
Fair k-center Clustering with Outliers

Daichi Amagata
Osaka University

Abstract

The importance of dealing with big data is
further increasing, as machine learning (ML)
systems obtain useful knowledge from big
datasets. However, using all data is practi-
cally prohibitive because of the massive sizes
of the datasets, so summarizing them by cen-
ters obtained from k-center clustering is a
promising approach. We have two concerns
here. One is fairness, because if the sum-
mary does not have some specific groups,
subsequent applications may provide unfair
results for the groups. The other is the pres-
ence of outliers, and if outliers dominate the
summary, it cannot be useful. To overcome
these concerns, we address the problem of fair
k-center clustering with outliers. Although
prior works studied the fair k-center cluster-
ing problem, they do not consider outliers.
This paper yields a linear time algorithm that
satisfies the fairness constraint of our prob-
lem and probabilistically guarantees the al-
most 3-approximation bound. Its empirical
efficiency and effectiveness are also reported.

1 Introduction

Dealing with big data is still a challenging problem,
as it is inefficient or prohibitive to use all data in
a given dataset, e.g., for training ML models. Data
summarization is an effective solution to this concern,
because we can control the size of a summary based
on the requirements of applications. The main chal-
lenge of data summarization is how to select repre-
sentative data from a dataset. Sener and Savarese
(2018) demonstrated that a dataset summary obtained
by k-center clustering significantly reduces the time for

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

learning process and yields a high inference accuracy.
Here, assume that a biased summary is used as a train-
ing dataset for ML systems. Then, the ML models
would provide biased or unfair results. This bias con-
cern is nowadays widely known in the computer science
community, e.g., a higher accuracy face recognition on
specific groups (Buolamwini and Gebru, 2018), a ten-
dency toward mis-labeling of some races in criminal
recidivism tools (Angwin et al., 2016), and biased can-
didate selection in automated hiring systems (Tambe
et al., 2019). For example, in the context of Web search
result summarization, literature Kay et al. (2015) re-
ported that Google Image, which provides a summary
of matching images with a given query, can provide a
summary wrongly dominated by some groups. Klein-
dessner et al. (2019) also reported that the fairness
of a summarization result obtained by an algorithm
without considering fairness can be arbitrarily bad.

As a fair data summarization that avoids the above bi-
ased results, the problem of fair k-center clustering has
been studied. The set of centers returned by this prob-
lem is considered as a summary of a given dataset. Let
P be a set of n points in a metric space, and P can be
partitioned into disjoint subsets P1, ..., Pm, where m is
the number of demographic groups. Given a number ki
of centers for a group i, it is fair if the problem returns

ki centers for each group i. If we set ki =
|Pi|
|P | k, the

set of centers preserves the proportion of each group.
This group fairness has been widely employed in many
existing works (not only for k-center clustering but
also for other problems), e.g., (Angelidakis et al., 2022;
Celis et al., 2018; Chiplunkar et al., 2020; Jones et al.,
2020; Kleindessner et al., 2019; Moumoulidou et al.,
2021; Thejaswi et al., 2022; Hajiaghayi et al., 2010; Kr-
ishnaswamy et al., 2011; Thejaswi et al., 2022, 2021),
due to its effectiveness. Kleindessner et al. (2019) pro-
vides a case study (image summarization) of fair k-
center clustering and shows its efficacy.

Because this fair k-center clustering problem is NP-
hard, approximation algorithms were proposed in
(Chiplunkar et al., 2020; Jones et al., 2020; Kleindess-
ner et al., 2019). Jones et al. (2020) yielded an O(nk)
time 3-approximation algorithm. This is a nice re-

Fair k-center Clustering with Outliers

sult if P does not contain any outliers, but real-world
datasets usually contain outliers (Amagata et al., 2021;
Amagata and Hara, 2021; Amagata, 2022; Amagata
et al., 2022; Amagata and Hara, 2024; Ceccarello et al.,
2019; Ding et al., 2019; Gupta et al., 2017; Im et al.,
2020; Matthew McCutchen and Khuller, 2008). Be-
cause the algorithms proposed in (Jones et al., 2020;
Kleindessner et al., 2019) are based on Gonzalez’s algo-
rithm (Gonzalez, 1985), which iteratively retrieves the
furthest point, they are sensitive to outliers (Amagata,
2023). If summaries contain outliers, their subsequent
ML applications may face learning difficulty (Awasthi
et al., 2017; Diakonikolas et al., 2020; Guruswami and
Raghavendra, 2009). The above observations suggest
that considering both fairness and outliers at the same
time is important. However, this problem has not been
well studied, and theoretically and empirically efficient
algorithms for this problem have not been developed.
This fact motivates us to address the problem of fair
k-center clustering with outliers.

1.1 Preliminary

We use dist(·, ·) to denote the distance function that
satisfies the triangle inequality. Given a point p
and a subset P ′ ⊆ P , we define dist(p, P ′) =
minp′∈P ′ dist(p, p′). For ease of presentation, we first
define vanilla (unfair) k-center clustering with outliers
(Bhaskara et al., 2019; Charikar et al., 2001).

Definition 1 ((k, z)-center clustering). Given
P , k, and z < n, this problem finds S∗ s.t.

S∗ = argmin
S⊆P\Pout,|S|=k

max
p∈P\Pout

dist(p, S), (1)

where Pout ⊂ P is a set of at most z points.

Outliers are z points with the furthest distance to their
nearest centers. Similar to (Alon et al., 2003; Charikar
et al., 2003; Ding et al., 2019; Huang et al., 2018; Li and
Guo, 2018), we relax the above definition by allowing
more points to be removed as z is not strict.

Definition 2 ((k, (1 + ϵ)z)-center clustering).
Given P , k, z < n, and ϵ > 0, this problem is to
find S∗ that satisfies Equation (1) by redefining Pout

as a set of at most (1 + ϵ)z points.

We incorporate a fairness constraint into the (k, (1 +
ϵ)z)-center clustering problem. Each p ∈ P belongs to
one of m (demographic) groups, so P =

⋃
m Pi, where

Pi is a set of points belonging to group i. To effectively
summarize P (or P\Pout), k centers are selected, so
it is desirable that we can specify the number ki of
centers for each group i. By combining this constraint
and Definition 2, our problem is defined as follows:

Definition 3 (Fair (k, (1 + ϵ)z)-center cluster-
ing). Given P , k, {k1, ..., km} such that k ≤

∑m
i=1 ki,

z < n, and ϵ > 0, this problem is to find S∗ such that

S∗ = argmin
S⊆P\Pout,|S|=k,∀i∈[1,m], |S∩Pi|≤ki

max
p∈P\Pout

dist(p, S),

where Pout ⊂ P is a set of at most (1 + ϵ)z points.

This definition allows k and ki to be specified indepen-
dently, and “|S ∩ Pi| ≤ ki” supports the case where
|Pi| < ki. This constraint follows (Chiplunkar et al.,
2020; Jones et al., 2020).

We use r∗k,z,m to denote maxp∈P\Pout
dist(p, S∗) of

the fair (k, z)-center clustering problem. Hence,
r∗k,z,1 means maxp∈P\Pout

dist(p, S∗) of the vanilla
(k, z)-center clustering problem. In addition, we use
C∗

1 , ..., C
∗
k (c∗1, ..., c

∗
k) to denote the optimal cluster

(centers) of the fair (k, z)-center clustering problem.
(C∗

i has c∗i and points /∈ Pout whose nearest center is
c∗i). For a set S of centers, if maxp∈P\Pout

dist(p, S) ≤
λr∗k,z,m, where Pout follows Definition 3, we say that
S is an λ-approximation result.

1.2 Combination of Known Techniques
Cannot Have Theoretical Bound

Our problem is more challenging than the vanilla
(k, (1 + ϵ)z)-center clustering problem, as we have
an additional constraint. An intuitive approach that
solves our problem is to combine an algorithm for the
vanilla (k, (1+ ϵ)z)-center clustering, e.g., (Ding et al.,
2019), with an approach that selects centers only from
groups which do not violate the fairness constraint
(Jones et al., 2020).

Specifically, this algorithm first randomly samples one
point p ∈ P and initializes an answer set S by setting
S = {p}. Then, in the vanilla (k, z)-center clustering
problem, this algorithm considers a set

F = {p | p ∈ P, dist(p, S) > 2r∗k,z,1}, (2)

where S is an intermediate result of the problem. We
see that F is a set of points being sufficiently far from
S. For the fair (k, (1 + ϵ)z)-center clustering problem,
this algorithm “heuristically” considers a set

G =⋃
m

{p | p ∈ Pi, dist(p, S) > 2r∗k,z,m, |{p ∪ S} ∩ Pi| ≤ ki}.

(3)

The algorithm samples one point from G and adds it
into S. This is repeated until |S| = k. Unfortunately,
this approach loses any quality guarantees.

Claim 1. The clustering quality of the above algorithm
can be arbitrarily bad.

Daichi Amagata

All missing proofs appear in our supplementary file.

1.3 Our Contribution

Theoretical result. As shown above, simply combin-
ing existing techniques does not sound for our prob-
lem. We hence design a new algorithm that does
not violate the fairness constraint while guaranteeing
bounded clustering quality, success probability, and
linear running time. Our result is as follows:

Theorem 1. Given a set P of n points, k,
{k1, ..., km}, z < n, ϵ > 0, and γ > 0 (an er-
ror factor of guessing r∗k,z,m), there is an O(nk)
time algorithm that needs O(n) space and yields a
(3 + γ)-approximation result for the fair (k, (1 + ϵ)z)-
center clustering problem with probability at least (1−
z
n)(

ϵ
1+ϵ)

k−1, by returning exactly k centers and remov-
ing at most (1 + ϵ)z points.

In addition to the above new finding, we show that
(i) improving the success probability cannot be done
efficiently in Proposition 3 and (ii) random sampling
yields a faster practical time while keeping a similar
theoretical performance guarantee.

Efficiency of satisfying the fairness constraint.
We show that the fairness constraint can be satisfied
in O(km

√
k) time. This improves the state-of-

the-art techniques (Chiplunkar et al., 2020; Jones
et al., 2020). Specifically, Jones et al. (2020)
and Chiplunkar et al. (2020) respectively need
O(n) + O(n

√
k log k) + O(n(k + log k)) + O(nk) and

O(nk + k2m) time to satisfy the fairness constraint,
whereas ours is independent of n.

Empirical performance. We empirically investigate
the practical performance of our algorithm. Our ex-
perimental results demonstrate the efficiency and ef-
fectiveness of our algorithm.

2 Related Work

Fair k-center clustering without outliers. Our
problem is a generalization of (Chen et al., 2016;
Chiplunkar et al., 2020; Jones et al., 2020; Kleindess-
ner et al., 2019). Kleindessner et al. (2019) consid-
ered the fair k-center clustering problem without out-
liers, and proposed a (3·2m−1−1)-approximation algo-
rithm that runs in O(km2n+ km4) time. Chen et al.
(2016) regarded this fair k-center clustering without
outliers problem as the matroid center problem, and
they proposed a 3-approximation algorithm that runs
in Ω(n2 log n) time.

Jones et al. (2020) improved these results by propos-
ing a 3-approximation algorithm that runs in O(nk)

time. This is a theoretically interesting result, but
its fairness satisfaction approach is still costly in prac-
tice. Our work improves this issue while considering
the presence of outliers. In addition, our empirical
study shows that, when P contains outliers, the algo-
rithm proposed in (Jones et al., 2020) provides a large
maxp∈P\Pout

dist(p, S) and its running time is longer
than ours. Chiplunkar et al. (2020) also considered the
problem of fair k-center clustering without outliers and
proposed an O(nk + mk2) time streaming algorithm
that yields almost 3-approximation. Distributed algo-
rithms for fair k-center clustering were also designed in
(Chiplunkar et al., 2020; Gan et al., 2023; Yuan et al.,
2021). This setting is different from ours.

Problems with different objectives but the
same constraint. Private k-center clustering (which
has a constraint such that each cluster must have
at least the specified number of members) (Angel-
idakis et al., 2022), k-means clustering (Hajiaghayi
et al., 2010; Krishnaswamy et al., 2011; Thejaswi et al.,
2022, 2021), and Max-Min diversification (Moumouli-
dou et al., 2021) also employ the same fairness con-
straint of our work. The objective functions of these
problems are, however, different from ours, so their
algorithms are not applicable to our problem.

Problem of k-clustering with different fairness
definition. There are many fairness definitions even
only in clustering problems. For example, Backurs
et al. (2019) and Chierichetti et al. (2017) assume that
there exist only two groups, and considered a con-
straint such that each cluster has a balanced group
distribution. This fairness definition was generalized
so that any number of groups is available. The works
in (Ahmadian et al., 2019; Bera et al., 2019, 2022; Es-
maeili et al., 2021; Dai et al., 2022) considered that
each cluster should not be dominated by points with
a specific group. Moreover, the works in (Bandyapad-
hyay et al., 2019; Almanza et al., 2022; Anegg et al.,
2020; Jia et al., 2020) proposed k-clustering with out-
liers where zi outliers are selected from each group
i. Recently, Hotegni et al. (2023) have proposed fair
range clustering which makes the number of clusters
of each group variable.

The vanilla (k, z)-center clustering problem was
studied extensively in (Bhaskara et al., 2019; Charikar
et al., 2001; Ding et al., 2019; Matthew McCutchen
and Khuller, 2008), since outliers are a standard ob-
servation in real-world data. Matthew McCutchen and
Khuller (2008) designed a (4+ γ)-approximation algo-
rithm, and a 3-approximation algorithm was proposed
in (Charikar et al., 2001). Recently, Bhaskara et al.
(2019) and Ding et al. (2019) proposed Õ(nk) time 2-
approximation algorithms, where Õ(·) hides any poly-
log factor. As competitors, we use two state-of-the-art

Fair k-center Clustering with Outliers

algorithms (Bhaskara et al., 2019; Ding et al., 2019)
by incorporating the fairness satisfaction heuristic in-
troduced in Section 1.2.

3 Our Algorithm

We assume that we can have r, a guess of r∗k,z,m, such
that r ≥ r∗k,z,m. This guess is done offline, similar to
(Bhaskara et al., 2019; Chiplunkar et al., 2020). By
using r as one of the inputs, our algorithm (Algorithm
1) selects k =

∑
ki centers. Our algorithm builds on

the vanilla (k, z)-clustering algorithm (Bhaskara et al.,
2019). We extend this algorithm so that it can deal
with the vanilla (k, (1 + ϵ)z)-clustering problem and
can prepare center replacements to satisfy the fairness
constraint. In a nutshell, our algorithm has two steps:
a vanilla (k, (1 + ϵ)z)-clustering step (lines 1–22) and
a fairness satisfaction step (lines 23–29).

The first step obtains at most k centers that do not
take fairness into account. Specifically, we first initial-
ize our solution S by a random point in P . Then, S
is iteratively updated by a point p′ randomly sampled
from a set T of points p with dist(p, S) > 2r when
|T | > (1 + ϵ)z. At the same time, we build a concep-
tually cluster-group bipartite graph, i.e., there is an
edge between a cluster and a group i iff the cluster
contains at least one point ∈ Pi. In Algorithm 1, the
vertices representing a cluster center and a group i are
denoted by p′ and vi, respectively. Also, s and t repre-
sent start and termination vertices, respectively. The
weight (capacity) of the edge between vi and t is ki,
suggesting that group i can have at most ki centers.
The weight of the edge between p′ and vi is 1, and that
of the edge between p′ and s is also 1.

Note that if we run a state-of-the-art vanilla (k, z)-
clustering algorithm (Ding et al., 2019) or the origi-
nal algorithm of (Bhaskara et al., 2019) in this step,
we cannot obtain the error-bounded result and perfor-
mance guarantee. In addition, our approach in this
step is essentially different from those of fair k-center
algorithms (Chiplunkar et al., 2020; Jones et al., 2020;
Kleindessner et al., 2019). Thanks to the above oper-
ation, we do not need to scan P after this step, and
the time to satisfy the fairness is independent of n, see
Proposition 1.

The second step is triggered iff |S| < k or S violates
the fairness constraint, i.e., there is a group i in S such
that the number of centers in Pi is more than ki. In
this case, we obtain k′ ≤ k cluster-group pairs that
do not violate the fairness constraint via maximum
bipartite matching (or solving the max-flow problem).
Based on these pairs, we replace some centers in S to
satisfy the fairness constraint. If k′ < k, we choose (k−
k′) centers arbitrarily so that the fairness constraint is

Algorithm 1: Fair (k, (1 + ϵ)z)-Center Clus-
tering
Input: P , k, {k1, k2, ..., km}, z, ϵ, and r (a guess of

r∗k,z,m)

1: S ← {p′} ▷ p′ is a random point in P

2: V ← {s, t, p′, v1, ..., vm} ▷ a set of vertices

3: E ← {(s, p′, 1), (v1, t, k1), ..., (vm, t, km)} ▷ a set

of edges

4: while |S| < k do
5: T ← ∅
6: for each p ∈ P do
7: if minp′∈S dist(p, p′) > 2r then
8: T ← T ∪ {p}
9: if p′ is the nearest center of p then

10: Add p into the cluster of p′

11: Remove p from the cluster of p′′, where p′′

is the previous nearest center of p
12: if p′ newly has group i then
13: E ← E ∪ {(p′, vi, 1)}
14: if p′′ loses group i then
15: E ← E\{(p′′, vi, 1)}
16: if |T | > (1 + ϵ)z then
17: p′ ← a randomly chosen point in T
18: S ← S ∪ {p′}, V ← V ∪ {p′}
19: else
20: break
21: if |S| = k then
22: Run lines 6–15 without dealing with T
23: if |S| < k or S violates the fairness constraint

then
24: {(a, i), ..., (b, j)} ← a max-flow algorithm on

G = (V,E)
25: for each (x, y) ∈ {(a, i), ..., (b, j)} do
26: Let cx be the center obtained at the a-th

iteration in lines 2–18
27: cx ← p such that p ∈ Py, p exists in the

cluster of cx, and dist(cx, p) ≤ r
28: if |{(a, i), ..., (b, j)}| = k′ < k then
29: Choose (k − k′) centers arbitrarily so that

the fairness constraint is not violated
30: return S

not violated. Finally, we return S.

3.1 Fairness Satisfaction and Time/Space
Cost

Sections 3.1 and 3.2 address a non-trivial task of an-
alyzing the performance of Algorithm 1, i.e., proving
Theorem 1. First, we have the following results.

Lemma 1. Algorithm 1 always returns k centers with-
out violating the fairness constraint.

Daichi Amagata

Proof. (i) The maximum bipartite matching (or
max-flow) problem returns k′ ≤ k cluster-group pairs
that do not violate the fairness constraint, because the
capacity of edge (vi, t), where t is the termination (or
sink) vertex, is ki, see line 3 of Algorithm 1. (That is,
“at most” ki centers are selected from group i.) (ii)
If the maximum bipartite matching problem returns
k′ < k cluster-group pairs, there must exist at least
a group i with “less than” ki centers. Hence, the re-
maining (k − k′) centers are arbitrarily chosen from
such groups so that they do not violate the fairness
constraint. □

Proposition 1. Algorithm 1 needs O(nk) time.

Proof. Let us focus on the first step. The first iter-
ation needs O(1) + O(m) = O(m) time, because it is
dominated by initializing m edges. We next consider
the j-th iteration, where j ∈ [2, k]. Given a point in
P , updating T needs O(1) time. The edge update cost
incurred in lines 12–15 can be done in O(1) time by us-
ing an inverted file that is a set of postings lists where
their keys are groups. Specifically, each center p′ main-
tains its cluster members by postings lists P ′(i) that
return cluster members belonging to Pi. That is, if p

′

is the nearest center of p and p ∈ Pi, p is maintained by
P ′(i). This structure is based on a hash table, thus its
amortized update time is O(1), meaning that evaluat-
ing lines 12 and 14 needs O(1) time. It is now easy to
see that the j-th iteration needs n×O(1) = O(n) time.
Then, the first step needs O(m)+(k−1)O(n) = O(nk)
time.

Next, we analyze the second step. By using Dinic’s
max-flow algorithm that runs in O(

√
|V ||E|) time, we

can obtain at most k cluster-group pairs in O(
√
kkm)

time, since |V | ≤ k + m + 2, |E| ≤ km, and m ≤ k.
Cluster center replacement based on the pairs (and
choosing arbitrary (k − k′) centers) can be done in
O(k) time, through the inverted file structure.

For a given P , m = O(1), thereby the total time is
O(nk) +O(

√
kk) = O(nk). □

Proposition 2. Algorithm 1 needs O(n+ km) space.

Proof. Algorithm 1 maintains T whose size is at most
n, a bipartite graph with at most km edges, and the
cluster members. Clearly, the total number of mem-
bers is n, so this proposition holds. □

3.2 Approximation Bound and Success
Probability

We here provide our approximation bound to prove
Theorem 1. We introduce a lemma that derives our
success probability. Hereinafter, we call non-outlier
points inliers.

Lemma 2. Focus on the first step of Algorithm 1. At
its first iteration, the probability of sampling an inlier
is 1− z

n . At its t-th iteration, where t ≥ 2, the proba-
bility of sampling an inlier is at least ϵ

1+ϵ .

We use cj to denote the center selected at the j-th
iteration of the first step of Algorithm 1.

Fact 1. Assume that S contains only inliers. In this
case, for any two centers cj , cj′ ∈ S, they respectively
belong to C∗

l and C∗
l′ such that l ̸= l′.

Let r be an λ-approximation of r∗k,z,m for λ ≥ 1, i.e.,
r ≤ λr∗k,z,m. We prove that the first step of Algorithm
1 probabilistically guarantees 2λ-approximation of the
vanilla (k, (1 + ϵ)z)-center clustering problem.

Lemma 3. Given r such that r∗k,z,m ≤ r ≤ λr∗k,z,m, the
first step of Algorithm 1 yields a 2λ-approximation re-
sult for the vanilla (k, (1+ ϵ)z)-center clustering prob-
lem with probability at least (1− z

n)(
ϵ

1+ϵ)
k−1.

Proof. Assume that S returned by the first step of
Algorithm 1 contains only inliers, and this happens
with probability at least (1− z

n)(
ϵ

1+ϵ)
k−1, which is seen

from Lemma 2. We have two cases in the first step:
|S| = k or |S| < k. Consider the former case. Fact 1
suggests that all centers in S belong to different C∗.
From the triangle inequality, all points in P\Pout can
be covered by k balls centered at the points in S with
radius 2r∗k,z,m. Next, consider the latter case. This
case means that Algorithm 1 has |T | ≤ (1+ ϵ)z at the
t-th iteration, where t < k. In this case, every point
p ∈ P\T has dist(p, S) ≤ 2r. That is, by removing the
points in T , the other points can be covered by (t− 1)
balls centered at the points in S with radius 2r, and
the remaining (k − t + 1) centers can be added into
S arbitrarily. To summarize, in both cases, at least
n − (1 + ϵ)z points can be covered by exactly k balls
centered at the points in S with radius 2r. □

We next consider the fairness constraint and introduce
an important lemma that derives Theorem 1.

Lemma 4. Given r such that r∗k,z,m ≤ r ≤ λr∗k,z,m, Al-
gorithm 1 yields a 3λ-approximate solution, with prob-
ability at least (1− z

n)(
ϵ

1+ϵ)
k−1.

Proof. Assume again that S returned by the first
step of Algorithm 1 contains only inliers. Furthermore,
assume that a center cj ∈ S selected by Algorithm 1
belongs to C∗

l in the optimal solution. From Fact 1, c∗l
belongs to the cluster of cj in Algorithm 1. If c∗l ∈ Pi,
E certainly has edge (cj , vi). This observation sug-
gests that there certainly exist feasible cluster-group
pairs for the centers in S, and we can obtain them via
the maximum bipartite graph matching. Therefore, we
can assume that the cluster of cj must have a center

Fair k-center Clustering with Outliers

belonging to Pi as a result of the matching. In the clus-
ter of cj , there exists at least one point p that belongs
to Pi and has dist(cj , p) ≤ r, because dist(cj , c

∗
l) ≤ r.

Hence, if we replace cj with such a point, the radius
of this cluster can be extended at most r from the tri-
angle inequality. Putting this and Lemma 3 together,
it is now easy to see that a 3λ-approximate solution is
obtained when |S| = k. Even when |S| < k, the cen-
ter replacements based on the matching result trivially
do not violate the fairness constraint. The remaining
centers can be arbitrarily chosen from P\T so that the
fairness constraint is not violated. This case also has
a 3λ-approximate solution from Lemma 3, so Lemma
4 holds. □

From Lemma 4, it is straightforward that, for r such
that r∗k,z,m ≤ r ≤ (1+ γ)r∗k,z,m, Algorithm 1 returns a
(3+γ′)-approximate solution with probability at least
(1− z

n)(
ϵ

1+ϵ)
k−1, where γ′ = γ/3. Now it is clear that

Theorem 1 holds.

3.3 Discussion

Justification. Although our success probability has
an exponent factor, it is necessary to satisfy the
approximation bound, the fairness constraint, the
bounded number of removed points, and the linear
time at the same time, as justified below.

Proposition 3. For any S such that |S| ≤ k and
S contains at least one outlier, it is not guaranteed
that (i) we have the worst-case approximation bound
of r∗k,z,m and (ii) we can fix S so that it certainly sat-
isfies |S| = k, the fairness constraint, and a guaranteed
approximation bound of r∗k,z,m in polynomial time if P
̸= NP.

Even the state-of-the-art vanilla (k, z)-center cluster-
ing algorithm (Ding et al., 2019) has a similar result
w.r.t. success probability. Notice that Theorem 1 and
Proposition 3 suggest what is possible (Theorem 1)
and what is impossible (Proposition 3) w.r.t. the rela-
tionship between running time and success probability.

W next show that the success probability can be im-
proved by sacrificing the time complexity a bit.

Guessing r∗k,z,m. Boole’s inequality derives the num-
ber β of trials necessary to guarantee returning a 3λ-
approximate result at least once with constant proba-
bility, as discussed later. Now notice:

Fact 2. We have r∗k,z,1 ≤ r∗k,z,m ≤ r∗k,0,m.

This provides a lower-bound and an upper-bound of
r∗k,z,m, and this observation enables guessing r∗k,z,m.
(These bounds can be easily obtained offline by exist-
ing algorithms for the corresponding problems.) By

running Algorithm 1 with r = r∗k,z,1, (1+ γ)r∗k,z,1, (1+

γ)2r∗k,z,1, ..., r
∗
k,0,m, we can have r = (1 + γ)r∗k,z,m for

some γ > 0. If r∗k,0,m/r∗k,z,1 = poly(n), this guessing

needs O(βγ log n) = Õ(1) trials (as γ, ϵ, and k are fixed

during the trials).

Obtaining a (3 + γ′)-approximation result with
constant probability. Recall that our algorithm re-
turns a 3λ-approximate solution with probability at
least (1 − z

n)(
ϵ

1+ϵ)
k−1 by using r such that r∗k,z,m ≤

r ≤ λr∗k,z,m. From Boole’s inequality, we can obtain
a 3λ-approximate solution with constant probability
by repeating our algorithm β = O(n

n−z (
1+ϵ
ϵ)k−1) ≈

O(1) times. (Therefore, we can obtain a (3 + γ′)-
approximation result with constant probability in
O(nk(1+ϵ

ϵ)k−1) time.) This assumes that z ≪ n,
k = O(1), and ϵ = O(1), as we do not vary k and ϵ in
the trials. For each trial of a radius r ∈ [r∗k,z,1, r

∗
k,0,m],

we run our algorithm β times. If r ≥ r∗k,z,m, we obtain
a 3λ-approximate solution with constant probability.
Therefore, with constant probability, we can obtain a
(3 + γ′)-approximate result that is the best solution
among the ones obtained by the trials of r ≥ r∗k,z,m.

Without repeating β times, even when r ≥ r∗k,z,m,
we may fail to obtain a 3λ-approximate solution and
the success probability decreases exponentially, i.e.,
the success probability becomes (approximately) (1−
z
n)(

ϵ
1+ϵ)

k−1 to the power of O(log n). This suggests
that the (k, (1 + ϵ)z)-center clustering problem has a
trade-off relationship between time and success prob-
ability.

Optimizing practical performance through ran-
dom sampling. Proposition 1 suggests that the main
bottleneck of our algorithm is its first step. We mini-
mize this cost through random sampling, and we intro-
duce a corollary derived from Theorem 3 of (Charikar
et al., 2003).

Corollary 1. Let X be a set of O(nk lnn
(1+ϵ)2z) points

randomly sampled from P . If S is a λ-approximate
solution of (k, (1 + ϵ)z)-clustering on X, S is a λ-
approximate solution of (k, (1 + ϵ)2z)-clustering on P
with probability at least 1− 2/n2.

From this corollary, we extend Algorithm 1 to accel-
erate its first step. Note that existing fair k-center
clustering works (Chiplunkar et al., 2020; Kleindess-
ner et al., 2019; Jones et al., 2020) do not consider
efficiency improvement by data size reduction.

In the extended first step, we randomly sample
O(nk lnn

(1+ϵ)2z) points from P , select at most k centers via

iterations, and then build an inverted file. This exten-
sion yields a slight difference compared with our main

Daichi Amagata

Table 1: Summary of real datasets

Dataset n d m Description (A set of ...)

Adult-gender 48,843 6 2 U.S.A. census data (gender is used as group)
Adult-race 48,843 6 7 U.S.A. census data (race is used as group)
Covertype 580,812 10 7 cartographic variables (cover type is used as group)

Diabetes-gender 99,293 7 3 diabetes patient records (gender is used as group)
Diabetes–race 99,293 7 5 diabetes patient records (race is used as group)
KDD-Cup 311,029 38 16 packet records (attack type is used as group)

Mirai 764,137 115 2 packet records (attack/normal is used as group)

result, i.e., it achieves a bi-criteria approximation1.
Due to the inverted file building, which is necessary
to satisfy the fairness constraint, the O(nk) time of
Algorithm 1 remains. However, random samples can
derive the following practical merits. (i) They reduce
the time incurred by the iterations in the first step. (ii)
As opposed to the theoretical result, they improve the
practical success probability, because random samples
contain fewer outliers than P .

4 Experiments

All experiments were conducted on a Ubuntu machine
equipped with Xeon Platinum 8268 CPU@2.90GHz
and 768GB RAM. Codes are available at an anony-
mous GitHub repository2.

Competitors. We compared our algorithms3 with
the following competitors that return k centers and do
not violate the fairness constraint. (These competitors
have no theoretical approximation bound and success
probability in our problem.)

(i) ESA19 (Ding et al., 2019): this is an O(nk log(1 +
ϵ)z) time algorithm based on Gonzalez’s technique for
the vanilla (k, (1 + ϵ)z)-center clustering problem. We
incorporated the heuristic considered in (Jones et al.,
2020; Kleindessner et al., 2019) into ESA19 (the one
introduced in Section 1.2).

(ii) NeurIPS19 (Bhaskara et al., 2019): this is an
O(nk) time algorithm for the vanilla (k, z)-center clus-
tering problem. We also incorporated the same heuris-
tic into this algorithm to satisfy the fairness constraint.

(iii) ICML20-Jones (Jones et al., 2020) and (iv)
Streaming (Chiplunkar et al., 2020): these are O(nk)

1The number of removed points is at most (1 + ϵ)2z to
satisfy a (3+ γ′)-approximate result theoretically (and the
success probability has an additional 1− 2/n2 ≈ 1 factor).

2https://github.com/amgt-d1/
Fair-k-center-w-outliers

3We obtained r, a guess of r∗k,z,m, offline as with
(Bhaskara et al., 2019; Chiplunkar et al., 2020; Im et al.,
2020), and we set γ = 0.1.

time algorithms for the fair k-center clustering prob-
lem that does not consider outliers.

After we ran these algorithms, we removed (1 + ϵ)z
points with the furthest distance to their nearest clus-
ters regardless of the theoretical guarantee. To be fair,
all algorithms were implemented in C++, compiled by
g++ 9.3.0 with O3 optimization, and single threaded.

Datasets. We used seven real datasets (Adult-gender,
Adult-race, Covertype, Diabetes-gender, Diabetes-
race, KDD-Cup, and Mirai) that are usually used as
benchmark of the k-center clustering. They are pub-
licly available at UCI Machine Learning Repository4,
and their summary is depicted in Table 1, where d
represents the dimensionality. For diabetes, we re-
moved records with missing values, and for Covertype
and KDD-Cup, we removed binary attributes. After
this, we injected z outliers into a given dataset so that
they exist outside the data space uniformly at random.
We used Euclidean distance as metric. The above set-
ting follows those in (Bhaskara et al., 2019; Ceccarello
et al., 2019; Ding et al., 2019; Im et al., 2020).

Result. We set k = 100, z = 200, and ϵ = 9 by de-
fault. In addition, as with (Jones et al., 2020), we set

ki = ⌈ |Pi|
n k⌉ so that the centers have the same propor-

tionality as the entire dataset. We ran each algorithm
100 times by varying random seeds, and Tables 2 and
3 show maximum radius (i.e., maxp∈P\Pout

dist(p, S))
and running time results, respectively. Ours-RS rep-
resents our algorithm with random sampling.

Table 2 shows that our algorithms provide better clus-
tering results (i.e., the maximum radius, which is
sometimes called cost, is minimized) than the other
algorithms. In addition, from the standard deviation
result, our algorithm with random sampling is more
stable than the others. When m is relatively large
(e.g., KDD-Cup), all algorithms tend to have a high
standard deviation. Our algorithm with random sam-
pling is still robust against m, as it provides a higher
clustering result than the others on KDD-Cup. It is
also important to notice that ICML20-Jones, which

4https://archive.ics.uci.edu/ml/index.php

https://github.com/amgt-d1/Fair-k-center-w-outliers
https://github.com/amgt-d1/Fair-k-center-w-outliers
https://archive.ics.uci.edu/ml/index.php

Fair k-center Clustering with Outliers

Table 2: Comparison of mean maximum radius (standard deviation), where k = 100, ki = ⌈ |Pi|
n k⌉, z = 200, and

ϵ = 9.

Dataset ESA19 NeurIPS19 ICML20-Jones Streaming Ours Ours-RS

Adult-gender 38.59 (2.72) 30.76 (1.03) 71.37 (10.76) 30.89 (1.16) 20.03 (0.31) 20.16 (0.12)
Adult-race 37.63 (2.20) 30.65 (0.88) 71.45 (10.98) 30.68 (1.04) 20.00 (0.31) 20.12 (0.10)
Covertype 61.74 (2.38) 70.54 (1.79) 120.91 (9.43) 70.53 (3.14) 43.26 (0.79) 42.62 (0.33)

Diabetes-gender 42.99 (2.68) 39.89 (1.21) 104.54 (13.48) 40.29 (1.84) 25.24 (0.32) 25.32 (0.08)
Diabetes-race 35.65 (2.77) 39.80 (1.19) 104.55 (13.44) 40.18 (1.84) 25.34 (0.32) 25.27 (0.09)
KDD-Cup 84.62 (10.38) 96.18 (9.66) 240.64 (18.60) 96.32 (6.36) 69.52 (13.61) 40.04 (2.60)

Mirai 142.16 (14.42) 98.89 (5.13) 347.29 (24.18) 98.87 (5.04) 62.02 (5.58) 59.47 (2.05)

Table 3: Comparison of average running time [sec], where k = 100, ki = ⌈ |Pi|
n k⌉, z = 200, and ϵ = 9.

Dataset ESA19 NeurIPS19 ICML20-Jones Streaming Ours Ours-RS

Adult-gender 0.38 0.04 1.01 0.03 0.07 0.03
Adult-race 0.34 0.04 0.87 0.05 0.05 0.03
Covertype 3.03 0.67 10.95 1.01 1.23 0.57

Diabetes-gender 0.63 0.07 1.85 0.08 0.16 0.07
Diabetes-race 0.59 0.07 1.66 0.08 0.14 0.08
KDD-Cup 1.81 0.46 3.59 1.17 0.53 0.14

Mirai 12.60 7.10 40.55 10.85 8.16 4.27

ESA19 NeurIPS19 ICML20-Jones Streaming Ours Ours-RS

0

10

20

30

40

50

60

70

80

90

50 100 150 200

m
a
x
 r

a
d
iu

s

k (Adult-gender)

(a) Adult-gender (radius)

0

50

100

150

200

250

300

350

400

50 100 150 200

m
a
x
 r

a
d
iu

s

k (Mirai)

(b) Mirai (radius)

0.01

0.1

1

10

50 100 150 200

R
u
n
n
in

g
 t

im
e
 [

s
e
c
]

k (Adult-gender)

(c) Adult-gender (time)

1

10

100

1000

50 100 150 200

R
u
n
n
in

g
 t

im
e
 [

s
e
c
]

k (Mirai)

(d) Mirai (time)

Figure 1: Impact of k on maximum radius and running time

retrieves the furthest point in each iteration, yields a
worse result than the others. This suggests that simply
adding the furthest point into S is no more effective
when P contains outliers.

Table 3 shows that our algorithm with random sam-
pling is usually faster than the others. Although
ICML20-Jones runs in O(nk) time, it is the slowest,
because it incurs a large time to satisfy the fairness
constraint, as seen in Table 4 (which appears in our
supplementary file).

Impact of k. We study the impact of k, and we here
show the results on two datasets due to space limita-
tion (those on the remaining datasets are similar). The
tendency of the above results does not change even if k
varies, which is seen from Figure 1 (notice that y-axis
of Figures 1(c)–1(d) is log-scale).

Impacts of z and ϵ are reported in our supplemen-

tary file. In a nutshell, our algorithms are robust
against z and ϵ, obtaining better (or at least competi-
tive) performances than (with) the competitors.

Also, we investigated the impacts of m and n by using
synthetic datasets. These results are reported in our
supplementary file.

5 Conclusion

This paper addressed the problem of fair k-center
clustering with outliers. For this problem, we pro-
posed an O(nk) time algorithm that achieves an al-
most 3-approximation bound with probabilistic guar-
antee. Our experimental results show that our algo-
rithm is not only theoretically sound but also empiri-
cally effective and efficient.

Daichi Amagata

Acknowledgements

This work was partially supported by AIP Accelera-
tion Research JPMJCR23U2 and Adopting Sustain-
able Partnerships for Innovative Research Ecosystem
(ASPIRE) JPMJAP2328, JST.

References

Ahmadian, S., Epasto, A., Kumar, R., and Mahdian,
M. (2019). Clustering without over-representation.
In KDD, pages 267–275.

Almanza, M., Epasto, A., Panconesi, A., and Re, G.
(2022). k-clustering with fair outliers. In WSDM,
pages 5–15.

Alon, N., Dar, S., Parnas, M., and Ron, D. (2003).
Testing of clustering. SIAM Journal on Discrete
Mathematics, 16(3):393–417.

Amagata, D. (2022). Scalable and accurate density-
peaks clustering on fully dynamic data. In IEEE
Big Data, pages 445–454.

Amagata, D. (2023). Diversity maximization in the
presence of outliers. In AAAI, volume 37, pages
12338–12345.

Amagata, D. and Hara, T. (2021). Fast density-
peaks clustering: multicore-based parallelization ap-
proach. In SIGMOD, pages 49–61.

Amagata, D. and Hara, T. (2024). Efficient density-
peaks clustering algorithms on static and dynamic
data in euclidean space. ACM Transactions on
Knowledge Discovery from Data, 18(1):1–27.

Amagata, D., Onizuka, M., and Hara, T. (2021). Fast
and exact outlier detection in metric spaces: a prox-
imity graph-based approach. In SIGMOD, pages 36–
48.

Amagata, D., Onizuka, M., and Hara, T. (2022). Fast,
exact, and parallel-friendly outlier detection algo-
rithms with proximity graph in metric spaces. The
VLDB Journal, 31(4):797–821.

Anegg, G., Angelidakis, H., Kurpisz, A., and Zen-
klusen, R. (2020). A technique for obtaining true ap-
proximations for k-center with covering constraints.
In IPCO, pages 52–65.

Angelidakis, H., Kurpisz, A., Sering, L., and Zen-
klusen, R. (2022). Fair and fast k-center clustering
for data summarization. In ICML, pages 669–702.

Angwin, J., Larson, J., Mattu, S., and Kirchner, L.
(2016). Machine bias. In Ethics of Data and Ana-
lytics, pages 254–264.

Awasthi, P., Balcan, M. F., and Long, P. M. (2017).
The power of localization for efficiently learning lin-
ear separators with noise. Journal of the ACM,
63(6):1–27.

Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakil-
ian, A., and Wagner, T. (2019). Scalable fair clus-
tering. In ICML, pages 405–413. PMLR.

Bandyapadhyay, S., Inamdar, T., Pai, S., and
Varadarajan, K. (2019). A constant approximation
for colorful k-center. In ESA, pages 12:1–12:14.

Bera, S., Chakrabarty, D., Flores, N., and Negahbani,
M. (2019). Fair algorithms for clustering. NeurIPS,
32.

Bera, S. K., Das, S., Galhotra, S., and Kale, S. S.
(2022). Fair k-center clustering in mapreduce and
streaming settings. In Web Conference, pages 1414–
1422.

Bhaskara, A., Vadgama, S., and Xu, H. (2019). Greedy
sampling for approximate clustering in the presence
of outliers. NeurIPS, 32.

Buolamwini, J. and Gebru, T. (2018). Gender shades:
Intersectional accuracy disparities in commercial
gender classification. In FAccT, pages 77–91.

Ceccarello, M., Pietracaprina, A., and Pucci, G.
(2019). Solving k-center clustering (with outliers)
in mapreduce and streaming, almost as accurately
as sequentially. PVLDB, 12(7):766–778.

Celis, E., Keswani, V., Straszak, D., Deshpande, A.,
Kathuria, T., and Vishnoi, N. (2018). Fair and
diverse dpp-based data summarization. In ICML,
pages 716–725.

Charikar, M., Khuller, S., Mount, D. M., and
Narasimhan, G. (2001). Algorithms for facility lo-
cation problems with outliers. In SODA, pages 642–
651.

Charikar, M., O’Callaghan, L., and Panigrahy, R.
(2003). Better streaming algorithms for clustering
problems. In STOC, pages 30–39.

Chen, D. Z., Li, J., Liang, H., and Wang, H. (2016).
Matroid and knapsack center problems. Algorith-
mica, 75(1):27–52.

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassil-
vitskii, S. (2017). Fair clustering through fairlets.
NIPS, 30.

Chiplunkar, A., Kale, S., and Ramamoorthy, S. N.
(2020). How to solve fair k-center in massive data
models. In ICML, pages 1877–1886.

Dai, Z., Makarychev, Y., and Vakilian, A. (2022).
Fair representation clustering with several protected
classes. In FAccT, pages 814–823.

Diakonikolas, I., Kane, D. M., and Manurangsi, P.
(2020). The complexity of adversarially robust
proper learning of halfspaces with agnostic noise.
NeurIPS, 33:20449–20461.

Fair k-center Clustering with Outliers

Ding, H., Yu, H., and Wang, Z. (2019). Greedy strat-
egy works for k-center clustering with outliers and
coreset construction. In ESA.

Esmaeili, S., Brubach, B., Srinivasan, A., and Dicker-
son, J. (2021). Fair clustering under a bounded cost.
NeurIPS, 34:14345–14357.

Gan, J., Golin, M., Yang, Z., and Zhang, Y. (2023).
Fair k-center: a coreset approach in low dimensions.
arXiv preprint arXiv:2302.09911.

Gonzalez, T. F. (1985). Clustering to minimize the
maximum intercluster distance. Theoretical Com-
puter Science, 38:293–306.

Gupta, S., Kumar, R., Lu, K., Moseley, B., and Vassil-
vitskii, S. (2017). Local search methods for k-means
with outliers. PVLDB, 10(7):757–768.

Guruswami, V. and Raghavendra, P. (2009). Hardness
of learning halfspaces with noise. SIAM Journal on
Computing, 39(2):742–765.

Hajiaghayi, M., Khandekar, R., and Kortsarz, G.
(2010). Budgeted red-blue median and its gener-
alizations. In ESA, pages 314–325.

Hotegni, S. S., Mahabadi, S., and Vakilian, A. (2023).
Approximation algorithms for fair range clustering.
In ICML, pages 13270–13284.

Huang, L., Jiang, S. H.-C., Li, J., and Wu, X. (2018).
Epsilon-coresets for clustering (with outliers) in dou-
bling metrics. In FOCS, pages 814–825.

Im, S., Qaem, M. M., Moseley, B., Sun, X., and Zhou,
R. (2020). Fast noise removal for k-means clustering.
In AISTATS, pages 456–466.

Jia, X., Sheth, K., and Svensson, O. (2020). Fair col-
orful k-center clustering. In IPCO, pages 209–222.

Jones, M., Nguyen, H., and Nguyen, T. (2020). Fair
k-centers via maximum matching. In ICML, pages
4940–4949.

Kay, M., Matuszek, C., and Munson, S. A. (2015).
Unequal representation and gender stereotypes in
image search results for occupations. In CHI, pages
3819–3828.

Kleindessner, M., Awasthi, P., and Morgenstern, J.
(2019). Fair k-center clustering for data summa-
rization. In ICML, pages 3448–3457.

Krishnaswamy, R., Kumar, A., Nagarajan, V., Sab-
harwal, Y., and Saha, B. (2011). The matroid me-
dian problem. In SODA, pages 1117–1130.

Li, S. and Guo, X. (2018). Distributed k-clustering for
data with heavy noise. NeurIPS, 31.

Matthew McCutchen, R. and Khuller, S. (2008).
Streaming algorithms for k-center clustering with
outliers and with anonymity. In APPROX, pages
165–178.

Moumoulidou, Z., McGregor, A., and Meliou, A.
(2021). Diverse data selection under fairness con-
straints. In ICDT.

Sener, O. and Savarese, S. (2018). Active learning for
convolutional neural networks: A core-set approach.
In ICLR.

Tambe, P., Cappelli, P., and Yakubovich, V. (2019).
Artificial intelligence in human resources manage-
ment: Challenges and a path forward. California
Management Review, 61(4):15–42.

Thejaswi, S., Gadekar, A., Ordozgoiti, B., and Osad-
nik, M. (2022). Clustering with fair-center repre-
sentation: Parameterized approximation algorithms
and heuristics. In KDD, pages 1749–1759.

Thejaswi, S., Ordozgoiti, B., and Gionis, A. (2021).
Diversity-aware k-median: Clustering with fair cen-
ter representation. In ECMLPKDD, pages 765–780.

Yuan, F., Diao, L., Du, D., and Liu, L. (2021). Dis-
tributed fair k-center clustering problems with out-
liers. In PDCAT, pages 430–440.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

Daichi Amagata

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Fair k-center Clustering with Outliers

A MISSING PROOFS

A.1 Proof of Claim 1

We use the same approach of proof of Lemma 1 in Bhaskara et al. (2019). Let αt be the number of times that
one of the outliers is added into S in the first t iterations. Furthermore, let nt be the number of clusters such
that C∗

i ∩ St ̸= ∅. We consider

ηt =
αt|Ft ∩ Pin|

nt
, (4)

where Pin and Ft are respectively P\Pout and F in Equation (2) at the t-th iteration. Consider sampling a point

at the (t+1)-th iteration. With probability
|C∗

i ∩Gt|
|Gt| , where Gt is G in Equation (3) at the t-th iteration, we can

sample an inlier, nt decreases by one, and αt keeps the same. On the other hand, with probability 1− |C∗
i ∩Gt|
|Gt| ,

we sample an outlier, nt keeps the same, and αt increases by one. Let fi = |C∗
i ∩ Ft| and gi = |C∗

i ∩Gt|. Then,

E[ηt+1] ≤
k∑

i=1

gi
|Gt|

αt(|Ft ∩ Pin| − fi)

nt − 1
+ (1−

k∑
i=1

gi
|Gt|

)
(αt + 1)|Ft ∩ Pin|

nt

Let f =
∑k

i=1 fi and g =
∑k

i=1 gi. Since Gt ⊆ Ft,

E[ηt+1] ≤
k∑

i=1

gi
|Gt|

αt(|Ft ∩ Pin| − fi)

nt − 1
+ (1− g

|Gt|
)
αtf + f

nt

=
αt

|Gt|(nt − 1)
(f2 −

k∑
i=1

f2
i) + (1− g

|Gt|
)
αtf + f

nt

Because fi ≤ nt, we have
∑

i f
2
i ≥

f2

nt
(Bhaskara et al., 2019). Therefore,

E[ηt+1] ≤
αtf

2

|Gt|nt
+ (1− g

|Gt|
)
αtf + f

nt
≤ ηt + (1− g

|Gt|
)
f

nt
.

Because 1− g
|Gt| ≤

z
|Gt| and f ≤ |Ft|,

E[ηt+1] ≤ ηt +
z

|Gt|
|Ft|
nt

.

By using the facts: (i) E[ηk] =
∑k−1

t=0 E[ηt+1 − ηt] and (ii) nt ≥ k − t,

E[ηk] ≤
k−1∑
t=0

|Ft|
|Gt|

z

k − t
.

Because αk = nk, we have the following result from Equation (4):

|Ft ∩ Pin| ≤
k−1∑
t=0

|Ft|
|Gt|

z

k − t
.

It is easy to see that |Gt| can be 0 in the worst case, thereby |Ft∩Pin| can be∞ (or n). This suggests that (i) this
heuristic cannot bound the number of removing points to satisfy a specific approximation bound w.r.t. radius
(meaning that it needs to remove O(n) points to satisfy 2-approximation bound) or (ii) has no approximation
bound for covering points in Ft ∩ Pin. □

A.2 Proof of Lemma 2

As for the first iteration, it is straightforward. At the t-th iteration, where t ≥ 2, we have at most z outliers, thus

sampling an inlier can be done with probability at least |T |−z
|T | . Since |T | > (1+ ϵ)z, we have |T |−z

|T | ≥
(1+ϵ)z−z
(1+ϵ)z =

ϵ
1+ϵ . □

Daichi Amagata

A.3 Proof of Fact 1

Recall that r ≥ r∗k,z,m and T contains only points p with dist(p, S) > 2r. We have dist(cj , cj′) > 2r for any two
centers cj , cj′ ∈ S. Assume that cj belongs to C∗

l in the optimal case. From the triangle inequality, cj′ cannot
belong to C∗

l , which derives the above fact. □

A.4 Proof of Proposition 3

Assume that S, which is returned by the first step of Algorithm 1, contains at least one outlier5. Furthermore,
assume that cj ∈ S is an outlier. From the proof of Lemma 4, inlier centers certainly have cluster-group pairs
that do not violate the fairness constraint. On the other hand, as cj does not belong to any optimal clusters,
the cluster of cj may not have points in a specific group that is necessary to satisfy the fairness constraint. That
is, there is a case where the maximum bipartite matching does not provide any group for the cluster of cj . In
this case, to satisfy the fairness constraint and a bounded approximation guarantee, cj has to be replaced with
an inlier in the specific group, say p, such that dist(p, S) > 2r. Finding p is, however, hard (or such points do
not exist in T), since we cannot distinguish inliers from outliers in polynomial time if P ̸= NP (that is, this is
to solve the k-center clustering with outliers, i.e., NP-hard problem, exactly), which results in case (ii). Then p
should be an arbitrary point that satisfies the fairness constraint as in Algorithm 1, but this makes the radius
of the cluster of p arbitrarily long in the worst case since p still may be an outlier and it does not belong to the
cluster of cj . This proves case (i). □

A.5 Proof of Corollary 1

Let X be a set of O(k lnn
δϵ′2) points randomly sampled from P for ϵ′ ∈ (0, 1) and δ ∈ (0, 1). Furthermore, let

r′ be the maximum radius derived from a set of k-centers obtained on X. Assume r′ = λr∗k,z,1, then the set

of k-centers provides r′ = λr∗k,z,1 even on P by removing at most (1 + ϵ′)2δn points with probability at least

1 − 2/n2 (Charikar et al., 2003). We now want (1 + ϵ′)2δn = (1 + ϵ)2z. Then, δ = (1+ϵ)2z
(1+ϵ′)2n . By fixing ϵ′, the

sample size becomes O(nk lnn
(1+ϵ)2z). □

B ADDITIONAL EXPERIMENTS

B.1 Impact of z

We report the results of our experiments with varying z in Figure 2. In terms of maximum radius, the results are
similar to those of the experiments with varying k. As for running time, our algorithm with random sampling
is the fastest or is competitive with the fastest algorithm. That is, our algorithm has the best trade-off between
time and maximum radius.

B.2 Impact of ϵ

Last, we show the results of our experiments with varying ϵ in Figure 3. They are similar to those in Figure 2.
We observe that our algorithm is robust to k, z, and ϵ w.r.t. maximum radius and its practical running time is
reasonable.

B.3 Group Fairness Matching Time

Table 4 shows that our fairness satisfaction approach is much faster than the existing techniques. We omit the
matching time of our algorithm with random sampling, as it is essentially the same as the result of Ours.

5In this case, with probability at least 3/4, S can cover (n− 4z ln k) points by using |S| balls centered at the points in
S with radius 2r (Bhaskara et al., 2019). Although this case has the approximation guarantee, the bounded number of
removed points, and the success probability, we miss the fairness satisfaction, the main focus of our problem.

Fair k-center Clustering with Outliers

ESA19 NeurIPS19 ICML20-Jones Streaming Ours Ours-RS

0

10

20

30

40

50

60

70

80

90

100 200 400 800

m
a
x
 r

a
d
iu

s

z (Adult-gender)

(a) Adult-gender (radius)

0

20

40

60

80

100

120

140

100 200 400 800

m
a
x
 r

a
d
iu

s

z (Covertype)

(b) Covertype (radius)

0

20

40

60

80

100

120

140

100 200 400 800

m
a

x
 r

a
d

iu
s

z (Diabetes-race)

(c) Diabetes-race (radius)

0

50

100

150

200

250

300

350

400

100 200 400 800

m
a
x
 r

a
d
iu

s

z (Mirai)

(d) Mirai (radius)

0.01

0.1

1

10

100 200 400 800

R
u
n
n
in

g
 t

im
e
 [

s
e
c
]

z (Adult-gender)

(e) Adult-gender (time)

0.1

1

10

100

100 200 400 800

R
u
n
n
in

g
 t

im
e
 [

s
e
c
]

z (Covertype)

(f) Covertype (time)

0.01

0.1

1

10

100 200 400 800

R
u
n
n
in

g
 t

im
e
 [

s
e
c
]

z (Diabetes-race)

(g) Diabetes-race (time)

1

10

100

100 200 400 800

R
u
n
n
in

g
 t

im
e
 [

s
e
c
]

z (Mirai)

(h) Mirai (time)

Figure 2: Impact of z on maximum radius and running time

ESA19 NeurIPS19 ICML20-Jones Streaming Ours Ours-RS

0

10

20

30

40

50

60

70

80

90

100

4 9 14 19 24 29

m
a
x
 r

a
d
iu

s

epsilon (Adult-gender)

(a) Adult-gender (radius)

0

20

40

60

80

100

120

140

160

4 9 14 19 24 29

m
a
x
 r

a
d
iu

s

epsilon (Covertype)

(b) Covertype (radius)

0

20

40

60

80

100

120

140

4 9 14 19 24 29

m
a
x
 r

a
d
iu

s

epsilon (Doabetes-race)

(c) Diabetes-race (radius)

0

50

100

150

200

250

300

350

400

4 9 14 19 24 29

m
a
x
 r

a
d
iu

s

epsilon (Mirai)

(d) Mirai (radius)

0.01

0.1

1

10

4 9 14 19 24 29

R
u
n
n
in

g
 t

im
e
 [

s
e
c
]

epsilon (Adult-gender)

(e) Adult-gender (time)

0.1

1

10

100

4 9 14 19 24 29

R
u
n
n
in

g
 t

im
e
 [

s
e
c
]

epsilon (Covertype)

(f) Covertype (time)

0.01

0.1

1

10

4 9 14 19 24 29

R
u
n
n
in

g
 t

im
e
 [

s
e
c
]

epsilon (Diabetes-race)

(g) Diabetes-race (time)

1

10

100

4 9 14 19 24 29

R
u
n
n
in

g
 t

im
e
 [

s
e
c
]

epsilon (Mirai)

(h) Mirai (time)

Figure 3: Impact of ϵ on maximum radius and running time

Table 4: Comparison of matching time [millisec], where k = 100, ki = ⌈ |Pi|
n k⌉, z = 200, and ϵ = 9.

Dataset ICML20-Jones Streaming Ours

Adult-gender 980.12 0.99 0.01
Adult-race 842.82 1.03 0.01
Covertype 10358.80 1.03 0.02

Diabetes-gender 1792.31 1.11 0.01
Diabetes-race 1605.02 1.00 0.01
KDD-Cup 3156.84 1.59 0.04

Mirai 33183.30 1.17 0.02

Daichi Amagata

Table 5: Maximum radius and running time of our algorithm (with random sampling) with different m on
synthetic dataset

m 10 20 30 40 50

Maximum radius 4.90 (5.13) 4.89 (5.14) 4.91 (5.11) 4.94 (5.20) 4.93 (5.20)
Time [sec] 0.13 (0.03) 0.13 (0.03) 0.13 (0.03) 0.13 (0.03) 0.13 (0.03)

Table 6: Maximum radius of our algorithm (with random sampling) with different n on synthetic dataset

n 100,000 250,000 500,000 750,000 1,000,000

Maximum radius 4.90 (5.13) 5.15 (5.37) 5.39 (5.64) 5.43 (5.77) 5.66 (5.84)

B.4 Result on Synthetic Datasets

Dataset. We next confirm the practical scalablity of our algorithm (with random sampling) w.r.t. m and n. To
do this, we generated synthetic datasets that have 50 Gaussian clusters in a 5-dimensional space. We assigned
each point with one group uniformly at random. Outliers were injected as with the real datasets case.

Impact of m. We set n = 100, 000 and studied how the performance of our algorithm (with random sampling)
varies by varying m (k = 50 and ki was set in the same way as in the experiments on real datasets). We ran
our algorithm (with random sampling) 100 times for each m ∈ [10, 50]. Recall that m ≤ k if all groups have to
appear as centers.

Table 5 shows the maximum radius and running time of our algorithm (with random sampling) with different
m. Our algorithm yields a stable result as its maximum radius does not vary with different m (under the same
data distribution). This is a similar result as those on Adult and Diabetes. The running time result also does
not vary.

Impact of n. We last confirm how the maximum radius yielded by our algorithm (with random sampling) varies
with different n by using synthetic datasets. (Its running time is linear to n, as seen in Theorem 2.) We fixed
m = 10, and Table 6 shows the result. As n increases, the maximum radius increases. This is reasonable: a
larger n means that we have more points, thus covering them generally needs a larger radius. Nevertheless, the
increment of the maximum radius is slight, see the cases where n = 100, 000 and n = 1, 000, 000.

	Introduction
	Preliminary
	Combination of Known Techniques Cannot Have Theoretical Bound
	Our Contribution

	Related Work
	Our Algorithm
	Fairness Satisfaction and Time/Space Cost
	Approximation Bound and Success Probability
	Discussion

	Experiments
	Conclusion
	MISSING PROOFS
	Proof of Claim 1
	Proof of Lemma 2
	Proof of Fact 1
	Proof of Proposition 3
	Proof of Corollary 1

	ADDITIONAL EXPERIMENTS
	Impact of z
	Impact of
	Group Fairness Matching Time
	Result on Synthetic Datasets

