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Abstract

Triangular meshes are widely used to repre-
sent three-dimensional objects. As a result,
many recent works have addressed the need
for geometric deep learning on 3D meshes.
However, we observe that the complexities in
many of these architectures do not translate
to practical performance, and simple deep
models for geometric graphs are competitive
in practice. Motivated by this observation,
we minimally extend the update equations
of E(n)-Equivariant Graph Neural Networks
(EGNNs) (Satorras et al., [2021)) to incorpo-
rate mesh face information and further im-
prove it to account for long-range interactions
through a hierarchy. The resulting archi-
tecture, Equivariant Mesh Neural Network
(EMNN), outperforms other, more compli-
cated equivariant methods on mesh tasks,
with a fast run-time and no expensive prepro-
cessing. Our implementation is available at
https://github.com/HySonLab/EquiMesh,

1 INTRODUCTION

Recent advancements in 3D geometric deep learning
have showcased remarkable performance across a di-
verse array of computer graphics and vision tasks.
In contrast to various alternative representations for
three-dimensional objects, such as voxels and point
clouds, triangular meshes offer a unique advantage.
They not only excel at effectively capturing both large
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and simple surfaces but also provide a versatile frame-
work for rendering and high-resolution reconstruction
(Gao et all [2019). This versatility stems from the
dual nature of meshes, which encompass both geo-
metric and topological components. Beyond captur-
ing information from their geometric properties, tri-
angular meshes also include connectivity between ver-
tices, edges, and faces, providing richer semantic in-
formation. Consequently, working with mesh data ne-
cessitates methods that prioritize shape identity and
structure-aware learning, enabling greater abstraction
across the spectrum from low-level to high-level ele-
ments (Luebke et all 2002).

One way to incorporate geometry into deep networks
for mesh data is to make them equivariant to relevant
geometric transformations, such as translations and
rotations. While some methods do not have invari-
ance or equivariance guarantees (Dong et al., [2023b),
many existing methods use symmetry by relying on
invariants of geometric transformations as their in-
put and are therefore not as expressive as equivariant
architectures. For example, [Eijkelboom et al| (2023)
uses invariant features such as volumes, angles, and
distances in processing simplicial complexes, which in-
clude mesh data.

Furthermore, unlike in conventional graph neural net-
works, leveraging the distinctive structure inherent in
triangular mesh faces becomes essential in effective
learning with mesh data. While graph-based methods
have been successfully applied to mesh tasks, they do
not benefit from the fine-grained structure of the mesh
(Masci et al.l |2015; |[Boscaini et al., [2016; Monti et al.l
2017 Verma et al., [2018]). Moreover, graph-based ap-
proaches have to deal with the fact that meshes are
often long-range graphs — that is, they have large di-
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ameters El This property of meshes can additionally
undermine the performance of graph-based methods
due to their over-smoothing and over-squashing be-
haviour, which is particularly pronounced on large di-
ameter graphs (Dwivedi et al. [2022; |Cai et al., 2023;

2023).

The final factor in our desiderata is simplicity. While
several frameworks satisfy the above requirements, in
particular convolutional (de Haan et al) 2021; Feng
let all 2019} [Hanocka et all [2019} [Tatarchenko et all
2018; [Huang et all [2019; [Lim et al) [2018; Gong
et al} [2019) and attention-based (Basu et all [2022)
approaches, they are often more complex, both con-
ceptually and practically.

In this work, we address these issues by minimally ex-
tending the widely used E(n)-equivariant graph neu-
ral network (EGNN) to adapt it to mesh data. The
resulting method, Equivariant Mesh Neural Network
(EMNN), is a simple message-passing method that
proves both efficient and effective compared to all prior
work. To better model long-range interactions, we fur-
ther equip EMNN with hierarchy by enabling inter-
action between equivariant and invariant features at
multiple scales.

Similar to EGNN, the proposed method maintains and
updates invariant scalars and equivariant vectors in
each layer. However, these invariants now incorporate
the face geometry of the mesh, using updates that ef-
fectively calculate surface area and normals. Table [I]
contrasts the invariance and equivariance properties of
existing architectures with our EMNN.

Table 1: Invariance and equivariance property of mesh
networks.

Method Layer Symmetry

2 RELATED WORKS

Geometric Graph Learning Motivated by tasks
in chemistry and physical sciences, many deep learn-
ing methods have been designed to act on geometric
graphs: that is, graphs whose nodes have coordinates.
Such methods are therefore invariant or equivariant
to the Euclidean group E(n) of rotations, translation,
and reflections in n dimensional space. Popular meth-
ods include those that extend the well-known graph
message passing framework (Gilmer et al. 2017) and
use invariant geometric features (e.g. distances and

angles) such as Schiitt et al| (2018) and
(2021). Other approaches use higher-order ten-

sor representations to equivariantly encode geometric
and topological features of nodes, such as [Thomas
et al| (2018), Hy et al| (2018)), Hy et al| (2019), [An-
derson et al| (2019) and Brandstetter et al.| (2022)).
One prominent method that combines features of both
these approaches is the E(n)-equivariant Graph Neural
Network (E(n)-EGNN) (Satorras et al., [2021)), which
computes invariant features over edges and uses them
to update equivariant coordinates for each node.

Graph-based Deep Learning for Mesh Previous
graph-based models redesign graph convolution net-
works to work on meshes by applying a shared kernel
to the mesh vertices and its neighbours (Masci et al.
[2015; [Boscaini et al.l 20165 Monti et all) [2017)). Due
to the invariance of their message-passing formulas to
the surface position, local variations in the regularity
and anisotropy of mesh elements may not be captured.
Verma et al.| (2018) partially resolve this limitation
by adding learnable weights between targets and their
neighbours when updating features, which is similar
to an attention mechanism. Noticeably, all aforemen-
tioned methods pool the meshes based on a generic
graph clustering algorithm. Later methods such as
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Non-symmetric
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E(3) Invariant
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MoNet onti et al.||20
DCM-Net (Schult et al.][2020) E(3) Invariant
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!The diameter of the graph is the longest shortest path
among every pair of nodes

[Ranjan et al| (2018); [Schult et al.| (2020) propose a
pooling that relies on the geometry of the mesh.

Mesh as Manifold By interpreting meshes as dis-
cretizations of a manifold, some methods view a node’s
neighbourhood as a 2-dimensional surface and apply
convolutional filters over the node and its neighbours.
Previous works that have applied convolutions to man-
ifolds include Weiler et al.| (2021); |Cohen et al.| (2018|
2019). To avoid having isotropic filters, such methods
enforce gauge equivariance: they must be indifferent to
the choice of the local coordinates in which the filters
are applied. This can be accomplished by using kernels
derived from representations of 2-dimensional rota-
tions and mapping between different coordinate frames
at different nodes using parallel transport. Examples
of this class of neural networks applied to meshes in-
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clude Basu et al.| (2022)) and |de Haan et al.| (2021)).

3 BACKGROUND

In this section, we provide background information on
mesh representations and E(n) equivariant graph neu-
ral networks, which are essential for understanding our
method.

3.1 Mesh Representation

Polygon meshes, which are collections of vertices and
polygons, are an alternative to point clouds and voxel-
based representations of 3D objects. In this work, we
focus on triangle meshes. Mathematically, a triangle
mesh is defined as a triplet M = (P, &, F), where P
is a set of points in 3D space, called vertices, £ is
the undirected edge set, where each edge is a pair of
vertices, and F is a set of triangle faces, where each
face is a triplet of nodes. We denote n = [P|, the
number of vertices in the mesh.

The mesh M should additionally satisfy the following
constraints: 1) every edge belongs to either one or two
triangles, 2) the intersection of two distinct triangles
is either an edge, a vertex, or empty, and 3) the mesh
is a manifold, meaning the local topology around each
vertex resembles a disk. This implies that the triangles
are consistently oriented and that there are no holes
in the mesh. Triangle meshes are easy to store and
render and can be used to represent a wide variety of
objects (Rogersl, [1986]).

Geometric Feature on Meshes Mesh vertices,
edges and faces can have additional attributes. For
geometric learning, we find the following attributes
relevant. Each point p € P is associated with its
3D coordinate vector z, € R3. Meanwhile, a face
f € F can have scalar and vector attributes corre-
sponding to the area and normal vector, denoted by
ay and ny, respectively. Considering a triangle face

f = (p1,p2,p3), the normal vector and the area are
given by n; = (2, —2p,) X (tp, —p,) and a; = Ll
respectively. By convention, we can generally choose
the normal vector to point outwards when looking at
the surface of an object, which induces an orientation

on the nodes of the face.

Furthermore, the normal vector (area) associated with
each point p € P can be defined via a weighted sum
of normal vectors (area) of its adjacent faces:

- 2 sesm) YN o = 2pes(p) U (1)
g HZfea(p)‘lf‘”ff,7 P 0(f)

where d(p) = {f € F | p € f} denotes faces that
contain p. The vector n, € R? and scalar a, € R can

act as features that are equivariant to rotations and
translations of point p.

3.2 Equivariant Graph Neural Networks

The original E(n)-Equivariant Graph Neural Networks
(EGNNs) extend the message-passing framework op-
erating on graphs to geometric graphs involving their
vertices’ spatial information. In particular, a geomet-
ric graph is defined as G = (V, £) with two main com-
ponents: vertices v; € V and edges e;; € £. Each
vertex v; is associated with scalar invariant features
h; € R? and n-dimensional equivariant coordinates
z; € R". To make the messages invariant to E(n)
transformations, each EGNN’s layer takes into account
the relative Euclidean distance between two coordi-
nates x; and x; as the input for its message update
function ¢e:

mi; = ge(hi, b, ||af — 24|, i), (2)

where the superscript [ denotes the layer number.
Then, the scalar and vector features at the layer [ + 1
are updated by the following equations:

W = gn(hi, > mij) (3)

(4,5)€E

i =gl 3 @ - a)eetmyg), (@)

jee(i)

Here, ¢ and ¢, are multi-layer perceptrons (MLPs)
and €(i) = {j | (4,7) € £} denotes the set of neighbours
of node 1.

4 METHODOLOGY

This section presents our Multi-channel E(3)-
Equivariant Mesh Neural Networks by minimally ex-
tending EGNN updates of the previous section. We
then discuss natural improvements using multiple vec-
tor channels and hierarchy.

The key to our extension of EGNN is using normal vec-
tors as quantities that are equivariant to translation
and rotation, and triangle surface areas and quanti-
ties that are invariant. The way these quantities are
integrated into our update equation is analogous to
the way distance and relative vectors are integrated in
EGNN updates (see Figure [I)).

Considering a triangle face (i, j, k), we define a
surface-aware message from this face to node i as:

— (hahgw, (2 — at) x (ak - wém), (5)

where ¢, is an MLP. Here, the surface’s area and the
sum of the features of its two adjacent vertices j and
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Figure 1: EMNN Layer - Multi-channels version: On the left-hand side, invariant quantities, such as

node’s features, distances between two coordinates, and triangle surface areas, are used to update edge
and face messages, denoted as m;; and m;;i, respectively. Subsequently, on the right-hand side, these
messages are combined with equivariant quantities, such as the node’s coordinates, relative positions
between two coordinates, and the triangle surface normal vector, to update the node coordinates.

k are used to create invariant messages. In particular,
this scalar is invariant to rotation, translations, and
swapping of nodes j, k. The use of summation as an
operation that is invariant to permutation is for sim-
plicity.

Next, the invariant features for node ¢ are created by
aggregating all such messages from neighbouring faces
7(1) = {(4,k)|(i,4,k) € F}, and neighbouring edges
e(i) = {jl(i,5) € &}

hi, Z mij, Z Mk . (6)

jee(i) (4:k)€T(3)

P = 6

Here, the edge message m;; are the same as in EGNN,
Equation .
I+1

The equivariant feature z;" " is calculated similarly to
the EGNN update Equation , with the difference
that the normal to neighbouring faces is used as an
equivariant vector in the update. This vector is scaled
by an invariant factor computed from m;;y:

dft =al 4 Y (ol = 2h)on(miy)

jee(i)
DI

ZL’ —zl) x (af — xi)) de(mijr).  (7)
J.kE€T(d)

4.1 Multiple Vector Channels

Inspired by [Levy et al|(2023)), which improves EGNN
using multiple vector channels, we also consider a

variation of the updates above in which the vector
features x; € R? are replaced by feature matrices
X; € R3*¢, where c is the number of vector channels.
For A, B € R®**¢, let A® B denote the cross product of
the corresponding rows — that is (A®B), . = A; . x B, ..
Moreover, let || Al denote the vector containing row
norms of A. Then the generalization of Equation
to multiple channels is given by

- XDl ).

(®)

S—y (hl B B 1 — XD @ (X

Similarly, Equation becomes

Xi+ > (xi-
j€e(i)

+ 2

- X)) ® (X}
ket ()

XzHl ¢x(mm)

- X)) de(mige),  (9)

where, ¢, and ¢; produce invariant ¢ X ¢ channel miz-
ing matrices as their output. This means that rather
than simply scaling different equivariant vector fea-
tures with their corresponding invariant coefficients,
we create a linear combination using mixing matrices.

In our experiments, each vertex p in the mesh is aug-
mented with invariant features, such as the average
area a, € R collected from its adjacent faces; see
Equation . Additionally, in some specific datasets,
the other works on mesh leverage heat kernel signa-
tures (HKS) (Sun et all 2009) as initial features for
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their networks. In those cases, our work also follows
their settings for fair comparisons and reports it in
Section We use vertex coordinates =, € R3 and
the normal vector n, € R? of Equation as vector
features.

4.2 Analysis of Equivariance

This section discusses the equivariance and invariance
properties of our model to the group E(3) of trans-
lations, rotations, and reflections in 3D space. The
equivariance of E(n)-EGNN is proved in|Satorras et al.
(2021)), so we only analyze the effect of our extensions.
A more formal proof of E(3) equivariance and a de-
tailed description of the complexity of our approach
are included in the appendix [A]

We can think of the action of a Euclidean transfor-
mation g € E(3) as acting on a vector x € R? with a
map = — Qz + t, where Q € R?**3 is an orthogonal
matrix representing a rotation and/or reflection (with
a determinant of 1 or —1), and t € R3 is a translation
vector. A property of the cross product is that if @ is
an orthogonal matrix, then for any vectors u,v € R3, it
holds that Qu x Qv = det(Q)Q(u X v). Another prop-
erty of the cross product is that uxv = —(vXxw). From
these two properties, we can see that Equation is
invariant to any application of an element g € E(3)
and any permutation of j and k. Consequently, Equa-
tion @ is also invariant. If we apply a reflection @
where det(Q)) = —1, then naively, the vector update
in Equation would not be equivariant, as it would
reverse the sign of the contribution from the cross
product term. However, following the convention that
the normal vector of a surface faces outwards, we de-
fine the order of j and k so that the cross product
(xj — x;) X (z — x;) always faces outwards. By swap-
ping our choice of j and k, we remain equivariant to
reflections, and thus all elements of E(3).

4.3 Hierarchical Interactions

To facilitate long-range communications between
nodes, after extracting information using MC-EMNN
layers, we employ a hierarchical structure that pools
and unpools features at different resolutions. Our ap-
proach is inspired by the hierarchical structure interac-
tion of PointNet++ (Qi et all 2017a)), which includes
two main components - pooling and unpooling.

The pooling block (in Equation (L0)) selects a subset
of centroid vertices by the Farthest Point Sampling
(FPS) algorithm and pools the features from the neigh-
bours of those chosen vertices. The neighbourhood of
each vertex N (i) is defined using a ball of radius r
around that vertex. After the pooling process, the se-
lected vertices and their corresponding features serve

as inputs for the next layer. The superscript [ and the
¢ in this section refer to the level of the hierarchy and
the MLP, respectively:

I+1 _
h,T =

(¢p(hl)) where it e FPS(i')

max
JEN(GHY)

(10)

In unpooling layers(in Equation ), we calculate a
distance-weighted average of features from the higher
level in the hierarchy I, and then concatenate this av-
erage with the original features of each vertex héfl.
These original features are extracted from the pooling
layer that has the same level in the hierarchy as the
considered unpooling layer, visualized in the hierarchy
block of Figure [2| Here, KNN(i!~1,i') means that for
each vertex in level [ — 1, we find its K nearest neigh-
bours in level [.

hﬁ_l — oy <[Z]€KNN(1Z ) Taogla b , hﬁ‘ﬂ). (1)

1
ZjeKNN(ilfl,i’) Emn

5 EXPERIMENTS

In this section, we evaluate our models using two types
of settings: one for evaluating equivariant models and
another for non-equivariant models. Specifically, we
have two models EGNN and EMNN with 3 differ-
ent versions including the original version (EGNN
and EMNN), the multiple vector channels version
(EGNN + MC and EMNN + MC), and the multi-
ple vector channels version with hierarchical interac-
tions (EGNN + MC + Hier and EMNN + MC +
Hier). The evaluations for equivariant models further
include tests of robustness to gauge transformations
and Euclidean transformations. Each setting covers
both node-level and graph-level classification. In terms
of input features, we maintain the same approach as
previous works for a fair comparison. In particular,
we use vertex coordinates and normal vectors in the
equivariance-evaluation datasets following GEM-CNN
(de Haan et al., [2021) and EMAN (Basu et al., [2022),
while in other datasets, we additionally pre-compute
HKS (Sun et al., 2009)) following recent pipelines such
as |Sharp et al.| (2022)), Dong et al.|(2023a)), and |Dong
et al.| (2023b)). All experiments in this section are con-
ducted using 1 GPU Nvidia Quadro RTX 5000.

To further achieve scale invariance when comparing to
other scale invariant methods, we normalize the initial
positions and normal vectors of each vertex. Since our
model is designed to be equivariant with E(3) trans-
formations and invariant to scaling, we use no data
augmentations when training our EMNN.
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Figure 2: EMNN Network architecture for classification and segmentation: for classification, features
are input into the pooling layers to extract global features used for predicting the label of each sample.
For segmentation, the global values are fed to unpooling layers to produce node features.

Table 2

Means and standard deviations of our model performance on the FAUST dataset compared to other

equivariant baselines. The training and evaluation are carried out on 5 random seeds without data augmentation.

Accuracy (%)

Model Initial Features
Train Test Gauge Rot-Tr-Ref-Scale Perm

XYZ 99.42(0.15)  97.92(0.30)  96.90(0.25) 2.14(1.49) 97.92(0.30)
, ‘ GET 99.42(0.15)  98.03(0.17)  97.15(0.39) 1.47(1.60) 98.03(0.17)
GEM-CNN (de Haan ef ol RELTAN [0.7] 99.69(0.05)  98.62(0.06)  98.04(0.12) 98.62(0.06) 98.62(0.06)
RELTAN [0.5,0.7]  99.70(0.09)  98.64(0.22)  97.99(0. 18) 98.64(0.22) 98.64(0.22)
XYZ 99.62(0.09)  98.46(0.15)  97.26(0.34) 0.02(0.00) 98.46(0.15)
. GET 99.60(0.08)  98.43(0.17)  97.32(0.46) 0.02(0.00) 98.43(0.17)
EMAN (Basu et al. RELTAN [0.7]  99.27(1.01)  98.13(1.19)  97.44(1.26) 98.13(1.19) 98.13(1.19)
RELTAN([0.5,0.7]  99.68(0.00)  98.66(0.07)  98.41(0.25) 98.66(0.07) 98.66(0.07)
EGNN (baseline) XYZ 99.70(0.02)  99.50(0.02)  99.50(0.02) 99.50(0.02) 99.50(0.02)
EGNN + MC (baseline) XYZ + Normal 99.80(0.02) 99.76(0.01) 99.76(0.01) 99.76(0.01) 99.76(0.01)
EGNN + MC +Hier (baseline) ~ XYZ + Normal  99.94(0.01)  99.93(0.01)  99.93(0.01) 99.93(0.01) 99.93(0.01)

EMNN (ours)
EMNN (ours) + MC
EMNN (ours) + MC + Hier

XYZ
XYZ + Normal
XYZ + Normal

100.00(0.00)
100.00(0.00)
100.00(0.00)

100.00(0.00)
100.00(0.00)
100.00(0.00)

100.00(0.00)
100.00(0.00)
100.00(0.00)

100.00(0.00)
100.00(0.00)
100.00(0.00)

100.00(0.00)
100.00(0.00)
100.00(0.00)

5.1 Equivariant Benchmarks

Evaluation We evaluate EMNN against three other
equivariant methods:

GEM-CNN (de Haan ef al} [2021)), and EGNN

Fas el al] [2021).

EMAN (Basu et all

2022),

Sator-

For EGNN and EMAN, we sepa-

Dataset Description Datasets used to evaluate

equivariant models comprise TOSCA (Bronstein et al.,
2008) and FAUST (Bogo et al, 2014):

e TOSCA is a 9-class mesh dataset of cats, men,
women, centaurs, etc., with varying nodes and
edges in each mesh. This dataset has 80 instances,
where 63 meshes are used for training and 17
meshes are used for evaluation. The main task
of this dataset is to classify input meshes with
correct labels.

e FAUST includes 100 instances of 3-dimensional
human meshes with 6890 vertices each. In each
mesh, the vertices are labelled based on the body
part. This is a segmentation task where the model
needs to predict the labels for all vertices in the
mesh.

rate out the contributions of the multi-channel and
hierarchical components of the architecture. Follow-
ing the evaluation procedures of EMAN, we compare
across different initial features: coordinates, gauge-
equivariant features (GET), relative tangential fea-
tures (RELTAN), and normal vectors. We also com-
pare robustness to gauge transformations and Eu-
clidean transformations.

Results As observed from Table [2] and Table
EMNN consistently outperforms other equivariant
models in both datasets. Furthermore, our method
also processes the data with faster run-time and lower
memory required, measured in Table [4]
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Table 3:
other equivariant baselines.
augmentation.

Means and standard deviations of our model performance on the TOSCA dataset compared to
The training and evaluation are carried out on five random seeds without data

Accuracy (%)

Model Initial Features
Train Test Gauge Rot-Tr-Ref-Scale
XYZ 97.78(2.41)  82.35(5.88)  82.35(5.88) 12.94(2.63)
, : GET 90.79(2.84)  82.35(9.30)  82.35(9.30) 17.65(7.20)
GEM-CNN (de Haan et al|2021)  ppprano.7] 93.97(4.26)  91.76(6.71)  91.76(6.71) 91.76(6.71)
RELTAN[0.5, 0.7] ~ 90.16(8.43)  89.41(14.65) 89.41(14.65)  89.41(14.65)
XYZ 47.30(4.55)  42.35(20.55)  44.71(18.88) 12.94(2.63)
GET 44.13(7.39)  42.35(11.31)  41.18(9.30) 10.59(2.63)
EMAN (Basu et al[2022) RELTANJ[0.7] 92.70(4.14)  94.12(4.16)  94.12(4.16) 94.12(4.16)
RELTAN[0.5, 0.7]  97.46(4.14)  98.82(2.63)  98.82(2.63) 98.82(2.63)
EGNN (baseline) XYZ 96.82(0.11)  95.23(0.11)  95.23(0.11) 95.23(0.11)
EGNN + MC (baseline) XYZ + Normal ~ 100.00(0.00) 100.00(0.00) 100.00(0.00)  100.00(0.00

EGNN + MC + Hier (baseline) XYZ + Normal

100.00(0.00

100.00(0.00

100.00(0.00

100.00(0.00

XYZ
XYZ + Normal
XYZ + Normal

EMNN (ours)
EMNN + MC (ours)
EMNN + MC + Hier (ours)

)
)
100.00(0.00)
)
100.00(0.00)

(

(
100.00(0.00

(

)
)
100.00(0.00)
)
100.00(0.00)

(

(
100.00(0.00

(

)
)
100.00(0.00)
)
100.00(0.00)

(

(
100.00(0.00

(

)

(0.00)
100.00(0.00)
100.00(0.00)
100.00(0.00)

Table 4: Run-time and memory required in 1 epoch of training with batch size equal to 1.

FAUST TOSCA
Model
Runtime Memory Runtime Memory
GEM-CNN (de Haan et all |[2021) 21s 2.2GB 60s 4.3GB
EMAN (Basu et al., 2022) 53s 2.2GB 120s 6.6GB
EGNN (baseline) 1s 2.1GB 2s 2.7GB
EGNN + MC (baseline) 1.5s 2.1GB 3s 2.7GB
EGNN + MC + Hier (baseline) 2s 2.2GB 4s 2.8GB
EMNN (ours) 3s 2.1GB 7s 3.6GB
EMNN + MC (ours) 4s 2.1GB 11s 3.9GB
EMNN + MC + Hier (ours) 5s 2.2GB 12s 4.0GB
5.2 Non-equivariant Benchmarks Results Our method is compared against alterna-

Dataset Description We test the performance of
our model on SHREC and Human Body Segmentation:

e SHREC-11 (Lian et al) [2011) is a classification
dataset that contains 30 different classes, each
with 20 instances. There are two different train-
test split settings commonly used for evaluation:
10-10 and 16-4 per-class train-test split.

¢ Human Body Segmentation has 370 meshes
for training and 18 meshes for testing, which
were collected from Adobe Fuse (Adobe, [2016),
FAUST (Bogo et all 2014), MIT (Vlasic et al.|
2008)), SCAPE (Klokov and Lempitsky, [2017)),
and SHRECO07 (Giorgi et al., |2007). Thereafter
all the meshes are labeled into 8 parts by (Giorgi
et al.l 2007).

tives on SHREC in Table [l EMNN achieved SOTA
on 16-4 split settings, while placed second in the 10-10
settings. Table [f] reports our results for Human Body
Segmentation dataset.

5.3 Ablation Study

We conducted an ablation study on the number of
EMNN layers, depth of the hierarchy, and the number
of channels on the Human Body Segmentation dataset.
Results in Table [7] show that EMNN achieves its best
performance with 3 layers of EMNN, 3-level hierarchi-
cal structure, and 2-channel vectors. We used these
hyper-parameters for all other datasets.
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Table 5: The best results of EMNN on the SHREC dataset, the run-time, and memory are measured when
training for 1 epoch and with batch size equal to 1.

Method Runtime Memory Split-16  Split-10

GWCNN (Ezuz et all, 2017 — — 96.6% 90.3%

MeshCNN (Hanocka et al.|[2019) 50s 1.2GB 98.6% 91.0% Invari
PD-MeshNet (Milano et al., [2020) — — 00.7%  99.1% g IvAnant
MeshWalker(Lahav and Tal, [2020 — — 98.6% 97.1% ethods
HodgeNet (Smirnov and Solomon), 2021)) — — 99.2% 94.7%

SubdivNet (fu et all, [2022) 25s 0.9GB 99.9% 99.5% N
DiffusionNet(Sharp et all [2022) 16s 1.0GB — 99.5% o
Laplacian2Mesh (Dong et al., [2023a)) 30s 2.8GB 100% 100% ﬁvailaélt
Mesh-MLP (Dong et al] 2023b)) — — 100%  99.7% ethods
EGNN (baseline) 11s 0.8GB 99.1% 96.3%

EGNN + MC (baseline) 11s 0.8GB 100% 99.3% EGNN
EGNN + MC + Hier (baseline) 11s 0.8GB 100% 99.6%

EMNN (ours) 24s 1.1GB 100% 97.3%

EMNN + MC (ours) 25s 1.1GB 100% 99.7% EMNN
EMNN + MC + Hier (ours) 26s 1.2GB 100%  100%%

Table 6: The best results of EMNN on the Human Body Segmentation, the run-time, and memory are measured
when training for 1 epoch and with batch size equal to 1.

Method Input Runtime Memory Accuracy

PointNet (Qi et all, [2017D)) point cloud 12s 1.2GB 74.7% }Point cloud
PointNet++(Q1 et al.||2017a) point cloud 10s 0.9GB 82.3% Methods
MeshCNN (Hanocka et al. [2019) mesh 137s 1.4GB 85.4% )
PD-MeshNet (Milano et al., [2020) mesh — — 85.6% Invariant
HodgeNet (Smirnov and Solomon), [2021)) mesh — — 85.0% Methods
SubdivNet (Hu et all [2022 mesh 100s 1.3GB 91.7%

DiffusionNet (Sharp et al.}2022) mesh 16s 2.0GB 90.3% Non-invariant
Laplacian2Mesh (Dong et al.;[2023a)) mesh 70s 4.8GB 88.6% Methods
Mesh-MLP (]Dong et al.,[2023b) mesh — — 88.8%

EGNN (baseline) graph 10s 0.8GB 80.6%

EGNN+MC (baseline) graph 11s 0.8GB 82.7% EGNN
EGNN+MC+Hier (baseline) graph 16s 0.9GB 87.2%

EMNN (ours) mesh 18s 0.9GB 81.0%

EMNN+MC (ours) mesh 20s 0.9GB 83.5% EMNN

EMNN+MC+Hier (ours) mesh 26s 1.0GB 88.7%
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5.4 Software

Our source code in PyTorch (Paszke et al.l [2019) is at
https://github.com/HySonLab/EquiMesh,

6 CONCLUSION

In this work, we introduce the Equivariant Mesh Neu-
ral Network (EMNN), a simple yet efficient model that
is equivariant to Euclidean transformations. Our moti-
vation for introducing yet another equivariant network
for mesh data is the observation that EGNN, a geomet-
ric graph neural network, performs surprisingly well on
meshes. This can be seen in all our experiments. In
particular, the addition of multiple channels and hier-
archy further improves EGNN, making it competitive
with architectures specialized to mesh data.

We observe that the main property of meshes ignored
by EGNN updates is the use of information contained
in their triangular faces. We capture this information
using a cross-product, which creates new invariants
based on area and new equivariant quantities based on
normals in successive layers, augmenting the invariant
and equivariant features used by EGNN. The result is
a simple addition to EGNN, which results in further
improvement in its performance, as shown in our ex-
periments. As a final step, we improve EMNN with
multiple vector channels and pooling/unpooling oper-
ations to handle long-range interactions, empirically
showing the benefit of each of these components.

In practical terms, our EMNN surpasses more complex
equivariant architectures such as GEM-CNN (de Haan
et all [2021) and EMAN (Basu et al., 2022)) in accu-
racy while remaining 4-10x faster. Furthermore, our
model produces competitive results in terms of run-
time, memory, and accuracy when compared with non-
equivariant models.
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external libraries. [Yes]
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(b) Complete proofs of all theoretical results.
[Yes]

(¢) Clear explanations of any assumptions. [Yes]
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used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. TIf you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
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ipant compensation. [Not applicable]
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E(3)-Equivariant Mesh Neural Networks:
Supplementary Materials

A PROOF OF EQUIVARIANCE

In this section, we show that the update equations of a layer of EMNN is equivariant to the action of g € E(3).
An element g can act on a vector z € R as 2 + Qx +t for translation vector ¢ € R? and orthogonal matrix
Q € R**3 where QTQ = I and det(Q) € {—1,1}. The matrix Q can be considered a representation of an
element of the orthogonal group O(3), a subgroup of E(3). If det(Q) = 1, then Q represents a rotation, and if
det(Q) = —1, then it represents a rotoreflection or a reflection.

First, we show that the cross product is equivariant to orthogonal transformations, up to a sign change. Specif-
ically, given vectors u,v € R?, a group element g € O(3), and the corresponding orthogonal matrix Q € R3*3
we want to show that Q(u x v) € det(Q)(Qu x Qu) where det(Q) is -1 or 1. We make use of the scalar triple
product property: Vu,v,w € R®,  w- (u x v) =det([w u v]) So for any vector w, we have:

where we use the fact that QTQ = I. Since we can set w to basis vectors e, es and es, we can see that

(Qu x Qu); = det(Q)(Q(u x v)); for i =1,2,3, so (Qu x Qu) = det(Q)Q(u x v).
Next, we can easily see that for any v € R? and rotation matrix Q, ||Qv|| = /v QT Qv = ||v]| , using QT Q = I.

From this, we can see that the messages m;; and m;j;, from equations (2) and (5) are invariant, assuming hl, hé,
and hl do not depend on z. If the action of g € E(3) is x — Qz + t, then in equation (2) we see:

1((Qxi + 1) — (Qzj + )| = Qi — 25)[| = [|(2: — 25)]],

so m;; is invariant to E(3). In equation (5) we see:

1((Q; +1) = (Qui + ) x (Qux +1) — (Qzi +1))[| = [|Q(z; — z:) x Qax — )|
= [[det(@)Q((xj — @) x (zx — 24))|
= (= @) x (x — @),
s0 M), is invariant to E(3). Knowing this, we can see that the embedding hliJr1
E(3).

in equation (6)) is invariant to

Next, we can see that the coordinate update of equation (7) is equivariant to E(3):
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(Qxh+1)+ Y ((Qxl+1) — (Qah +1))da(mij)

J€Ee(i)
+ Y ((Qah 1) — (Qah + 1) x (Quf + ) — (Qal +1))) dr(mijn)
j.keT ()
= (Qz+1)+ > (Qa} — Qal)da(miy)
JEe(d)
+ Y ((Qaf — Qah) x (Qa}, — Qal)) du(mije)
j.keT (1)
= Qi+ 1)+ Y Qat—ah)ga(my) + D (Qzh —ab) x Q(a, — 2})) ¢e(mijn)
j€e(i) j.keT(2)
—Q$ +t+Q Z LL‘ _x)¢1(m1j +det Q Z .’E —.’E (méc_x))qst(mwk)
j€e(3) J.ker(i)

=Q |2+ Y (@l —al)gu(my) + Y ((ah —ab) x (afy — D) delmagn) | +1

J€e(i) J',k"eT(i)
_ Q( l+1)

In the second to last line, we replace j,k € 7(i) with j/ k' € 7(i), where j', k' = k,j if det(Q) = —1 and
J K = j,k if det(Q) = 1. We are able to do this because we have defined the order of 7(i) such that the
normal vector (x; — x;) X (v — x;) always faces outwards. Thus, if we reflect our input coordinates, then we
would also need to swap the order of j and k. A matrix representing a reflection has det(Q) = —1, and the
cross product has the anticommutative property u x v = —(v x u), so det(Q) X, ye ;) (25 — z:) ¥ (2p — @) =

Ej’,k'eT(i)((ﬂUj’ —x) X (Tpr — 14)).

Put together,this shows that when applying a layer of EMNN, h is updated in manner invariant to E(3), and x
is updated in a manner equivariant to E(3). This proof can trivially be extended to the multi-channel case by
noting that the multi-channel operations in equation (8) and (9) operate separately across each vector channel
except for the channel-mixing matrices ¢;(m;j;,) and ¢, (m;;), which only scale vectors in a way that’s invariant
to E(3).

B TIME & SPACE COMPLEXITY OF EMNN

In terms of asymptotic computational complexity, our method is identical to EGNN. This is because the number
of neighbouring faces of a node is at most the number of its neighbouring nodes, so including face information
does not increase the asymptotic complexity.

Time Complexity: EMNN’s time complexity is O(M +max; N(i)), where N (i) are the number of neighbours
of node i and M is the number of edges. With multi-channel the time complexity is increased to O((M +
max; N (7))CC") with C' and C’ are the number of input and output vectors, respectively.

Space Complexity: EMNN’s space complexity is likewise the same as EGNN; of order O(Nd + NC) where
d is the dimension of the embedding of each node.
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