra this is equivalent to v̂ ∈ ∂∥β̂∥1. Note that if |v̂i| < 1 , then β̂i has to be zero. Hence, analyzing
v̂ provides an upper bound on ∥β̂∥0. Let µ∗

1 denote the distribution of

b∗

b∗ + 2ητ∗
soft(τ∗Z + Θ, λτ∗

b∗
)

as defined previously. Define

s∗ = µ∗({0}) = 1
p

p∑
k=1

[
Φ
(
λ

b∗
− β∗

k

τ∗

)
− Φ

(
− λ

b∗
− β∗

k

τ∗

)]
Note that if β̂i ̸= 0 then |v̂i| = 1. If there are not many zero coefficients with subgradients whose magnitude is
close to 1, we should expect, 1

p

∑
i 1{|̂vi|=1} to be close to s∗. The following theorem confirms this:

Theorem 10. There exist constants C, c > 0 depending only on Ω such that, for all ε ∈ [0, 1],

P

(
1
p

∑
i

1{|̂vi|≥1−ε} ≥ s∗ + 2(1 + λ

bmin
)ε
)

≤ C

ε3 e
−cnε6

,

where bmin > 0 is the lower bound of b∗ in Lemma 24.

Sketch of proof. The proof is similar to that of Lemma 25 using the convex Gaussian minimax theorem (CGMT)
that was stated in (172), and is essentially the same as the proof of Theorem E.5 in (Miolane and Montanari,
2021). Therefore we provide a sketch of proof here while omitting the details. First we conctruct the primary
optimization (PO) with v̂ being its unique optimizer. Then we identify the auxillary optimization (AO) of
CGMT and study the local stability of AO, similar to Lemma 25. Finally we use CGMT to connect the local
stability of AO to that of PO. Define the primary optimizatio (PO) as the following:

V(v) = min
w

1
2n∥Xw − σz∥2

2 + λ

n
v⊤(β∗ + w) − λ

n
∥β∗∥1 + η

n
∥w + β∗∥2

2 − η

n
∥β∗∥2

2.

It can be verified using dual norm and interchangeability of min-max that

v̂ = argmax∥v∥∞≤1 V(v).

Hence, the goal would be to use this optimization and CGMT to provide useful information about v̂. As we
described before, we expect 1

p

∑
k 1{|vk|≥1−ε} to be close to the number of nonzero coefficients and that should

be close to s∗. Hence, we set

Dε :=
{

v : ∥v∥∞ ≤ 1, 1
p

∑
k

1{|vk|≥1−ε} ≥ s∗ + 2(1 + λ

bmin
)ε
}
.

We have

P

(
1
p

∑
i

1{|̂vi|≥1−ε} ≥ s∗ + 2(1 + λ

bmin
)ε
)

= P(v̂ ∈ Dε) ≤ P
(

max
Dε

V(v) ≥ max
∥v∥∞≤1

V(v) − ε′
)
. (183)

for any ε′ > 0. Note that ε′ will be decided after the analysis of PO is finished. Using the same arguments as
the ones presented in Section 1.2, we can obtain the following auxillary optimization for this problem:

V (v) = min
w

1
2

(√
∥w∥2

2
n

+ σ2 ∥h∥2√
n

− 1
n

g⊤w + g′σ√
n

)2

+

+ λ

n

(
v⊤(w + β∗) − ∥β∗∥1

)
+ η

n

(
∥w + β∗∥2

2 − ∥β∗∥2
2
)

(184)

where g ∼ N(0, Ip), h ∼ N(0, In) and g′ ∼ N(0, 1), independent with each other. Directly working with Dε is
quite difficult, but recall in Lemma 25 we have defined a set {w : 1

p∥w − ŵf∥2
2 > ε} and it was easier to work

with. In fact, we can define a similar set

D̃ε := {v ∈ Rp : ∥v∥∞ ≤ 1, 1
p

∥v − v̂f∥2
2 ≥ ε},
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with
v̂f := − b∗

λτ∗
(ŵf − τ∗g) − 2η

λ
(ŵf + β∗).

And one can then show that, for some constants C, c, γ > 0:

P(max
v∈D̃ε

V (v) ≥ max
v

V (v) − cε) ≤ C

ε
e−cnε2

(185)

The proof is essentially the same as that of Theorem E.7 of (Miolane and Montanari, 2021) and thus omitted
here.

The next step is to substitute the D̃ε in (185) back to Dε. The goal is to prove that, for some constants C, c, γ > 0,
for all ε ∈ (0, 1]:

P(max
v∈Dε

V (v) ≥ max
v

V (v) − 3γε3) ≤ C

ε3 e
−cnε6

(186)

The proof is essentially the same as that of Lemma E.9 of (Miolane and Montanari, 2021) and thus omitted.

Then we connect (186) with its V(v) version via CGMT. Notice that by interchanging min-max and using dual
norm expressions, we have

max
∥v∥∞≤1

V(v) = min
w

C(w), max
∥v∥∞≤1

V (v) = min
w

L(w).

Hence, we have

P
(

max
Dε

V(v) ≥ max
∥v∥∞≤1

V(v) − 3γε3
)

≤ P
(

max
∥v∥∞≤1

V(v) < ψ(τ∗, b∗) − γε3
)

+ P
(

max
Dε

V(v) ≥ ψ(τ∗, b∗) − 2γε3
)

≤ P
(

min
w

C(w) < ψ(τ∗, b∗) − γε3
)

+ 2P
(

max
Dε

V (v) ≥ ψ(τ∗, b∗) − 2γε3
)
. (187)

Now by Lemma 28, the first term is bounded by C
ε3 e

−cnε6 . For the second term, we have

P
(

max
Dε

V (v) ≥ ψ(τ∗, b∗) − 2γε3
)

≤ P
(

max
Dε

V (v) ≥ max
∥v∥∞≤1

V (v) − 3γε3
)

+ P( max
∥v∥∞≤1

V (v) > ψ(τ∗, b∗) + γε3)

≤ C

ε3 e
−cnε6

+ P(min
w

L(w) > ψ(τ∗, b∗) + γε3)

≤ C

ε3 e
−cnε6

+ C

ε3 e
−cnε6

(188)

The penultimate inequality uses (186) and the last inequality uses Corollary 7. Putting (183), (187) and (188)
together we have

P

(
1
p

∑
i

1{|̂vi|≥1−ε} ≥ s∗ + 2(1 + λ

bmin
)ε
)

≤ C

ε3 e
−cnε6

.

The final theorem that we would like to mention in the appendix is a concentration result on the number of
nonzero elements of β̂.
Theorem 11. There exist constants C, c depending only on Ω such that for all 0 < ε < 1,

P
(∣∣∣∣1p∥β̂∥0 − s∗

∣∣∣∣ ≥ ε

)
≤ Cε−6e−cpε6



Proof. Note that if an elements of β̂i ̸= 0, then its corresponding subgradient has to be either 1 or −1. Hence,
the upper bound of 1

p∥β̂∥0 is a direct result of Lemma 10. For the lower bound, the proof follows a similar
PO-AO-local stability path and is essentially the same as the proof of Theorem F.1 in (Miolane and Montanari,
2021).

1.4 Study of the Scalar Optimization

Let hr(x) be the Huber loss
hr(x) := 1

2r∥soft(x, r) − x∥2
2 + ∥soft(x, r)∥1.

We remind the reader that

ψ(τ, b) =
(
σ2

τ
+ τ

)
b

2 − b2

2

+ 1
n
E min

w∈Rp

{
b

2τ ∥w∥2
2 − bg⊤w + λ (∥w + β∗∥1 − ∥β∗∥1) + η

(
∥w + β∗∥2

2 − ∥β∗∥2
2
)}

, (189)

and that
ŵf (τ, b) := b

b+ 2ητ soft
(
τg + β∗,

λτ

b

)
− β∗

Inserting back w = ŵf (τ, b), it can be shown that

ψ(τ, b) =
(
σ2

τ ′ + bτ ′

b− 2ητ ′

)
b

2 − b2

2 − ησ2 + λ

n
Ehλτ′

b
(τ ′g̃ + β∗) − λ

n
∥β∗∥1 − bτ ′

2nE∥g̃∥2
2

where τ ′ = b
b+2ητ τ and g̃ = g − 2η

b β
∗. The variable ŵf and function ψ(τ, b) play an important role in our

analysis later. In this section, we study the saddle point of ψ(τ, b):

(τ∗, b∗) := argmax
b≥0

argmin
τ≥σ

ψ(τ, b)

In the rest of this section we prove Lemma 23 and Lemma 24.

Proof of Lemma 23. Note that ψ is convex-concave and differentiable with respect to (τ, b), and the differentia-
tion can be taken inside the expectation. Using the formulae

∂

∂r
hr(x) = − 1

2r2 [soft(x, r) − x]2

∂

∂x
hr(x) = 1

r
(x− soft(x, r))

one can obtain the following:

∂

∂τ
ψ(τ, b) = b

2τ2

(
τ2 − σ2 − 1

n
E∥ŵf (τ, b)∥2

2

)
,

∂

∂b
ψ(τ, b) = τ − b− 1

n
Eg⊤ŵf (τ, b).

First, for each b ≥ 0 consider minτ≥σ ψ(τ, b). Let fb(τ) = ∂
∂τ ψ(τ, b). We have

fb(τ) = b

2

(
1 − σ2

τ2 − 1
n

p∑
k=1

E
[

b

b+ 2ητ soft(gk + β∗
k

τ
,
λ

b
) − β∗

k

τ

]2
)
.

Hence, we have

• fb(τ) is differentiable since the integrand is almost surely differentiable, and the distribution of g is continuous
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• f ′
b(τ) > 0 because ψ(·, b) is strictly convex

• fb(σ) = − b
2nE∥ŵf (τ, b)∥2 < 0 since ŵf (τ, b) is non-degenerate

• fb(+∞) = 1 using the Dominated Convergence Theorem.

Therefore ∀b ≥ 0, ∃ unique τ0(b) > σ such that fb(τ0(b)) = 0. Moreover fb(τ) < 0 on the left and > 0 on the
right. Hence, τ0(b) is the unique minimizer of ψ(τ, b) at b. Moreover, by the Implicit Function Theorem, τ0(b) is
differentiable.

Next we define G(b) = ψ(τ0(b), b) = minτ≥σ ψ(τ, b) so that

max
b≥0

min
τ≥σ

ψ(τ, b) = max
b≥0

G(b)

Its derivative is given by

g(b) : = G′(b)

= ∂

∂b
ψ(τ, b)

∣∣∣∣
τ=τ0(b)

+ ∂

∂τ
ψ(τ, b)

∣∣∣∣
τ=τ0(b)

τ ′
0(b)

= τ0(b) − b− 1
n
Eg⊤ŵf (τ0(b), b)

The last line is because ∂
∂τ ψ(τ, b)

∣∣
τ=τ0(b) = 0. Next we show that G(b) has a unique maximizer b∗ > 0 and it is

also the unique solution of g(b) = 0.

• g(b) is a decreasing function, because G(b) is the pointwise minimum of a collection of strictly-concave
functions, and is hence strictly-concave itself

• lim infb→0+ g(b) ≥ σ. To see this, first notice that τ0(b) is the zero of 2
bfb(τ) and

lim
b→0+

2
b
fb(τ) = 1 − τ−2(σ2 + 1

n
∥β∗∥2).

Therefore, we have
lim
b→0+

τ0(b) = σ2 + 1
n

∥β∗∥2,

By using Fatou’s lemma we obtain

lim inf
b→0+

g(b) = lim
b→0+

τ0(b) − lim sup
b→0+

1
n
Eg⊤ŵf (τ0(b), b)

≥ σ2 + 1
n

∥β∗∥2 − 1
n

p∑
k=1

E [gk (0 − β∗
k)]

= σ2 + 1
n

∥β∗∥2

≥ σ2

• As mentioned before G(b) is the pointwise minimum of a collection of strictly concave functions so it is itself
strictly concave and therefore admits a unique maximizer b∗ ≥ 0. By the last point lim infb→0+ g(b) ≥ σ2 > 0.
Therefore the maximizer cannot be 0, and hence b∗ > 0. Since G(b) is differentiable b∗ must be a zero of
g(b), and the zero must be unique as the maximizer is unique.

We conclude that the unique saddle point is (τ0(b∗), b∗) and it satisfies (168).

Proof of Lemma 24. We remind the reader of the following notation:

ŵf := ŵf (τ∗, b∗).

We divide the proof into the following steps:



Step 1 (Lower bound for b∗): Using the same notations as the ones used in the proof of Lemma 23, we have
G(b) = minτ≥σ ψ(τ, b) and g(b) = G′(b). Using the fact that EZ · soft(Z + a, r) = Φ(a− r) + Φ(−a− r) (which
can be verified directly via integration), we have

g(b) = G′(b) = τ0(b) − 1
n
Eg⊤ŵf (τ0(b), b) − b

= τ0(b)
(

1 − 1
n

b

b+ 2ητ0(b)

p∑
k=1

Egk · soft(gk + θ∗
k

τ0(b) ,
λ

b
)
)

− b

= τ0(b)
(

1 − 1
n

b

b+ 2ητ0(b)

p∑
k=1

[
Φ( θ∗

k

τ0(b) − λ

b
) + Φ(− θ∗

k

τ0(b) − λ

b
)
])

− b

≥ τ0(b)
(

1 − 1
γ0

E
[
Φ( Θ
τ0(b) − λ

b
) + Φ(− Θ

τ0(b) − λ

b
)
])

− b

:= τ0(b)
(

1 − 1
γ0

Ehb(
Θ

τ0(b) )
)

− b,

where Θ has uniform distribution over the elements of β∗, and hb(x) = Φ(x−α) + Φ(−x−α) is an even funcion,
decreasing for x < 0 and increasing for x ≥ 0. Let K = 2ξ

σ
√
γ0

. By Markov inequality we have

Ehb
(

Θ
τ0(b)

)
≤ hb(K) + P

(∣∣∣∣ Θ
τ0(b)

∣∣∣∣ ≥ K

)
≤ hb(K) + EΘ2

τ2
0 (b)K2

≤ hb(K) + γ0
4 .

Finally it can be verified directly that limb→0+ hb(K) = 0. Henec we can find b0 > 0 depending only on ξ, λ, σ, γ0
such that ∀b ≤ b0, hb(K) ≤ γ0

4 . Hence ∀b ≤ b0 we have

g(b) ≥ τ0(b)(1 − 1
γ0

(γ0
4 + γ0

4 )) − b

= 1
2τ0(b) − b

≥ σ

2 − b

If we let bmin = min{b0,
σ
4 }, then ∀b ≤ bmin, g(b) ≥ σ

4 > 0. Since b∗ is the zero of g(b) and g(b) is decreasing, we
conclude that b∗ > bmin. This finishes the proof of the first step.

Step 2 (τ∗ < τmax): First note that if we insert w = 0 in the definition of ψ(τ, b), then we will have
ψ(τ, b) ≤

(
σ2

τ + τ
)
b
2 − b2

2 . Hence,

ψ(τ∗, b∗) ≤ max
b≥0

min
τ≥σ

(
σ2

τ
+ τ

)
b

2 − b2

2 = σ2

2 (190)

Next, we show that ψ(τ, b) has an increasing lower bound g(τ) for all b ≥ bmin. In fact,

ψ(τ, b) =
(
σ2

τ
+ τ

)
b

2 − b2

2 + 1
n
E
{

∥ŵf∥2
2( b2τ + η) − (bg − 2ηβ∗)⊤ŵf + λ∥ŵf + β∗∥1 − λ∥β∗∥1

}
= b

2τ (σ2 + τ2) − b2

2 + ( b2τ + η)(τ2 − σ2) − b(τ − b) + 2η
n
Eβ∗⊤ŵf + λ

n
E∥ŵf + β∗∥1 − λ

n
∥β∗∥1

= η(τ2 − σ2) + b2

2 + 2η
n
Eβ∗⊤ŵf + λ

n
E∥ŵf + β∗∥1 − λ

n
∥β∗∥1. (191)
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The first two terms in the last line of the above equation are nonnegative when τ = τ∗. For the third term,

2η
n
Eβ∗⊤ŵf = 2η

n

b∗τ∗

b∗ + 2ητ∗

∑
i

β∗
i · Esoft

(
Z + β∗

i

τ∗
,
λ

b∗

)
≥ −2η

n

b∗τ∗

b∗ + 2ητ∗

∑
|β∗
i | ·
(

|β∗
i |
τ∗

+ λ

b∗

)
≥ −2η

n

b∗

b∗ + 2ητ∗
∥β∗∥2

2 − −2η
n

λτ∗

b∗ + 2ητ∗
∥β∗∥1

≥ −2ηmax
δ

ξ2 − λmax
δ

ξ

:= −C1 (192)

In the above equations, the first inequality uses |Esoft(Z + x, r)| ≤ |x| + r, the third uses Cauchy-Schwarz
inequality, and the last uses b∗

b∗+2ητ∗
≤ 1, ητ∗

b∗+2ητ∗
≤ 1

2 .

For the fourth term of (191), using the notation Θ taking values uniformly from the elements of β∗ and Z ∼
N(0, 1) and independent from Θ, we have

λ

n
E∥ŵf + β∗∥1 = λ

γ0

b∗τ∗

b∗ + 2ητ∗
E
∣∣∣∣soft(Z + Θ

τ∗
,
λ

b∗
)
∣∣∣∣

≥ λ

γ0

bminτ∗

bmin + 2ητ∗
E
∣∣∣∣soft(Z + Θ

τ∗
,
λ

bmin
)
∣∣∣∣ .

Now consider the function h(a) = E|soft(Z + a, r)| with r = λ
bmin

. We have h(0) = E|soft(Z, r)| := C > 0 and
by Monotone Convergence Theorem we have lim

a→∞
h(a) = +∞. Therefore there exists a constant C2 > 0 that

depends only on r = λ
bmin

such that h(a) ≥ C2. Hence, we have

λ

n
E∥ŵf + β∗∥1 ≥ λ

γ0

bminτ∗

bmin + 2ητ∗
Eh( Θ

τ∗
)

≥ λ

γ0

bminτ∗

bmin + 2ητ∗
C2 (193)

Finally, for the last term of (191) we have

λ

n
∥β∗∥1 ≤ λξ

γ0
≤ λmaxξ

γ0
. (194)

Combining (190), (192), (193) and (194) together, we have

η(τ2
∗ − σ2) − C1 + λ

γ0

bminτ∗

bmin + 2ητ∗
C2 − λmaxξ

γ0
≤ ψ(τ∗, b∗) ≤ σ2

2

If we define C ′
1 = sigma2

2 + ηmaxσ
2 + C1 + λmaxξ

γ0
, C ′

2 = λmax
γ0

bminC2, we can rephrase the above inequality into

ητ2
∗ + C ′

2τ∗

bmin + 2ητ∗
≤ C ′

1

It can be verified directly that, the minimum of the left hand side over η ≥ 0 is max{(
√

2C ′
2 − bmin

2 ), C′
2

bmin
}τ∗ :=

C3τ∗. Hence, we conclude that τ∗ < τmax = C′
1

C3
depending on model parameters.

Step 3 (Upper bound for b∗): First note that

1
n
Eg⊤ŵf = 1

n

b∗τ∗

b∗ + 2ητ∗

∑
i

P
(∣∣∣∣gi + β∗

i

τ∗

∣∣∣∣ > λ

b∗

)
≥ 0.

Therefore
b∗ = τ∗ − 1

n
Eg⊤ŵf ≤ τmax.



Step 4 (Lower bound for τ∗): It is trivial that τ∗ > σ and is hence skipped.
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