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Abstract

Motivated by the emergence of decentralized
machine learning (ML) ecosystems, we study
the delegation of data collection. Taking the
field of contract theory as our starting point,
we design optimal and near-optimal contracts
that deal with two fundamental information
asymmetries that arise in decentralized ML:
uncertainty in the assessment of model qual-
ity and uncertainty regarding the optimal
performance of any model. We show that a
principal can cope with such asymmetry via
simple linear contracts that achieve 1 − 1/e
fraction of the optimal utility. To address the
lack of a priori knowledge regarding the opti-
mal performance, we give a convex program
that can adaptively and efficiently compute
the optimal contract. We also analyze the op-
timal utility and linear contracts for the more
complex setting of multiple interactions.

1 INTRODUCTION

We are seeing a flourishing new industry at the inter-
section of ML and operations which makes use of spe-
cialization and decentralization to achieve high perfor-
mance and operational efficiency. Such an ML ecosys-
tem creates a need for new tools for standard design
choices such as how much and what kind of data to use
for training, how much test data to use for verification,
and how to tune hyper-parameters.

The consideration for these design choices is not how
the designer should perform a task in this pipeline, but
rather how she should delegate it to agents who are
willing and capable of performing the task on her be-
half. How should the designer interact with this ecosys-
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tem? How should she evaluate and compensate other
agents for their work? How does the outcome of the
delegated pipeline compare with the outcome if the de-
signer were to perform the task by herself? In this
work, we focus on the data collection aspect of the
pipeline, initiate the study of its delegation through
the lens of contract theory, and take a step towards
answering these questions.

Contract theory provides a principal-agent perspec-
tive, where the principal—who is the designer inter-
ested in the outcome of the learning pipeline—can cre-
ate a contractual arrangement—a menu of services and
compensations—with an agent. At the heart of the is-
sue is creating contracts that incentivize the agents,
who may be more knowledgeable and skilled than the
principal, to take the appropriate actions.

Consider a scenario where a firm delegates a predictive
task to an ML service provider. In this context, the
service provider may offer the firm either a dataset for
learning or a pre-trained predictive model based on
that dataset. To ensure aligned incentives, the firm
needs to assess the dataset or predictive model and
design the payment structure for the service provider
accordingly. Since the accuracy of the model is crucial
to the firm as it directly influences revenue, a nat-
ural evaluation approach involves directly measuring
the accuracy of the model that the service provider
produces for the firm. Several challenges arise during
this evaluation process. Firstly, the firm generally only
has limited data in the form of historical data or data
acquired shortly after deploying the model for eval-
uation. So there is inherent noise in the evaluation.
Secondly, the firm lacks knowledge about the baseline
accuracy that is realistically achievable. This makes it
harder for the firm to reward the service provider in a
way that yields accuracy close to the optimal accuracy.
These challenges are due to two sources of uncertainty
and asymmetry that we study in this work:

• Hidden actions (aka Moral Hazard): Contracts must
compensate the agent for his effort but this effort is
not observable. But a proxy correlated with but not
exactly determined by it is available to the principal.
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The principal thus is uncertain about the agent’s
effort while the agent knows it exactly resulting in
a form of asymmetry we call hidden actions.

• Hidden state (aka Adverse Selection): There are pa-
rameters about the delegation problem instance the
agent may know more about such as the cost to
achieve an outcome. This could be because the cost
depends on private information the agent possesses
or because the agent deduces this through his com-
putations.

As in many other delegation settings, the principal
faces the hidden state and hidden action challenges
when delegating learning. While the principal desires
to construct a contract based on the true accuracy of
the learned model, they can only obtain a noisy es-
timate of this value using test data. Our focus is on
scenarios where the size of the test dataset is not exces-
sively large. If the test dataset is too large, it becomes
more beneficial for the principal to learn a model us-
ing their own test data rather than delegating the data
collection process.

Even when the estimate of the learned model’s ac-
curacy has negligible noise, the principal still faces
the hidden state challenge, i.e., the principal does not
know how to value the accuracy since she does not
know the optimal error achievable. Assigning a low
payment for the model’s accuracy when the optimal
error is high would result in negative agent utility, dis-
couraging agent participation. Conversely, assigning
a high payment when the optimal error is low might
incentivize the agent to collect a smaller dataset than
is optimal for the principal.

1.1 Our Results

We consider performance-based contracts where the
agent is compensated as a function of the estimated
accuracy of the learned model. The principal’s util-
ity is the true accuracy of the learned classifier minus
the monetary transfer she makes to the agent. We
model the agent in two delegation settings. In each
we contrast the principal’s utility through contracting
with and without information asymmetry. Borrowing
terminology from the contract theory literature, we
refer to the hypothetical scenario without information
asymmetry the first-best scenario and the resulting op-
timal utility the first-best utility, which we use as a
benchmark.

Single-round of interaction. We address both
types of information asymmetry: hidden state and hid-
den action, creating contracts specific to each while
also evaluating their efficacy when both asymmetries
coexist. For hidden actions, our linear contract based

on a single test point (Proposition 2) ensures at least
1 − 1/e fraction of the first-best utility. This guaran-
tee continues to hold even with hidden state if agent’s
sampling cost is low (Theorem 1).

For the hidden state challenge with n possible states,
we derive an optimal contract by solving a convex op-
timization (refer to Opt) with O(n2) constraints. Sec-
tion B.3 describes how this contract’s optimality im-
proves as the principal’s test set size increases.

Multiple rounds of interaction. In Section 4, we
analyze a multi-round delegation setting where the
agent is uncertain about the delegated task and uses
feedback over rounds to learn the principal’s require-
ments and collect relevant samples. For a notion
of principal’s regret, we provide a tight Θ(T 3/4) re-
gret bound through repeated linear contracts over T
rounds. This shows that linear contracts are also pow-
erful approximations of optimal utility in multi-round
settings. In comparison, we obtain a strictly better
regret of O(T 2/3) for multi-round first best contracts.

1.2 Related Work

There is a rich literature on contract theory in eco-
nomics (see, e.g., Laffont and Martimort, 2009; Bolton
and Dewatripont, 2004). More recently, there has been
work on algorithmic and statistical aspects of contract
theory (Carroll, 2015; Dütting et al., 2019; Dütting
et al., 2020; Bates et al., 2022; Alon et al., 2022) which
include results on approximation by simple contracts.
These results hold for either finite actions or outcomes,
and thus are not directly applicable to our setting,
which involves infinite actions and a continuous space
of outcomes. Working in such spaces requires utilizing
the structure of our problem, and specifically exploit-
ing fundamental results on statistical minimax rates.

The pricing of data has been considered for various
purposes and considerations (Bergemann and Bonatti,
2019; Acemoglu et al., 2022; Cai et al., 2015; Ho et al.,
2016) including in learning problems (Agarwal et al.,
2019; Chen et al., 2022). The latter study the pricing
of previously collected data to incentivize the seller
and buyer to be forthright about the valuation and
quality of their data, respectively. We are interested
instead in pricing for the purpose of incentivizing the
data collecting agent to exert effort to collect data.
Some of these papers also consider incentivizing high-
quality data labelling by relying on multiple labellers
who can be compared. We study delegation of learning
in the setting of a single agent.

An adversarial perspective on the delegation prob-
lem (Chiesa and Gur, 2018; Goldwasser et al., 2021)
has been considered for machine learning from the lens
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of interactive proofs. In this line of work, the princi-
pal wants to fully verify the effort of an agent who may
be an adversary that is interested in getting his effort
verified. While they deal with similar challenges, such
as not knowing the optimal achievable error, they do
not consider incentivizing the agent (via contracts and
compensations) to improve the outcome.

Concurrent work by Saig et al. (2023) studies a simi-
lar setting of incentivizing data collection for classifi-
cation. They characterize the optimal contract for a
given test set size, under the hidden action challenge,
as a threshold contract when the agent has two choices
for actions. We propose a simple contract and show
its near-optimality for an arbitrary number of actions.
We also show that this simple contract is robust to the
hidden state challenge to an extent.

2 MODEL

We have a task distribution D representing the joint
distribution over the domain and label set. The prin-
cipal aims to learn a classifier h that achieves high
accuracy on D, denoted by 1 − LD(h). To accom-
plish this, the principal delegates the task to an agent
who selects the number of samples to collect and trains
a classifier. We prioritize the collection of samples as
the primary effort, considering it more significant than
classifier training. The principal’s primary objective is
to incentivize high-quality data collection, leading to
the development of an accurate classifier. To evaluate
the performance of the model obtained through dele-
gation, the principal possesses an independent test set
consisting of independently and identically distributed
(i.i.d.) samples from D. The principal utilizes this test
set to evaluate the learned classifier’s accuracy.

The delegation process begins with the principal pub-
lishing a contract which is a mapping from test accu-
racy to payment for the agent. Seeing the contract,
the agent collects data and provides a classifier to the
principal. The principal then executes the contract
by evaluating the classifier on her own test set. The
principal pays the agent the amount specified by the
contract for the measured test accuracy. We assume
that the principal can commit to a test set in advance
and that this test set is not accessible to the agent
until the contract is executed after the agent’s data
collection.

Principal and Agent Utilities. Upon receiving a
classifier with true accuracy a on the task distribution
D and paying the agent t, the principal gets utility
a−βt for some accuracy-payment scaling constant β >
0.1 The agent exerts effort α per sample it collects.

1We note that 1/β can be thought of as the benefit the

So the utility for the agent receiving payment t by
collecting n samples is t− αn.

First-best Contracts. To study the effects of in-
formation asymmetry, we create a benchmark without
any information asymmetry between the principal and
the agent i.e., no hidden state or hidden action. We
call this idealized scenario, the first-best scenario. We
call the utility of the optimal contract in this scenario,
the first-best utility. We will say the effects of infor-
mation asymmetry are limited if the utility achievable
through incentive-compatible and individually rational
contracts are close to the first-best utility.

2.1 Single Round of Delegation

Most of our analysis focuses on a single round of del-
egation. The agent collects a batch of data once and
one model is learned. The payment is provided com-
mensurate to the test accuracy of this single model.
We consider (risk neutral) utility-maximizing agents,
who collect a number of samples that maximizes their
expected utility. We further make assumptions on how
the agent’s effort translates to the observed outcome
as described below.

Assumption 1 (Outcome as a function of the agent’s
action.). We assume that when the agent collects n
samples,2 the classifier’s observed accuracy on the
principal’s test set drawn from D is drawn from a dis-
tribution with mean 1 − θ − d

np , where θ denotes the
optimal error achievable on the task distribution D.

The constant d depends on the complexity of the train-
ing algorithm and the constant p describes the rate of
decay of the excess error. These rates are motivated
in part by minimax statistical rates and scaling laws
of classification and regression tasks.

Remark 1 (VC dimension bound). An algorithm that
PAC-learns a function class H with VC dimension d
using n i.i.d. samples drawn from D and returns a
classifier h satisfying LD(h) ≤ θ(D,H) + C

√
d/n,

where θ(D,H) = minh∈H LD(h). This is minimax-
optimal as there is a distribution D such that LD(h) ≥
θ(D,H) + C

√
d/n.

Remark 2 (Linear regression model). In a d-
dimensional linear model with covariates xi ∼ N (0,Σ)
and outcomes yi = βtxi + ϵi, where ϵi ∼ N (0, σ2) for

i ∈ [n], the Ordinary Least Squares (OLS) estimator β̂

satisfies the property E[(xtβ̂−yi)
2] = σ2 (1 +O(d/n)).

Even though minimax rates are typically upper
bounds, we treat them as exact rates in the main body

principal gained per unit of accuracy.
2We will consider agent’s action as continuous and the

true sample size is a rounding of the action.
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and defer the discussion on the implications of treating
them as upper bounds to Appendix B.4.

Using this assumption on outcome as a function of the
agent’s action, we can compute the first-best contract
as below.

Proposition 1 (First-best contract). For any set
of problem parameters with optimal error θ ∈ [0, 1),
learning parameters d and p, agent’s cost-per-sample
α > 0, and principal’s accuracy-payment scaling pa-
rameter β > 0, the first-best contract offers payment
αn∗ when the test accuracy is at least 1 − θ − d/n∗p,
where n∗ = (pd/αβ)1/(p+1).

One way to interpret the first-best contract is that it
asks the agent to collect n∗ samples and compensates
the agent exactly for n∗ samples. Without hidden
state or hidden action, the first-best contract yields
zero utility to the agent and the first-best utility to
the principal.

While first-best utility is used as a benchmark, the
first-best contract itself may not be optimal due to
existing randomness in test accuracy (hidden action).
Additionally, each optimal error value θ leads to a dif-
ferent first-best contract, which is not implementable
when the principal doesn’t know the θ parameter ex-
actly (hidden state).

Linear Contracts. As opposed to first-best contracts
that can be quite complex, linear contracts are simple
contracts that compensate an agent by a linear func-
tion of the test accuracy. That is, a c-linear contract
for parameter c ∈ R+ assigns payment Tc(atest) = c×a
when the test accuracy is a. Linear contracts must
have non-negative parameter c, since the principal can-
not make negative payments to the agent.

3 OPTIMALITY OF LINEAR
CONTRACTS

In this section, we aim to find near-optimal contracts
in the realistic scenario with hidden state and hidden
actions, recognizing that the first-best contract may
not be optimal. Our first result is that a linear con-
tract compensating the agent based on the test (and
not true) accuracy is approximately optimal across all
possible contracts for the principal. Moreover, the
slope of the linear contract has an explicit value that
is the same across a wide range of θ making it possi-
ble to deal with both hidden state and hidden action
challenges. Our results in fact show a stronger com-
parison, that linear contracts approximate not just the
optimal utility but also the first-best utility. This is
quite a strong guarantee as there is often no contract
that can achieve the first-best utility in presence of the
hidden action challenge.

A crucial advantage of our linear contract is that it
works with any unbiased estimator of the accuracy of
the learned model. Therefore, even a test set of size
one suffices to enact this contract. We state our main
results in this section and defer their formal proofs to
Appendix A.

Before we state this result in its full generality, we
start with the following proposition which deals only
with the hidden action challenge while assuming that
optimal error θ is known to the principal (as well as
the learning parameters p and d).

Our main theorem in this section, stated in Theorem 1,
then follows from this proposition and shows that the
linear contract in this proposition not only handles the
hidden action challenge but also can be implemented
without knowing θ, for a large range of parameters.

Proposition 2 (Linear contracts are approximately
optimal when optimal error is known). For any set of
problem parameters θ ∈ [0, 1), d, p, α, β > 0, a princi-
pal who knows these parameters can construct a lin-
ear contract whose expected principal utility is at least
1 − 1/e fraction of the first-best utility. Furthermore
this contract only requires a single test sample.

In more detail, the c∗-linear contract that achieves this
claim uses

c∗ = max

(
1

β(p+ 1)
p+1
p

,
αd

1
p

p
·
(
p+ 1

1− θ

) p+1
p

)

and approximates the first-best utility to a factor of

1− 1

(p+ 1)
p+1
p

≥ 1− 1

e
.

Linear contracts are known to approximate optimal
contracts in very limited settings that do not apply
to our problem setting. For example, Alon et al.
(2022); Dütting et al. (2019) gave constant approxima-
tion guarantees for linear contracts when the agent’s
action set is finite or the ratio of the maximum and
minimum reward for the principal is bounded by H.
In the former case, an approximation ratio of 1/2 is ob-
tained and in the latter the ratio is 1/2 log(H). Neither
of these conditions hold in our setting, as the number
of agent’s action corresponds to the number of sam-
ples collected and is unbounded and the reward can
take any value in (0, 1). Instead, we use the structure
of first-best contract (Proposition 1), the linearity of
contracts, and the structure of the utility functions to
obtain this 1− 1/e approximation guarantees.

Proof sketch of Proposition 2. The full details are de-
ferred to the appendices; here we provide some intu-
ition and a proof sketch. Underlying the proof is the
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linearity of expectation and the fact that the agent
is expectation-maximizing. Under a linear contract c,
the expectation-maximizing agent aims to maximize
E[c · a(n) − αn] = c · E[a(n)] − αn, where a(n) is
the test-set accuracy of a model trained on n sam-
ples drawn from an unknown distribution with mean
1−θ−d/np. The only distribution-dependent quantity
in this maximizing objective is the expected accuracy
E[a(n)] = 1−θ−d/np. So the agent’s action and hence
the principal’s contract design only depends on the ex-
pectation of the test accuracy and not on the exact dis-
tribution of the test accuracy. Next we sketch a proof
for the approximation result and use the structured
way the expected accuracy depends on the number of
samples drawn.

Note that c∗ is the maximum of two terms. Let us de-
note these terms by c1, c2. Given a c-linear contract,
the agent’s best response is to choose n so as to maxi-
mize u(n; c) = c (1− θ − d/np)−αn. The maximizing

value is n(c) = (cdp/α)
1

p+1 . By setting c large enough,
we have u(n(c), c) ≥ 0 where c2 is the threshold above
which this holds. So the value of c2 is set to ensure
the agent gets non-negative utility from participating.

When c1 ≥ c2, c1 satisfies the participation constraint.
By computing the principal’s utility from the c1-linear
contract using the expression for the agent’s best re-
sponse, we see that it is 1−βc1 times the first-best util-

ity. Moreover, we have 1− βc1 = 1− 1/(p+ 1)
p+1
p . It

turns out the same upper bound holds for the approx-
imation ratio of the c2-linear contract to the first-best
utility when c2 ≥ c1. This upper bound is decreasing
in p and the limit as p → 0 is 1− 1/e.

Importantly, by inspecting the contract in Proposi-
tion 2, we see that in many cases it does not depend
on problem-specific parameters like the optimum er-
ror. This makes c∗ deployable in practice.

The optimal-error-parameter-agnostic linear contract
is appropriate when the cost per sample collection
is small enough and when the optimal error is low
enough. As a result, when α is small, we can relax
the assumption that the principal knows the exact op-
timum error θ to that the principal knows that θ lies in
a certain range. Moreover, even under this relaxation,
linear contracts are still approximately optimal. This
is stated as the following theorem.

Theorem 1. For any d, p, β > 0, consider the c̄-linear
contract for c̄ = 1

β(p+1)
p+1
p

. Let θ ∈ [0, 1) be any pa-

rameter for which 0 < α ≤ p
βd1/p

(
1−θ

(p+1)2

) p+1
p

. Then,

c̄-linear contract obtains a principal utility that is at
least (1 − 1/e) times the first-best utility, for any un-
known optimal error parameter θ ∈ [0, θ̄).

Note that c̄ is constructed based on p (error decay
rate) and β (how the principal values accuracy relative
to payment). The principal knows these quantities.
In contrast, the optimal contract requires additional
knowledge, such as θ (optimum error) and α (agent’s
cost per sample). The theorem demonstrates a sim-
ple contract that requires less knowledge but remains
approximately optimal in utility.

4 MULTI-ROUND DELEGATION

So far, we analyzed delegated learning that occurs
through a single round of interaction between the prin-
cipal and the agent. However, delegation often occurs
over multiple rounds to allow the agent to learn more
about the principal’s requirements. Here we model
such a scenario and analyze what happens when the
principal uses a linear contract c in each round. We
introduce a notion of regret and show that repeated
linear contracting over T rounds results in Θ(T 3/4) re-
gret for the principal which is worse than the O(T 2/3)
regret achievable without information asymmetry i.e.,
the first best regret. We provide proof sketches of our
results in the main body and provide the full proofs in
the appendices.

The Model. To model uncertainty about the prin-
cipal’s requirements, we assume that the target distri-
bution D∗ belongs to a class D = {D1, . . . , Dk}. The
agent knows the class D but does not know D∗ apri-
ori. The principal deploys classifiers for T rounds and
contracts learning for N ≤ T of these T rounds.

Contracting Protocol. The principal decides on
N ≤ T rounds to contract. For each round i =
1, . . . , N :

1. The principal announces payment ρi which is a ran-
domized mapping from a classifier to a positive,
real-valued payment to the agent.

2. The agent chooses number of i.i.d samples to col-
lect from each distribution. Denote this by ni =
(n1

i , . . . , n
k
i ) where n

j
i is the number of i.i.d samples

the agent draws from distribution Dj in round i.
This is not observed by the principal

3. The agent provides classifier hi to the principal.

4. The principal pays ρi(hi) according to the an-
nounced payment rule ρi to the agent.

Utilities. Over these N rounds, the agent’s utility is∑N
i=1

(
ρi(hi)− α

∑k
j=1 n

k
i

)
and the principal’s utility

is
∑N

i=1 (1− LD∗(hi)− βρi(hi)).

Test-Accuracy Based Payments. Our results deal
with contracts based on test accuracy. In round i ∈
[N ] where the agent provides classifier hi, the payment
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is a function of the test accuracy 1−LD∗(hi)+ηi, where
ηi is a mean-zero, random variable resulting in the
principal’s randomness of testing. The c-linear con-
tract offers payment c times this test accuracy in each
round.

Non-Contracting Rounds. In the remaining, non-
contracting rounds (j = N + 1, . . . , T ), the principal
chooses a classifier hj , possibly based on (hi)

N
i=1 to

deploy. The agent gets zero utility in these rounds.
The principal gets utility 1− LD∗(hj).

In these repeated interactions, the payments serve as
feedback to the agent to learn the principal’s require-
ments. The principal hopes to get an increasing qual-
ity of classifiers to deploy

Definition 1 (H-regret). Let H be any class of classi-
fiers. Let ((nt, ht, ρt(ht))

T
t=1 be the sequence of actions

by the principal and agent. The principal’s H-regret
(RP

T (H)) is the difference in the utility of the sequence
and the utility of deploying the most accurate classifier
in H without payments. RP

T (H) =

T max
h∈H

(1− LD∗(h))−
T∑

t=1

(1− LD∗(ht)− E [ρt(ht)])

The agent’s H-regret (RA
T (H)) is the difference in the

utility of the sequence and the utility of deploying the
highest expected payment yielding classifier in H and
collecting no samples.

RA
T (H) =

T∑
t=1

max
h∈H

E [ρt(h)]−
T∑

t=1

ρt(ht)− α

k∑
j=1

nj
t

 .

We start by establishing the benchmark of what can
be achieved without the information asymmetry be-
tween the principal and the agent. This is the first-
best benchmark.

First-best. As in the previous setting, the princi-
pal’s lack of information is two-fold. The first is that
the principal cannot observe the size and quality of the
dataset and the principal potentially knows less about
D∗ than the agent. The first-best scenario we set here
will be one where the principal knows exactly how the
agent draws samples. That is, the principal knows the
number of i.i.d samples the agent collects from each
distribution in D. But we do not assume the princi-
pal knows more about D∗ than its membership in D.
Note that this is a weaker benchmark and so showing
that we cannot compete with this benchmark through
linear contracts is therefore a stronger result.

In the first-best scenario, the principal observes the
agent’s actions which is the set of samples Si the agent

collects at each round i, ni which is the number of
samples drawn from each distribution to construct Si,
and hi. Thus the principal can dictate the agent’s ac-
tions (ni, hi) by assigning non-zero payment only if the
agent executes (ni, hi) in each round. This is true even
if hi is a function of samples that the agent has col-
lected so far (S1, . . . , Si−1). The following proposition
shows an upper bound on the regret the principal can
achieve through dictating the agent’s actions.

Proposition 3. [Multi-round first-best H-regret] Con-
sider any class D of k distributions and consider any
D∗ ∈ D as the task distribution. Let H be a function
class with VC dimension d. The the principal’s H-
regret in the first-best scenario (first-best H-regret) is

RP
T (H) ∈ O

((√
T 2/3kd

)
+ T

1
3 k log T + T 2/3

)
.

Proof sketch. The principal contracts forN ∈ O(T 2/3)
rounds. As discussed above, the first-best contract
allows the principal to dictate the agent’s actions
(ni, hi)

N
i=1. Below, we describe such an algorithm.

The principal further divides the first N rounds into p
phases. The j-th phase has Nj = 2j rounds. We will
describe the sampling strategy in this phase and the
classifier choice separately. First the sampling strategy
is to divide the rounds in the phase equally among
the k distributions. So in phase j, the principal seeks
to collect Nj/k samples from each distribution Di for
i ∈ [k]. As for the choice of classifiers, let hi

j−1 be
the ERM classifier based on data collected in phase
j − 1 from distribution Di. The principal’s classifier
selection strategy in phase j is to dictate the agent to
play a bandit algorithm with arms {h1

j−1, . . . , h
k
j−1}

and mean rewards 1−LD∗(hi
j−1). So over the p phases,

the principal ends up playing p bandit algorithms to
determine classifier selection. Say a few more words
about the proof if there is room. like where the regret
bound is coming from

The principal’s regret in theN rounds is O(N+
√
kdN)

where the first term comes from payments for N sam-
ples and the second term is due to the bandit algorithm
for classifier selection. To analyze the classifier selec-
tion algorithm, we use standard bandit regret bounds
to bound the regret of chosen actions relative to the
best arm. Then we show that the there exists an arm
has mean close to θ∗. The arm that is the ERM over
samples from D∗ satisfies this.

The principal is able to attain a classifier with
O(
√

kd/N) error more than θ∗ from the N rounds
and so in the remaining T − N rounds incurs regret
O(T

√
kd/n). Choosing N ∈ O(T 2/3), the above ap-

proach results in a total regret of order O(T
2
3 )

Now we bring back the information asymmetry where
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the principal cannot observe the number of samples the
agent collects. The principal can only assign payments
based on the classifier the agent provides. We analyze
the utility the principal can achieve with this informa-
tion asymmetry by modeling the agent as achieving
min-max optimal regret as formalized below:

Assumption 2 (H-Min-max optimal agent). Con-
sider any algorithm A that selects an action for the
agent to select at a round, possibly depending on all
previous actions and payments. Let RT , R

′
T be the

agent’s expected H-regret over T rounds of the se-
quence of agent’s actions and the sequence of actions
according to algorithm A respectively. Then the agent
is H-min-max regret optimal if limT→∞ RT /R

′
T ≤ C

for some constant C for every algorithm A.

The following theorem compares the principal’s regret
achievable when delegating with a min-max optimal
agent to the first-best regret. The theorem shows that
regret through delegation is Θ(T 3/4) in contrast to the
O(T 2/3) first-best regret.

Theorem 2. Let H be a function class. Suppose the
principal delegates with a linear contract c over multi-
ple rounds to a H-min-max optimal agent. Then there
is a problem instance for which the principal’s H-regret
over T rounds RP

T (H) ∈ Θ(T 3/4).

Proof sketch of Theorem 2. Suppose the principal
contracts for N ≤ T rounds.

The proof of first-best regret bound (Proposition 3)
provides an approach for the agent to achieve O(N2/3)
regret so a min-max agent achieves this bound.

Upper bound. The principal’s regret during the N
contracting rounds is O(N). Suppose the agent pro-
vides classifiers h1, . . . , hN in these rounds, the princi-
pal could deploy h̄ which is picked uniformly at random
from {h1, . . . , hN} in the remaining T − n rounds.

E[LD∗(h̄)] ∈ O(N2/3/N). Deploying h̄ in the T −
N rounds yields regret O(TN−1/3). Choosing N ∈
Θ(T 3/4) results in the regret O(N)+O(TN−1/2) being
O(T 3/4).

Lower bound. Clearly, a min-max optimal agent
would not collect ω(N2/3) samples.

The upper bound on the samples collected provides
a lower bound on the error of the resulting classifier.
And this lower bound will provide a lower bound on
the principal’s regret through delegation.

Usual sample complexity lower bounds provide lower
bounds on the error of learning using a number of i.i.d
samples. However, in our setting, the agent has more
than just the samples he collects to learn classifiers.
Through the linear payments he receives, he also has

access to estimates of the accuracy of classifiers he pro-
vides in each round. This is a form of (noisy) query
access to the distribution.

We provide a min-max lower bound on learning using
both i.i.d samples and queries of the form answering
the expected error on D∗ of a classifier in the follow-
ing proposition. We show that in a min-max sense,
the queries do not allow for more accurate classifiers
compared to using just the i.i.d samples.

Proposition 4 (Lower bound on error from using
samples and queries). Consider a learning algorithm
that uses m i.i.d samples and q queries of accura-
cies of classifiers. Then there exists a distribution D
for which the expected error of the learned classifier
is Ω(1/

√
m) more than the optimal error of a one-

dimensional halfspace on D.

The main intuition of this lowerbound is that without
any structure on the distribution, it is hard to know
what classifiers are useful to query.

So when the principal contracts for N rounds, the
agent collects O(N2/3) samples and due to the above
proposition, the classifiers the principal deploys have
an average excess error of Ω(1/N1/3) resulting in regret
Ω(T/N1/3). The principal also incurs a cost of order
O(cN) due to contracting for N rounds. The optimal
choice of N to balance these two terms is N ∈ Θ(T 3/4)
resulting in regret of order Ω(T 3/4) .

5 OPTIMAL CONTRACTS FOR
HIDDEN STATE

In this section, we focus on the hidden state challenge
and derive optimal contracts when there is only hidden
state but not hidden action.

Previously in Theorem 1, we showed how to deal with
hidden state to a certain extent i.e., when the opti-
mal error θ is low enough. Without hidden action,
we compute contracts dealing with hidden state with
θ outside this range. In Appendix B.3, we show how
this contract continues to be good even with hidden
action when the principal’s test set is large enough.

When we ignore the hidden action challenge, we can
assume that the observed accuracy is deterministic
in the agent’s action. That is, when the agent col-
lects n samples, the observed accuracy is a(n, θ) =
1 − θ − d/np. We assume that the principal holds a
prior belief on the optimal error that is supported on
a finite set, but does not know the exact value. The
agent knows more about the optimal error since he
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collects data that informs him more about the opti-
mal error. We start by assuming that the agent knows
the exact optimal error. Later we describe how to
design contracts in the more realistic setting of the
agent learning the optimal error instead of knowing
this value exactly. We discuss this in more detail in
Appendix B.1. There we also numerically show that
the utility guarantees by making the perfectly aware
agent assumption still hold approximately in the more
realistic case with a learning agent.

Let us analyze the optimization problem for comput-
ing the optimal contract. Let the finite support of
the prior (ν) over optimal error be {θ1, . . . , θN}. The
principal puts forth a contract of accuracy-payment
pairs {(ai, ti) : i ∈ [N ]} with the pair i intended for
when the optimal error is θi.

3 Let us denote the ex-
pected accuracy from collecting ni when optimal er-
ror is θi by ai = a(ni, θi). Here ni is the number of
samples the agent would collect to achieve accuracy
ai when optimal error is θi. The principal optimizes
over (ni, ti)i∈[N ]. The constraints of the optimization
problem for the principal’s contract design for hidden
state are one of two types. The first type of constraint
is the participation constraint, which ensures that the
agent is adequately compensated for his effort when he
chooses the contract intended for the optimal error.
For each i ∈ [N ], the participation constraint (PCi)
can be expressed as αni ≤ ti, where α represents the
compensation rate.

The second type of constraint is the incentive com-
patibility constraint to ensure that the agent chooses
the option intended in the contract for the optimal er-
ror. For any i, j ∈ [N ], the corresponding incentive
compatibility constraint is that when the optimal er-
ror is θi, the utility of choosing (aj , tj) is worse for
the agent than choosing (ai, ti). The number of sam-
ples the agent would choose to achieve aj accuracy un-
der optimal error θi is nij such that aj = a(nij , θi).

4

The constraint (ICij) is tj − αnij ≤ ti − αni. Due to
the structure of a(n, θ), the IC constraints are convex
(shown in Appendix B.2). The principal’s expected

utility which it maximizes is
∑N

i=1 ν(θi)(ai − βti). So
the contract design problem is the following optimiza-
tion problem:

3This is implied by the revelation principle that states
that, with hidden state, any delegation mechanism is
equivalent to an incentive compatible mechanism where all
agents inform their private information to a planner who
then recommends actions.

4Note that all accuracies cannot be achieved for all opti-
mal errors. If no such nij exists, an incentive compatibility
constraint is not needed.

min
(ni,ti)Ni=1

N∑
i=1

ν(θi)(ai − βti)

s.t. αni ≤ ti, i ∈ [N ]

tj − αnij ≤ ti − αni, i, j ∈ [N ]

ni, ti ≥ 0, i ∈ [N ].

(Opt)

Qualitative Insights on the Optimal Contract.
We derive the following insights when there are two
values for the optimal error, θ1 < θ2, in the Ap-
pendix B.2. These properties also hold more generally
for finitely supported beliefs and have been studied
for classical contract design for many other delegation
problems Laffont and Martimort (2009).

• Decreased utility. The principal gets lower utility
than the first-best utility and this utility decreases
as ∆θ = θ2 − θ1 increases.

• Information rent. In the first-best contract, the
agent gets no more payment than to compensate
his effort. That is, t = αn. Under hidden state, for
problems with lower optimal error, the agent gets
positive utility. This information rent is to incen-
tivize the agent to not pretend the problem is harder
and exert lower effort to achieve an accuracy that
requires more effort if the problem was harder.

• Downward distortion. The first-best contract calls
for the agent to collect a particular number of sam-
ples regardless of the optimal error. Under hidden
state, when the problem is harder, agents are asked
to collect fewer samples compared to the first-best
contract. When the problem is the easiest in the
support, the agent is asked to collect the same num-
ber of samples as in the first contract.

State-Learning Agents. In the analysis above, we
assumed perfect knowledge of the hidden state (θ) by
the agent. However, in reality, the agent does not know
the optimal error beforehand. Instead, as the agent ex-
ecutes the contract, he learns more about the optimal
error and adapts his actions accordingly.

To design a contract for such a state-learning agent,
the principal must infer the agent’s response to the
contract. However, this is challenging for arbitrary
contracts since the principal would require knowledge
of the agent’s exact learning strategy, which is often
unreasonable. Therefore, we focus simple contracts for
which we can easily derive the agent’s response.

We demonstrate numerically in Section B.1 that the
utility achieved with these simple contracts is close
to the utility we previously derived for state-aware
agents, which we refer to as “state-aware utility.”
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The simple contract we consider, which we call the
state-learning contract, is the best of two simple con-
tracts: optimal pooling and separating contracts. A
pooling contract elicits the same action for every state
and therefore is not affected by the agent’s learning of
the state. A separating contract is designed so that
through its execution, the agent accurately learns the
state. Therefore, the learning agent’s response to a
separating contract is similar to a state-aware agent’s
response, which we demonstrated how to compute in
Opt. We compute the optimal pooling and separating
contracts in Appendix B.1.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable] Section 2 describes
the general model and the single-round
model. The multi-round interaction model
is described in Section 4. The assumptions
on the agent in these models is stated as As-
sumption 1 and Assumption 2 respectively.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable] We propose an al-
gorithm in Proposition 3 and describe it’s
sample complexity. The algorithm contains
as a subroutine ERM over a function class.
The space and time complexity depend on
this subroutine.
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(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applica-
ble]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes/No/Not Appli-
cable]

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable] We provide proof
sketches in the main body and provide the
full proofs in the appendices.

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes/No/Not Applicable]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes/No/Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes/No/Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Yes/No/Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable]

(d) Information about consent from data
providers/curators. [Yes/No/Not Applica-
ble]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partic-
ipants and screenshots. [Yes/No/Not Ap-
plicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Yes/No/Not
Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/Not Applica-
ble]
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A Omitted proofs

A.1 Proof of Proposition 2

Proof. The linear contract c∗ that achieves this approximately optimal utility is the following:

c∗ = max

(
1

β(p+ 1)
p+1
p

,
αd

1
p

p
·
(
p+ 1

1− θ

) p+1
p

)

We first show that this contract satisfies the participation constraint for the agent. When the linear contract is c
times the accuracy, the agent the number of samples n to maximize the agent’s utility c

(
1− θ − d

np

)
−αn. The

number of samples the agent chooses as a function of c is
(

cdp
α

) 1
p+1

. The contract c satisfies the participation

constraint if the utility from choosing this number of samples is non-negative. This utility is:

c

(
1− θ − d

(
α

cdp

) p
p+1

)
− α

(
cdp

α

) 1
p+1

= c(1− θ)− c
1

p+1

(
αd

1
p

p

) p
p+1

− c
1

p+1

(
αd

1
p

p
p+1

)
p

1
p+1

= c(1− θ)− c
1

p+1 · p+ 1

1− θ
·

(
αd

1
p

p

) p
p+1

.
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This utility is non-negative when

c ≥ αd
1
p

p

(
p+ 1

1− θ

) p+1
p

.

By the definition of c∗, it is greater than the above quantity and so satisfies the participation constraint.

When the principal chooses a linear contract c, it achieves a utility

(1− βc)

1− θ −

(
αd

1
p

pc

) p
p+1

 .

We can provide an upper bound on the optimum utility using the optimum utility of the principal when there

is no noise in the observed accuracy. In this case, the principal gets the agent to collect
(

dp
αβ

) 1
p+1

and pays the

agent α times this amount. So the optimum utility is at most

1− θ − (p+ 1)

(
αβd

1
p

p

) p
p+1

.

To show that c∗ achieves the approximation guaranteed in the theorem, we consider two cases. The first case is
when c∗ = 1

β(p+1)
p+1
p

. In this case the utility of c∗ is

(
1− 1

(p+ 1)
p+1
p

)1− θ − (p+ 1)

(
αβd

1
p

p

) p
p+1


The other case is when c∗ = αd

1
p

p

(
p+1
1−θ

) p+1
p

. In this case,

1

β(p+ 1)
p+1
p

≤ αd
1
p

p

(
p+ 1

1− θ

) p+1
p

=⇒ 1

p+ 1
≤ p+ 1

1− θ
·

(
αβd

1
p

p

) p
p+1

.

The ratio of the utility of c∗ to the optimum utility in this case is at least(
1− αβd

1
p

p

(
p+1
1−θ

) p+1
p

)
p(1−θ)
p+1

1− θ − (p+ 1)

(
αβd

1
p

p

) p
p+1

For t = p+1
1−θ ·

(
αβd

1
p

p

) p
p+1

,

=

p
p+1

(
1− t

p+1
p

)
1− t

.

This quantity is increasing in t. From the condition on c∗, we have 1
p+1 ≤ t. So we can obtain a lower bound on

the above quantity by setting t = 1
p+1 .

≥ 1− 1

(p+ 1)
p+1
p
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A.2 Proof of Proposition 3

Proof. The principal contracts for N ∈ O(T 2/3) rounds. The first-best contract is described by a sequence of
classifiers (ht)

N
t=1 and sequence of indices of sampling distribution (at)

N
t=1. The first-best contract offers payment

α for each round if the agent draws a sample from distribution Dat
in round t of the N rounds and provides

classifier ht. Otherwise the payment is zero. Below we described how to construct the sequences (ht)
N
t=1 and

(at)
N
t=1 to guarantee the principal’s regret bound in the proposition.

Algorithm to determine first-best contract. Divide the first N rounds into p phases. The j-th phase has
Nj = 2j rounds. We will describe the sampling strategy in this phase and the classifier choice separately. First
the sampling strategy is to divide the rounds in the phase equally among the k distributions. So in phase j, the
principal seeks to collect Nj/k samples from each distribution Di for i ∈ [k]. As for the choice of classifiers, let
hi
j−1 be the ERM classifier based on data collected in phase j− 1 from distribution Di. The principal’s classifier

selection strategy in phase j is to dictate the agent to play a bandit algorithm with arms {h1
j−1, . . . , h

k
j−1}

and mean rewards 1 − LD∗(hi
j−1). So over the p phases, the principal ends up playing p bandit algorithms to

determine classifier selection.

Regret in first N rounds. We start by analyzing the regret in the first N rounds. The principal’s regret in
the N rounds is O(N +

√
kdN) where the first term comes from payments for N samples and the second term is

due to the bandit algorithm for classifier selection. To analyze the classifier selection algorithm, we use standard
bandit regret bounds to bound the regret of chosen actions relative to the best arm. Then we show that the
there exists an arm has mean close to θ∗. The arm that is the ERM over samples from D∗ satisfies this.

The principal is able to attain a classifier with O(
√
kd/N) error more than θ∗ from the N ronunds and so in

the remaining T −N rounds incurs regret O(T
√
kd/n). Choosing N ∈ O(T 2/3), the above approach results in

a total regret of order O(T
2
3 )

Let us denote the classifiers provided in the N rounds of contracting as (hi)
N
i=1, minh∈H LD∗(h) by θ∗, the

principal’s regret over the N rounds RP
N as RN . We can write the regret RN as the sum of regrets in each phase

R1, . . . , Rm where m = ⌈logN⌉. Recall that the length of phase j is nj = 2j . So,

Rj =

nj−1+nj∑
t=nj−1+1

(LD∗(ht)− θ∗ + α) .

Recall that to choose classifiers in phase j, we play a bandit algorithm treating {h1
j−1, . . . , h

k
j−1} as arms, where

ha
j−1 is the ERM classifier trained on the samples drawn from Da in phase j − 1. ha

j−1 is the ERM classifier
trained from nj−1/k samples from Da. Note that one of these arms h∗

j is the ERM classifier trained using
nj−1 = nj/2 samples from D∗. Let L∗

j = LD∗(h∗
j ) be the random variable denoting the expected loss of this

classifier under D∗. Note that this is a random variable since h∗
j is a random variable. We however know that

E[L∗
j ] ≤ θ∗ + C1

√
kd/nj−1, where d is the VC dimension of H.

By the tower property we can write

Rj = E

E
 nj−1+nj∑
t=nj−1+1

(LD∗(ht)− θ∗ − α) |L∗
j


= E

[
E
[(
R1

j +R2
j

)
|L∗

j

]]
where,

R1
j =

nj−1+nj∑
t=nj−1+1

(LD∗(ht)− θ∗)

R2
j = nj(L

∗
j − L∗) + αnj
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E[R1
j |L∗

j ] is simply expected regret of a bandit algorithm with k arms and bounded suboptimalities of arms. So
for a constant C2,

E[R1
j |L∗

j ] ≤ C2

√
knj + k

E[R2
j |L∗

j ] ≤ nj

(
E[L∗

j ]− L∗)
≤ C1

√
dnj log nj .

=⇒ Rj ≤ C3

√
kdnj log nj + k.

Finally, summing over regrets from each phase,

RN ≤ C3(
√
kd)

logN∑
j=1

2j/2 logN + k logN

≤ C
(√

kdN logN + k logN + αN
)
.

Principal’s regret in the latter T −N rounds. After the N rounds of contracting as described above, the
principal can deploy a classifier chosen uniformly at random from classifiers h1, . . . , hN for the remaining T −N
rounds without any further sampling.

As shown in the regret analysis for the first N rounds, 1
N

∑N
i=1 (E[LD∗(hi)]) ≤ θ∗ + O(kd logN/

√
N).

The quantity on the left-hand side is also the expected error of h̄. E[LD∗(h̄)] = E
[

1
N

∑N
i=1 LD∗(hi)

]
=

1
N

∑N
i=1 E[LD∗(hi)]∗. So deploying h̄ for T − n rounds results in expected regret O(T

√
kdN logN).

Total regret. The total regret is of order O(
√
kdN logN + k +N + T

√
kdN logN). Choosing N ∈ O(T 2/3)

results in the regret bound of the proposition.

A.3 Proof of Theorem 2

Proof. Upper bound. We first show that the principal can achieve the upper bound regret of T 3/4 by choosing
an appropriate N number of rounds to contract through linear contracts c. The principal’s regret during the
N contracting rounds is O(N). Suppose the agent provides classifiers h1, . . . , hN in these rounds, the principal
could deploy h̄ which is picked uniformly at random from {h1, . . . , hN} in the remaining T − n rounds.

The proof of regret in the first-best scenario given by Proposition 3 provides a way for the agent to achieve
regret O(N2/3). Since the agent is min-max optimal, the agent achieves regret O(N2/3). Again, let θ∗ =
minh∈H LD∗(h). As a result of agent’s min-max optimality,

RA
N ≤ c

(
Nθ∗ −

N∑
i=1

E[LD∗(hi)]

)
∈ O(N2/3)

=⇒
N∑
i=1

E[LD∗(hi)] ≤ Nθ∗ +O(N2/3)

The expected error of h̄ is E[LD∗(h̄)] = 1
N

∑N
i=1 E[LD∗(hi)] ∈ θ∗ +O(N−1/3). Deploying h̄ in the T −N rounds

yields regret O(TN−1/3). Choosing N ∈ Θ(T 3/4) results in the regret O(N) +O(TN−1/2) being O(T 3/4).

Lower bound. We can provide a lower bound for regret due to the excess error of classifiers deployed and a
lower bound for regret due to payments provided.

First we analyze the regret due to excess error of classifiers deployed. Clearly, a min-max optimal agent would
not collect ω(N2/3) samples. The upper bound on the samples collected provides a lower bound on the error
of the resulting classifier. And this lower bound will provide a lower bound on the principal’s regret through
delegation.
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Usual sample complexity lower bounds provide lower bounds on the error of learning using a number of i.i.d
samples. However, in our setting, the agent has more than just the samples he collects to learn classifiers.
Through the linear payments he receives, he also has access to estimates of the accuracy of classifiers he provides
in each round. This is a form of (noisy) query access to the distribution.

We provide a min-max lower bound on learning using both i.i.d samples and queries of the form answering the
expected error on D∗ of a classifier in the following proposition. We show that in a min-max sense, the queries
do not allow for more accurate classifiers compared to using just the i.i.d samples. This is shown in Proposition 4
which is restated below and is proved after this proof.

Restating Proposition 4 Consider a learning algorithm that uses n i.i.d samples and q queries of accuracies
of classifiers. Then there exists a distribution D for which the expected error of the learned classifier is Ω(1/

√
n)

more than the optimal error of a one-dimensional halfspace on D.

Using this proposition, we can show that H-regret with N rounds of contracting when H is the class of one-
dimensional halfspaces is Ω(TN−1/3). With N rounds of contracting we know a min-max optimal agent collects
O(N2/3). With O(N2/3) samples and any number of accuracy queries, the proposition says for any learning
algorithm, there is a distribution on which resulting classifier has excess error over H Ω(N−1/3). As a result the
H-regret is Ω(TN−1/3).

Next we analyze regret due to the payments in N rounds of contracting. Suppose the principal’s payment to the
agent in these N rounds is ρ. Since the agent achieves O(N2/3) regret through contracting, Nαθ∗−ρ ∈ O(N2/3).
So, ρ ∈ Ω(Nαθ∗ −N2/3) ∈ Ω(N). Since the construction for the lower bound has θ∗ = 1

2 −N−1/3, the payment
ρ ∈ Ω(N). As a result, the principal’s regret from N rounds of contracting is Ω(N).

Combining both regret terms, the principal’s regret is Ω(N + TN−1/3). Minimizing this regret is setting N ∈
Θ(T 3/4) resulting in the Ω(T 3/4) regret lower bound.

Next we prove the proposition used in the above theorem’s proof.

A.3.1 Proof of Proposition 4

Proof. For each n, q, we will construct a class of distributions such that for any learning algorithm with access
to n i.i.d. samples and q queries, there is a distribution D∗ in the class for which the learning algorithm will
have excess error at least θ∗ + Ω(1/

√
n) where θ∗ is the optimal error achieved by the class of one-dimensional

half-spaces on D∗. This is the class H1d−HS which we will refer by H

H1d−HS = {1{x ≥ θ} : θ ∈ R} ∪ {1{x ≤ θ} : θ ∈ R}.

As a construction for the lower bound, consider the class of distributions over a domain of M points, each having
a uniform marginal distribution supported on m < M of those points. The labelling distribution Pr(y = 1|x) is
1/2± 1/2

√
n. We later describe how to choose m,M so that the lower bound holds for n, q.

We will show that for any set of q queries, there are two distributions D1, D2 such that

1. All query values are the same for D1, D2.

2. No algorithm can distinguish between D1, D2 with probability more than 1/2 using n samples drawn.

3. Any classifier with error minh∈H1d−DS
LD1

(h)+O(1/
√
n) on D1 necessarily has error minh∈H1d−DS

LD2
(h)+

Ω(1/
√
n) on D2.

The above properties suffice to show the required lower bound. This is because with the above properties, a
learning algorithm that achieves o(1

√
n) expected excess error necessarily distinguishes between D1 and D2 with

probability at least 1/2. Distinguishing between D1, D2 should not be possible with n samples and q queries if
the above properties hold.

Now let us show how to choose m,M and construct D1, D2 to make the above properties hold.
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Each query assigns a value of 0 or 1 to each point. So there is a sequence of length q indicating the labels the
queries assign for each point. We can partition the domain into points having the same sequence of query labels.
By constructing D1, D2, so that the number of points in each partition with labelling function 1/2 + 1/2

√
n is

the same for D1 and D2, we can guarantee that all query values are the same for D1 and D2

Let us set M so that M > 2qm. Since there are 2q query sequences, at least one of the partition sets has size
m. Consider the m points distributions D1, D2 are supported on to be the n points of samples drawn and the
remaining points are points from the partition of size m. There are at least m − n points of the support from
the partition of size m.

Let the points in the support that are in the query partition of size m be x1 ≤ . . . ≤ xs where s ≥ m − n. D1

has probability of +1 label 1/2+ 1/
√
n for points x1, . . . , xs/2 and probability of +1 label 1/2− 1/

√
n for points

xs/2+1, . . . , xm. D2 has probability of +1 label 1/2− o1/
√
n for points x1, . . . , xs/2 and probability of +1 label

1/2 + 1/
√
n for points xs/2+1, . . . , xm.

Outside of this partition, let the labelling distribution of any other point in the support be the same for D1, D2.
By this construction, property (1) is satisfied.

Restricted to the query partition, the errors on distributions D1, D2 sum up to 1/2 + 1/
√
n. By choosing

m > 2n, the query partition makes up at least half the fraction of the support. Therefore any classifier h has
LD1(h) + LD2(h) = 1/4 + 1/2

√
n. and due to this property (3) holds.

The KL divergence between the sampling distributions from D1, D2 is at most
√
n 1

2
√
n
, and therefore with

probability ≥ 1/2, we cannot distinguish between D1 and D2 using n samples. This shows property (2) holds.

A.4 Proof of Proposition 1

Proof. Since in the first-best scenario, the principal knows θ and the test accuracy is deterministic in the number
of samples collected, the principal can deduce the number of samples agent draws exactly based on the test
accuracy. Therefore, we can focus on contracts directly based on the number of samples.

The optimal number of samples to maximize principal’s utility subject to compensating the agent is given by
the following optimization problem: maxn 1− θ − d

np − αβn

The first-best contract asks agent to collect n∗ samples which is the optimal value to the above optimization
problem and provides payment t∗ = αn∗.

The objective maximized is convex and so the optimal value n∗ is obtained by setting gradient to zero. Thus
n∗ = (pd/αβ)1/(p+1).

B Miscellaneous results and discussions

B.1 Designing contracts against state-learning agents

In Section 5 and particularly Opt, we assumed perfect knowledge of the hidden state (θ) by the agent. However,
in reality, the agent does not know the optimal error beforehand. Instead, as the agent executes the contract,
he learns more about the optimal error and adapts his actions accordingly. To design a contract for such a
state-learning agent, the principal would need to predict the agent’s response to the contract. However, this
is challenging for arbitrary contracts since the principal would require knowledge of the agent’s exact learning
strategy, which is often unreasonable. Therefore, we focus on analyzing simple contracts for which we can easily
derive the agent’s response. We demonstrate numerically that the utility achieved with these simple contracts is
close to the utility we previously derived for state-aware agents, which we refer to as “state-aware utility.” This
provides evidence that qualitative insights we derived about the state-aware utility in Section 2 and Section 3
are applicable in the more realistic case of a state-learning agent. We focus on the case where the optimal error
can take one of two possible values, θ1 < θ2, but these design principles also extend to more possible values of
the optimal error. The simple contract we consider, which we call the state-learning contract, is the best of two
simple contracts: optimal pooling and separating contracts.
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Separating contract. Separating contracts allow the agent to perfectly infer the hidden state while executing
the contract. These are incentive-compatible contracts that ask agents to collect n1, n2 samples under optimal
errors θ1 < θ2 respectively. Additionally, n1, n2 are such that the agent can successfully infer the optimal error
after collecting min(n1, n2) samples. The agent’s response to this contract would be to first collect min(n1, n2)
samples and decide whether to collect more depending on the inferred optimal error. The agent’s successful
inference of the optimal error makes computing optimal separating contracts similar to the contract design
problem against a state-aware agent, which was solving the optimization problem Opt. The new optimization
problem that yields optimal separating contracts has the same objective and constraints as Opt with the added
constraint that n1, n2 > n0 for some n0 that we will describe soon. The additional constraint ensures that the
agent knows the optimal error (with high probability) after collecting min(n1, n2) samples.

To determine the value of n0, we rely on assumptions about the agent’s learning strategy. We assume that
the agent can distinguish between θ1, θ2 with high probability using k/(∆θ)2 samples. Here ∆θ = θ2 − θ1 and
k is a constant reflecting the degree of assumption made about the agent’s efficiency. A lower value of k is a
stronger assumption, assuming a more efficient agent. This assumption on the agent’s learning strategy is more
reasonable compared to assuming precise knowledge of the agent’s learning strategy.

When n0 is small enough that the added constraint n1, n2 > n0 is not active, the state-learning agent is behaving
exactly as the state-aware agent, so our results from Section 5 apply. On the other hand, if n0 is large (which
happens when ∆θ is small) the additional constraint becomes too restrictive and the utility becomes low. In this
case, another approach works well.

Pooling contract. In pooling contracts, the agent has no incentive to learn the optimal error. The pooling
contract asks the agent to achieve one accuracy level ā regardless of the optimal error. The payment for this
accuracy is set to ensure the agent can get nonnegative utility regardless of the optimal error. It is again
straightforward to understand the agent’s response to this contract. Suppose ā can be achieved by collecting
n̄1 < n̄2 samples under optimal errors θ1 < θ2 respectively. To execute this contract, the agent starts collecting
n̄1 and sees if it achieves ā accuracy. If it does not, he collects n̄2−n̄1 more samples since this action is guaranteed
to yield nonnegative utility. Furthermore, collecting fewer or no additional samples results in less than ā expected
accuracy and hence zero payment even though the agent exerted effort.

A pooling contract does not let agents differentiate actions for different optimal errors and would be sub-optimal
for this reason. However, when the difference in both problems is not significant i.e., ∆θ is low, the benefit to
the principal for distinguishing the agents is low. In summary, the separating contract has good utility when ∆θ
is large and the pooling contract has good utility when ∆θ is small. By deploying the contract of the two with
the higher utility, we can hope to have good utility for all values of ∆θ ∈ [0, 0.5].

The optimal pooling and separating contracts for the two hidden states case are computed in Sections B.2. In
this case, we numerically show in Appendix C that the best of pooling and separating contracts achieve close to
the state-aware contract’s utility.

B.2 Closed-form solution for the two optimal error, hidden state problem

Here we solve the state-aware optimization problem Opt when there are two optimal errors, θ ≤ θ, with a prior
probability of ν for θ. Let L(n) = d/np. We solve the following optimization problem and show that the solution
is the optimal solution we are looking for. Note that this problem omits the incentive-compatibility constraint
for the problem θ and the participation constraint for the easy problem.

min
n,n,t,t

ν(L(n) + βt) + (1− ν)(L(n) + βt)

s.t. t− αn

(1 + ∆np)1/p
− t+ αn ≤ 0

αn− t ≤ 0.

First note that this is a convex optimization problem, where the objective is convex by the convexity of the loss
and the PC constraint is a linear constraint. All that is left is to check that the IC constraint is convex. This
is the sum of linear terms and the term −αd1/pn

(d+∆np)2 . The second derivative of this term is 3αd1/p∆
2np(d+∆np)4 . Since the

second derivative is positive, the IC constraint is convex.
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Consider the Lagrangian

L(n, n, t, t;λ1, λ2) = ν(L(n) + βt) + (1− ν)(L(n) + βt) + λ1

(
t− αd1/pn

(d+∆np)1/p
− t+ αn

)
+ λ2

(
αn− t

)
,

which has the following gradients:

∇nL = νL′(n) + αλ1 (G1)

∇tL = νβ − λ1 (G2)

∇tL = (1− ν)β − λ2 + λ1 (G3)

∇nL = (1− ν)L′(n) + αλ2 − λ1

(
αd1/p

(d+∆np)(p+1)/p

)
(G4)

To choose values n∗, n∗, t∗, t
∗
, λ∗

1, λ
∗
2 that satisfy the KKT conditions, first we set the gradients to zero:

L′(n∗) = −αβ (From (G1), (G2))

λ∗
1 = νβ (From (G2)

λ∗
2 = β (From (G3) and value of λ∗

1)

(1− ν)L′(n∗) + αβ − ναβ

(1 + ∆np)(p+1)/p
= 0 (From (G4) and values of λ∗

1, λ
∗
2)

=⇒ L′(n∗) = − αβ

1− ν

(
1− νd1/p

(d+∆n∗p)(p+1)/p

)
By complementary slackness,

αn∗ = t
∗

t∗ = α

(
n∗ − d1/pn∗

(d+ n∗p)1/p
+ n∗

)
.

The contract described by (n∗, n∗, t∗, t
∗
) satisfies the properties of the second-best contract in the classical

contract theory setting. We list these properties here:

P1 No output distortion for the easy problem: n∗ is the solution of L′(n∗) = −αβ which is also the value of
nfb. So for the easy problem, the agent gathers the same number of samples as in the full information case.

P2 Downward distortion for the hard problem:

L′(n∗) = − αβ

1− ν

(
1− νd1/p

(d+∆n∗p)(p+1)/p

)
< −αβ

= L′(nfb).

So n∗ < nfb. For the hard problem, the agent gathers fewer samples than in the full information case.

P3 When the problem is easy, the agent gets positive information rent:

t∗ − αn∗ = n∗ − d1/pn∗

(d+∆n∗p)(p+1)/p

> 0.

We now check that the contract that is the solution to the above optimization problem also satisfies the omitted
constraints. First we start with the participation constraint for the easy problem. By the positive information
rent property (P3) we know that αn∗ < t∗. Next consider the incentive-compatibility constraint for the hard
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problem. We only need to check when ∆n∗p < d. Otherwise, the IC constraint automatically holds. The
difference in agent’s utility between choosing the ℓ

∗
= θ + d/n∗p option and the ℓ∗ = θ + d/n∗p option is:

− αn∗ + t+
αd1/pn∗

(d−∆n∗p)
p − t∗

= − αd1/pn∗

(d+∆n∗p)1/p
+ αn∗ +

αd1/pn∗

(d−∆n∗p)
1/p

− αn∗ (Using values of t∗, t
∗
)

= α

(
d1/pn∗

(d−∆n∗p)1/p
− n∗ +

d1/pn∗

(d+∆n∗p)1/p
− n∗

)
≥ αn∗

(
1

(1−∆n∗p)1/p
+

1

(1 + ∆n∗p)1/p
− 2

)
(Since n∗ < n∗)

Note that the function d1/p

(d−x)q + d1/p

(d+x)q is increasing in the interval [0, 1) for every q. The derivative of that

function is q
(

d1/p

(d−x)q+1 − d1/p

(d+x)q+1

)
. This is nonnegative and lies in [0, 1).

≥ 0 (Since we assume 0 < ∆np∗ < 1).

This solution finds the optimal contract under hidden state.

B.2.1 Separating contracts

To be able to compute any separating contract, it suffices to solve the above optimization problem with the
additional constraint n, n ≥ n0 for some n0 ≥ 0. The new optimizers n(n0), n(n0), t(n0).t(n0) are as follows:

n(n0) = max(n∗, n0)

n(n0) = max(n∗, n0)

t(n0) = αn(n0)

t(n0) = α

(
n(n0)−

d1/pn(n0)

(d+ n(n0))1/p
+ n(n0)

)
.

B.2.2 Optimal pooling contract

The optimal pooling contract optimizes over n. t = αn. n is chosen such that

θ +
d

np
= θ +

d

np

=⇒ n =
d1/pn

(d+∆np)1/p
.

Thus the optimization problem is choosing n to be the minima of

ν
d(

d1/pn
(d+∆np)1/p

)p + (1− ν)
d

np
+ αβn.

B.3 Medium test-set regime

In our analysis, we have examined the impact of the hidden action challenge when dealing with a small test set
size. The significance of the hidden action challenge diminishes as the test set size increases, as the principal
can obtain highly accurate estimates of the model’s accuracy. However, when the test set becomes too large,
delegation loses its value since the principal can independently learn an accurate model without delegation. Is
there a regime in which the test set size is large enough for hidden action to not be significant while also being
small enough for the principal to benefit from delegating data collection? In this section, we demonstrate the
existence of such a regime, referred to as the “medium test set regime.” Later, we outline how we can capitalize
on the larger size of the test set to achieve stronger results.
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The sample complexity for learning an ϵ-optimal model is Θ(d/ϵ2). In particular, this bound is linear in the
training algorithm’s complexity which can be problematic when using highly complex training algorithms. We
say that the medium test set regime exists, if the sample complexity for hidden action is significantly smaller
than Θ(d/ϵ2), where ϵ captures the significance level of hidden action which we will make precise in the following
definition.

Definition 2 (Insignificance of hidden action at level ϵ). In a finite test set setting with hidden action, for any
optimal error parameter θ, let OPT denote the optimal expected utility of contracting. We say that hidden action
is insignificant at level ϵ, for any ϵ > 0, if the expected utility of the first-best contract based on θ in this setting
is at least OPT− ϵ.

We next state a theorem giving the sample complexity of the principal’s test set to achieve insignificance of
the hidden action. The sample complexity stated in the theorem is logarithmic in d while learning would have
required a number of samples linear in d. This demonstrates the existence of a medium test set regime where it
is possible to employ delegation without considering hidden action.

Proposition 5 (Sample complexity for insignificant hidden action). For any ϵ > 0, if the principal has a test
set of size O

(
1
ϵ2 log

d
ϵ

)
, then hidden action is insignificant at the level ϵ.

Proof. Recall that the first-best contract has a threshold form. The contract offers payment t∗ when the test
error is less than or equal to ℓ∗ and offers payment zero otherwise. Let us denote the sample complexity to get
expected loss at most ℓ by n(ℓ). That is,

n(ℓ) =

(
d

ℓ− θ

)1/p

.

The optimal contract offers t∗ = αn(ℓ∗) where α is the cost per sample for the agent. Let us denote n(ℓ∗) by n∗.
And n∗ = (pd/αβ)1/(p+1).

We will show that the best response for the agent against this contract is never to collect samples less than
n(ℓ + ϵ) when the test set has size O

(
1
ϵ2 log

d
ϵ

)
. We show this by showing that the agent’s utility in choosing

n(ℓ+∆) is less than the agent’s utility in collecting n(ℓ−∆) for all ∆ > ϵ.

The number of samples the agent would collect to get expected error l∗ +∆ is such that:

θ +
d

np
1

= θ +
d

n∗p +∆

n1 =
n∗dp

(d+∆)p
.

Similarly, the number of samples needed to get expected error l∗ −∆ is

n2 =
n∗dp

(d−∆)p
.

For any action of the agent, the probability that the observed loss is ϵ or more away from the expected loss is
less than 2 exp(−2mϵ2). This is by applying Hoeffding’s inequality on the observed loss random variable which
is bounded between 0 and 1. As a result, for ∆ > ϵ, the expected payment when collecting n1 and n2 samples is
≤ 2t∗ exp(−2mϵ2) and ≥ t∗(1− 2 exp(−2mϵ2)) respectively. The agent’s utility due to n1 is less than the utility
due to n2 when

αn∗ (1− 4 exp(−2mϵ2)
)
≥ αn∗dp

(
1

(d− 2∆n∗1/p)p
− 1

(d+ 2∆n∗1/p)p

)
Let us denote κ = dp

(
1

(d−2∆n∗1/p)p
− 1

(d+2∆n∗1/p)p

)
. So this occues when

m ≥ 1

2ϵ2
log

4

1− κ
.

Note that 1
1−κ is polynomial in both d and 1

ϵ .
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B.4 Treating error curves as upper bounds

For most of our results we have made use of the structured form of error curves reflecting how expected error of
a learned model is assumed to vary with the number of samples used for training. This structure is inspired by
statistical minimax bounds and are upper bounds rather the true error curves. We designed contracts assuming
the bounds to be actual error curves. Here we discuss what we can say about these contracts without assuming
the bounds to be exact error curves.

From the principal’s perspective, these contracts result in accuracy that is just as good as that of learned models.
However, the principal would end up paying the agent more than it could have if the principal knew the exact
error curve. We can view the shape of the true error curve as another piece of information the principal is
unaware of in addition to the optimal error. This hidden information results in more information rent but does
not impact the accuracy of the model obtained from delegation.

The agent’s perspective of what changes is more complicated. Our contracts assumed that the agent responded
assuming that the upper bound was the true error curve. It may be reasonable that before starting the delegation
process, the agent believes the upper bounds to be the true curves having no other frame of reference. However
after starting to collect data, it is possible that the agent will learn more about the form of the true error
curve and respond differently. This is similar to how the agent can learn the optimal error while executing
the contract. Analyzing how this error curve learning occurs will allow us to design truly incentive-compatible
contracts. However, learning the error curve shape is learning from a much broader class and is likely to be more
challenging.

B.5 Variable label quality model

The setting above models the scenario where the agent does not have the option to choose the quality of the
data is collects. However, the agent might be able to control the quality of the data as a function of the cost per
sample. We study a model of quality of data where the quality corresponds to the quality of the labels of the
data. The quality parameter q = 1 − 2η captures the likelihood of the labels being correct. Here, η ∈ (0, 1/2)
is the probability of the label being incorrect. In this setting, the expected accuracy on the principal’s test set
from the agent collecting n samples at quality level q when the optimal error is θ is 1− θ − 1

qnp for some p > 0.

We assume that the cost of collecting a single sample at quality level q for the agent is given by α(q) a function
increasing in q and convex. So the cost for the agent of collecting n samples at quality level q is C(n, q) = α(q)n.

In this section, we provide results for α(q) = qb + α0 for b > 0. We can think of α as the cost of collecting an
unlabelled sample and qb as the cost of labelling an unlabelled point. The main message of this section is that
even though the quality of labels is an action that the agent chooses, effectively, this choice is not information
that is private from the principal. It turns out that whatever the contract is, the utility-maximizing agent
executes the contract by choosing a single quality value q∗. The principal can also compute q∗ so the quality is
not a reflection of information asymmetry. Therefore, this regime is essentially the same as the one studied in
the previous section.

Theorem 3 (Constant quality level). For any problem parameters d, p, α0 > 0, b > 1, when α(q) = qb + α0, for
any expected accuracy a the agent wishes to achieve, the agent chooses a constant q∗ that only depends on α0, b
as the quality level.

Proof. If the agent aims to achieve an expected accuracy of at least s, then the agent chooses the number of
samples and quality level by solving the following optimization problem:

min
q,n

(
qb + α0

)
n

s.t. θ +
1

qnp
≤ 1− a

0 ≤ q ≤ 1.
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The solution of this optimization problem can be calculated as follows:

L =
(
qb + α

)
n+ λ1

(
θ − l +

1

qnp

)
+ (λ2 − λ3)q

∇nL = qb + α− pλ1

bnp+1

∇qL = bqb−1n− λ1

q2np
+ λ2 − λ3.

If λ∗
2 = λ∗

3 = 0, we obtain

=⇒ λ∗
1 = bq∗b+1np+1

=⇒ q∗ =

(
α

b− 1

) 1
b

,

and n∗ is obtained by solving

θ +
1

q∗n∗p = l.

If (α/(b− 1))1/b is not in [0, 1], then λ∗
2 or λ∗

3 is non-zero and q∗ is either 0 or 1.

B.6 Tightness of linear contracts approximation

Our main result (Theorem 1) gave a linear contract that provably approximates the optimal contract up to a
constant factor. This approximation factor stated in Proposition 2 is also tight as stated in the following theorem,
which shows that there is a problem instance for which no linear contract can do better than a given approximation
factor. The problem instance for which the approximation ratio is tight is one that has deterministic test error
distribution, which arises when the size of the test set tends to infinity.

Theorem 4 (Tightness of approximation bound). For every θ ∈ [0, 1), p, d > 0, there are problem parameters
α, β > 0 such that for the problem instance with these parameters, all linear contracts have at most 1− 1

(p+1)
p+1
p

times the optimal utility.

Proof. We will show that there exist α, β such that the contract 1

β(p+1)
p+1
p

is the optimal contract chosen by the

principal. This contract will also satisfy the participation constraint for our chosen values of α, β. Recall that
the participation constraint is

1

β(p+ 1)
p+1
p

≥ αd
1
p

p
·
(
p+ 1

1− θ

) p+1
p

≡ 1− θ ≥

(
αβd

1
p

p

) p
p+1

(p+ 1)2.

The principal chooses the contract that sets the derivative of the above quantity to zero as long as that contract
satisfies the participation constraint. If setting 1

β(p+1)
p+1
p

yields a zero derivative and it satisfies the participation

constraint, then it is the optimal linear contract. The derivative relative to c is

(1− βc)

(
αd

1
p

p

) p
p+1

· p

p+ 1
· 1

c
2p+1
p+1

− β

1− θ −

(
αd

1
p

p

) p
p+1

 .
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Setting c = 1

β(p+1)
p+1
p

, the derivative is

(
1− 1

(p+ 1)
p+1
p

)
p

p+ 1

(
αd

1
p

p

) p
p+1

β
2p+1
p+1 (p+ 1)

2p+1
p

− β

1− θ − (p+ 1)

(
αβd

1
p

p

) p
p+1

 .

We can choose α, β to set this derivative to zero by choosing α, β satisfying:

1− θ =

(
αβd

1
p

p

) p
p+1

(p+ 1)

(
1 +

(
1− 1

(p+ 1)
p+1
p

)
p(p+ 1)

1
p

)
.

Note that for every p > 0,

(
1 +

(
1− 1

(p+1)
p+1
p

)
p(p+ 1)

1
p

)
> p+ 1. So,

≥

(
αβd

1
p

p

) p
p+1

(p+ 1)2.

This shows that there are problem parameters that make c∗ = 1

β(p+1)
p+1
p

the optimal linear contract. In the

proof of Proposition 2, we showed that this linear contract achieves at least 1 − 1

(p+1)
p+1
p

times the optimum

utility. When the problem involves a deterministic mapping between the number of samples and the observed
accuracy, this ratio is exact.

C Numerical simulations

C.1 Contracts for state-learning agents

In the two states case where states can be θ1 < θ2, we compute the utility difference between the state-aware
contract and the state-learning contract, varying problem parameters ∆θ = θ2 − θ1 and k. We highlight a few
observations (see Fig 1), that reflect the intuition we used to design the approach for state-learning contracts.

These simulations are for error rate problem parameter p = 0.5, inspired by binary classification. We vary k and
∆Θ from 0 to 0.5 covering all states in the binary classification problem.

• Figure 1a shows that the state-learning contract is pooling when ∆θ is less than some threshold and is
separating otherwise. For small and large values of ∆θ, the state-learning contract has utility close to the
state-aware utility.

• Figure 1b shows that when it is more difficult to distinguish between θ1, θ2, the pooling contract is better than
the separating contract for more values of ∆θ.

• Figure 1c shows that the worst-case sub-optimality over all ∆θ values of the state-learning contract compared
to the state-aware utility increases as k increases. When the agent can test more efficiently, the state-learning
contract has greater utility for the principal.

C.2 State-agnostic linear contracts

In Theorem 1, we proposed a linear contract c̄ that does not depend on the hidden state θ and provide a range
of values of θ for which this linear contract achieves multiplicatively approximate utility relative to the first-best
utility.

Now we numerically show the ratio of the utility of this linear contract to the first-best utility outside this range
for θ. We show in Figure 2that the approximation ratio decreases with how far the state θ lies outside the range
given in Theorem 1.
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(a) Utilities of different contracts vs
∆θ

(b) Utilities of state-aware and state-
learning contracts for various k’s vs
∆θ

(c) Worst-case sub-optimality of
state-learning contracts relative to
state-aware contracts

Figure 1: Figure 1a plots the utilities of the state-aware, separating, and the pooling contract against (∆θ).
Figure 1b again plots the utilities of contracts on the y-axis and ∆θ on the x-axis. It plots the state-aware
utility and the utilities of state-learning contracts of different levels k of agent’s testing efficiency. Figure 1c plots
the worst-case sub-optimality of state-learning contracts against k. The sub-optimality is the ratio of the state-
learning contract’s utility and the state-aware utility. The worst-case sub-optimality is the largest sub-optimality
over all ∆θ ∈ [0, 0.5].

Figure 2: Approximation ratio of linear contract c̄ versus θ


