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Abstract

Multi-objective optimization is a class of op-
timization problems with multiple conflicting
objectives. We study offline optimization of
multi-objective policies from data collected
by a previously deployed policy. We propose
a pessimistic estimator for policy values that
can be easily plugged into existing formulas
for hypervolume computation and optimized.
The estimator is based on inverse propensity
scores (IPS), and improves upon a naive IPS
estimator in both theory and experiments.
Our analysis is general, and applies beyond
our IPS estimators and methods for optimiz-
ing them.

1 INTRODUCTION

Multi-objective optimization (MOO) is a class of op-
timization problems with multiple conflicting objec-
tives (Keeney and Raiffa, 1993; Emmerich and Deutz,
2018). Many real-world problems have multiple ob-
jectives, such as in economics (Ponsich et al., 2013),
engineering (Marler and Arora, 2004), product design
and manufacturing (Wang et al., 2011), and logistics
(Xifeng et al., 2013). Therefore, MOO has many suc-
cessful applications. MOO can help a system designer
to trade off multiple objectives subject to their prefer-
ences. As an example, when designing a product, the
form factor, cost, and failure rate need to be carefully
balanced.

MOO has been usually studied under the assumption
that the objective function is known, with a focus on
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optimizing it. When it is not known, the problem of
learning to optimize it online can be formulated as a
contextual bandit (Li et al., 2010; Chu et al., 2011),
where the goal is to learn a policy that takes the most
rewarding action in each context. In many applica-
tions, policies cannot be learned online by bandit al-
gorithms because exploration can significantly impact
user experience. However, offline data collected by a
previously deployed policy are often available. Offline,
or off-policy, optimization using such logged data is a
practical way of learning policies without costly on-
line interactions (Dudik et al., 2014; Swaminathan and
Joachims, 2015a). In this work, we study offline opti-
mization of multi-objective policies from logged data.

One motivating example for our work is the design of
a movie recommendation policy at a movie streaming
company. As a first step, the policy would be learned
offline to maximize the click-through rate (CTR), for
instance. However, after it is deployed online, it may
recommend too many recent movies, which was not
intended. To avoid the bias, a recent movie penalty is
added to the objective and a new policy is learned of-
fline. However, after it is deployed online, it may rec-
ommend mostly classic movies, which was again not
intended. Therefore, the policy has to be redesigned
again. Many iterations like this may be needed until a
policy with a good balance between recency, popular-
ity, and relevance is learned. We propose a framework
for offline policy optimization that could prevent such
costly interactions.

We study off-policy MOO from logged data and make
the following contributions. First, we formalize offline
optimization of multi-objective policies as hypervol-
ume maximization. Second, we propose a pessimistic
IPS estimator for the values of multi-objective poli-
cies that can be easily plugged into existing formu-
las for hypervolume computation. Third, we analyze
the error of the estimator when used in optimization,
and show its benefits over a naive IPS estimator. Our
analysis is general, and applies beyond our IPS esti-
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Figure 1: Each point is a value function V (π) for one
policy π ∈ Π. The red rectangle is the optimal hyper-
volume for K = 1. The union of the blue rectangles is
the optimal hypervolume for K = 2.

mators (Section 3) and methods for optimizing them
(Section 5). Finally, we show the benefit of pessimistic
optimization empirically on all major multi-objective
benchmarks: ZDT (Zitzler et al., 2000), DTLZ (Deb
et al., 2005), and WFG (Huband et al., 2005).

2 SETTING

We formally introduce the problem of policy optimiza-
tion with a single objective in Section 2.1 and gener-
alize it to multiple objectives in Section 2.2.

2.1 Single-Objective Policy Optimization

We start with introducing our notation. Random vari-
ables are capitalized, except for Greek letters like θ.
For any positive integer n, we define [n] = {1, . . . , n}.
The indicator function is 1{·}. The i-th entry of vec-
tor v is denoted by vi. If the vector is already indexed,
such as vj , we write vj,i.

In the classic contextual bandit (Li et al., 2010), the
agent observes a context x ∈ X , where X is a con-
text set ; takes an action a ∈ A, where A is an action
set ; and observes a stochastic reward Y ∼ P (· | x, a),
where P (· | x, a) is the reward distribution of action a
in context x. We denote the mean reward of action a
in context x by r(x, a) = EY∼P (·|x,a) [Y ]. A policy π
maps actions to contexts, and we denote by π(a | x)
the probability of taking action a in context x.

Let (xt)
n
t=1 be a sequence of n contexts. The expected

value of policy π in contexts (xt)
n
t=1 is

V (π) =
1

n

n∑
t=1

∑
a∈A

π(a | xt) r(xt, a) . (1)

The optimal policy maximizes the expected value,

π∗ = argmax π∈Π V (π) , (2)

where Π is a class of optimized policies. If the policy
class is sufficiently expressive, π∗ could take the action
with the highest mean reward in each context.

2.2 Multi-Objective Policy Optimization

Now we extend the setting in Section 2.1 to multiple
objectives. The main difference is that the stochastic
reward Y ∼ P (· | x, a) and its mean r(x, a) are vectors
of length m, where m is the number of objectives. We
denote by Yi and ri(x, a) the rewards in objective i ∈
[m]. The expected value of policy π, V (π) in (1), is a
vector of length m and we denote by Vi(π) the value
in objective i. We call V (π) a value function because
it maps policies to their values in multiple objectives.
To simplify exposition, we assume that the stochastic
rewards are bounded in [0, 1]m. Thus r(x, a) ∈ [0, 1]m

and V (π) ∈ [0, 1]m.

Our motivating movie recommendation problem can
be formulated in our setting as follows. The context
set X is the set of all users and the action set A is the
set of all movies that can be recommended. The user
in interaction t, xt ∈ X , is recommended movie a ∈ A
with probability π(a | xt). The mean reward r(xt, a)
could be a 2-dimensional vector, where r1(xt, a) is the
probability of clicking on a movie and r2(xt, a) is the
probability of watching it.

The main challenge in extending the optimization in
(2) to multiple objectives is that no policy may domi-
nate others in all objectives. To address this problem,
we adopt the standard approach in a-posteriori MOO
(Miettinen, 1998): we cover the Pareto front of V by
diverse policies π ∈ Π. This could be done through
random scalarization (Murata and Ishibuchi, 1995),
Pareto dominance (Deb et al., 2002), and hypervol-
ume maximization (Emmerich et al., 2005). We adopt
the last approach. In our motivating problem, the di-
verse set of policies would be learned and presented
to a human decision maker, which would then select a
policy that best matches their preferences.

We measure the diversity of policies by their hyper-
volume indicator, a popular metric in multi-objective
optimization (Emmerich et al., 2005). The hypervol-
ume indicator of policies S ⊆ Π is defined as

vol(S, V ) =

∫
y∈[0,1]m

1

{∨
π∈S

{y ≤ V (π)}

}
dy (3)

=
⋃
π∈S

m×
i=1

[0, Vi(π)] ,
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where the inequality y ≤ V (π) is applied entry-wise.
The first definition says that it is the fraction of points
y ∈ [0, 1]m such that y ≤ V (π) holds for at least one
π ∈ S. The second definition says that it is the hyper-
volume of a union of hyperrectangles corresponding to
each policy π ∈ S. To simplify terminology, we refer
to (3) as the hypervolume.

Our goal is to identify Ŝ ⊆ Π such that |Ŝ| ≤ K and
vol(Ŝ, V ) ≈ vol(Π, V ). Roughly speaking, Ŝ should
be as diverse as Π, as measured by covering a similar
space. Thus a natural generalization of (2) is the set
of K policies that maximizes the hypervolume,

S∗ = argmax S⊆Π:|S|=K vol(S, V ) . (4)

We note that (4) reduces to (2) when the number of
objectives is m = 1. We illustrate solutions to (4) for
K ∈ {1, 2} in Figure 1.

In this work, we study a setting where the value func-
tion V , an input to vol(S, V ), is estimated from logged
data. We present several estimators of V in Section 3
and analyze them in Section 4. In Section 5, we solve
(4) using the estimators.

3 OFF-POLICY MULTI-
OBJECTIVE ESTIMATION

We estimate the unknown value function V from data
collected by a logging policy. The data are logged as
follows. Let (xt)

n
t=1 be the same sequence of contexts

as in (1) and π0 be a data logging policy, which takes
action At ∼ π0(· | xt) in interaction t ∈ [n]. Let Yt =
(Yt,i)i∈[m] be the resulting reward, generated as Yt ∼
P (· | xt, At). The rewards are stochastic and sampled
independently, with means E [Yt,i |xt, At] = ri(xt, At)
and σ2-sub-Gaussian noise. This process generates a
logged dataset D = {(xt, At, Yt)}t∈[n] of size n, which
we use to estimate V .

The rest of this section is organized as follows. We
present an inverse propensity score estimator of the
value function V in Section 3.1. Our main contribu-
tion is its pessimistic variant in Section 3.2. We focus
on these estimators because they can be easily com-
bined with differentiable policies (Swaminathan and
Joachims, 2015a). Other estimators are discussed in
Appendix C. We also have a separate estimator for
each objective. Such estimators can be easily plugged
into existing hypervolume estimators. For instance, if
V̂i(π) is an estimate of Vi(π), we only need to replace
Vi(π) in (3) to compute the hypervolume under V̂i(π).
The per-objective design is due to Wang et al. (2022),
and we are the first to incorporate confidence intervals
and pessimism into it.

3.1 IPS Estimator

Inverse propensity scores (IPS) (Horvitz and Thomp-
son, 1952) are arguably the most popular approach to
estimating the mean value of a policy in the off-policy
setting. In our setting, the IPS estimate for the value
of policy π in objective i is

V̂i(π) =
1

n

n∑
t=1

π(At | xt)

π0(At | xt)
Yt,i . (5)

While V̂i(π) is an unbiased estimate of Vi(π), it tends
to have a high variance in practice. This can be miti-
gated by clipping. In particular, the clipped IPS esti-
mate (Ionides, 2008; Strehl et al., 2010) for the value
of policy π in objective i is

V̂i(π,M) =
1

n

n∑
t=1

min

{
π(At | xt)

π0(At | xt)
,M

}
Yt,i ,

where M ≥ 0 is a tunable clipping parameter. Lower
values of M yield a lower variance in the estimate in
exchange for a higher bias. When M = ∞, the esti-
mator becomes the IPS. When M = 0, the estimator
is heavily biased and returns 0 for any policy π.

3.2 Pessimistic IPS Estimator

Another approach to off-policy optimization is based
on pessimism (Swaminathan and Joachims, 2015a; Jin
et al., 2021; Hong et al., 2023), where a lower con-
fidence bound (LCB) is optimized. The LCB can be
derived based on a high-probability confidence inter-
val, which we present below.

Lemma 1. Let ci(π) = βσMπ/n for β > 0 and

Mπ =

√√√√ n∑
t=1

M2
t,π , Mt,π = max

a∈A

π(a | xt)

π0(a | xt)
. (6)

Then for any objective i ∈ [m] and policy π ∈ Π, the
bound |V̂i(π)− Vi(π)| ≤ ci(π) holds with probability at
least 1− 2 exp[−β2/2].

Proof. First, note that V̂i(π) is a weighted sum of in-
dependent σ2-sub-Gaussian rewards Yt,i and its mean
is Vi(π). Second, each reward Yt,i is scaled by at most

Mt,π. Therefore, V̂i(π) is sub-Gaussian with variance
proxy σ2M2

π/n
2, and the claim of the lemma follows

from standard concentration bounds for sub-Gaussian
random variables (Boucheron et al., 2013).

The main novelty in our work is not in deriving a pes-
simistic estimator (Jin et al., 2022). It is in applying
it to multiple objectives. Our LCB is

Li(π) = V̂i(π)− ci(π) (7)
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Figure 2: Illustration of Lemma 4 for S = {π1, π2}.
The light blue rectangles represent

∑
π∈S

∑2
i=1 ci(π),

which bounds the hypervolume difference (red area).

and we call it a pessimistic IPS estimator. When β =√
2 log(2/δ), the LCB holds with probability at least

1 − δ for any objective i ∈ [m] and policy π ∈ Π. We
note that Li(π) can be negative. Therefore, it should
be clipped from below by 0 before plugging it into (3)
instead of Vi(π).

One notable property of ci(π) is that it captures simi-
larities of policies π and π0. More specifically, ci(π) =
O(Mπ), where M2

π is the sum of maximum ratios be-
tween probabilities of taking actions under policies π
and π0 in (6). Thus ci(π) decreases as π → π0 and so
does the uncertainty in the estimate of Vi(π).

4 ANALYSIS

Next we analyze the benefit of acting pessimistically.
Our analysis assumes access to α-approximate maxi-
mization oracles.

Definition 1. Let f : S → R be a set function, where
S is a set of sets. Then S̃ ∈ S is an α-approximation
for α ∈ (0, 1] if

f(S̃) ≥ αmaxS∈S f(S) .

This assumption allows us to study the statistical effi-
ciency of our estimators without being worried about
the computational cost of maximizing them. As shown
later (Section 4.3), the quality of the oracle affects all
our bounds identically. Thus the benefit of pessimism
can be argued for any oracle and more abstract treat-
ment is appropriate. Note that when Π is discrete and
small, a computationally-efficient maximization oracle
exists for α = 1− 1/e (Section 5.1).

This section is organized as follows. In Section 4.1, we
derive error bounds for approximate maximization of

functions using their mean and pessimistic estimates.
In Section 4.2, we specialize the bounds to approxi-
mate hypervolume maximization. Finally, we compare
the bounds in Section 4.3. We want to point out that
the analyses of mean and pessimistic off-policy esti-
mators are common (Strehl et al., 2010; Swaminathan
and Joachims, 2015a; Jin et al., 2021; Yin et al., 2021;
Jin et al., 2022; Hong et al., 2023). The main nov-
elty in this work is that we generalize these to MOO.
To do this, we decompose the uncertainty of hyper-
volume into those of its points and show its effect on
optimization. Our bounds are general, and apply be-
yond our IPS estimators in Section 3 and methods for
optimizing them in Section 5. All omitted proofs are
in Appendix A.

4.1 Approximate Maximization

We find it useful to have a more abstract treatment
generalizing to arbitrary set functions. Let Π be a set
of points and S ⊆ 2Π be a subset of its power set. Let
g : S → R be a set function with an approximation
g̃ : S → R. For any set S ∈ S, let c(S) ≥ |g(S)− g̃(S)|
be an upper bound on the approximation error. Let
S∗ = argmax S∈S g(S) be the optimal solution. Then
an approximate maximization of g̃ can be related to it
as follows.

Lemma 2. Let

S̃ = argmax S∈S g̃(S)

and Ŝ be an α-approximation for α ∈ (0, 1]. Then

g(Ŝ) ≥ αg(S∗)− c(S∗)− c(Ŝ) .

Optimization of the lower bound L(S) = g̃(S) − c(S)
can be analyzed similarly.

Lemma 3. Let

S̃ = argmax S∈S L(S)

and Ŝ be an α-approximation for α ∈ (0, 1]. Then

g(Ŝ) ≥ αg(S∗)− 2c(S∗) .

Optimization of the estimated mean (Lemma 2) and
the lower bound (Lemma 3) differ as follows. In the
former, the error can be arbitrarily large if g̃ signifi-
cantly overestimates g on some set S. In the latter,
the error is bounded by the error at the optimal solu-
tion S∗ only. If this one is high, S∗ is arguably hard
to identify. Therefore, maximization of a lower bound
yields more robust solutions.
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4.2 Hypervolume Maximization

Now we use the error bounds in Section 4.1 to analyze
IPS hypervolume maximization (Section 3.1). The key
step in our argument is to relate the hypervolume un-
der an approximation Ṽ and the true function V . We
relate them through errors in individual objectives.

Lemma 4. Let Vi(π), Ṽi(π) ∈ [0, 1] for all i ∈ [m] and
π ∈ Π. Suppose that |Vi(π) − Ṽi(π)| ≤ ci(π) holds for
all i ∈ [m] and π ∈ Π. Then

|vol(S, V )− vol(S, Ṽ )| ≤ c(S) =
∑
π∈S

m∑
i=1

ci(π) .

The lemma says that the difference in the hypervol-
umes of S under V and Ṽ is bounded by the sum of
differences of Vi and Ṽi at individual policies π ∈ S.
We visualize this in Figure 2.

To obtain an error bound for IPS hypervolume maxi-
mization, we chain Lemmas 2 and 4. We assume that
the IPS estimator is clipped to [0, 1].

Theorem 1. Take the IPS estimator in (5). Suppose
that V̂i(π) ∈ [0, 1] for all i ∈ [m] and π ∈ Π, and that

|Vi(π)− V̂i(π)| ≤ ci(π) (8)

holds jointly for all i ∈ [m] and π ∈ Π with probability
at least 1− δ. Let Ŝ be an α-approximation to

S̃ = argmax S⊆Π:|S|=K vol(S, V̂ )

for α ∈ (0, 1]. Then with probability at least 1− δ,

vol(Ŝ, V ) ≥ αvol(S∗, V )− c(S∗)− c(Ŝ) ,

where c(S) =
∑

π∈S

∑m
i=1 ci(π).

Proof. Since (8) holds, we have by Lemma 4 that

|vol(S, V )− vol(S, V̂ )| ≤ c(S) .

Now we apply Lemma 2, where g(S) = vol(S, V ) and
g̃(S) = vol(S, V̂ ).

Theorem 1 says that vol(Ŝ, V ) is within a multiplica-
tive factor of α of vol(S∗, V ). The additional error de-
pends on the magnitude of confidence intervals ci(π)
at π ∈ S∗ ∪ Ŝ. We discuss this more in Section 4.3.

Now we use the error bounds from Section 4.1 to ana-
lyze pessimistic IPS hypervolume maximization (Sec-
tion 3.2). The proof is analogous to Theorem 1, with
the only difference that we apply Lemma 3 instead of
Lemma 2. We assume that the pessimistic IPS esti-
mator is clipped to [0, 1].

Theorem 2. Take the pessimistic estimator in (7).
Suppose that V̂i(π), Li(π) ∈ [0, 1] holds for all i ∈ [m]
and π ∈ Π, and that (8) holds jointly for all i ∈ [m]
and π ∈ Π with probability at least 1− δ. Let Ŝ be an
α-approximation to

S̃ = argmax S⊆Π:|S|=K vol(S,L)

for α ∈ (0, 1]. Then with probability at least 1− δ,

vol(Ŝ, V ) ≥ αvol(S∗, V )− 2c(S∗) ,

where c(S) =
∑

π∈S

∑m
i=1 ci(π).

Proof. Since (8) holds, we have by Lemma 4 that

|vol(S, V )− vol(S, V̂ )| ≤ c(S) .

Now we apply Lemma 3, where g(S) = vol(S, V ) and
g̃(S) = vol(S,L).

Theorem 2 says that vol(Ŝ, V ) is within a multiplica-
tive factor of α of vol(S∗, V ). The additional error de-
pends on the magnitude of confidence intervals ci(π)
at π ∈ S∗. We discuss this more in Section 4.3.

4.3 Discussion

Theorems 1 and 2 are similar in two ways. First, the
solution Ŝ in both is α-approximate up to the uncer-
tainty in the estimate of V . Second, the uncertainty
is characterized in the same way, by the hypervolume
confidence interval widths. When Mt,π = O(1) in (6),
the widths are

c(S) = O(βσKm/
√
n) . (9)

The O(Km) dependence arises because the difference
of hypervolumes over K points in m objectives can be
bounded by the sum of Km hypervolumes, for every
point and objective. Figure 2 illustrates it for m = 2
objectives. As expected, the hypervolume confidence
interval widths increase with the number of policies
K, the number of objectives m, and reward noise σ.
They decrease with a larger sample size n.

The last issue in (9) is relating β to the failure prob-
ability δ in Theorems 1 and 2. This can be done for
specific policy classes. For the class in Section 5.2, we
show in Appendix F that

β =

√
2

(
d log

(
L
√
n

σM
+ 1

)
+ logm+ log(2/δ)

)
,

where L denotes the maximum of Lipschitz factors of
Vi and V̂i. We note that the number of policy param-
eters d is the only non-logarithmic quantity in β.
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Theorems 1 and 2 differ only in where the confidence
intervals are instantiated. In Theorem 2, it is the op-
timal solution S∗. Therefore, when the logging policy
π0 is near optimal, c(S∗) is small and pessimistic IPS
maximization is comparable to maximizing vol(·, V ),
even if V is unknown and potentially poorly estimated
everywhere else but at π ∈ S∗.

Such a guarantee cannot be proved for the IPS maxi-
mization in Theorem 1. To demonstrate this, we take
a policy π̂ ∈ Π such that V̂i(π̂) ≈ 1 and ci(π̂) ≈ 1 for
all i ∈ [m]. Based on V̂i(π̂) alone, π̂ has a high value.
When the confidence intervals are considered, V̂i(π̂) is
clearly unreliably estimated, since Li(π̂) ≈ 0. This is
captured by c(Ŝ) in Theorem 1, which would be O(1)
if π̂ ∈ Ŝ. This would render the bound meaningless.

Finally, when the logging policy π0 is uniform, we do
not expect any benefit of pessimism because all confi-
dence intervals, including c(S∗) and c(Ŝ), would have
similar widths. Theorems 1 and 2 show this.

5 HYPERVOLUME
OPTIMIZATION

The hypervolume optimization in (4) is a challenging
problem because both maximization over policies and
hypervolume computation are. We borrow from prior
works to address them. All discussions in this section
apply to the value function V in (1), its IPS estimator
in (5), and its pessimistic IPS estimator in (7).

5.1 Discrete Optimization

When the policy class Π is finite, the hypervolume in
(4) can be optimized greedily in K steps as follows. In
step k ∈ [K], a policy πk ∈ Π that increases the hyper-
volume the most, after being added to the previously
selected policies {πℓ}k−1

ℓ=1 , is chosen,

πk = argmax
π∈Π

vol({π1, . . . , πk−1, π} , V ) . (10)

The greedy solution {πℓ}Kℓ=1 is (1 − 1/e)-optimal be-
cause vol(S, V ) is both monotone and submodular in
S (Ulrich and Thiele, 2012). The shortcoming of this
approach is that each greedy step requires O(|Π|) hy-
pervolume evaluations. Therefore, it is computation-
ally costly when Π is large and cannot even be applied
when Π is continuous.

5.2 Policy Gradient

Rather than being restricted to discrete optimization,
we optimize a general policy class using policy gradi-
ents (Williams, 1992; Sutton et al., 2000; Baxter and

Algorithm 1 Poligy gradient optimization.

1: Inputs:
Value function V
Number of optimized policies K

2: Initialize policy parameters θ0 = (θ0,k)k∈[K]

3: ℓ← 0
4: repeat
5: θℓ+1 ← θℓ + αℓ∇vol({π(· | ·; θℓ,k)}Kk=1 , V )
6: ℓ← ℓ+ 1
7: until convergence

8: Output: Policy parameters θℓ = (θℓ,k)k∈[K]

Bartlett, 2001). Let

π(a | x; θ) = exp[ϕ(x, a)⊤θ]∑
a′∈A exp[ϕ(x, a′)⊤θ]

(11)

be the probability of taking action a ∈ A in context
x ∈ X parameterized by policy parameter θ ∈ Θ. Here
ϕ : X × A → Rd is an arbitrary feature mapping and
Θ ⊆ Rd is the space of policy parameters.

To solve (4), we optimize all policies jointly by policy
gradients. Our algorithm is presented in Algorithm 1.
Its inputs are the value function or its estimate, and
the number of optimized policies K. The policies are
represented by dK-dimensional vectors. In particular,
θℓ = (θℓ,k)k∈[K] is the vector of all policy parameters
in iteration ℓ. We update θℓ as

θℓ+1 = θℓ + αℓ∇vol({π(· | ·; θℓ,k)}Kk=1 , V ) ,

where αℓ is an adaptable learning rate in iteration ℓ.
The gradient is with respect to all policy parameters.
It exists as long as each Vi(π(· | ·; θ)) is differentiable
in θ. This is true for any policy of form (11) plugged
into the value function in (1), its IPS estimator in (5),
or its pessimistic IPS estimator in (7).

In our experiments, we implement Algorithm 1 using
automatic differentiation with Adam (Kingma and Ba,
2015). This choice is motivated by the popularity of
Adam and its good initial performance. We discuss
other potential choices in Appendix D.

5.3 Hypervolume Computation

Exact computation of the hypervolume of K points
is exponential in K, because it corresponds to com-
puting the union of K hyperrectangle volumes. Such
computations are only feasible when K is small (Ap-
pendix E.1). Efficient exact algorithms also exist for
m = 2 objectives (Appendix E.2). The general case
can be reduced to Klee’s measure problem, which has
the best known computational complexity of Õ(K

m
3 )
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(Chan, 2008). Despite this, many efficient approxima-
tions exist (Appendix E).

6 EXPERIMENTS

We also evaluate the benefit of pessimism empirically.
Due to space constraints, we only show representative
trends and defer the rest to Appendix B.

6.1 Benchmarks

No standardized benchmarks exist for evaluating off-
policy MOO. Therefore, we adapt three popular MOO
bechmarks, which have been used in numerous works:
ZDT (Zitzler et al., 2000), DTLZ (Deb et al., 2005),
and WFG (Huband et al., 2005). ZDT is a set of bi-
objective problems where the number of features can
vary. Both the number of objectives and features can
vary in DTLZ and WFG problems.

At a high level, we use multi-objective functions in ex-
isting benchmarks to define the mean rewards r(x, a)
in (1). The mean rewards can be controlled through
actions a and we optimize policies over them. Specifi-
cally, let Rd be the feature space of an existing bench-
mark and f : Rd → Rm be its multi-objective func-
tion. We split the feature space as Rd = X ×A, where
X = R d

2 and A = R d
2 are the context and action sets,

respectively. The mean reward of action a ∈ A in con-
text x ∈ X is r(x, a) = f(x ⊕ a), where u ⊕ v is the
concatenation of vectors u and v. We discretize A by
20 random points to guarantee that the probability of
taking actions can be normalized. The features are

ϕ(x, a) = x⊕ a⊕ vec(xa⊤)⊕ (1) ,

where vec(M) denotes the vectorization of matrix M .
We introduce the cross-interaction term xa⊤ to allow
for context-dependent policies.

6.2 Evaluation Protocol

Compared methods. Our approach is a policy gra-
dient (Section 5.2) with the pessimistic IPS estimator
in (7). We call it pessHVI. We choose β = 0.2 in the
confidence interval ci(π) (Lemma 1), which performed
well in our first experiments. To show the benefit of
pessimism, we compare pessHVI to a policy gradient
with the IPS estimator in (5). We call it meanHVI.

We consider four additional baselines. The first base-
line selects K random policies of form (11), where θ is
randomly chosen from a unit ball. We call it Random.
This baseline shows what is possible with a minimal
computational cost. The next two baselines are state-
of-the-art genetic algorithms for multi-objective opti-
mization: NSGA-II (Deb et al., 2002) and SMS-EMOA

(Beume et al., 2007). We implement both algorithms
with the IPS estimator in (5).

The last baseline is a state-of-the-art approach of ex-
pected hypervolume improvement (EHVI) (Emmerich
et al., 2005; Emmerich, 2005; Ernst et al., 2005; Yang
et al., 2019). The main challenge in implementing it
was that our setting is not Bayesian. Therefore, there
is no posterior to sample from. At the end, we imple-
mented it using bootstrapping (Efron and Tibshirani,
1986), which is known to be equivalent to posterior
sampling in several notable cases (Lu and Van Roy,
2017; Vaswani et al., 2018). Specifically, we take the
logged dataset and resample it N times with replace-
ment. Let Ṽj(π) be the IPS estimate of value function
V (π) from the resampled dataset j ∈ [N ]. Using it as
a posterior sample, we can approximate the expected
hypervolume of solution S as 1

N

∑N
j=1 vol(S, Ṽj). We

optimize EHVI using policy gradients over the policy
class in (11) and call this algorithm EHVI.

Hypervolume computation. All methods are de-
scribed in Appendix E. We use the exact formula in
Appendix E.2 for m = 2 objectives. For m > 2, we
use the scalarized approximation in Appendix E.3.

Logging policy. Let

Dx = {a ∈ A : r(x, a) ≤ r(x, a′) for some a′ ∈ A}

be actions in context x ∈ X whose mean rewards are
dominated. Then

π0(a | x) ∝
ε

|A|
+ (1− ε)

1{a /∈ Dx}∑
a∈A 1{a /∈ Dx}

. (12)

The policy π0 is random with probability ε and takes
near-optimal actions otherwise. We set ε = 0.1. This
mimics a real-world setting where the deployed policy
is already of a high quality.

Evaluation. We evaluate all methods by their recov-
ered hypervolume, which is the hypervolume of their
solutions over the estimated maximum. Since all ex-
periments are simulations, V is known and hence the
true hypervolume can be computed. We approximate
the maximum hypervolume as vol(S̃, V ), where S̃ are
10 000 randomly chosen policies as in Random. Since
the maximum is only approximated, the recovered hy-
pervolume can be more than 1. In all experiments, we
average the recovered hypervolume over 20 runs and
also report the standard error of its estimate. In each
run, we log up to n = 30 000 interactions with reward
noise σ = 1.

6.3 Results

In Figures 3 and 4, we report the performance of all
methods on selected ZDT, DTLZ, and WFG bench-
marks with m = 2 objectives and d = 6 features. In
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Figure 3: Comparison of pessHVI to baselines for K = 10 while varying logged dataset size n.
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Figure 4: Comparison of pessHVI to baselines at n = 500 while varying the number of optimized policies K.

Figure 3, we fix the number of optimized policies at
K = 10 and vary the logged dataset size n. In Fig-
ure 4, we fix the logged dataset size at n = 500 and
vary the number of optimized policies K. We observe
two major trends. First, most methods improve as n
or K increases. This is because the estimate of V im-
proves with a larger sample size n and hypervolume
optimization is easier for larger K. Second, pessHVI
consistently outperforms meanHVI and all other base-
lines. This clearly shows the value of pessimistic opti-
mization on logged data, which was suggested by our
analysis in Section 4.

We present additional results on 5 ZDT, 7 DTLZ, and
9 WFG problems in Appendix B; and observe similar
trends to Figures 3 and 4. We also experiment with 7
DTLZ problems with more objectives and features.

6.4 Ablation Study

We conduct an ablation study of recovered hypervol-
ume by pessHVI on DTLZ2 problem in Figure 5. In
Figure 5a, we vary the logged dataset size n and the
number of optimized policies K. We observe that the
recovered hypervolume improves in both. This is be-
cause the estimate of V improves with larger sample
sizes n and hypervolume optimization becomes easier
for larger K.

In Figure 5b, we vary ε in the logging policy π0, while
n = 5000 and K = 10. We observe two trends. First,
the recovered hypervolume by pessHVI gets closer to
that of meanHVI as π0 becomes more uniform, ε → 1.

This validates one theoretical insight from Section 4,
that the pessimism is less beneficial when the logging
policy becomes more uniform. Second, the recovered
hypervolumes by both pessHVI and meanHVI improve
as ε→ 1. This is because the maximization of a func-
tion becomes easier when the space is uniformly ex-
plored, and the maximizer cannot be fooled by poorly
estimated parts of the function.

Finally, in Figure 5c, we compare policy-gradient op-
timization (Section 5.2) to discrete optimization over
1 000 random policies (Section 5.1). The discrete op-
timization yields worse results, possibly due to poor
discretization. This is why we propose continuous op-
timization by policy gradients in this work.

7 RELATED WORK

Our work lies at the intersection of several fields and
we review prior works in detail in Appendix G. Here
we discuss only some. Our method is an instance of
a-posteriori methods, which cover the Pareto front by
a diverse set of solutions. Notable approaches include
random scalarization in ParEGO (Knowles, 2006) and
evolutionary methods, such as MOEA/D and NSGA-
II (Zhang and Li, 2007; Deb et al., 2002). The hy-
pervolume indicator has become the metric of choice
in several recent works that provide guarantees (Auer
et al., 2016; Zhang and Golovin, 2020).

MOO has been studied extensively in the online set-
ting, where the learning agent interactively explores



Shima Alizadeh, Aniruddha Bhargava, Karthick Gopalswamy

102 103 104

Logged Data Size (n)

85

90

95

100

105

110
Re

co
ve

re
d 

Hy
pe

rv
ol

um
e 

%
(a) Effect of K

K
5
10
15
20

0.2 0.4 0.6 0.8 1.0
ε

96

97

98

99

Re
co

ve
re

d 
Hy

pe
rv

ol
um

e 
%

(b) Effect of ε

Method
pessHVI (Ours)
meanHVI

102 103 104

Logged Data Size (n)

80

85

90

95

100

105

Re
co

ve
re

d 
Hy

pe
rv

ol
um

e 
%

(c) Optimization method

Optimization
Policy gradient
Discrete

Figure 5: (a) Recovered hypervolume by pessHVI as a function of K and logged dataset size n. (b) The benefit
of pessimism diminishes as the logging policy becomes more uniform, ε → 1. (c) Comparison of the recovered
hypervolume by policy gradients and discrete optimization in pessHVI with K = 10.

the Pareto front (Drugan and Nowe, 2013). Both up-
per confidence bound and posterior sampling methods
were proposed (Auer et al., 2016; Yahyaa and Man-
derick, 2015), even for Gaussian processes (Zuluaga
et al., 2013; Paria et al., 2019). Multi-objective rein-
forcement learning (RL) is a natural generalization of
a single-step optimization and an active research area
(Hayes et al., 2022).

MOO is understudied in the off-policy setting. Wang
et al. (2022) formalized this problem as optimizing a
scalarized objective, where the scalarization is learned
by interacting with a policy designer. In comparison,
our method is a-posteriori, produces a set of diverse
policies without any human input, and incorporates
pessimism. A common assumption in RL with multi-
ple objectives is that the objectives can be scalarized
(Satija et al., 2021; Wu et al., 2021). Therefore, these
methods are a-priori. Our method is a-posteriori and
does not assume that the context set is finite. Finally,
Zhu et al. (2023) used hypervolume to obtain expert
trajectories in offline multi-objective RL. This work is
empirical and does not use pessimism. In comparison,
we show the value of pessimistic optimization in both
theory and experiments.

8 CONCLUSIONS

We propose a practical a-posteriori approach to offline
optimization of multi-objective policies. The key idea
is to maximize a pessimistic hypervolume estimate for
a diverse set of policies. The maximization problem is
solved by policy gradients. We showcase the benefit of
pessimism both theoretically and empirically.

This is one of the first works on offline optimization
of multi-objective policies (Section 7). We analyze the
benefit of pessimism generally (Section 4), beyond our
IPS estimators (Section 3) and methods for optimizing

them (Section 5). Therefore, our results should be of
a general interest, and lay ground for analyzing other
notions of diversity and performance indicators in a-
posteriori MOO. One shortcoming of our approach is
that each objective is modeled separately. Therefore,
we do not leverage correlations among the objectives,
which could improve statistical efficiency.
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A Proofs for Section 4 (ANALYSIS)

Lemma 2. Let

S̃ = argmax S∈S g̃(S)

and Ŝ be an α-approximation for α ∈ (0, 1]. Then

g(Ŝ) ≥ αg(S∗)− c(S∗)− c(Ŝ) .

Proof. The claim is proved as

αg(S∗)− g(Ŝ) = αg(S∗)− αg̃(S∗) + αg̃(S∗)− g(Ŝ)

≤ α(g(S∗)− g̃(S∗)) + αg̃(S̃)− g(Ŝ)

≤ α(g(S∗)− g̃(S∗)) + g̃(Ŝ)− g(Ŝ)

≤ c(S∗) + c(Ŝ) .

The first inequality holds because S̃ maximizes g̃. The second inequality uses that Ŝ is an α-approximation. The
last inequality follows from the definition of function c and α ∈ (0, 1].

Lemma 3. Let

S̃ = argmax S∈S L(S)

and Ŝ be an α-approximation for α ∈ (0, 1]. Then

g(Ŝ) ≥ αg(S∗)− 2c(S∗) .

Proof. The claim is proved as

αg(S∗)− g(Ŝ) = αg(S∗)− αL(S∗) + αL(S∗)− g(Ŝ)

≤ α(g(S∗)− L(S∗)) + αL(S̃)− g(Ŝ)

≤ α(g(S∗)− L(S∗)) + L(Ŝ)− g(Ŝ)

≤ 2c(S∗) .

The first inequality holds because S̃ maximizes L and the second inequality uses that Ŝ is an α-approximation.
The last inequality follows from L(S∗) = g̃(S∗) − c(S∗) and L(Ŝ) − g(Ŝ) ≤ 0. After that, we use the definition
of function c and α ∈ (0, 1].

Lemma 4. Let Vi(π), Ṽi(π) ∈ [0, 1] for all i ∈ [m] and π ∈ Π. Suppose that |Vi(π)− Ṽi(π)| ≤ ci(π) holds for all
i ∈ [m] and π ∈ Π. Then

|vol(S, V )− vol(S, Ṽ )| ≤ c(S) =
∑
π∈S

m∑
i=1

ci(π) .

Proof. We start with the observation that for any two vectors a, b ∈ {0, 1}d,∣∣∣∣∣
d∏

i=1

ai −
d∏

i=1

bi

∣∣∣∣∣ ≤
d∑

i=1

|ai − bi| ,

∣∣∣∣∣1−
d∏

i=1

(1− ai)−

(
1−

d∏
i=1

(1− bi)

)∣∣∣∣∣ ≤
d∑

i=1

|ai − bi| . (13)
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In plain English, the difference in the logical “and” and “or” over entries of these vectors is bounded by the sum
of the differences of their entries. The definition of the hypervolume together with these inequalities yields

|vol(S, V )− vol(S, Ṽ )| ≤
∫
y∈[0,1]m

∣∣∣∣∣1
{∨

π∈S

{y ≤ V (π)}

}
− 1

{∨
π∈S

{y ≤ Ṽ (π)}

}∣∣∣∣∣dy
≤
∑
π∈S

∫
y∈[0,1]m

∣∣∣1{y ≤ V (π)} − 1
{
y ≤ Ṽ (π)

}∣∣∣dy
≤
∑
π∈S

m∑
i=1

∫
y∈[0,1]

∣∣∣1{y ≤ Vi(π)} − 1
{
y ≤ Ṽi(π)

}∣∣∣ dy
=
∑
π∈S

m∑
i=1

∣∣∣Vi(π)− Ṽi(π)
∣∣∣ ≤∑

π∈S

m∑
i=1

ci(π) = c(S) .

In the second and third inequalities, we use the “or” and “and” inequalities in (13), respectively. The rest follows
from basic integration identities and that we integrate over a [0, 1]m hypercube.

B Additional Experiments

We conduct additional experiments on ZDT (Zitzler et al., 2000), DTLZ (Deb et al., 2005), and WFG (Huband
et al., 2005) problems. The setting is the same as in Section 6.3.

B.1 ZDT Problems

We experiment with 5 ZDT problems out of 6, with m = 2 objectives and d = 6 features. ZDT5 is excluded
since it is a discrete optimization problem. The remaining 5 problems are continuous. Our results are reported
in Figure 6. We observe that pessHVI consistently improves upon all baselines when n ≥ 500.
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Figure 6: Evaluation of pessHVI and all baselines on 5 ZDT problems, for different values of K and n.
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Figure 7: Evaluation of pessHVI and all baselines on 7 DTLZ problems, for different values of K and n.
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Figure 8: Evaluation of pessHVI and all baselines on 7 DTLZ problems with 4 objectives. We set n = 5000 and
vary K.

B.2 DTLZ Problems

We experiment with 7 DTLZ problems out of 9, with m = 2 objectives and d = 6 features. We exclude DTLZ8
and DTLZ9 because these problems are constrained. The remaining 7 problems are unconstrained. Our results
are reported in Figure 7. We observe that pessHVI consistently improves upon all baselines when n ≥ 500. The
only exception is DTLZ6, where many methods perform well.

B.3 DTLZ Problems with 4 Objectives

Similarly to Appendix B.2, we experiment with 7 DTLZ problems, with m = 4 objectives and d = 10 features.
The hypervolume is computed as described in Appendix E.3. Our results are reported in Figure 8. We observe
that pessHVI consistently improves upon all baselines in 5 problems. In DTLZ4 and DTLZ6, pessHVI performs
comparably to meanHVI and EHVI.

B.4 WFG Problems

We experiment with 9 WFG problems, with m = 2 objectives and d = 6 features. Our results are reported in
Figure 9. We observe that pessHVI consistently improves upon all baselines when n ≥ 500. The only exception
is WFG2, where many methods perform well.
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Figure 9: Evaluation of pessHVI and all baselines on 9 WFG problems, for different values of K and n.
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C Other Estimators

The direct method (DM) (Dudik et al., 2014) is a popular approach to off-policy evaluation. Using the DM, the
value of policy π in objective i can be computed as

V̂ dm
i (π) =

1

n

n∑
t=1

∑
a∈A

π(a | xt) r̂i(xt, a) ,

where r̂i(x, a) is the empirical mean estimate of ri(x, a).

The doubly-robust method (DR) (Robins et al., 1994; Dudik et al., 2014) combines the DM and IPS as

V̂ dr
i (π) =

1

n

n∑
t=1

π(At | xt)

π0(At | xt)
(Yt,i − r̂i(xt, At)) + V̂ dm(π̂) .

It is popular because it combines the advantages of the DM and IPS: it is unbiased when the DM estimator is
unbiased or the propensities in the IPS estimator are correctly specified.

Another popular approach is a self-normalized IPS (SNIPS) estimator (Swaminathan and Joachims, 2015b),

V̂ snips
i (π) =

1∑n
t=1

π(At|xt)
π0(At|xt)

n∑
t=1

π(At | xt)

π0(At | xt)
Yt,i .

Unlike IPS, the estimator is bounded but biased. However, if the logging policy is supported for all actions in
each context, it is consistent.

D Gradient-Based Methods for Diverse Points

Gradient-based methods for finding a diverse set of points have been previously studied in the multi-task and
multi-objective optimization literature. They fall into two categories: K points are optimized directly or their
hypervolume is. An early approach in the former direction is algorithm MGDA of Désidéri (2012), which uses
KKT conditions to compute the direction in which all objectives increase. Various extensions of MGDA have
been proposed (Sener and Koltun, 2018; Zhou et al., 2022; Liu et al., 2021). These works do not directly target
diversity. Gradient ascent on the hypervolume, as in our work, has been studied. One of the first works on this
topic is Wang et al. (2017), who used hypervolume gradient derivations of Emmerich and Deutz (2014). The
main challenge for this approach is that the hypervolume indicator is locally constant if any point is dominated.
To avoid this, various modifications to steer dominated points to the boundary have been proposed (Deist et al.,
2020, 2021). We believe that these methods could improve our policy-gradient optimization in Section 5.2.

E Hypervolume Computation

We review several existing hypervolume estimators. An exact formula based on the inclusion-exclusion principle
is presented in Appendix E.1. Unfortunately, it is computationally intractable when S is large. In Appendix E.2,
we present an exact formula for two objectives that has O(|S| log |S|) computation time. Finally, we present an
approximation with O(|S|) computation time in Appendix E.3. All formulas are stated for any multi-objective
function f : Π→ Rm.

E.1 Inclusion-Exclusion Estimator

The key insight in the inclusion-exclusion estimator (Daulton et al., 2020) is that the area of the union of two
rectangles is the sum of their areas minus the area of their intersection, which is also a rectangle. In general, for
hyperrectangles×m

i=1
[a, fi(π)], where a ∈ R is a reference point for the beginning of the coordinate system, the

hypervolume can be computed as follows. Let 2S be the power set of S ⊆ Π. Then

vol(S, f) =
∑

C∈2S\∅

(2 (|C| mod2)− 1)

m∏
i=1

(
min
π∈C

fi(π)− a

)
. (14)

The computation of (14) takes O(2|S|) time and therefore is costly even for relatively small S.
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E.2 Two Objectives

For m = 2 objectives, algorithms with O(|S| log |S|) computation time exist. More specifically, let S = {πk}Kk=1

and suppose that f1(π1) ≤ · · · ≤ f1(πK) holds. The latter can be guaranteed by sorting πk according to the first
objective in O(|S| log |S|) time (Preparata and Shamos, 2012). Then f can be viewed as a function with a single
objective, where f1(πk) is its input and f2(πk) is its output, and integrated along the first objective as

vol(S, f) = (f1(π1)− a)(max
k∈[K]

f2(πk)− a) +

K−1∑
k=1

(f1(πk+1)− f1(πk))( max
ℓ∈[K]\[k]

f2(πℓ)− a) .

E.3 Random Hypervolume Scalarization

Scalarization is a mapping sλ : Rm → R for some λ ∈ Rm. The key idea in all scalarization methods is to reduce
multiple objectives into a scalar and optimize it. The most common scalarizations are linear and Chebyshev,

sλ(f(π)) =

m∑
i=1

λifi(π) , sλ(f(π)) = min
i∈[m]

λi(fi(π)− ai) ,

where a ∈ Rm is a reference point. Random hypervolume scalarization approximates the hypervolume indicator
with random scalarizations sampled from a distribution. Specifically, Zhang and Golovin (2020) showed that the
hypervolume vol(S, f) can be rewritten as

vol(S, f) ∝ Eλ∼Bm

[
max
π∈S

sλ(f(π)− a)

]
,

where sλ(y) = mini∈[m] max {0, yi/λi}m and Bm is a unit sphere in Rm. The expectation is approximated by an
average over multiple sampled λ.

F Joint High-Probability Confidence Interval

Take the policy class in Section 5.2. Let Θ = [0, 1]d be a policy parameter space and G be a uniform ε-grid over
Θ. The grid contains (1/ε + 1)d points and the maximum distance of any θ ∈ Θ to the closest point θ′ ∈ G is
∥θ − θ′∥2 ≤

√
dε. Let Vi(θ) = Vi(π(· | ·; θ)) and V̂i(θ) = V̂i(π(· | ·; θ)). Let M be the maximum possible value of

Mt,π in Lemma 1. Let L be the maximum of Lipschitz factors of Vi and V̂i, so that |Vi(θ)− Vi(θ
′)| ≤ L∥θ− θ′∥2

and |V̂i(θ) − V̂i(θ
′)| ≤ L∥θ − θ′∥2 hold for any θ, θ′ ∈ Θ. We note that L is well defined and bounded, because

Vi(θ) ∈ [0, 1] and V̂i ∈ [0,M ], and π is a continuous function of θ.

By Lemma 1, where β =
√
2 log(2(1/ε+ 1)dm/δ), and the union bound applied to the grid, we get that

|V̂i(θ)− Vi(θ)| ≤ σM
√

2(d log(1/ε+ 1) + logm+ log(2/δ))/n

holds jointly for all θ ∈ G and i ∈ [m] with probability at least 1 − δ. For off-the-grid points, we introduce the
closest grid point. Then, jointly over all θ ∈ Θ with probability at least 1− δ,

|V̂i(θ)− Vi(θ)| = |V̂i(θ)− V̂i(θ
′) + V̂i(θ

′)− Vi(θ
′) + Vi(θ

′)− Vi(θ)|

≤ |V̂i(θ)− V̂i(θ
′)|+ |Vi(θ

′)− Vi(θ)|+ σM
√
2(d log(1/ε+ 1) + logm+ log(2/δ))/n ,

where θ′ ∈ G is the closest grid point for θ. We bound the first two terms by 2L
√
dε, using the Lipschitz factor

and that θ′ is the closest grid point, and then set ε = σM/(L
√
n) to make all terms in the bound similar up to

logarithmic factors. The final bound, up to logarithmic factors, is O(σM
√
d/n). This completes the proof.

G Additional Related Work

In multi-objective optimization, the decision maker must choose a candidate x from a set of potential candidates
X . For each x ∈ X , there are m objective values f(x) = (fi(x))

m
i=1, where fi : X → R. Since the objectives can

be traded off in many ways, many algorithms for MOO exist (Emmerich and Deutz, 2018).
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In the a-priori setting (Branke et al., 2008), the utility of a decision maker is known in advance and used to find
the optimal candidate. It is common to represent the utility function as belonging to a family of scalarizations
of the objectives, where the objectives are weighted separately and then combined. Arguably the most popular
approach is linear scalarization sλ(f(x)) =

∑m
i=1 λifi(x), where λ ∈ Rm is a weight vector. In many real-world

problems, λ is unknown in advance. In such cases, it is natural to present potential candidates to the decision
maker that approximate the Pareto front well. This is known as the a-posteriori setting (Branke et al., 2008)
and many algorithms exist for it. One popular approach is to cover the Pareto front using random scalarization
(Zhang and Golovin, 2020). This was done in ParEGO (Knowles, 2006) and an evolutionary algorithm MOEAD
(Zhang and Li, 2007). Other evolutionary algorithms, such as NSGA-II (Deb et al., 2002), iteratively refine a
population of candidates based on various fitness metrics. Unlike our approach, none of these methods provide
guarantees on the quality of the approximation and additionally do not handle uncertainty in objectives.

Regardless of the MOO method, the quality of the resulting solution needs to be measured. Intuitively, a good
approximation contains a set of points that are close to the Pareto front and sufficiently diverse. Metrics that
capture these two qualities are called performance indicators (Zitzler et al., 2008; Audet et al., 2021). Popular
indicators are the Hausdorff distance of the approximation from the Pareto front, R2, and hypervolume (Zitzler
et al., 2000). The last has been increasingly popular and considered in several recent works (Zhang and Golovin,
2020; Auer et al., 2016). As discussed in Appendix E, hypervolume can be challenging to compute.

In the online setting, the decision maker interactively explores the Pareto front. Drugan and Nowe (2013) was
the first work to apply bandits to MOO. They proposed a UCB1 algorithm with a scalarized objective and also a
Pareto UCB1 algorithm. Auer et al. (2016) formulated the problem of the Pareto front identification as best-arm
identification where each point x is an arm and its rewards are noisy realizations of f(x). Thompson sampling
in MOO was studied in Yahyaa and Manderick (2015). Several works assumed that the objective functions are
drawn from a Gaussian process (GP). Zuluaga et al. (2013) is an early work with theoretical guarantees and a
similar observation model to Auer et al. (2016). Two recent works that applied GP bandits to MOO are Paria
et al. (2019) and Zhang and Golovin (2020). Paria et al. (2019) minimized the regret with respect to a known
distribution of scalarization vectors. Zhang and Golovin (2020) showed that this algorithm maximizes random
hypervolume scalarization. All above works are in the online setting, where the learning agent can interactively
probe the environment to learn about objective functions. Our setting is offline.

Arguably the two closest works are Roijers et al. (2017) and Wang et al. (2022). Roijers et al. (2017) treated
online MOO as a two-stage problem, where the objective functions are estimated using initial interactions with
the environment and the scalarization vector is then estimated by interacting with the designer. This approach
was further refined by Wang et al. (2022), who used state-of-the-art off-policy estimation techniques to estimate
the objectives and analyzed their approach. The key difference in our work is that we do not put any interaction
burden on the policy designer, and simply give them a diverse set of policies to choose from.


