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Abstract

This paper introduces the Gaussian multi-
Graphical Model, a model to construct sparse
graph representations of matrix- and tensor-
variate data. We generalize prior work in
this area by simultaneously learning this rep-
resentation across several tensors that share
axes, which is necessary to allow the analysis
of multimodal datasets such as those encoun-
tered in multi-omics. Our algorithm uses
only a single eigendecomposition per axis,
achieving an order of magnitude speedup
over prior work in the ungeneralized case.
This allows the use of our methodology on
large multi-modal datasets such as single-
cell multi-omics data, which was challenging
with previous approaches. We validate our
model on synthetic data and five real-world
datasets.

1 INTRODUCTION

A number of modern applications require the estima-
tion of networks (graphs) exploring the dependency
structures underlying the data. In this paper, we pro-
pose a new approach for estimating conditional depen-
dency graphs. Two datapoints x,y are conditionally
independent (with respect to a dataset D) if know-
ing one provides no information about the other that
is not already contained in the rest of the dataset:
P(z]y, D\gy) = P(2|D\gy). For normally distributed
data, conditional dependencies are encoded in the in-
verse of the covariance matrix (the ‘precision’ matrix).
Two datapoints are conditionally dependent on each
other if and only if their corresponding element in
the precision matrix is not zero. If our dataset was
in the form of a vector d, we could then model it
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as d ~ N(0,%71) for precision matrix ¥. This is
a Gaussian Graphical Model (GGM); ¥ encodes the
adjacency matrix of the graph.

However, datasets are often more structured than
vectors. For example, single-cell RNA sequencing
datasets (scRNA-seq) come in the form of a ma-
trix of gene expression counts whose rows are cells
and columns are genes. Video data naturally re-
quires a third-order tensor of pixels to represent it -
rows, columns, and frames. Furthermore, multi-omics
datasets, such as those including both scRNA-seq and
scATAC-seq, may require two or more matrices to be
properly represented; one for each modality.

We could assume that each row of our matrix is an
i.i.d. sample drawn from our model. However, in-
dependence is a strong and often incorrect assump-
tion. If we wanted to make no independence assump-
tions, we could vectorize the dataset D and estimate
¥ in vec[D] ~ N(0,¥~1). Unfortunately, this pro-
duces intractably large ¥, whose number of elements is
quadratic in the product of the lengths of our dataset’s
axes: the size of ¥ is O ([],d?) (throughout this pa-
per, dy will denote the size of the ¢th axis of a tensor).

Thankfully, tensors are highly structured, and we
are often interested in the dependency structure of
each axis individually - i.e. the dependencies be-
tween cells and the dependencies between genes, in
the case of scRNA-seq - rather than the dependen-
cies between the elements of the tensor themselves.
To model this, we can represent ¥ as some deter-
ministic combination of the axis-wise dependencies:
vec[D] ~ N (0, (P 10w, Peor) 1), for some function (.
The strategy is to estimate W,., and W, directly,
without computing the intractable (W oy, Peo) .
While there are multiple choices for (, this paper con-
siders only the Kronecker sum. Choices of {, and their
definitions, will be given in Section[2]

1.1 Notation

When possible, this paper follows the notation of prior
work in multi-axis methods, such as Kalaitzis et al.,
2013| and Greenewald et al.,|2019| For tensor-specific
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notation, we typically adhere to Kolda and Bader,
2009 Some changes have been made due to incon-
sistencies or conflicts.

The subscript ¢ will always be used to denote an arbi-
trary axis. dy and W, represent the size and precision
matrix for the axis ¢, respectively - as in prior work. It
will be helpful to define the symbols d<¢, d~, d\,, and
dy to represent the product of the lengths of all axes
before ¢, after ¢, excluding ¢, and overall, respectively.

Lowercase bold represents vectors (d), uppercase bold
represents matrices (D), and uppercase calligraphic
represents tensors (D). We will also be dealing with
sets of tensors, {D7} ,; each individual tensor is called
a modality, and the superscript v will always represent
indexing a modality. The number of axes of a tensor
D7 is denoted K7, and to describe that an axis ¢ is
one of the axes of a tensor D7, we will write ¢ € ~.
Axes can be part of several modalities. An important
tensor-variate operation is matricization, which takes
ady x...xdg tensor D and outputs a dy X d\, matrix.
It is denoted mat, [D], and can be viewed as vectoriz-
ing each slice of D along the ¢th axis.

We will make frequent use of the Kronecker sum, de-
fined in terms of the Kronecker product. The Kro-
necker product of two matrices Wy, , Wy, is denoted
W, @ W¥y,, and is best defined by example;

> 4

5 6| 4x

56} 2 x

12 1 x

[3 4}®[5 6]:[3><
5 6 10 12
“ |15 18 20 24

The Kronecker sum is Wy, ® ¥, = ¥y, ® Idg2><dg2 +
L, xd,, @ Wy, When the matrices A, B are adjacency
matrices of graphs, the Kronecker sum has the inter-
pretation as the Cartesian product of those graphs.

The “blockwise trace” operation defined by Kalaitzis
et al. (2013) appears when calculating the gradient
of the log-likelihood of KS-structured normal distribu-
tions (and is strongly related to the projg operator
in Greenewald et al., |2019)). Let I, be the a x a iden-
tity matrix, and let J¥ be a matrix of zeros except at
(,7), where it equals 1. Then, we denote the block-
wise trace of a matrix trj and define it according to

Line

trd [M] = [tr {M (Ia ®J9® Ib):l (1)

ij

The final needed concept is that of the Gram ma-
trix S), defined as S} = mat, [D7] mat, D", In

the single-tensor (multi-axis) case, this is a sufficient
statistic; all prior work first computes these matrices
as the initial step in their algorithm, as do we. When
there are multiple modalities, we consider the ‘effec-
tive Gram matrices” S¢ = 3 e, S/, as these fulfill
the role of sufficient statistic in the multi-tensor case.

2 PRIOR WORK

The Graphical Lasso (Friedman et al., |2008) is the
standard single-axis GGM. The model assumes one
has n independent samples of d;-length vectors, and
seeks to estimate the dy X dy precision matrix ¥. ¥ is
estimated via Equation

¥ = argmaxg, o logdet ¥ — tr [S¥] + p|| ¥, (2)

Without the regularizing p||¥||, term, this represents
the maximum likelihood estimate for ¥; ¥ > 0 en-
sures positive definiteness. The regularization penalty
is an L1 penalty over the elements of W - typically, the
diagonal elements are not included in this penalty, as
they do not represent edges on the conditional depen-
dency graph.

Our work considers the Kronecker-sum (multi-axis)
Graphical Lasso, which was introduced by Kalaitzis
et al. (2013). This sum is one choice of ¢ to combine
the per-axis precision matrices into the precision ma-
trix of the vectorized dataset, vec[D] ~ N (0, (¥ oy @
W)~ 1). Other choices for ¢ have been considered,
such as using the Kronecker product (Dahl et al.,|2013|
Tsiligkaridis et al., 2013), or the square of the Kro-
necker sum (Wang & Hero, |2021} Wang et al., [2020).
Each method has its strengths; the benefits of a Kro-
necker sum structure are its interpretability as a graph
product, stronger sparsity, convexity of the maximum
likelihood, and its allowance of inter-task transfer.

Kalaitzis et al. (2013)’s BiGLasso model only worked
for matrix-variate data, and was very slow to con-
verge to a solution, in large part due to its non-
optimal space complexity of O(d2d3). This prohib-
ited its use on moderately sized datasets. Numerous
modifications have been made to the algorithm to im-
prove its speed and to achieve an optimal space com-
plexity of O(d? + d3), such as scBiGLasso (Li et al.,
2022), TeraLasso (Greenewald et al., [2019), and FEi-
GLasso (Yoon & Kim, |2020). Of these TeraLasso is
notable in that it allows an arbitrary number of axes,
ie. ((¥y,..,P%) = ¥ @ ... » Py, like our proposed
method. TeraLasso and EiGLasso, the fastest prior
algorithms, both rely on computing an eigendecompo-
sition every iteration.
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Figure 1: The two matrices of the LifeLines-DEEP
dataset. As both matrices include data for the same
people, the learned graph between people should be
the same.

All of these models, including our own, rely on a nor-
mality assumption. We are most interested in the
case of omics data, which is typically non-Gaussian;
an overview of the use of GGMs in omics data is given
by Altenbuchinger et al. (2020)). For single-axis meth-
ods, the nonparanormal skeptic (Liu et al.,|2012)) can
replace the normality assumption with a weaker non-
paranormality assumption; Li et al. (2022) proposed
a generalization of this approach to multi-axis meth-
ods, which is compatible with our approach. The non-
paranormal skeptic often leads to better results on real
datasets, for example see Figure For a thorough
comparison of the nonparanormal skeptic, see the sup-
plementary material.

In the single-axis case, several techniques exist for
combining datasets with shared axes (Cai et al.,|2016|
Danaher et al.,|2014; McCarter & Kim, [2014)). How-
ever, none of these have been applied to the multi-axis
case.

2.1 Unmet need

Many datasets, especially those in multi-omics, are
representable as a collection of matrices or tensors. As
a case study, we consider (a subset of) the Lifelines-
DEEP dataset from Tigchelaar et al. (2015), which is
summarized graphically in Figure

In this dataset, two different modalities of data were
gathered from the same people: counts of micro-
bial species found in their stools (metagenomics)
and counts of metabolites found in their blood
plasma (metabolomics). While the metagenomics and
metabolomics are different matrices, each modality
shares an axis (‘people’). If we were to estimate a
graph of people on each modality independently, they
would likely yield different graphs. This is not ideal; if
our aim is to estimate the true graph of conditional de-
pendencies, there should be only one resultant graph.
To estimate it, we should be considering both modal-

ities simultaneously to take advantage of the shared
axis.

One way to do this would be to concatenate
the modalities, producing a matrix of people by
‘species+metabolites’. This could yield interesting re-
sults, if one is interested in connections between indi-
vidual species and a metabolite. However, it would
vastly increase the size of the output graph, which
grows quadratically in the length of the axis. Fur-
thermore, it is not always possible; some datasets may
not be concatenatable.

3 OUR CONTRIBUTIONS

We make three contributions to the field of multi-axis
graphical models. Firstly, we produce an algorithm
to estimate multi-axis graphical models an order of
magnitude faster than existing work. This allows us to
apply our algorithm on large datasets, such as single-
cell RNA-sequencing datasets which include roughly
20,000 genes and tens of thousands of cells. Prior work
could not handle these datasets in reasonable time -
ours is the only method able to produce multi-axis
estimates for data of this size, and runs comparably
quickly to single-axis methods.

Secondly, we generalize the multi-axis model from
prior work, which was only able to consider unimodal
data, into a model that can handle multiple tensors
with shared axes. This generalization is essential to
the use of multi-axis methods on multi-modal data
such as multi-omics; no multi-axis method had been
made for this type of data before our work.

Finally, we produce a few helpful theorems to im-
prove accuracy and further improve speed. A
covariance-thresholding technique by Mazumder and
Hastie (2012) allowed the partitioning of data into
guaranteed-independent chunks of data in the single-
axis case; we show how to lift this result to the multi-
axis case, and demonstrate its efficacy (Figure (7).
We also show how to efficiently include some natural
prior distributions into our model, which allows us to
demonstrate an extraordinary increase in performance
on real-world data (Figure.

3.1 The model

To properly handle sets of tensors, we propose mod-
elling each tensor as being drawn independently from
a Kronecker-sum normal distribution. If the tensors
share an axis £, then they will still be drawn indepen-
dently - but their distributions will be parameterized
by the same W,. For an arbitrary set of tensors, the
model is:
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Y NNKS <{‘II€}‘€€’Y>
for D7 € {D7},

We call this model the “Gaussian multi-Graphical
Model” (GmGM) as it extends Gaussian Graphical
Models to estimate multiple graphs from a set of ten-
sors. In this paper, we will make the assumption that
no tensor in our set contains the same axis twice. Any
tensor with a repeated axis would naturally be inter-
pretable as a graph - such datasets are rare, and if one
already has a graph then the need for an algorithm
such as this is diminished.

As an example, we model the LifeLines-DEEP dataset
Dmetagenomics and Dmetabolomics independently as:

Dmetagenomics NNKS <‘I,people ‘I,species)
)

Dmctabolomlcs NNKS <\ijcoplc’ \Ilmctabohtcs)

3.2 The algorithm

Here, we present an algorithm to compute the maxi-
mum likelihood estimate (MLE) jointly for all param-
eters W, of the GmGM. The general idea is to pro-
duce an analytic estimate for the eigenvectors of Wy,
and then iterate to solve for the eigenvalues; this is
summed up graphically in Figure

Theorem 1. Let Vdiag [e,] V] be the eigendecompo-
sition of Sy (where V, € R¥“>*dt qnd diag [e,] € R9e>d
is a diagonal matriz with diagonal ;). Then V, are
the eigenvectors of the mazximum likelihood estimate of
W,.

Theoremis critical to allowing efficient estimation of
Wy, as it not only allows us to extract the computa-
tionally intensive eigendecomposition operation from
the iterative portion of the algorithm, but also reduces
the remaining number of parameters to be linear in the
length of an axis.

It is now necessary to find estimate the eigenvalues
Ay, = diag [A¢]. We will do this iteratively, which re-
quires the gradient of the negative log-likelihood with
respect to the eigenvalues. A sketch of the derivation
of this is given.

| i
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Theorem 2: lterate until Convergence

For each dataset v, compute intermediate values G}
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Figure 2: A graphical overview of how the GmGM
algorithm works. We use 7 to represent an arbitrary
modality, and ¢ to represent an arbitrary axis. Proofs
are given in the supplementary material.
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Line [6] follows from the definition of the blockwise
trace; the rest use Theoremand standard algebra.

An L1 penalty is often included in graphical models
to enforce sparsity. To enforce sparsity in our model,
there are a few options; one can choose to either keep
the top p% of edges, or keep the top k edges per ver-
tex. In Section [4] we see that this technique performs
well. Including regularization in our algorithm is non-
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Table 1: A comparison of the asymptotic complexity of TeralLasso and GmGM. EiGLasso is omitted because it
has the same complexity as TeraLasso. N represents the number of iterations before convergence. “Simplified
Time Complexity” represents the case when all axes have the same size d, there is only one modality, and the

dataset only has two axes.

Algorithm | Simplified Time Complexity

Full Time Complexity

Memory Complexity

TeraLasso O(Nd?)
GmGM O(d* + Nd?)

trivial, as we rely on analytic estimates of the eigen-
vectors. However, by utilizing a restricted form of the
L1 penalty, we can bypass this limitation. For details
on how to do so, see Section 5 in the supplementary
material - we will refer to GmGM equipped with this
penalty as ‘GmGM L1’. In short, the restricted L1
penalty is an L1 penalty on the off-diagonals of a ma-
trix (i.e. the Graphical Lasso) that has given (fixed)
eigenvectors (since the iterative portion of our algo-
rithm only iterates over the eigenvalues). We incorpo-
rate it with subgradient descent.

3.3 Additional Theorems

We can incorporate priors into our algorithm as well.
This is nontrivial, as we want it to be in a manner
compatible with Theorem

Theorem 2 (GmGM Estimator with Priors). Suppose
we have the same setup as in Theorem and that we
have a prior of the form:

Hge(@Z)etr[m(@e)T\Ilg]+h[(\p£) (7)
4

In other words, our prior is an exponential distribution
for Wy, in which ¥y is the sufficient statistic.

Then, if hy depends only on the eigenvalues (i.e. it is
‘unitarily invariant’), the eigenvectors of $S;—n¢(©y)
are the eigenvectors Vy of the MAP estimate for
W,. Furthermore, if hy is convex, then a result by
Lewis (1996) allows us perform gradient descent for
the eigenvalues in an almost-unaltered way. (see sup-
plementary material).

%Sz —1¢(®y) can be thought of as our “priorized” ef-
fective Gram matrix; its eigenvalues and eigenvectors
play the same role as those of Sy in the original algo-
rithm. The required property of unitary invariance is
very common - both the Wishart (arguably the most
natural prior to use in this context) and matrix gamma
distributions satisfy Theorem The benefits of in-
cluding priors are demonstrated in Figure

We also show that the covariance thresholding trick

O(>,did+ Nd; + NTJ,de)
O, didve +dj +3 N, do)

O(3, d7)
O(X, d7)

(Mazumder & Hastie, [2012) works in the multi-
axis case. This allows us to partition the dataset
into guaranteed-to-be-disconnected subsets before us-
ing our algorithm (although we do not make use of this
theorem when comparing performance to other work,
as it equally benefits all methods). The benefits of
using this trick are shown in Figure

Theorem 3. Set all elements of Sy whose absolute
value is less than p to 0. This encodes a potentially
disconnected graph. Likewise, consider ¥, to be the
estimated precision matriz for our model equipped with
an L1 penalty of strength p. This also encodes a po-
tentially disconnected graph. If we label the vertices by
which disconnected component they are part of, then
this labeling is the same in both procedures (the proce-
dure with Sy and the procedure with ¥y ).

3.4 Convexity and Uniqueness

As can be observed in Line the negative log-
likelihood, as a function of the eigenvalues, can be
expressed as the sum of a dot product (an affine,
and hence convex, function) and negative logarithms,
which are also convex. Thus, the objective is convex.

The Kronecker-sum model, without additional restric-
tions, has non-identifiable diagonals. Greenewald et
al. (2019) show that this can be solved by project-
ing the gradients at each iteration. Letting A, =
tr {@567 A4:|, their projection is defined according to
Line 8| See Sections D and 1.3 in their paper for thor-
ough information. We apply this projection to our
algorithm as well.

KA/ —1tr [Ag]
K, dy

projx = Ay — Id( (8)

4 RESULTS

We tested our algorithm on synthetic data and five
real-world datasets. For synthetic data, we generated
Erdos-Renyi graphs as our ground truth precision ma-
trices for each axis (except for Figurewhich uses an
AR(1) process). Datasets were then generated from
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the Kronecker-sum normal distribution using these
precision matrices. In all cases, we only generated 1
sample from this distribution. For comparison, we set
EiGLasso’s K parameter to 1; this parameter corre-
sponds to the fastest version of EiGLasso. We used the
same convergence tolerance and max iterations for all
algorithms. Time and memory complexity for GmGM,
Teralasso, and EiGLasso are given in Table When
measuring runtimes on synthetic data, we let the reg-
ularization parameters be zero for prior work.

4.1 Synthetic Data

We verified that our algorithm was indeed faster on
matrix-variate data compared to prior work (Figure
on our computer (2020 MacBook Pro with an M1
chip and 8GB RAM). Our results on matrix data are
encouraging - datasets of size 4,000 by 4,000 could have
their graphs estimated in a minute, and, extrapolat-
ing the runtimes, datasets up to size 16,000 by 16,000
could have their graphs estimated in about an hour.
This is significantly faster than our baselines; neither
EiGLasso nor Teralasso could compute on 1,500 by
1,500 datasets in a minute. Larger datasets would re-
quire more than 6GB of memory for our algorithm to
run, pushing the limits of RAM. On higher-order ten-
sor data, our algorithm continues to outperform prior
work. For 4-axis and higher data, our algorithm could
handle every dataset that could fit in RAM in less than
a minute (Fig and supplementary material).

In addition to these speed improvements, we show that
we perform similarly to state-of-the-art (Figure. We
demonstrate that taking into account shared axes does
indeed improve performance (Figure , and further-
more that our restricted L1 penalty leads to near-
perfect performance on tensor data (Figure .

4.2 Real Data

We tested our method on various real datasets. These
include two video datasets (COIL-20 (Nene et al.,
n.d.) and EchoNet-Dynamic (Ouyang et al.,|2020)), a
transcriptomics dataset (E-MTAB-2805 (Buettner et
al., [2015)), and two multi-omics datasets (LifeLines-
DEEP (Tigchelaar et al.,|2015) and a 10x Genomics
dataset (10x Genomics,|2021)). Due to space concerns,
we only briefly describe each experiment and its results
here. Full details are available in the supplementary
material.

For the COIL-20 dataset, we tested whether our algo-
rithm could be used to reconstruct the frames of a shuf-
fled video. We chose this test as it was the test used in
the first Kronecker sum multi-axis model, BiGLasso.
BiGLasso had to heavily downsample the image (to a
9x9 image with half the frames), and flatten the rows

and frames into a single axis. Due to the speed im-
provements of our algorithm, and its ability to handle
tensor-variate data, we were able to run our algorithm
on the full-sized dataset and achieve a similar result in
negligible time. Specifically, the reconstruction of the
rows, columns, and frames all had an accuracy of 99%.
In Figure we show the shuffled data, with Figure
being the reconstruction using our algorithm.

Due to the simplicity of COIL-20, we chose to do a sim-
ilar test on the more complicated EchoNet-Dynamic
dataset. We expected there to be structure in our pre-
dicted graphs, which would allow us to detect the pat-
tern of heartbeats. This pattern can be seen in Figure
We were largely successful in this endeavor, with
only one of the five videos we tested having poor re-
sults. For full details on the experiment, and how the
heartbeat was extracted, see the supplementary mate-
rial.

To test GmGM on our intended use case, ‘omics data,
we started with the E-MTAB-2805 transcriptomics
dataset, as this dataset was used in the original scBi-
GLasso paper for exploratory analysis. In this dataset,
each cell belongs to one of three classes (G, S, or G2M)
depending on its stage in the cell cycle. To evaluate
our algorithm’s performance, we use assortativity. As-
sortativity measures the tendency of cells in the same
class to cluster together in the estimated graph; an as-
sortativity of 0 represents no tendency for connection,
with 1 being the maximum. Negative assortativites
are possible, if there is a tendency to connect to dif-
ferent classes. We report the assortativities in Figure
comparing our results to EiGLasso and with the
nonparanormal skeptic applied to the input.

Our fourth dataset, the LifeLines-DEEP dataset, was
chosen because it was multi-modal, and because a
single-axis graphical model, ZiLN (Prost et al.,[2021),
had already been tested on one of its modalities. We
use assortativity as a metric, as that is what was used
in prior work. Our results are comparable to their
work (Figure @ Our algorithm’s runtime of 4.7 sec-
onds was similar to ZiLN’s 3.6 seconds, showing that
our multi-axis method was capable of similar runtimes
as single-axis methods for the first time. ZiLN was
specifically built for metagenomics data - the composi-
tionality assumption it makes would not be correct for
most other datasets considered here, and hence we do
not evaluate its performance on other datasets. Like-
wise, TeraLasso and EiGLasso were too slow to evalu-
ate assortativity curves as in Figure@

Finally, we tested our approach on a 10x Genomics
single-cell (RNA+ATAC) dataset taken from a B cell
lymphoma tumour. We chose this dataset because it
is multi-modal and quite large - 14,000 cells, 20,000
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Figure 6: Assortativity in the LifeLines-DEEP dataset, comparing our method with the Zero-inflated Log-Normal
(ZiLN) model. Solid lines represent our algorithm, dashed represent ZiLN. In one case we show the performance
of our algorithm restricted to the metagenomics dataset (a) and when augmented with the metabolomics dataset
(b). In both cases, ZiLN only has access to the metagenomics dataset, as it is a single-axis model. (¢) The same
test as (b), with the incorporation of phylum information as a prior (Theorem. Specifically, we used a Wishart
prior whose parameter encoded a graph connecting two species if and only if they are in the same phylum.
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genes, and 100,000 peaks (although after preprocess-
ing it became 2359 cells, 5350 genes, and 12485 peaks).
This dataset is unlabelled, prohibiting more quantita-
tive analyses; our main aim in this test was to prove
that the algorithm could produce results in reasonable
time. Our algorithm took 590 seconds to consider both
modalities jointly and 52 seconds on just the scRNA-
seq data. In contrast, EiGLasso took more than 60,000
seconds on the scRNA-seq data - due to its excessive
runtime, we did not let EiGLasso finish.

To ensure our algorithm was producing sensible results
on the 10x Genomics dataset, we performed a ‘UMAP
consistency analysis’. Specifically, we ran Louvain
clustering (Blondel et al., |2008) on our graph, and
viewed the clusters in UMAP-space (Mclnnes et al.,
2020). We believe this is a good test in this case, as
nonlinear dimensionality reduction is used in almost
every scRNA-seq study (Svensson et al.,|2020). As we
can see in Figure the clusters on our graph cor-
respond to sensible regions in UMAP-space as well.
In the supplementary material, we provide interpreta-
tions for some of these clusters. Figure shows an-
other UMAP consistency plot, for the LifeLines-DEEP
dataset.

In the supplementary material, we give variants of the
UMAP consistency plot for both the LifeLines-DEEP
and 10x Genomics datasets. These variants use dif-
ferent clustering methods (Leiden (Traag et al.,|2019)
and Ensemble Clustering (Poulin & Théberge, [2019)),
or tSNE instead of UMAP (Maaten & Hinton, 2008).
In all cases the results are broadly similar, except that
Leiden on the LifeLines-Deep dataset tends to put ev-
erything in one cluster.

All of the code to run the algorithm and recre-
ate the experiments has been made publicly
available on GitHub: |https://github.com/AlIStats-
GmGM/GmGM| and we have a package “GmGM” on
PyPI.

5 LIMITATIONS AND FUTURE
WORK

One limitation of our algorithm is its lack of compati-
bility with the standard L1 penalty. We do show that
our restricted L1 penalty leads to better performance
in synthetic data, even decisively outperforming L1-
penalized prior work in some cases (Figure . In
the supplementary material, we also show that our
restricted penalty leads to much better performance
on the E-MTAB-2805 transcriptomics dataset. How-
ever, it would be nice to incorporate the standard L1
penalty, as it is a well-studied and well-accepted tech-
nique. This would be a rewarding avenue for future

work.

Another limitation of our algorithm is that it does not
handle the case in which two axes partially overlap.
For example, in the LifeLines-DEEP dataset, not ev-
ery person is in both the metabolomics and metage-
nomics datasets. For now, our solution to this is to
restrict ourselves to the subset of indices that are avail-
able in all modalities sharing that axis (this was about
90% of people in the LifeLines-DEEP dataset). Prior
multi-axis methods could only handle a single modal-
ity, whereas this partial overlap problem only arises
when considering multiple modalities - a case which
we are the first to consider. We intend to relax this
restriction in future work.

One notable effect of our algorithm’s speed improve-
ments is that we are now limited by RAM rather than
runtime; this affected our experiments, wherein we
were more agressive with our quality control filtering
of the 100,000 ATAC peaks in the 10x dataset. Before
our work, algorithms were limited by how long it would
take to run rather than how much space was needed -
our algorithm is the first to be fast enough to hit mem-
ory limits. Our algorithm has a theoretically optimal
space usage of O(>_,d?), since the output is a set of
dy X dy precision matrices. However, given that we are
often interested in sparse matrices, an avenue for fu-
ture work would be to create variants of the algorithm
that are capable of leveraging this sparsity. As our al-
gorithm (along with the fastest prior work, EiGLasso
and TeraLasso) depends on eigendecompositions, this
would be a nontrivial task.

6 CONCLUSION

We have created a novel model, GmGM, which suc-
cessfully generalizes Gaussian graphical models to the
common scenario of multi-modal datasets. Further-
more, we demonstrated that our algorithm is signif-
icantly faster than prior work focusing on Gaussian
multi-graphical models while still preserving state-of-
the-art performance. These improvements allow multi-
graphical models to be applied to datasets with axes
of length in the tens of thousands. Additionally, we
showed how to integrate a couple natural priors into
our model, as well as provided a technique to par-
tition datasets into smaller portions before analysis.
The latter is particularly useful as runtime scales cu-
bically after the computation of the empirical Gram
matrices; partitioning a dataset in half provides an
eightfold speedup. Finally, we demonstrated the ap-
plication of our algorithm on five real-world datasets
to prove its efficacy.
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In the supplementary material, we give proofs of all theorems (Section , provide code, pseudocode, and
computer specs (Section [3), give more informations on our experiments (Section , describe how we incorporated
regularization (Section|5), and finally give an overview of the asymptotic complexity of ours and other algorithms

(Section @

Lemmas and are used to derive the Kronecker sum normal distributions’s pdf, which has been known in prior
work; we have included it for completeness. All other lemmas and theorems are novel.

1 NOTATION

In addition to the notation used in the main paper, we also introduce further notation to aid in the proofs. For
working with tensors, Kolda and Bader (2009) proved to be an invaluable resource; we have borrowed their
notation in most cases. The only exception is that we have chosen to denote the /~-mode matricization of a tensor
T as maty [T] rather than 7y, to highlight its similarity to vec [T] and free up the subscript for other purposes.

To keep track of lengths of axes, we define the following notation:

e d] is the length of axis ¢

e dl, is the product of lengths of all axes after ¢

d’, is the product of lengths of all axes before ¢

d'\yg is the product of lengths of all axes except for ¢

e d is the product of lengths of all axes (i.e. the number of elements in D7)

o dy = Z'y d) is the total number of elements across all datasets

In prior work, d, has been used to represent the lengths of axes but m, was used where we write d\, (such as in
Greenewald et al. (2019)). As prior work also used \¢ to represent leaving out the /th axis in other contexts (such
as in Kalaitzis et al. (2013)), and the analogous definitions of d~, and d, were convenient for use in proofs, we
chose to introduce d\, as the variable to represent leave-one-out length products. By representing all of these
related concepts with similar symbols, we hope the maths will be easier to parse.

We will let I, be the a x a identity matrix, which allows a concise definition of the Kronecker sum: @, ¥, =
2ola, @Y @1,

We make frequent use of the vectorization vec [M] of a matrix M, and more generally of a tensor vec[T]. We
adopt the rows-first convention of vectorization, such that:

vec [;) i]p 2 3 4] (1)

While columns-first is more common, rows-first is more natural when we adopt the convention that rows are the
first axis of tensor; this is the convention that matricization uses, and matricization is much more important for
our work due to its role in defining the Gram matrices. Note that, for matrices, a rows-first vectorization of M is
equivalent to a columns-first vectorization of M”, so there is no fundamental difference between the two. For
vectorizing a tensor, we proceed by stacking the rest of the axes in order, such that an element (iy,...,ix) in T
gets mapped to the element ), i¢d; in vec [T].

We define the Gram matrices as S] = mat, [D?] mat, [DV]T. Typically we consider only the one-sample case.
If you have multiple samples, indexed by a subscript 4, then the Gram matrix becomes an average: S] =

LS maty [D}] mat, [D}]" .

An essential concept is that of the ‘stridewise-blockwise trace’, defined as:



trg [M] = [tr [M (Ledie Ib)} (2)

ij

Where J¥ is the matrix of zeros except at (i,7) where it has a 1. It is a generalization of the blockwise trace
considered by Kalaitzis et al. (2013), and is related to the proj, operation defined by Greenewald et al. (2019).
Specifically, projx [M] is equivalent to €, trgiﬁ [M] up to an additive diagonal factor (Lemma 33 from Greenewald
et al. (2019)). projc [M] was defined to be the matrix that best approximates M (in terms of the Frobenius
norm) while being Kronecker-sum-decomposable. This matrix is not unique; the choice by Greenewald et al.
(2019) to include an additive factor was to enforce tr [proj K [MH = 0. We do not wish to enforce this constraint
as it would be difficult to preserve in the multi-tensor case.

The parameter b of the stridewise-blockwise trace partitions the m x m matrix M into a block matrix with b x b
blocks of size (% x 7t). The parameter a then partitions these blocks into a ‘strided” matrix with a x a strides
containing 7% x 7 blocks. We take the trace of each stride, and the final matrix is the matrix of these traces. As
this is conceptually complicated, we provide an example.

1 2 3 4 5 6 7 8]
1 23456 7 8
1 23 456 7 8
|1 2 3 45 6 7 8
U211 2 3 45 6 7 8 (3)
1 23 456 7 8
1 23 456 7 8
1 2 3456 7 8
[ 1 2] (3 4] (5 6] 7 817
tr -1 2- tr -3 4- tr -5 6_ tr -7 8_
1 2 3 4 5 6 78
2 tr -1 2- tr -3 4- tr -5 6_ tr -7 8_ @
*rt12t34t56t78
Plro2) Y3 4] Y5 6] M7 s
1 2 3 4 5 6 78
_tr _1 2_ tr _3 4_ tr _5 6_ tr _7 8__
3 7 11 15]
L1037 11 15
=0T 7 115 (5)
3 7 11 15
311 L7 18
B 7 15 ©)
= 311 MRt
3 11 |7 15
14 22
T4 22 (7)

Notice the construction of the ‘strides’ in Line@— the parameter of 2 told us to take the trace of the most ‘spread
out’ evenly spaced 2 x 2 strided submatrix.

2 PROOFS

We will assume that no dataset contains repeated axes (i.e. no single tensor has two axes represented by the
same graph), as this greatly affects the derived gradients. Shared axes - two tensors having one or more axes in
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common - are allowed. The case of shared axes is, after all, the whole point of developing this extension to prior
work.

2.1 Permutations

Note that both vec [mat; [D?]] and vec [mat, [D?]] are row vectors containing the same elements, just in a different

order. This means that there is a permutation matrix Py_,; such that vec [matl [DVHT Py = vec [matz [DV]]T.

Lemma 1 (Rearrangement lemma). Py_,q (Idd QW,® Id>£) Pl =9, Ia,,

C—>

Proof. While vec, maty, and ) are defined as operations on matrices, for the purposes of permutations we can
consider them as operations on indices. We can express them as follows:

vec : (i1, .oy i) — Zizdd (8)
¢

. . . . Cdep
maty : (i1,...,ix) = | i¢, E ipdey + E i
<t >0 ¢

Q¢ (i), (s %)) = | D ibder, Y ifdee (10)
J4 4

We’ll consider just the rows of &), ® - although the same argument applies with columns:

E @z}() = [ itde (11)
rows V4

Finally, we’ll introduce the permutation operation oy_,1 that will change the order of our Kronecker product:

oen (8), o (ke i) = (G 33), L), s (s 1) (s ) o (i ) (12)

And again without loss of generality we restrict ourself to o;°%*:

rows . -1 -1 -1 -1 -1 -1 -1
gt (zl,...,zK> — (ze,zl,...,zz_l,zu_l,...,zK) (13)

After a Kronecker product our indices are in the form )", i,d<¢, and if we were to reorder it with o, they
would be in the form i, + de ipdepdy + Ez/>z igd<g. Likewise, if we had matricized it we would have

, . . d A . . . . .
(u, Doocrterdar +D 00 W%), which is vectorized to ip + ), derd<prde + Yy, ierd<pr. These reorderings
are the same, and hence the matrix that represents it is Py_,1.

O



2.2 Derivation of the probability density function

Recall that the Kronecker-sum-structured normal distribution for a single tensor is defined as follows:

—1

vec [D7] ~ @ v, = D" ~ Nks ({‘I’é}ZG«/) (14)
tey

The log-likelihood for this distribution is given in Kalaitzis et al. (2013)) for the matrix case and Greenewald et al.
(2019) for the general tensor case. However, neither of these papers provide a derivation. As the full derivation
will motivate the construction of lemmas useful for the proofs of Theorems|1| we will give it here. First, observe
that the density function is that of a normal distribution.

’@e ‘I’f‘
p(07) = Y2 T St (@, wi)veetn) (15)
Y

(2m) >
Lemma 2 (¢-vec lemma). vec [D7]" (B, ¥¢) vec[D] =3, tr [S] ]

Proof. This proof relies on the following two properties of vec: (A ® B)vec[C] = vec [BCTAT} and tr [ATB] =

vec [A]T vec [B]. The C term picks up a transpose due to our use of the rows-first vectorization; when using
columns-first notation the right hand side becomes vec [BCAT].

vec [D7] @ W, | vec[D"] = Zvec D" (Ii., @ ¥, ®14_,) vec[D7] (Definition of @)
= Zvec [mat, [’D”HT (Li., ® ¥, ®1,_,) vec [maty [D7]] (16)

¢
=" vec [mat, [D7]]" PT,, (Lo, ® ¥, ©14.,) Py ivec [maty [D7]] (17)

¢
= Z vec [mat, [D”]]T (\I’g @ Ia, e) vec [mat, [D7]] (Rearrangement Lemma)
¢

= Z vec [maty [DVHT vec {matg [D7] \Ilﬂ (18)

=> tr[S]®,] (19)
4

O
With this lemma, the probability density function in the single-tensor case can be expressed in the form:
‘@ZGW ‘IIZ‘
p(D7) = H———e ZevlSi] (20)
(2m)

Leading to the probability density function for the multi-tensor case as:
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)@KGW \I’é‘ =1 vy
D ({'D’Y}) _ H —eT >, tr[S7®] (21)
T @2n)F
I, y | @, %
_ vy de’)’ e%l Z'y > tr[SZ‘I’E] (22)
(2m) %
[I ‘EB@ ‘I’Z’
_ de’y o7 Lo trlSe¥y] (23)
(2m) %
The negative log-likelihood is thus:
Sy dy 1 1
NLL ({D7}) = ~ log (27) + 5 > (S, - 3 > log | ¥, (24)
4 ol Ley

2.3 Gradient

The derivation of the gradient of the negative log-likelihood is essentially the same as the derivation given by
Kalaitzis et al. (2013) for the original Bi-Graphical Lasso. Our derivation is complicated by the fact that we are
considering general tensors rather than matrices. We’ll let sym be the symmetricizing operator that must be
applied as we are taking the derivative with respect to a symmetric matrix: sym [M] = K o M, where K is a
matrix with 1s on the diagonal and 2s everywhere else. We’ll also define J* to be the matrix of zeros except for a
1 at position (i, 7).



d 1 1 d
—NLL ({D"}) = =s - = —1 A\ % 2
—1
1 d
= §Sym [Sg] ) Ztr @ W 5 @ W (26)

ver Wy e,
ij

14

ij
-1

Il
N
w
P2
B
%)
S,
|
N —
o+
(]

P e (Idd ® (J”’ + 37— 6,-jJ”') ® Id>[> (28)

ij

-1
1 1 d
= 5sym [Se] — 5 § :tr (@ 22 <Id<z ® dbi ¥.® Id>e> (27)

-1

1 1 )
= ovm(Sd =5 Y [@—da)u || D ws (Idd ®JI ® Idﬂ) (29)
yleey ey
iJ
-1
1 1 )
= ovm(S]—5 Y @I-Dotr | (P ey (Idd ®Ji © Idﬂ) (30)
y|eey ey B
ij
—1
1 1 dY
= 5sym [S¢] — 3 Z sym trdz @ L7 (31)

ey ey
The MLE occurs when this gradient is zero, i.e. when the following equation is satisfied:

-1

S, = Z trj:iz @ Wy (32)

vleey ey

In other words, our effective Gram matrices are the best Kronecker-sum decomposition of the covariance matrix
of the maximum likelihood estimate. Unfortunately, the Kronecker-sum decomposition does not interact well
with matrix inverses, so this does not directly yield an analytic solution. It does, however, yield a solution for the
eigenvectors.

2.4 Maximum Likelihood Estimate for the Eigenvectors

We first produce two lemmas to aid in the derivation.

Lemma 3 (Cyclic property of the stridewise-blockwise trace). For any matrices M, A xq, Boxs, we have that
try [([A®I®B)M] = trf [M (A ®I®B)]

Proof. This follows directly from the cyclic property of the (normal) trace operator and the definition of the
stridewise-blockwise trace. 0

Lemma 4 (Conjugacy extraction of the stridewise-blockwise trace). For any matrices M and V, we have that
of [(LeVel)MILeVel)| = Vi MV’
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Proof.

g (IQ®V®Ib)M(Ia®V®Ib)T} - [tr {(IG®V®IZ,)M(I@®V®IZ,)T <IG®J“ ®Ib)}

ij
(Definition of trg)

Thanks to the Rearrangement Lemma, we can get this just in terms of the standard blockwise trace, for which
there exists a convenient lemma from Dahl et al. (2013) that does the heavy lifting for us. Unfortunately, this
requires inserting permutation matrices into every nook and cranny.

— ltr [P (L, ® Vo L) PTPMPTP (I, o Vo I,)T PTP (Ia ®J7 Ib) PT} (33)
j
— [tr [(V @ I)" PMPT (V @ 1) (Jij ® Iab)H (34)
ij
— trap {(V % Ly) PMP? (V @ Iab)T} (Definition of tr,;)
= Vitrgy, {PMPT} vT (Lemma 2 of Dahl et al. (2013))
We then can see analogously that tre, [PMPT] = trf [M], completing the proof.
O

Theorem 1. Let VgegV{ be the eigendecomposition of Sy;. Then V, are the eigenvectors of the maximum
likelihood estimate of Wy.

Proof.
-1
.
Se=Y || Pws (35)
14
y|eey - ey
r -1
d"/
- S uf | (@ veanvt )
y|eey ey
r -1 T
d"r
-y |(@ve) (@) (@v )
y|eey 14 ey ell’
—1
a2 T .
= Z trdi (Lo, ® Ve®14.,) @ Ay (Li., ®V,®14,) (Cyclic Property)
yeey ey

-1

I
(]
N
G
Q/;Q
D
g
<
=5

(Conjugacy Extraction)

vleey ey
-1
dﬂ/e T
=V, E 111"d§2 @ Ay V; (38)
>
vleey ey

We conclude the proof by observing that the central matrix is diagonal, and thus the right hand side constitutes
an eigendecomposition of Sy. Thus S; and ¥, share eigenvectors. O



2.5 Maximum Likelihood Estimate for the Eigenvalues

In the previous section, we derived the eigenvectors of the maximum likelihood estimate. While interesting (they
correspond to the principal components of our data), we need the eigenvalues to reconstruct ¥,. In the main
paper, we derived the gradient with respect to the Negative Log-Likelihood. Then, for a learning rate u;, gradient

d’Y -1
descent can be performed with the update equation Aﬁ"’l =Al— leg - Zv\lev trd”d {(69@67 Agl) ” A
>

reasonable restriction is to make W, is positive definite, in which case p; must be chosen to prevent A from
becoming negative. Iterating over the eigenvalues reduces our optimization task from one with )", d% parameters
to one with ), d, parameters.

2.6 Incorporation of Priors

Theorem 2 (GmGM Eigenvector Estimator with Priors). Suppose we have the same setup as in Theorem and
that we have a prior of the form:

Hgé(@e)etr[m(@e)T‘I’z]-i-hl(‘I’e) (39)
l

In other words, our prior is an exponential distribution for Wy, in which Wy is the sufficient statistic.

Then, if hy depends only on the eigenvalues (i.e. it is ‘unitarily invariant’), the eigenvectors of %Sg —1¢(Oy) are
the eigenvectors Vy of the MAP estimate for W,.

Proof. Observe that our log-prior is:

> 108 9e(O0) + tr [1:(©) W] + he(¥0) (40)
Y4
With gradient:
(©0) + 0 hy(Wy) (41)
Ne(Oy 0w, (W

Theorem 1.1 from Lewis (1996) states that the eigenvectors of the derivative of any spectral function are the
same as the eigenvectors of its input. In our case, this means that the eigenvectors of ai‘p[hg(‘l’g) are Vy, the
eigenvectors of Wy.

Recall the gradient of the log-likelihood of the Kronecker-sum-structured normal distribution was:

-1

1 d? 1
3 2t || Dwe| |58 “2)

vleey ey

The gradient of the log-likelihood after including the prior is the sum of these two gradients:

-1

1 dax, 0 1
- Z trdw‘f @ % + quéhe(‘I’e) - 552 +10(Oy) (43)
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Figure 1: Graphical representation of the benefits of Theoreml Provided the thresholded covariance matrix can
be partitioned, so can the precision matrix. This allows us to split the dataset into distinct parts, and estimate
the covariance matrices separately. Note that, in the diagram, we have split the dataset into 6 chunks but there
are only 5 precision matrices to estimate - this is because there are shared axes, necessitating the use of our
shared axis framework to take advantage of this partitioning.

And the optimum is achieved at:

-1

1 az 0 1
5 Z trd;j @ Wy + a—%he(‘l’e) = isz N AGH (44)

vleey ey

The right hand side is known, and hence has known eigenvectors. The left hand side is unknown, but has
eigenvectors V.

O

The change to the iterative portion of the GmGM algorithm is minimal; by virtue of being unitarily invariant
and convex, Lewis guarantees that ai‘l,ehg(‘l’g) is some function of just the eigenvalues A, of ¥,. This
function is added to our gradient each step (Line . This fact is significant, as it means the algorithm does not
need major changes to incorporate priors - we only need to consider %h((Az). %Sg —1¢(©y) can be thought of
as our ‘priorized’ effective Gram matrix, its eigenvalues fill the role exactly of e; in the original algorithm. Thus,
the only change needed to incorporate priors in the algorithm, other than use of the priorized Gram matrices, is
inclusion of the aiAlhg(Ag) term.

Corollary 1. The Wishart and matriz gamma distributions all satisfy Theorem@

2.7 Covariance Thresholding

In this section, we restate and prove Theorem 4 from the main paper in more general terms; see Figure When
we say that two matrices A and B have the same block diagonal structure, we mean that both have the following
form:

B, 0

B=|0 B (45)
(A, 0

A=|0 Ao (46)



Where there is no restrictions placed on the submatrices except that they are square and that the shape of A; is
the same as the shape of B; for all i. The structure of our proof of Lemma 6 follows the same structure as that of
Theorem 1 of Mazumder and Hastie (2012); we give it in a more general form in such that both their result and
our result arise as corollaries in conjunction with Lemma@

Lemma 5. Let F [‘I’g; {‘I’g/}é,#] be a function that preserves the block diagonal structure of Wy, which as a

shorthand we will denote Fy. Suppose we had an objective whose gradient is Sy — Fy. If we incorporate an L1
penalty on W, with strength p into the objective, then the subgradient of the function contains zero for an estimate
W, with the following property:

If we replace every element of Sy whose magnitude is less than p with 0, we can partition the encoded graph into
disconnected components. This partition is the same as the partition into disconnected components for ¥,.

Proof. The incorporation of an L1 penalty leads to a subgradient of:

S¢ — F¢ + psign¥, (47)

Where sign is the element-wise sign function:

€[-p.p] HM;;=0
sign £ M];q =-p iM;>0 (48)
=p if Mij <0

We have critical points when the subgradient contains zero; this leads to the KKT conditions, which must be
satisfied for all ij.

Sy —F/| <p if ¥/ =0 (49)
Fj/ =SY +p if ¥ >0 (50)
F/ =87 —p if ¥ <0 (51)

Define thresh, [S,] to be a matrix with Os everywhere that ‘Szj ’ < p and otherwise is Szj . Without loss of

generality, we can assume our data has been ordered such that thresh, [S,] is block diagonal. We will construct a

¥, that satisfies the KKT conditions while also having a block-diagonal structure. The construction of such a ¥,
would show that the graph partition in our L1-penalized solution is at least as fine as the graph partition arising
from thresholding S,.

Let us construct ¥, to be block-diagonal with the same block structure as thresh, [S¢]. Denote the blocks to be
indexed by a (‘i’g)a for W, Sy, for S), and define them to be solutions to the following problem:

0€S,—F |:‘I’g’a; {\Ilg/}e,# + psign®y , (52)

To see why ¥, satisfies the KKT conditions, note that for any index ij lying off the block diagonal, Szj < p by
construction. As F;; preserves the sparsity structure of \ilg, and \1127 =0, |S/ — F;j| =0 < p is satisfied. For the
indices 77 lying on the block diagonal, note that the KKT conditions are satisfied via each block’s constriction in

Equation

To conclude the proof, it is necessary to show that if our solution ¥, has a block diagonal structure, then S,
has the same block diagonal structure. In other words, the L.1-penalized solution is not a more fine-grained
partition than that which can be attained through covariance thresholding. Suppose that we have some ¥, with
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ij
Se

block-diagonal structure, and thus that F, has that same structure. Then, F;j = 0 implies

ij _ pid
S€ F€

< p, as by the

KKT we know that < p. Thus, thresh, [S;] has the same block diagonal structure as ¥,.

We have now shown that both graph partitions are equally fine-grained, and are thus equivalent. This completes
the proof. 0

Corollary 2. As the matriz inverse preserves block diagonal structure, Theorem 1 of Mazumder and Hastie
(2012) follows immediately.

Y -1
Lemma 6. Z’YME’Y trjii [(@6,67 ‘I’@/) } preserves the block diagonal structure of ¥,.

Proof. For notational convenience, and without loss of generality, assume that ¢ is the first axis in each of the

e : . dY -1
modalities it appears in. Furthermore, observe that if for all v we have that tr dii {(@ ey ‘Pg/) } preserves the

. d’ -1 .
block diagonal structure, then the sum Zvlée’v tr,5° [(EB@/G,Y ‘I’g/) } also preserves this structure. Thus, we
>t

consider only one term in the sum and omit reference to «. Doing this, our problem reduces to showing that

-1
tra,, [(\I’g ®@ 14, +1g, ® @e'# \Ilg/) } preserves the block diagonal structure.

While ¥y ® I4,, does not preserve the block diagonal structure in the strict sense (as its blocks have different
sizes than those of Wy), it is still block diagonal and there is an obvious mapping from the blocks of one to the
blocks of the other:

5 0 .. Tl 20
0 ‘Ilf ®Id\g — 0 ‘I’[ ®Id\2 (53)

Suppose block ¥; has size s;, then the size of the blocks in ¥y ® I, is s; X d\y. The second term in the sum is
also block diagonal:

SPRTA 7% 0
® @ W, = 0 Do O (54)
£ : -

O =
—_ O

But these blocks are of size 1 x d\,; no larger than the blocks of ¥, ®1I,,,. Thus, overall, ¥,®14, , +1g, ®@e,# 7
has block diagonal structure with block sizes s; x d\,. It follows that its inverse does as well. The blockwise trace
maps blocks of size s; X d\, back to size s;, completing the proof. O

Theorem 3. Set all elements of Sy whose absolute value is less than p to 0. This encodes a potentially disconnected
graph. Likewise, consider Wy to be the estimated precision matriz for our model equipped with an L1 penalty of
strength p. This also encodes a potentially disconnected graph. If we label the vertices by which disconnected
component they are part of, then this labeling is the same in both procedures (the procedure with Sy and the
procedure with Wy ).

Proof. This follows directly from the convexity of our objective as well as Lemmas and@ O

3 DEPENDENCIES

All tests and figures were generated on a Mac with an M1 chip and 8GB of RAM. Along with our code, we
provide an environment file (environment.yml) that contains full details of all the dependencies used. In our



The GmGM algorithm

Input: {D}, tolerance
Output: {¥,}
1: for 1</<K

S0 Xjue, st 1 mate [D]] mat, [P7]"
V; + eigenvectors[Sy]
e + eigenvalues[Sy]

end for

A1 .1

w1

while not converged
for 1</< K

G/ < projgs [(@glev Az) _1]

11: Ay Ae—p e = 5, e, G
12: end for

13: for 1</(< K

14: Ay AZ

15: end for

16: for v € modalities

}T

._.
@

17: if 3 /., minA, < tolerance then
18: decrease 1 to make sum far from zero
19: end if

20: end for

21: end while

22: for 1</(< K

23: W, VgAzVL?F
24: end for
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GitHub repository https://github.com/AIStats-GmGM/GmGM /), we give precise and simple instructions on
how to create a conda environment with the same setup as ours. Most of the packages used were specific to the
experiments we ran. The dependencies necessary for our algorithm were Python 3.9 and NumPy 1.23.5.

4 EXPERIMENTS

4.1 Synthetic data

For various precision-recall performances, see Figures and |4] For runtimes, see Figure|5| We can see that
our algorithm performs comparably to prior work; it does slightly worse without the restricted L1 penalty. We
focused on experimenting with the 1-sample case, as that is typically the case with real-world data (all of the five
real-world experiments in Section are an example of this).

For the runtimes, we cut off our tests once GmGM reached the one-minute runtime mark, or if the size of the
synthetic data exceeded a gigabyte; see Table for an overview, and Section@ for the computational complexity.

Note that the runtime is almost linear in the total size of the dataset dy (O(K d}f%). As K increases, % vanishes.
The cost of Gram matrix computation and eigendecomposition compared to the iterations also levels out; this is
likely what explains the higher-order tensors all taking roughly the same amount of time to compute 1GB-sized
datasets ( 10 seconds). These results clearly show that for high-axis-data (K > 3), our algorithm can handle all
smaller-than-RAM datasets in reasonable time on a personal computer. For low-axis data (K < 4), it may take
more than a minute but, as we can see from our algorithm’s performance on large real world datasets such as
the 10x Genomics dataset, its runtime will still be measured in minutes, not hours, before reaching the limits of
RAM. When we consider the covariance-thresholding trick (Figure 7b in the main paper), we can push these
limits even further.

Amount of Axes (K) daB dmin Runtime at dggp
2 11,000 4,000 777
3 500 400 777
4 100 77 7.1 seconds
5 40 777 9.5 seconds
6 20 777 7.4 seconds

Table 1: Comparing the point at which a K-axis tensor of double precision floats surpasses a gigabyte of data
(%/ w = dgp) to the point at which GmGM’s runtime surpasses a minute (dpin). Values are rounded.

In all tests, our regularized algorithm took about the same time as the unregularized algorithm. This is not
unexpected, as our restricted regularization only affects the iterations, not the eigendecomposition. In the real
world, where the data may be ‘harder’ than our synthetic data (i.e. take more iterations to converge), we would
expect our regularized algorithm to be slower.

4.2 COIL video
4.2.1 The Dataset

We downloaded the processed COIL-20 (Nene et al., |n.d.) dataset, and tested our model on it. It is available at
https://cave.cs.columbia.edu,/repository /COIL-20; we used the ‘processed’ data. They do not formally license it,
but state that it is available for academic purposes and provide the download links with no restrictions.

4.2.2 Experiment Justification

In the original paper introducing Kronecker-sum-structured normal distributions for graphical models, Kalaitzis
et al. (2013) showed that their BiGraphical Lasso (BiGLasso) could reconstruct the ordering of the frames of the
video. Thus, it seemed natural to choose this as an experiment, to show that our lack of L1 regularization was
not a significant inhibitor for the model in the real world setting.

BiGLasso was a significant algorithm in that it was the first of this type of model and proved that it could work,
but it was also incredibly slow (taking around 15 minutes on 100x100 matrix data) and limited to two axes. Thus,
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Figure 2: Various precision-recall curves on synthetic matrix-variate data, for both an Erdos-Renyi with a 2%
per-edge probability and AR(1) distribution.

they reduced the resolution of the image from 72 frames and 128x128 pixels to 36 frames and 9x9 pixels and
flattened the rows and columns axis into one axis. We wanted to show that our algorithm could handle the full
resolution in negligible time while still reconstructing the video.

4.2.3 Results

We wanted to see if our model could understand the structure of a video, which we expected to consist of two
linear graphs (for the rows and columns, i.e. each row is connected only to its neighbor rows) and a circular
graph (for the frames, because the video is of a 360° rotation). To generate these graphs, we ran our algorithm on
the duck video from the dataset, and then greedily kept the largest edge from each vertex such that vertices in
the final graph had at most two edges. If we shuffled our data (shuffle rows, columns, and frames) and try to
reconstruct it with these graphs, we get decent without the nonparanormal skeptic (Figure and great results
with it (Figure. While in both cases the algorithm has clearly reconstructed most of the duck, when using the
nonparanormal skeptic our algorithm reconstructs it nearly perfectly. The only human-noticeable issue is that it
does not know which row/column the duck should start on - if we tessellate the image, the reconstruction would
be indistinguishable from the original image.

We can put a numeric value to the reconstruction, by measuring the percentage of the time that our reconstructed
edges connect two adjacent rows/columns/frames. Without the nonparanormal skeptic, we get an accuracy of
88% for the rows, 94% for the columns, and 93% for the frames. With it, the accuracy becomes 99% for all
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P{ROCurve on Shared Axis of Two 50x50 Tensors [1 sample; 2% edges]
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0.8 e EiGLasso

Precision

Recall

Figure 3: Performance on two 50x50 datasets with one shared axis, whose true graphs were drawn from an
Erdos-Renyi distribution (2% probability for each edge to exist, independently). Unimodal GmGM and EiGLasso
only consider one of the two datasets.

Algorithm ‘ Preprocessing ‘ Runtime
GmGM Center Data 0.044 seconds
GmGM Nonparanormal Skeptic | 0.23 seconds

TeralLasso Center Data 33 seconds

Teralasso | Nonparanormal Skeptic | 5.2 seconds

Table 2: A comparison of the runtimes our algorithm and TeraLasso. Runtimes were averaged over 10 runs, and
include the preprocessing.

three. These values are without regularization; we did experiment with regularization, but it did not seem to
help. TeraLasso had the same results.

On this dataset, our algorithm runs in 0.044 seconds whereas TeralLasso takes 33 seconds, showing that our
algorithm is highly performant on real world data. For data of this size, the nonparanormal skeptic is expensive
compared to our algorithm - but our algorithm is still an order of magnitude faster than TeralLasso. If we do not
include the nonparanormal skeptic in our runtime calculation, the speed of GmGM is comparable regardless of the
input. However, convergence is much quicker for TeralLasso when it is fed the nonparanormal skeptic (Table.

4.3 EchoNet-Dynamic ECGs
4.3.1 The Dataset

We downloaded all of the EchoNet-Dynamic (Ouyang et al., |2020) data. The dataset is available at
https: / /echonet.github.io/dynamic/index.html; one has to sign a Research Use Agreement to access it. It
is available for personal, non-commercial research purposes only. It prohibits distribution of portions of the data,
which is why we do not show any frames from the echocardiograms in this paper. The dataset has labels (for
example, end systolic volume), but these labels are not relevant to the task of predicting the frames the heartbeats
occur on. For this, we picked the opening of the mitral valve as an arbitrary but easily visible occurrence, and
manually recorded the frames of these openings for 5 videos in the dataset. These videos were picked at random.

4.3.2 Experiment Justification

We chose the COIL duck video because of its use in prior work, but these methods were already known to perform
quite well on it. Thus, we wanted to try a similar but harder task. Echocardiograms have a periodic structure
(the heartbeat), and hence we would expect the learned graph of an echocardiogram to be similar to that of
the duck video, with the addition of extra connections corresponding to the same phase of the heartbeat across
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Figure 4: Performance on tensor-variate (50x50x50) data whose true graphs were drawn from an Erdos-Renyi
distribution (2% edge probability) and an AR(1) distribution.

Algorithm ‘ Preprocessing ‘ Runtime
GmGM None 0.067 seconds
GmGM Nonparanormal Skeptic | 0.33 seconds

TeraL.asso None 40 seconds

Teralasso | Nonparanormal Skeptic 12 seconds

Table 3: Runtimes of our algorithm and TeraLasso, with various preprocessing methods, on the EchoNet-Dynamic
dataset. Runtimes given are the average runtime over the five videos considered.

different heartbeats. We saw that our algorithm was able to find this more complicated structure, and prove it by
using that structure to detect future heartbeats.

4.3.3 Results

We downloaded all of the EchoNet-Dynamic (Ouyang et al.,|2020) data. This dataset did not have heartbeats
labeled, so we picked a few videos at random and labeled them ourselves as a proof of concept. Specifically,
we labeled every frame in which the mitral valve opened. Our goal was to see if the graphs produced by our
algorithm could predict this opening. Tablecontains the videos we picked, the labels we gave, and the labels we
predicted. When we used the nonparanormal skeptic as a preprocessing step, we got broadly similar empirical
results (Table, although the precision matrices arguably more clearly show the periodic structure.

Mitral valve predictions were done by taking GmGM’s output frames graph in precision matrix form, and
measuring the mass along the diagonals. We treated this as a time series (since each diagonal corresponds to an
increasing time offset from all frames simultaneously). We applied gaussian blur and then a continuous wavelet
transform peak detection algorithm (Du et al., [2006) to find which diagonals had the most mass (Figure .
These represent the offsets corresponding with a heartbeat. Given the first mitral valve opening and these offsets,
we predict the remaining openings. From Tables |4]and [5| we can see that our algorithm performs well. Our
algorithm is much quicker than TeraLasso; see Table

4.4 Mouse embryo stem cell transcriptomics
4.4.1 The Dataset

We used the mouse embryo stem cell dataset E-MTAB-2805 (Buettner et al., |2015), avaliable at
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/ E-MTAB-2805, under a Creative Commons Zero license
This dataset is by what stage of the cell cycle each cell was in (G1, S, and G2M). We consider a subset of the
genes available in this dataset, as that was the case in the scBiGLasso paper (Li et al.,|2022); this subset is given
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Video ID Label Predicted Precision Matrix
Echocardiogram Frames

0XFE6E32991136338 [17, 47, 77, 106] [17, 47, 78, 104]
Echocardiogram Frames

0XF072F7A9791B060 [24, 56, 100] [24, 59, 90]
Echocardiogram Frames

0XF70A3F712E03D&7 [22, 66, 110] [22, 67, 111]
Echocardiogram Frames

h

0XF60BBEC9C303C98 [19, 67, 114, 162] [19, 66, 115, 162]
Echocardiogram Frames

0XF46CF63A2A1FA90  [25, 79, 134, 188]  [25, 80, 133, 184]

Table 4: Mitral valve labelings and precision matrices for the EchoNet-Dynamic dataset. The precision matrices,
for the most part, seem to have clear off-diagonal structures, as expected, and the mitral valve prediction is
generally quite good; it is only significantly off for the last opening in 0XF072F7A9791B060. The precision
matrices are shown with the top 20% of the edges kept.



Video ID Label Predicted Precision Matrix

Precision Matrices

0XFE6E32991136338  [17, 47, 77, 106]  [17, 48, 77, 106] h

Precision Matrices

3

Precision Matrices

N,

.

r

0XFO072F7A9791B060 [24, 56, 100] [24, 58, 91]

0XFT70A3F712E03D87 [22, 66, 110] [22, 67, 112] h‘
Precision Matrices

> %

%

Precision Matrices

‘%’*

0XF60BBECOC303C98  [19, 67, 114, 162]  [19, 66, 116, 162] a

0XF46CF63A2A1FA90  [25, 79, 134, 188]  [25, 80, 134, 188]

Table 5: Mitral valve labelings and precision matrices for the EchoNet-Dynamic dataset, using the nonparanormal
skeptic to preprocess. The precision matrices, for the most part, seem to have clear off-diagonal structures, as
expected, and the mitral valve prediction is generally quite good; it is only significantly off for the last opening in

0XF072F7A9791B060. The precision matrices are shown with the top 20% of the edges kept.
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Figure 5: Runtimes for 2-axis (a) 3-axis (b) 4-axis (c) 5-axis (d) and 6-axis (e) data, whose true graphs come

from the Erdos-Renyi distribution with 2% edge weights.

in the text file on their github page for the algorithm)|

4.4.2 Experiment Justification

We chose this dataset as it had been considered by multi-axis methods before (albeit in a non-quantitative way)
and had a relatively clear task associated with it (cell cycle stage clustering).

4.4.3 Results - Thresholding Methods

We experimented with various thresholding methods on this dataset. One type of thresholding is global, in which
one knocks out all edges whose magnitude is below a certain value. We found that this meant that clusters that
tended to have high edge values were preserved relative to clusters who, while distinct, had a lower average edge
value. One attempt to fix this was by thresholding per row; this has the interpretation of keeping the top n edges
per vertex. Per-row thresholding mitigated this problem for some datasets (such as the 10x Genomics one), but
not this dataset. The main problem was that some vertices tended to have higher edges than others - this meant
that low-value vertices that were connected to a high-value vertex would always keep their connections to it, even
if those connections were not very important from the perspective of the high-value vertex. To address this, we
used a strategy of normalizing each column to sum to one before thresholding per row.



(a) (b)

Figure 6: A reconstruction of the COIL-20 duck video after shuffling the rows, columns, and frames, using GmGM.
(a) without the nonparanormal skeptic. (b) with the nonparanormal skeptic.
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Figure 7: An example heartbeat offset detection, from EchoNet-Dynamic video 0XFE6E32991136338. The blue
curve represents our Gaussian-blurred diagonal mass (if x=10, it represents the blurred mass of the 10th diagonal
to the right of the main diagonal). The red lines represent the predicted peaks via a continuous wavelet transform
peak detection algorithm. These represent offsets from the first mitral valve opening. For this video, the mitral
valve opened on frame 17 and our first offset was on the 30th diagonal. Hence, we would predict the second
mitral valve opening to occur at frame 47 (which, in this case, was correct).
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Figure 8: (a) Various thresholding methods with log-transformed data. (b) Various thresholding methods with
nonparanormal-skeptic-transformed data. In both cases, we did not center the data.
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Figure 9: Assortativity of the various methods once we center the data. (a) log-transformed (b) nonparanormal

skeptic.



Self-connectedness as regularization varies Self-connectedness as regularization varies

— Gl

G2M / dHE

o
<
[}
o
~

o

o
o
o

b

w»
o
wn

I

IS
o
IS

o

w
o
w

o

N
o
N}

Percentage of connections to own group

o
B

Percentage of connections to own group

o
o

o
=}
o
=}

10~ 10~ 10-2 10~ 10~ 10-2
Rhos Rhos
(a) (b)

Figure 10: The percentage of within-group connections, varied as the regularization parameter increases. (a) with
a log transform (b) with the nonparanormal skeptic. Vertical lines represent the best values for each class; the
blue vertical line represents the best value overall.

From Figure 8] we can see that, with uncentered data, the third thresholding method is clearly better. In fact,
without the nonparanormal skeptic, the other methods are practically worthless. However, if we centered the data
as described in Section all methods perform similarly; the third is still best. This makes sense, as the model
assumes zero-mean data. Performance doesn’t change under the nonparanormal transformation if we center the
data, as centering is a monotonic transformation. Notably, this means that the nonparanormal skeptic does not
always yield the best performance. We can see this in Figure @

4.4.4 Results - Regularization
We wanted to check whether our restricted L1 regularizer would improve performance. To choose the best
regularization parameter, we devised the following test:

1. Run GmGM with regularization parameter p.

2. Threshold according to the third method (normalize the columns, then pick the top n cells from each row).
We let n = 1 as we wanted to optimize the parameter for the very sparse case.

3. Repeat for a range of values of p.

4. Measure the percentage of within-group connections. Le, if 30% of the connections from cells in S stage were
to other cells in S stage, we would report 30% for this metric.

5. Pick the p that optimizes the average percentage of within-group connections over all groups. Run GmGM
with that p.

6. Calculate the assortativities over all thresholding methods.

We chose this setup as it is a distinct but related task to assortativity. Its results can be seen in Figure The
best parameters were around 0.0038 for the log-transformed data, and 0.0048 when using the nonparanormal
skeptic. Figuredemonstrates the advantage of regularization.

4.4.5 Results - Comparison with EiGLasso

We compare the assortativities of the best GmGM L1 parameters we discovered in the last section with the
assortativities of EiGLasso as we varied its regularization parameter. We found a surprisingly clear advantage
when using our method. This was unexpected, as our method and EiGLasso are quite similar, differing only in
how we enforce sparsity. Judging by the ‘chink’ in EiGLasso’s curve (Figure it could be that EiGLasso simply
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Figure 11: Assortativity for GmGM L1, (a) with a log transform and (b) with the nonparanormal skeptic. Note
that the scales between the two plots are different.
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Figure 12: A comparison of GmGM with and without the nonparanormal skeptic, and EiGLasso. As EiGLasso
was much slower than GmGM, we did not rerun the calculation for it with the nonparanormal skeptic.



Algorithm ‘ Preprocessing ‘ Runtime
GmGM | Log Transform, Centered | 0.0079 seconds
GmGM Nonparanormal Skeptic 0.043 seconds

EiGLasso | Log Transform, Centered 30 seconds

EiGLasso | Nonparanormal Skeptic 108 seconds

Table 6: Runtimes of our algorithm and EiGLasso, with various preprocessing techniques, on the E-MTAB-2805
dataset. Runtimes given are an average over 10 runs.

needed more time to converge to a good result. However, generating this curve for EiGLasso already took a
long time, so we did not investigate further. To compare runtimes, see Table@ We did not perform a UMAP
consistency plot, as cells in UMAP-space formed a homogenous blob.

4.5 LifeLines-DEEP metagenomics + metabolomics
4.5.1 The Dataset

We used the LifeLines-DEEP metagenomics and metabolomics datasets (Tigchelaar et al.,|2015). We did not
do any pre-processing to the metabolomics, and we used the already pre-processed version of the metagenomics
data from Prost et al. (2021). This dataset is available on the European Genome-Phenome Archive (EGA) under
Study ID EGAS00001001704; to access it, one has to agree to an LL-DEEP-specific data access agreement.

4.5.2 Experiment Justification

We chose this dataset as it had been considered by prior single-axis work (ZiLN; Prost et al. (2021)), as well as
being multi-omic. It had a more complicated class structure (taxonomy) than the E-MTAB-2805 dataset, so it
was a natural next step in our investigations of the performance of this algorithm.

4.5.3 Results

We kept only patients that appeared in both datasets. We compared our model’s results to the model given by
Prost et al. (2021) in the main paper. We report runtimes in Table and give a UMAP consistency plot as
in Figure We can see that our algorithm is the fastest on the metagenomics dataset, even outperforming a
single-axis method. Furthermore, our results seem quite sensible in UMAP-space.

Finally, we compared our assortativity to that of the Zero-Inflated Log Normal model by Prost et al. (2021). We
found that our method performed similarly to theirs; see Figure

Finally, we experimented with incorporating priors in our model. It is not unreasonable to find oneself in a
situation in which one knows the highest-level taxonomic categorization of an organism (its phylum), but not know
its lower-level categorizations. Thus, we chose a Wishart prior whose covariance matrix encoded the adjacency
matrix of the following graph:

1. If two species are in the same phylum, they are connected

2. If two species are in a different phylum, they are not connected.

This vastly improves performance (Figure|[15a). One might worry that the algorithm is just ‘memorizing’ the
prior, and that the lower taxonomic ranks are improving because no genuses are cross-phylum, for example. To

Algorithm ‘ Axes Speed  Per-Axis Speed
ZiLN Species 3.2 3.2
GmGM Species, People 2.59 1.30
GmGM Species, People, Metabolites ~ 22.18 7.39
TeraLasso Species, People 1299.33 649.67

Table 7: Runtimes of various algorithms on the LifeLines-DEEP dataset. Speed is measured in seconds
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Figure 13: UMAP consistency plot for our algorithm applied to the LifeLines-DEEP dataset. The UMAP was
constructed from log-transformed metagenomics data; the coloring represents a Louvain clustering of the output
of GmGM performed on the centered log-transformed metagenomics+metabolomics data, thresholded by keeping
the top 7% of edges overall.

show that this is not the case, we conduct a quick experiment with synthetic data, in which we feed the true
graph in as the prior. If our algorithm were memorizing priors, then we would expect performance with the prior
to be perfect. However, what we instead see is a huge but imperfect gain in performance (Figure[15b).

4.6 10x Genomics flash frozen lymph nodes
4.6.1 The Dataset

For this experiment, we looked at a single-cell RNA-sequencing+ATAC-sequencing dataset from 10x Genomics
(10x Genomics,|2021). It is available here. The dataset is publicly available, but one does need to fill in a brief
form for data collection purposes. They do not specify a license.

4.6.2 Experiment Justification

It is a realistically-sized multi-omics dataset, and by far the largest considered in this paper. It is so large that the
use of prior work becomes infeasible, so demonstrating that our algorithm works on it would represent a significant
leap forward. The dataset is unlabeled, so we evaluated our algorithm by means of a UMAP consistency plot.

4.6.3 Results

Before performing the experiment, we removed cells whose library size was three median absolute deviations from
the median, and similarly removed genes and peaks if the the total amount of times they were expressed was
three median absolute deviations from the median. In our output graphs, we kept the top 5 edges per vertex. We
can see the UMAP consistency plot in Figureand the runtimes in Table

In Figure we can see that clusters 0, 1, 3, and 4 all inhabit the large contiguous region in the lower left.
Clusters 2 and 7 inhabit the contiguous region in the lower right. In the top right, there are three regions; 5, 6,
and 8 (in order of left to right). Figureimplies that clusters 5 and 6 have some similarities, whereas cluster
8 is largely different from all the other clusters. A GO term analysis shows cluster 8 is associated with blood
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Figure 14: Comparison of our method (solid lines) to that of Prost et al. (2021)) (dashed lines). (a) Just
metagenomics, log-transformed. (b) Metagenomics using the nonparanormal skeptic. (¢) The full multi-omic
dataset, log-transformed. (d) The full multi-omic dataset using the nonparanormal skeptic.

coagulation and the integrin signalling pathway, whereas none of the other clusters have such an association. All
other clusters, except 2 and 7, are highly associated with B cell activation-related genes. Cluster 2 is distinct in
that it is related to the CCKR signalling map and the apoptosis signalling pathways. Cluster 7 was too small to
perform the analysis. Full details of the significant go terms are available on the github repository.

5 REGULARIZATION

As remarked in the main paper, our algorithm by default includes no regularization. This is because our algorithm
leverages the fact that we have a closed-form expression for the eigenvectors of the maximum likelihood estimate
to avoid costly eigendecompositions every iteration. We do not have a closed-form expression for the eigenvectors
in the regularized case.

Nevertheless, we can add regularization to the eigenvalue estimation by performing an eigenrecomposition and
regularizing that. Eigenrecomposition requires a matrix multiplication, which is quite costly compared to the
cost of an unregularized iteration - both in practice, and asymptotically in the matrix-variate case (matrix
multiplication is O(>", d}) whereas an unregularized iteration is O(],d,)). Thus, to regularize we first let our
algorithm converge to the MLE before considering the penalty term. This allows us to avoid a major increase in
runtime; our regularized algorithm runs in roughly the same time as the unregularized one (Figure .
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Figure 15: (a) The assortativity when incorporating prior knowledge. (b) A test on 50x50 1-sample synthetic
data with 2% edges connected, with the true graphs fed in as the parameter to a Wishart prior to our algorithm.

Algorithm ‘ Preprocessing ‘ Runtime
GmGM Log transform, just RNA 52 seconds
GmGM Log transform, just ATAC 607 seconds
GmGM Log transform, both modalities 590 seconds

EiGLasso Log transform, just RNA >60,000 seconds

Table 8: Runtimes of our algorithm and EiGLasso, with various preprocessing techniques, on the 10x Genomics
data.

It is important to note that this estimator is slightly different than the standard Lasso estimator, as the standard
estimator would minimize |[®||; and our estimator minimizes |[V,A;VT||; (where only the eigenvalues A, are
free to vary). This restriction prevents it from being able to drive elements exactly to zero, so thresholding is still
needed afterwards. It can be derived as follows:

0 0
TMHVAVTIh = aTZ_HZj: AjUjavs;ll1 (55)
0
= 87& Z/\jvja’l)bj (56)
L / ab
a .
= a—)\i&gn Z)\jvjavbj ViaUbi (57)
L / ab
— |sign {VAVT} vmvbi] (58)
L ab ab
= vl sign {VAVT} v; (59)

Despite this difference, it performs comparably to prior work. We show in Figure the precision-recall curves
for the 3-axis case, and observe that it performs almost perfectly. This is notable as it was the case that the
unregularized algorithm performed worse than prior work.

To test whether regularization improved the algorithm in the real world, we performed another test on the
E-MTAB-2805 dataset. We first looked at the metric of ‘percentage of connections to own group’. We varied the
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Figure 16: UMAP and tSNE consistency plots with Louvain, Leiden, and ECG clustering algorithms on the

Lifelines-Deep data.
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10x Genomics UMAP Consistency Plot
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Figure 17: A UMAP consistency plot for the 10x Genomics dataset. Both UMAP and GmGM were used on the
full multi-omic log-transformed dataset. The coloring represents a Louvain clustering on the output graph of
GmGM, with the top 5 edges per vertex being kept after column normalization (the third thresholding method

from Section .
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Figure 18: UMAP consistency plots with Louvain, Leiden, and ECG clustering algorithms on the 10x Genomics
data.
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Figure 19: tSNE consistency plots with Louvain, Leiden, and ECG clustering algorithms on the 10x Genomics
data.
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Figure 20: Expression of top differentially-expressed genes by cluster.
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Figure 21: (a) Runtimes of our algorithm and prior work on matrix-variate data. Our regularized algorithm is
denoted “GmGM L1”, and takes about the same time as the unregularized “GmGM?”. (b) Precision-recall curves
for tensor-variate data. TeraLasso and our regularized “GmGM L1” perform almost perfectly.

regularization parameter, and for each estimated graph we thresholded the graph to keep only the largest edge
per cell. We plotted the results in Figure

The optimal parameter arises right near the end of the range of considered regularization parameters; when we
considered larger parameters, we entered a region of instability in which convergence took far longer and results
became sporadic (Figure. We are not sure what causes this, but hypothesize that our restricted regularizer
no longer has the degrees of freedom to give useful information to the problem, rather making it harder to find a
good solution. The fact that the optimal parameters occur specifically at the end of the stable region implies that
the algorithm would likely have benefited from a non-restricted regularizer - although our restricted regularizer is
also definitively better than no regularizer at all.

Our second test, shown in Figure was to take the optimal regularing parameter found in the first test, and
perform the same assortativity test as was performed in Section We can see that the regularized methods
tend to outperform the unregularized methods.

6 ASYMPTOTIC COMPLEXITY

Our space complexity is the optimal O(}, d?), as was all prior work except the original BiGLasso. For
computational complexity, refer to Table@ In the reported values, we treat matrix multiplication as having cubic
complexity. Note that Gram matrix computation is an O(Kd¥*!) operation, and that our algorithm has the
asymptotically fastest iterations in the matrix-variate case (O(d?)). If we ignore the per-axis sizes d and instead
consider the size of the whole dataset dy = d, we can note that the runtime of the tensor-variate algorithms is
almost linear in the size of the dataset.

7 CENTERING THE DATA

Multi-axis models such as ours typically assume a mean of 0 for the data. When one has multiple samples, this
is not a problem - one can just center the data. However, with multi-axis methods we typically only have one
sample. Because the nonparanormal skeptic is invariant to monotone transformations, this is a viable method to
circumvent this problem. When not using that, we would take the average value of the tensor (averaged across all
elements in the tensor) and subtract this value from ever element in the tensor.
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Figure 22: (a) Self-connectedness of each of the three cell cycle stages as regularization parameter varies. Vertical
bars represent the optimal parameters; one for each of the parameters (there is overlap). (b) The same plot as on
the left, with the range extended to show the region of instability.
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Figure 23: Assortativity as the number of kept edges per cell varies.
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Algorithm | Range of K Overall Complexity Per-Iteration Complexity

BiGLasso K=2 O(Kd*) O(Kd*)

EiGLasso K=2 O(Kd?) O(Kd?)

TeraLasso Any O(KdE+1) O(Kd3 + d¥)
GmGM Any O(KdE+1) O(d¥)

GmGM L1 Any O(KdE+1) O(Kd® + d¥)

Table 9: Computational complexities of selected algorithms. ‘GmGM L1’ refers to GmGM equipped with our
restricted L1 penalty; note that GmGM L1 first converges to the unregularized solution (using the cheap iterations
of GmGM) before it adds in the regularizer. For simplicity, all dimensions d; are considered to be the same size d.
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