
Complexity of Single Loop Algorithms for Nonlinear Programming
with Stochastic Objective and Constraints

Ahmet Alacaoglu Stephen J. Wright
University of Wisconsin–Madison University of Wisconsin–Madison

Abstract

We analyze the sample complexity of single-
loop quadratic penalty and augmented La-
grangian algorithms for solving nonconvex
optimization problems with functional equal-
ity constraints. We consider three cases, in
all of which the objective is stochastic, that
is, an expectation over an unknown distribu-
tion that is accessed by sampling. The nature
of the equality constraints differs among the
three cases: deterministic and linear in the
first case, deterministic and nonlinear in the
second case, and stochastic and nonlinear in
the third case. Variance reduction techniques
are used to improve the complexity. To find a
point that satisfies ε-approximate first-order
conditions, we require Õ(ε−3) complexity in

the first case, Õ(ε−4) in the second case, and

Õ(ε−5) in the third case. For the first and
third cases, they are the first algorithms of
“single loop” type that also use O(1) sam-
ples at each iteration and still achieve the
best-known complexity guarantees.

1 INTRODUCTION

Augmented Lagrangian and quadratic penalty algo-
rithms have been a mainstay for solving nonlinear opti-
mization problems for several decades (Hestenes, 1969;
Powell, 1969; Fiacco and McCormick, 1968; Bertsekas,
2014). We consider the nonlinear programming tem-
plate:

min
x∈X

f(x) subject to c(x) = 0, (1.1)

where f : Rd → R and c : Rd → Rm. Historically,
algorithms for (1.1) are analyzed for the case of non-
linear and nonconvex f and c. Typical results show

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

asymptotic iterate convergence with local linear or su-
perlinear rate guarantees. In the last two decades,
with the influence of the emerging field of data sci-
ence, there has been wider interest in global conver-
gence rates, including sublinear rates. Nonasymptotic
convergence rate analyses of augmented Lagrangian
method (ALM) and quadratic penalty method (QPM)
for nonlinear programming in both convex (Lan and
Monteiro, 2013, 2016; Xu, 2017, 2021) and noncon-
vex cases (Hong, 2016; Xie and Wright, 2021; Li et al.,
2021; Lin et al., 2022a; Lu, 2022; Huang and Lin, 2023;
Kong et al., 2023; Sun and Sun, 2021; He et al., 2023)
are surprisingly recent.

With large data sets fueling many recent advances in
machine learning and data sciences, stochastic algo-
rithms for solving (1.1) have become a necessity. These
algorithms generally work with a single-sample or a
mini-batch of the full dataset at each iteration. In
many applications, even one pass over the data can
be prohibitive. Unconstrained and simple-constrained
versions of (1.1), where c(x) is absent, have been
solved with stochastic projected gradient algorithms
for convex or nonconvex f (Lan, 2020; Davis and
Drusvyatskiy, 2019; Cutkosky and Orabona, 2019). In
this paper, we focus on three subclasses of (1.1) in
which c(x) is nontrivial, so that projection onto the
feasible set of (1.1) is too expensive to be practical.

In all problems considered in this paper, the objec-
tive f has expectation form, so we restate (1.1) more
narrowly as follows:

min
x∈X

{
f(x) := Eξ[f̃(x, ξ)]

}
subject to c(x) = 0, (1.2)

where f : Rd → R and c : Rd → Rm are functions with
Lipschitz continuous gradients that can be nonconvex,
while the set X ⊆ Rd is closed and convex. The func-
tion f̃ maps Rd ×Ξ to R, where Ξ is the sample space
with ξ ∈ Ξ and ξ is distributed according to PΞ. Eξ is
the expectation over the distribution of ξ. (We some-
times abbreviate Eξ as E when the context is clear.)

Three cases. We consider three instances of the
template (1.2), motivated by applications in machine

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

learning and data science.

I. Let c(x) := Ax− b and X = Rd, yielding

min
x∈Rd

{
f(x) := E[f̃(x, ξ)]

}
subject to Ax = b,

(I)

where A ∈ Rm×d. This problem arises in the
context of distributed optimization where the lin-
ear constraints enforce consensus (Hong et al.,
2018; Hong, 2016). It also arises in resource al-
location (Boyd et al., 2011, Section 7.3), reformu-
lations of problems involving the composition of
convex or nonconvex functions with linear oper-
ators, and other contexts (see also (Hong, 2016,
Section 1.1)). Oracle accesses in this case require
stochastic gradients of f and matrix multiplica-
tions by A and A⊤. We denote by δ > 0 the
smallest nonzero eigenvalue of A⊤A, so that

∥A⊤λ∥ ≥
√
δ∥λ∥ for all λ ∈ Range(A). (1.3)

II. In the second case, c : Rd → Rm is a deterministic
nonlinear function, yielding

min
x∈X

{
f(x) := E[f̃(x, ξ)]

}
subject to c(x) = 0,

(II)

with X ⊆ Rd a closed, convex set. Prob-
lems of this type arise in optimization prob-
lems with partial differential equation (PDE) con-
straints (Kupfer and Sachs, 1992; Rees et al.,
2010; Curtis et al., 2021). The oracle access re-
quires stochastic gradients of f , and evaluations
of constraint function and gradient, c and ∇c.

III. The third problem has the constraint c as a non-
linear function defined as an expectation

min
x∈X

{
f(x) := Eξ[f̃(x, ξ)]

}
,

subject to c(x) = Eζ [c̃(x, ζ)] = 0,
(III)

where c̃ : Rd × Z → Rm, with Z being the
sample space and X ⊆ Rd is closed and con-
vex. The oracle access requires stochastic gradi-
ents and stochastic function evaluations for both
objective and constraint. This problem is mo-
tivated by recent applications of neural network
training with output constraints, in such tasks
as out-of-distribution detection or fair machine
learning (Katz-Samuels et al., 2022; Liu et al.,
2020; Dener et al., 2020; Zafar et al., 2019).

Problems (I), (II), (III) are studied in Sections 2, 4.2,
and 3, respectively. Inequality constraints can be ac-
commodated into (II) and (III) via the use of slack
variables, which can be constrained to be nonnegative
by membership in an appropriately defined set X.

First-order stationarity. We say that x̄ is ε-
stationary for (1.2) if there exists λ̄ ∈ Rm such that

d(∇f(x̄) + ∇c(x̄)⊤λ̄,−NX(x̄)) ≤ ε,

∥c(x̄)∥ ≤ ε,
(1.4)

where d(x,C) = miny∈C ∥x − y∥ is the distance func-
tion and NX(x̄) is the normal cone to X at x̄. This is
the same first-order stationarity definition as in Sahin
et al. (2019); Li et al. (2021); Lin et al. (2022a); Li
et al. (2023) and generalizes Xie and Wright (2021) to
the case when X is present in the problem formulation.

We say that x̄ is an ε-stationary point in expectation
if (1.4) holds in expectation and we consider oracle
(defined in the sequel) and sample complexities.

Augmented Lagrangian and Quadratic Penalty.
Augmented Lagrangian methods were proposed to
overcome both the theoretical and practical draw-
backs of quadratic penalty (QP) approaches (Hestenes,
1969). Instances of ALM are traditionally equipped
with stronger guarantees than QPM; they incorporate
dual updates that help with feasibility guarantees and
subproblem conditioning (Bertsekas, 2014). However,
for existing nonasymptotic analyses in the nonconvex
cases, the literature does not reflect these advantages.
In the deterministic case, the existing analyses for
ALM with best-known guarantees require the penalty
parameters to increase rapidly to infinity, so the dual
step size effectively needs to decay (Sahin et al., 2019;
Li et al., 2021). The only work to our knowledge with
a constant dual step size and penalty parameter is Xie
and Wright (2021), which has worse complexity than
the methods with growing penalty parameters and de-
caying dual step sizes.

Since constant penalty parameter and constant dual
step sizes are the main features of ALM, we focus on
a version of ALM for problem (I) that uses constant
penalty parameters and constant dual step sizes. For
the more general problems, we focus on QP-based al-
gorithms and their extensions to ALM-type algorithms
with small dual step sizes.

Oracle model. We assume throughout to have ac-
cess to an unbiased oracle for gradients, a standard
setting used for example in (Arjevani et al., 2022;
Cutkosky and Orabona, 2019). That is, there exists
∇̃f(x, ξ) such that

Eξ[∇̃f(x, ξ)] = ∇f(x),

Eξ∥∇̃f(x, ξ) − ∇̃f(y, ξ)∥2 ≤ L2∥x− y∥2.
(1.5)

Algorithmic Approaches and Contributions.
We handle the functional constraints via two classi-
cal approaches: quadratic penalty and augmented La-
grangian (Bertsekas, 2014; Nocedal and Wright, 2006).

Ahmet Alacaoglu, Stephen J. Wright

These algorithmic frameworks normally require solu-
tion of subproblems at every iteration. Instead of
solving these subproblems exactly, we perform one
stochastic gradient descent step on each subproblem,
yielding an overall approach that is single-loop in na-
ture. This technique is also known as linearization in
the context of ALM and QPM (Ouyang et al., 2015).
To obtain improved sample complexity guarantees, we
also use variance reduction techniques (see Cutkosky
and Orabona (2019)). Our main aim in the paper is
to provide simple and easily implementable single-loop
algorithms for the described problem classes with op-
timal or best-known complexity results.1

In the case of linear constraints studied in Section 2,
we use constant penalty parameter and constant dual
step sizes for an ALM with variance reduction. In this
case, we show the complexity Õ(ε−3) which is optimal
(up to a log factor) even for unconstrained, smooth,
stochastic optimization (Arjevani et al., 2022).

With functional constraints, consistent with the lit-
erature on deterministic instances of our template,
we use increasing penalty parameters with quadratic
penalty (and decreasing dual step sizes with ALM in

Section 4.1). We show Õ(ε−4) complexity with deter-

ministic constraints in Section 4.2 and Õ(ε−5) com-
plexity with stochastic constraints in Section 3.

Besides being single-loop and requiring only O(1) sam-
ples at each iteration, each iteration of our algorithms
requires only simple projections and simple vector op-
erations. We do not require complicated auxiliary sub-
problems to be solved. As a consequence, our sample
complexity and computational complexity results are
essentially the same.

1.1 Related Works

Algorithms for nonlinear programming have been
studied for many decades, but recent years have seen
more focus on the case of functions defined as expecta-
tions. There is focus also on algorithms that identify
an approximate solution in some finite time, expressed
in terms of a parameter ε > 0 that quantifies the in-
exactness in the solution of the problem. For ease of
presentation we discuss the related works separately
for each of our three special cases.

Problem (I): Nonconvex stochastic optimiza-
tion with linear constraints. Complexity of
ALM in the case of deterministic f is studied in many
works; see for example Zhang and Luo (2020, 2022);

1Such a goal is nontrivial and not always achievable. See
e.g., Ji et al. (2022) and Zhang et al. (2020) for different
settings where one currently needs multiple loops for best
complexity and research for single-loop methods is active.

Hong (2016); Hong et al. (2018). A complexity of
O(ε−2) is typical for identifying a point x̄ that satisfies
first-order conditions ε-approximately in the sense of
(1.4), for some λ̄. Among the works mentioned, Hong
(2016); Hong et al. (2018) focus on the unconstrained
case and Zhang and Luo (2020, 2022); Zhang et al.
(2022) focus on the case in which additional polyhe-
dral constraints (or more general nonlinear functional
constraints with further assumptions) are present, re-
quiring error bounds to estimate distances to the op-
timal set. One feature of the methods in these works
is that both the penalty parameter and the dual step
size in ALM are constant.

With nonconvex and stochastic objective, Huang et al.
(2019) obtained complexity O(ε−3) with additional as-
sumptions such as A having a full rank, large batch
sizes depending on accuracy ε, and a uniform upper
bound on ∥∇f(x)∥2. (The latter often does not hold
for problems in the form (I).) See Sec. 2.2 for the
details and how we address these shortcomings2.

The work of Zhang et al. (2021) focuses on a
consensus-optimization instance of (I) with noncon-
vex stochastic objective, and uses gradient tracking
and the variance-reduction approach from Cutkosky
and Orabona (2019) to obtain Õ(ε−3) complexity. We
achieve the same rate for a more general problem than
consensus optimization; see for instance (Hong, 2016,
Sec. 1), (Boyd et al., 2011, Section 7) for a “sharing
problem” example or Boţ and Nguyen (2020), for stan-
dard splitting approaches to represent composite op-
timization problems as linearly constrained optimiza-
tion. Our ALM type method is more general and dif-
ferent from the problem-specific method of Zhang et al.
(2021).

Problem (II): Nonconvex stochastic optimiza-
tion with nonlinear deterministic constraints.
For this problem, Shi et al. (2022) analyzes an algo-
rithm similar to ours except that the penalty parame-
ter is fixed (ours is variable) and depends on the pre-
defined number of iterations K. Their approach in-
volves an initial stage of finding a feasible point of the
nonconvex constraint and has complexity O(ε−4). We
show that the initial stage is unnecessary when we use
variable parameters that depend on the current iter-
ate k. The sequential quadratic programming (SQP)
method of Curtis et al. (2021) has sample complex-

ity Õ(ε−4), but this paper does not address iteration
complexity or computational complexity directly. In
addition, each iteration requires solution of a linear
system, a more expensive operation than the vector
operations required at each iteration of an ALM.

2The same limitations are present in (Lin et al., 2022b,
Thm. 5.6).

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

Problem (III): Nonconvex stochastic optimiza-
tion with nonlinear stochastic constraints.
The two works building on a regularization idea for
solving problem (III), with inequality constraints in-
stead of equalities, are Boob et al. (2022) and Ma et al.
(2020). Both assume the existence of a strictly feasible
solution, so their applicability to equality constraints
is not clear. Both describe a complexity of O(ε−6) on
a slightly weaker assumption on Lipschitz continuity
of the gradient. The algorithms of these papers have
a double loop structure, compared to the single-loop
algorithm that we analyze.

The recent independent work of Li et al. (2023) con-
sidered a similar idea of using STORM estimator for
this problem to obtain complexity O(ε−5). In contrast
to us, they analyzed an inexact ALM. Apart from the
complicated structure of a double loop method, an im-
portant drawback of this approach is that termination
rule of the inner loop is generally not implementable.
This is because the number of required iterations of the
inner loop depends on the optimal value of the sub-
problems, variance upper bounds or other unknown
values3. The other alternative for termination of the
inner loop requires computing first order stationarity,
which in turn requires the computation of full gradi-
ents, an operation that is not practical with stochastic
algorithms. By contrast, single-loop any-time algo-
rithms like ours have a straightforward implementa-
tion both conceptually and in practice.

Notation. To improve readability, we use standard
asymptotic notations such as O, Ω, ≍ in the main
text by suppressing universal constants. The distance
between a point x ∈ Rn and a set C ⊆ Rn is denoted
as d(x,C) = miny∈C ∥x − y∥. Any-time refers to an
algorithm that does not require setting ε in advance.

2 LINEAR CONSTRAINTS:
PROBLEM (I)

2.1 Algorithm and the Main Result

In this section, we address (I), restated here as

min
x∈Rn

{
f(x) := E[f̃(x, ξ)]

}
subject to Ax = b, (I)

for which the augmented Lagrangian is

Lρ(x, λ) := f(x) + ⟨λ,Ax− b⟩ +
ρ

2
∥Ax− b∥2,

3(Li et al., 2023, Lemma 5) suggests that optimal value
of subproblems can be replaced by other values such as the
diameter of balls containing the iterates, upper bound of
function values or the parameter of regularity-condition (δ
in (A5) in our notation, v in (Li et al., 2023, Assumption
3)) to set the number of inner iterations. Unfortunately,
these values are also normally unknown.

for parameter ρ > 0. We describe and analyze a lin-
earized ALM given in Algorithm 1, in which a single
step of stochastic gradient descent replaces the min-
imization of augmented Lagrangian with respect to
the primal variable. This algorithm can be seen as a
variance-reduced version of ALM with constant step
sizes, studied in the deterministic setting by Hong
(2016). Due to stochasticity in the objective, we
use a variance-reduced estimator of ∇f(xk) based on
sampling of the oracle ∇̃f(xi, ξi) for i = 0, 1, . . . , k;
see (1.5) for the oracle description. The output of the
algorithm (denoted as x̄ in Thm 2.1), after running for
K iterations, is a randomly selected primal-dual pair,
i.e., (xk̂, λk̂) where k̂ is selected uniformly at random
from {1, 2, . . . ,K}.

In this section, we obtain optimal complexity results
with constant penalty parameter / dual step size ρ in
ALM. The latter feature of the algorithm is the main
challenge in the analysis, and is the reason for our
separate focus on the linearly constrained case.

We make the following assumptions in this case (see
also (1.5)):

Eξ∥∇̃f(u, ξ) − ∇̃f(v, ξ)∥2 ≤ L2
f∥u− v∥2,

Eξ∥∇̃f(x, ξ) −∇f(x)∥2 ≤ V 2,

f(x) ≥ 0, ∀x.
(A1)

The first assumption in (A1) is Lipschitz continuity
of the gradients on average (also called mean-square
smoothness, see (Arjevani et al., 2022, eq. (4))) while
the second is a standard variance bound. By Jensen’s
inequality, the first inequality in (A1) also implies that
∥∇f(u) −∇f(v)∥ ≤ Lf∥u − v∥. The last assumption
in (A1), also made in Hong (2016) is without loss of
generality4.

In the following subsection, we prove the following re-
sult, stated informally here for simplicity. The choices
of parameters ρ, αk, and ηk, and the full result appear
as Theorem 2.4 and Corollary B.5.

Theorem 2.1 (Informal). With the assumptions
in (A1) and suitable choices of ηk, ρ, αk+1 as in (2.1),
Algorithm 1 outputs (x̄, λ̄) such that

E∥∇f(x̄) + A⊤λ̄∥ ≤ ε and E∥Ax̄− b∥ ≤ ε,

after K = Õ(ε−3) iterations, thus requiring Õ(ε−3)
evaluations of stochastic gradients of f .

Remark 2.2. An important aspect of this result,
which is critical for ALM, is that the penalty param-
eter and the dual step size ρ is a constant and in-
dependent of final accuracy ε or iteration counter k.

4As mentioned in (Hong, 2016, footnote 1, pg 5) this
assumption is essentially equivalent to lower boundedness
of f .

Ahmet Alacaoglu, Stephen J. Wright

Algorithm 1 Stochastic Linearized Augmented Lagrangian Method with Variance Reduction for (I)

1: Input: Initialize λ0, x0, g0 arbitrarily and αk, ρ, ηk as in (2.2).
2: for k = 0, 1, . . . do
3: xk+1 = xk − ηk+1(gk +A⊤λk + ρA⊤(Axk − b))
4: λk+1 = λk + ρ(Axk+1 − b)

5: Sample ξk+1 ∼ PΞ and set gk+1 = ∇̃f(xk+1, ξk+1) + (1− αk+1)(gk − ∇̃f(xk, ξk+1))
6: end for

The choices αk, ηk are independent of ε and they de-
pend on k because of the stochastic setting we focus
on. The independence from ε is critical to ensuring
that a certain potential function can increase only by
a controlled amount at every iteration, which in turn
is important for lower boundedness of the expected
potential. Further explanations appear in Section 2.2.

2.2 Analysis

We use the following parameters which are written
with asymptotic notations for readability (recall (1.3)
and (A1)). We suppress only universal constants; full
specifications are provided in (B.19).

ρ ≍ Lf

δ
, k0 = Ω(poly(δ−1)),

η =
1

11(Lf + ρ∥A∥2)
,

ηk =
η

(k + k0)1/3 log(k + k0)
, αk = 121L2

fη
2
k.

(2.1)

We start with a lemma that analyzes a single iteration
of the algorithm. This lemma constructs a potential
function Yk that we show later to be non-increasing in
expectation, up to a small error. Due to the combina-
tion of ALM with constant dual step sizes/penalty pa-
rameters and the use of variance-reduction techniques,
each with complicated constants, the coefficients in
this lemma are rather involved. We only provide the
orders of some terms, which suffice to convey the cen-
tral ideas in the lemma.

Lemma 2.3. Let the assumptions in (A1) hold. Set
ρ, ηk, αk as (2.1). For the iterates of Alg. 1, we have

EYk+1 ≤ EYk − ηk+1

2
E∥gk −∇f(xk)∥2

+ (β1,k+1 + β2,k+1)E∥xk+1 − xk∥2

+ wk + vkV
2,

(2.2)

where

Yk+1 = Lρ(xk+1, λk+1) +
ρm

2ηk+2
∥Axk+1 − b∥2

+
m

2ηk+1
∥xk+1 − xk∥2Qk+1

+ β1,k+1∥xk+1 − xk∥2

+
2

cηk+1
∥gk+1 −∇f(xk+1)∥2

+

(
6(1 + c1)

ρδ
+

2m

Lfηk

)
∥gk −∇f(xk)∥2

with c1 > 0, c = 121L2
f , m ≍ 1

Lf
, and

β1,k ≍ Lf + η−1
k+1, β2,k = O

(
Lf

δ
+ η−1

k+1

)
− 1

2ηk
,

wk =
3(1 + c1)

δρ
E∥xk+1 − 2xk + xk−1∥2Q⊤

k+1Qk+1

− m

2ηk+1
E∥xk+1 − 2xk + xk−1∥2Qk+1

,

vk = O

(
α2
k

ηk

)
, Qk = η−1

k I − ρA⊤A ⪰ 0.

At a high level, the lemma requires us to show that (i)
β1,k+1+β2,k+1 < 0, (ii) wk ≤ 0 and (iii)

∑∞
k=1 vk < ∞

to obtain that the function Yk is non-increasing in ex-
pectation up to a small error (see (2.3)). The pa-
rameter choices of (2.1) with constants chosen as in
in (B.19) can be shown to achieve the required prop-
erties, by a tedious but straightforward analysis.

The main theorem of this section utilizes the single-
iteration inequality described in Lemma 2.3 to show
that both scaled iterate differences and variance term
are small. Approximate stationarity follows in view
of Theorem 2.1 via standard reductions described in
Corollary B.5. We provide a proof sketch to illustrate
the main ideas; details are deferred to Section B.3.

Theorem 2.4. Let the assumptions in (A1) hold and
suppose that ηk and the other algorithmic parameters
are chosen as in (2.1) (see also (B.19)). Then, for the
iterates of Algorithm 1, we have for any K > 1 that

1

K

K+1∑
k=1

E
[
∥η−1

k (xk − xk−1)∥2 + ∥gk−1 −∇f(xk−1)∥2
]

= Õ(K−2/3).

Proof sketch. In the result of Lemma 2.3, we use the
parameter choices given in (2.1) to obtain

EYk+1 ≤ EYk − 1

16ηk+1
E∥xk+1 − xk∥2

− ηk+1

2
E∥gk −∇f(xk)∥2 + vkV

2. (2.3)

Note that by the choices of ηk, αk and the definition of
vk, we have that

∑∞
k=1 vk = O(1). By adjusting (2.3)

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

and summing for k ≥ 1, we obtain

ηK+1

32

K+1∑
k=1

(
E∥xk − xk−1∥2 + E∥gk−1 −∇f(xk−1)∥2

)
≤ EY1 +

1

32η1
∥x1 − x0∥2 +

η1
4
∥g0 −∇f(x0)∥2

− EYK+1 + O(1).

To ensure that the the right-hand side is upper
bounded by a constant, we need to show EYk+1 is
lower bounded. This is not immediate, because our
use of a constant dual step size blocks the derivation
of a uniform upper bound on the norm of dual variable
λk. Lack of monotonicity of EYk also prevents us from
using the estimates available in deterministic cases; see
Hong (2016). In Lemma B.8, we show that the almost
monotonicity of EYk given in (2.3) is sufficient to show
lower boundedness. This fact leads to the result.

With this result, we can use the standard reductions of
Corollary B.5 to prove Theorem 2.1. It is worth noting
that most of the estimations in the analysis would sim-
plify if we were to fix all ηk, αk at values that depend on
the final iterate K (or equivalently ε). However, such
choices would not suffice to show lower boundedness of
EYk mentioned above, which is necessary to obtain the
right constants. Our use of variable step sizes also al-
lows us to derive an “any-time” algorithm with no need
to set an accuracy ε in advance. For example, Huang
et al. (2019) needed to assume uniform boundedness
of ∥∇f(xk)∥2 which trivially implies a lower bound for
the potential; see (Huang et al., 2019, eq. (69)). How-
ever, this assumption does not hold normally and the
limitations of bounded gradient assumption are well-
known; see, for example, (Yang et al., 2023, Section
3), Faw et al. (2022). Our analysis does not need this
restriction to obtain a lower bound for the potential.

3 STOCHASTIC CONSTRAINTS:
PROBLEM (III)

3.1 Algorithm and the Main Result

In this section, we address (III), restated here as

min
x∈X

{
f(x) := E[f̃(x, ξ)]

}
subject to ci(x) := Eζ [c̃i(x, ζ)] = 0, ∀i ∈ {1, . . . ,m},

where X is convex and closed, f and ci, i = 1, 2, . . . ,m
are smooth functions, c(x) = (c1(x), . . . , cm(x))⊤, and
∇c is the Jacobian.5 The notation PX denotes projec-
tion onto X. In addition to the oracle model described

5One can consider m = 1 in the first reading for sim-
plicity.

in (1.5), in this section we also have access to ∇̃ci such
that E[∇̃ci(x, ζ)] = ∇ci(x). We assume that there are
constants L̃∇f , L̃∇c, and L̃c such that for all x, y, we
have

Eξ∥∇̃f(x, ξ) − ∇̃f(y, ξ)∥2 ≤ L̃2
∇f∥x− y∥2,

Eζ∥∇̃c(x, ζ) − ∇̃c(y, ζ)∥2 ≤ L̃2
∇c∥x− y∥2,

Eζ∥c̃(x, ζ) − c̃(y, ζ)∥2 ≤ L̃2
c∥x− y∥2.

(A2)

These conditions are stronger than mere smoothness
of f, c but are necessary for variance reduction in gen-
eral (Arjevani et al., 2022). Other recent works (for
example, (Boob et al., 2022)) do not use this assump-
tion but obtain a slightly worse complexity result (see
Section 1.1).

Algorithm 2 is based on the quadratic penalty function

Qρ(x) = f(x) +
ρ

2

m∑
i=1

(ci(x))2.

The variance reduced estimator gk+1 is based on
STORM (Cutkosky and Orabona, 2019). The
quadratic terms (ci(x))2 are not in the suitable form
to apply SGD due to their compositional structure.
However, it is a special form for which simply using
independent samples can give an unbiased sample for
the gradient. (This observation appeared in the recent
independent work (Li et al., 2023).) Let us define the
stochastic oracle

∇̃Qρ(x,B)

= ∇̃f(x, ξ0) + ρ

m∑
i=1

∇̃ci(x, ζ
1)c̃i(x, ζ

2) (3.1)

where B = (ξ0, ζ1, ζ2) ∈ Ξ × Z2 with ζ1 and ζ2 i.i.d.
We then have that E[∇̃f(x, ξ0)] = ∇f(xk). Addition-
ally, ∀i = 1, 2, . . . ,m, we have

Eζ1,ζ2 [∇̃ci(x, ζ
1)c̃i(x, ζ

2)]

= Eζ1 [∇̃ci(x, ζ
1)]Eζ2 [c̃i(x, ζ

2)]

= ∇ci(x)ci(x),

where the first step is by independence of ζ1 and ζ2.
Hence, we have E∇̃Qρ(x) = ∇Qρ(x). We assume that
there are positive constants σf , σ∇c, and σc such that

E∥∇̃f(x, ξ) −∇f(x)∥2 ≤ σ2
f ,

E∥∇̃c(x, ξ) −∇c(x)∥2 ≤ σ2
∇c,

E∥c(x, ξ) − c(x)∥2 ≤ σ2
c ,

(A3)

a set of assumptions also made in (Boob et al., 2022,
eq. (2.9)). Other assumptions include the following:

∥∇c(x)∥ ≤ C∇c, ∥c(x)∥ ≤ Cc,

∥∇̃c(x, ζ)∥ ≤ C̃∇c, ∥c(x, ζ)∥ ≤ C̃c,

|f(xk)| ≤ Bf , ∥∇f(x)∥ ≤ C∇f ,

Qρ(x) ≥ Q > −∞ ∀ρ, x.

(A4)

Ahmet Alacaoglu, Stephen J. Wright

Algorithm 2 Stochastic Linearized Quadratic Penalty Method with Variance Reduction for (III)

1: Input: Initialize x1 ∈ X and g1 = ∇̃Qρ1(x1, B1) and αk, ρk, ηk as in Theorem 3.1
2: for k = 1, 2, . . . do
3: xk+1 = PX(xk − ηkgk)
4: Sample ξ0k+1, ζ

1
k+1, ζ

2
k+1 to get Bk+1 = (ξ0k+1, ζ

1
k+1, ζ

2
k+1) ∈ Ξ× Z2 where ζ1k+1 and ζ2k+1 are i.i.d.

5: ∇̃Qρ(x,Bk+1) = ∇̃f(x, ξ0k+1) + ρ
∑m

i=1 ∇̃ci(x, ζ
1
k+1)c̃i(x, ζ

2
k+1)

6: gk+1 = ∇̃Qρk+1(xk+1, Bk+1) + (1− αk+1)(gk − ∇̃Qρk (xk, Bk+1))
7: end for

These boundedness assumptions are widespread for
nonconvex constrained problems, even with determin-
istic objective and constraints, see for example (Sahin
et al., 2019; Lin et al., 2022a; Li et al., 2021).

Under these assumptions, we have that x 7→ Qρk
(x) is

Lρk
-smooth with Lρk

= ρk(L∇f +m(CcL∇c+C∇cLc))
which, for example, we can see by direct calculation on
the gradient. For variance reduction, we use

EB∥∇̃Qρk
(x,B) − ∇̃Qρk

(y,B)∥2

≤ L̃2
ρk
∥x− y∥2,

(3.2)

where L̃2
ρ = L̃ρ2, L̃ := 4L̃2

∇f + 4m2(C̃2
c L̃

2
∇c + C̃2

∇cL̃
2
c),

with ρk ≥ 1. This can be shown the same way as the
Lρ, by using (A2) and (A4) (see also (C.3) and (C.2)).

We also use a generalization of the full rank assump-
tion on the Jacobian. Recall that without the set inclu-
sion constraint x ∈ X, this means ∥∇c(xk)⊤c(xk)∥ ≥
δ|c(xk)|. With constraints, we assume

d(∇c(xk)⊤c(xk),−NX(xk)) ≥ δ∥c(xk)∥. (A5)

This assumption is common in the existing literature
of deterministic or stochastic algorithms with noncon-
vex functional constraints, see e.g., Sahin et al. (2019);
Li et al. (2021); Lin et al. (2022a); Li et al. (2023). Let
us note that this is implied by assuming LICQ in the
whole space. Bolte et al. (2018) make a similar as-
sumption that they term uniform regularity. Lin et al.
(2022a) considered the relationship of this assump-
tion with Kurdyka- Lojasiewicz and constraint quali-
fications.

We state now the main result for this section.

Theorem 3.1. Let the assumptions in (A2), (A3),
(A4), (A5) hold. Set the parameters of Algorithm 2 as

ηk =
1

9L̃ρ(k + 1)3/5
, ρk = ρk1/5, αk+1 =

72

81(k + 1)4/5
,

for some ρ > 1. Then, there exists λ such that

Ed(∇f(xk̂+1) + ∇c(xk̂+1)⊤λ,−NX(xk̂+1)) ≤ ε,

E∥c(xk̂+1)∥ ≤ ε.

with number of iterations K of Algorithm 2 bounded
by Õ(ε−5) and k̂ selected uniformly at random from
{1, . . . ,K}.

Remark 3.2. This is an iteration complexity result
that directly translates to Õ(ε−5) sample complexity
and computational complexity. This is because each
iteration of Algorithm 2 requires one sample of each
stochastic function f , 2 samples of (ci)

m
i=1 and each

iteration only involves simple projections to X and
vector operations.

Remark 3.3. It is worth noting that it is straightfor-
ward to get rid of the logarithmic terms in the above
bound by using parameters ηk, ρk that depend on the
final iterate. However, this would require an initial
preprocessing stage to get a near-feasible point for get-
ting the best complexity. Shi et al. (2022) used this
approach to study the deterministic constraints set-
ting.

Remark 3.4. We state our results for the constrained
case for simplicity. The extension to the proximal
case, where we have the additional proper convex lower
semicontinuous function instead of the constraint x ∈
X, is straightforward with our analysis template.

3.2 Analysis

As in the previous section, we start with the one iter-
ation analysis of the algorithm for which we suppress
some of the universal constants for readability. State-
ment of the lemma with details appears in Sec. C.2.

Lemma 3.5. Under the assumptions in (A2), (A3),
(A4), (A5) and the parameters (see also (3.2), (A4))

ηk =
1

9L̃ρ(k + 1)3/5
, ρk = ρk1/5,

αk+1 =
72

81(k + 1)4/5
,

for some constant ρ > 1, we have that

ηk
72

Ed2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1))

≤ E[Yk − Yk+1 + |Qρk
(xk+1) −Qρk+1

(xk+1)|] + Ek+1,

where

Yk+1 = Qρk+1
(xk+1)

+
1

72L̃2ρ2k+1ηk
∥gk+1 −∇Qρk+1

(xk+1)∥2,

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

Ek+1 = O

(
(ρk − ρk+1)2

ρ2k+1ηk

)
+ O

(
α2
k+1

ηk

)
.

Remark 3.6. The first term of Ek+1 has the order
O(k−7/5) and the second term of Ek+1 has the order

O(k−1), therefore
∑K

k=1 Ek+1 = O(log(K + 1)).

Proof sketch of Theorem 3.1. In view of Remark C.2,
it is easy to see that the only remaining piece we need
on top of Lemma 3.5 is the control over the penalty
parameter changes. For this, we show in Lemma C.3
that

∞∑
k=1

E|Qρk
(xk+1) −Qρk+1

(xk+1)| = O(1). (3.3)

The main idea in this lemma is to use the estimate of
Lemma 3.5 with the uniform upper bound on ∥c(xk)∥2
from (A4) and take advantage of the decay of |ρk −
ρk+1| and (A5) to obtain (3.3). Using this estimate in
Lemma 3.5 gives the result.

4 EXTENSIONS

In this section, we consider two extensions (with de-
tails and proofs given in Sec. D.1 and D.2) and show
how they follow by minor adjustments on our analysis.

4.1 Dual Variable Updates

In the context of nonconvex optimization with non-
convex functional constraints and ALM, the standard
way of incorporating dual updates is to use small step
sizes and large penalty parameters to ensure bound-
edness of the dual variable, see Li et al. (2021); Sahin
et al. (2019); Shi et al. (2022). Rapidly increasing,
unbounded, penalty parameter is then used to ob-
tain feasibility guarantees. One exception is Xie and
Wright (2021) which, unfortunately comes with worse
complexity guarantees for first-order stationarity, com-
pared to Li et al. (2021); Lin et al. (2022a). We con-
sidered the quadratic penalty method in the previous
section for simplicity, but we show in this section that
dual updates can be incorporated as done in Li et al.
(2021); Sahin et al. (2019); Shi et al. (2022), with small
step sizes. The modification compared to Algorithm 2
consists of changing the definition of gk+1 and incor-
porating a dual update step. In particular, we will
change the step for gk+1 as

gk+1 = ∇̃Qρk+1
(xk+1, λk+1, Bk+1)

+ (1 − αk+1)(gk − ∇̃Qρk
(xk, λk, Bk+1)),

where

∇̃Qρ(x, λ,B) = ∇̃f(x, ξ0) +

m∑
i=1

∇̃ci(x, ζ
1)λi

+ ρ

m∑
i=1

∇̃ci(x, ζ
1)c̃i(x, ζ

2).

We also add the dual update step as

λk+2,i = λk+1,i + γk+1,ic̃i(xk+1, ζ
2
k+1), (4.1)

for all i ∈ {1, . . . ,m}. As alluded earlier, dual steps
generally require a decaying step size as γk+1 (or clip-
ping the contribution of the previous dual parameter
by a constant amount as in Lu (2022)) for getting the
best-known guarantees.

Theorem 4.1. For the algorithm described in Sec-
tion 4.1, let

ηk =
1

9L̃ρ(k + 1)3/5
, ρk = ρk1/5,

γk,i =
γ

k(log(k + 1))2|c̃i(xk, ζ2k)|
, αk+1 =

72

81(k + 1)4/5

for some constant ρ > 1, γ > 0. Also let the assump-
tions in (A2), (A3), (A4), (A5) hold. We have that
there exists λ such that

Ed(∇f(xk̂+1) + ∇c(xk̂+1)⊤λ,−NX(xk̂+1)) ≤ ε,

with number of iterations bounded by Õ(ε−5). More-
over, we also have that E∥c(xk̂+1)∥ ≤ ε.

4.2 Deterministic Functional Constraints

In this section, we consider the case when the con-
straints are deterministic. In this case, we set the pa-
rameters accordingly to get the complexity Õ(ε−4).

Theorem 4.2. For Algorithm 2, set

ηk =
1

9L̃ρ(k + 1)1/2
, ρk = ρk1/4,

αk+1 =
72

81(k + 1)1/2
,

for some constant ρ > 1. Also let the assumptions in
(A2), (A3), (A4), (A5) hold with a deterministic c(x).
We have that there exists λ such that

E[d(∇f(xk̂+1) + ∇c(xk̂+1)⊤λ,−NX(xk̂+1))] ≤ ε,

E∥c(xk̂+1)∥ ≤ ε,

with number of iterations bounded by Õ(ε−4).

We note that a similar result with a single-loop algo-
rithm is obtained in Shi et al. (2022) with parameters
depending on the last iteration (or equivalently, on the
final accuracy). This results requires a pre-processing
step to get an almost feasible point to get the com-
plexity O(ε−4), which deteriorates to O(ε−5) other-
wise. Hence, obtaining the more favorable complexity
leads to a two-stage approach and also needing to set
the final accuracy. Our approach leads to an algorithm
that is both single stage and any-time.

Ahmet Alacaoglu, Stephen J. Wright

5 CONCLUSIONS & OPEN
QUESTIONS

This paper focused on improving the understanding
of single-loop algorithms for stochastic optimization
with functional constraints belonging to three differ-
ent classes highlighted in Section 1. In contrast,
(i) for nonlinearly constrained problems, previous
work relied on double loop algorithms that have non-
implementable stopping criteria for their inner loops
(unless strong assumptions for access to structural con-
stants made), (ii) for linearly constrained problems,
previous work relied on increasing batch sizes with re-
strictive assumptions on the gradient norm. Our work
helps overcome these drawbacks and opens up some
directions that we sketch below.

1. An important point that is already emphasized
many times in our manuscript is the following:
the existing analyses for ALM even for determin-
istic and nonlinearly constrained problems require
increasing penalty parameters (or equivalently,
large penalty parameters depending inversely on
the target accuracy) and small dual updates to
obtain best-known complexity guarantees. This
can be observed by the analysis frameworks in
these works which analyze ALM like a quadratic
penalty method with perturbation due to dual pa-
rameter updates. This results in ALM guarantees
to be worse than guarantees for quadratic penalty
methods.

This is also the reason why we used increasing
penalty parameters in our Section 3. On the other
hand, one of the main points for ALM historically
was its ability to work with non-increasing penalty
parameters. Xie and Wright (2021) provided an
analysis with constant penalty parameters, albeit
with a worse complexity guarantee. An important
open question is to analyze ALM with constant
penalty parameters (independent of target accu-
racy ε) and large dual step sizes for deterministic,
nonlinearly constrained nonconvex problems and
obtain the best-known O(ε−3) complexity. This
would also lead the way to design more efficient
stochastic methods, to improve our results.

2. A surprising difficulty for nonconvex problems
with linear constraints is incorporating pro-
jectable constraints on top of linear constraints.
A recent discovery on this context have been the
work of Zhang et al. (2022) that uses error bound
theory and can solve problems with linear con-
straints and projectable constraints with single-
loop methods and optimal complexity. It is inter-
esting to investigate how the results in this paper

can be extended to stochastic case or for problem
with nonlinear and non-projectable constraints.

Acknowledgments

This research was supported in part by the NSF grant
2023239, the NSF grant 2224213, the AFOSR award
FA9550-21-1-0084.

We are thankful to Julian Katz-Samuels and Jiawei
Zhang for helpful discussions.

References

Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster,
N. Srebro, and B. Woodworth. Lower bounds for
non-convex stochastic optimization. Mathematical
Programming, pages 1–50, 2022.

D. P. Bertsekas. Constrained optimization and La-
grange multiplier methods. Academic press, 2014.

J. Bolte, S. Sabach, and M. Teboulle. Nonconvex
lagrangian-based optimization: monitoring schemes
and global convergence. Mathematics of Operations
Research, 43(4):1210–1232, 2018.

D. Boob, Q. Deng, and G. Lan. Stochastic first-order
methods for convex and nonconvex functional con-
strained optimization. Mathematical Programming,
pages 1–65, 2022.

R. I. Boţ and D.-K. Nguyen. The proximal alternat-
ing direction method of multipliers in the nonconvex
setting: convergence analysis and rates. Mathemat-
ics of Operations Research, 45(2):682–712, 2020.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein,
et al. Distributed optimization and statistical learn-
ing via the alternating direction method of multipli-
ers. Foundations and Trends® in Machine learning,
3(1):1–122, 2011.

F. E. Curtis, M. J. O’Neill, and D. P. Robinson.
Worst-case complexity of an sqp method for non-
linear equality constrained stochastic optimization.
arXiv preprint arXiv:2112.14799, 2021.

A. Cutkosky and F. Orabona. Momentum-based vari-
ance reduction in non-convex sgd. Advances in neu-
ral information processing systems, 32, 2019.

D. Davis and D. Drusvyatskiy. Stochastic model-based
minimization of weakly convex functions. SIAM
Journal on Optimization, 29(1):207–239, 2019.

A. Dener, M. A. Miller, R. M. Churchill, T. Mun-
son, and C.-S. Chang. Training neural net-
works under physical constraints using a stochas-
tic augmented lagrangian approach. arXiv preprint
arXiv:2009.07330, 2020.

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

M. Faw, I. Tziotis, C. Caramanis, A. Mokhtari,
S. Shakkottai, and R. Ward. The power of adap-
tivity in sgd: Self-tuning step sizes with unbounded
gradients and affine variance. In Conference on
Learning Theory, pages 313–355. PMLR, 2022.

A. V. Fiacco and G. P. McCormick. Nonlinear pro-
gramming: sequential unconstrained minimization
techniques. John Wiley, 1968.

S. Ghadimi and G. Lan. Stochastic first-and zeroth-
order methods for nonconvex stochastic program-
ming. SIAM Journal on Optimization, 23(4):2341–
2368, 2013.

C. He, Z. Lu, and T. K. Pong. A newton-cg based
augmented lagrangian method for finding a second-
order stationary point of nonconvex equality con-
strained optimization with complexity guarantees.
SIAM Journal on Optimization, 33(3):1734–1766,
2023.

M. R. Hestenes. Multiplier and gradient methods.
Journal of optimization theory and applications, 4
(5):303–320, 1969.

M. Hong. Decomposing linearly constrained noncon-
vex problems by a proximal primal dual approach:
Algorithms, convergence, and applications. arXiv
preprint arXiv:1604.00543, 2016.

M. Hong, M. Razaviyayn, and J. Lee. Gradient primal-
dual algorithm converges to second-order stationary
solution for nonconvex distributed optimization over
networks. In International Conference on Machine
Learning, pages 2009–2018. PMLR, 2018.

F. Huang, S. Chen, and H. Huang. Faster stochastic
alternating direction method of multipliers for non-
convex optimization. In International conference on
machine learning, pages 2839–2848. PMLR, 2019.

Y. Huang and Q. Lin. Single-loop switching subgra-
dient methods for non-smooth weakly convex opti-
mization with non-smooth convex constraints. arXiv
preprint arXiv:2301.13314, 2023.

K. Ji, M. Liu, Y. Liang, and L. Ying. Will bilevel
optimizers benefit from loops. Advances in Neu-
ral Information Processing Systems, 35:3011–3023,
2022.

J. Katz-Samuels, J. B. Nakhleh, R. Nowak, and Y. Li.
Training ood detectors in their natural habitats.
In International Conference on Machine Learning,
pages 10848–10865. PMLR, 2022.

W. Kong, J. G. Melo, and R. D. Monteiro. Itera-
tion complexity of a proximal augmented lagrangian
method for solving nonconvex composite optimiza-
tion problems with nonlinear convex constraints.
Mathematics of Operations Research, 48(2):1066–
1094, 2023.

F. Kupfer and E. W. Sachs. Numerical solution of a
nonlinear parabolic control problem by a reduced
sqp method. Computational Optimization and Ap-
plications, 1(1):113–135, 1992.

G. Lan. First-order and stochastic optimization meth-
ods for machine learning. Springer, 2020.

G. Lan and R. D. Monteiro. Iteration-complexity
of first-order penalty methods for convex program-
ming. Mathematical Programming, 138(1-2):115–
139, 2013.

G. Lan and R. D. Monteiro. Iteration-complexity of
first-order augmented lagrangian methods for con-
vex programming. Mathematical Programming, 155
(1-2):511–547, 2016.

Z. Li, P.-Y. Chen, S. Liu, S. Lu, and Y. Xu. Rate-
improved inexact augmented lagrangian method
for constrained nonconvex optimization. In Inter-
national Conference on Artificial Intelligence and
Statistics, pages 2170–2178. PMLR, 2021.

Z. Li, P.-Y. Chen, S. Liu, S. Lu, and Y. Xu. Stochastic
inexact augmented lagrangian method for noncon-
vex expectation constrained optimization. Compu-
tational Optimization and Applications, pages 1–31,
2023.

Q. Lin, R. Ma, and Y. Xu. Complexity of an
inexact proximal-point penalty method for con-
strained smooth non-convex optimization. Compu-
tational Optimization and Applications, 82(1):175–
224, 2022a.

Z. Lin, H. Li, and C. Fang. Stochastic admm. In Alter-
nating Direction Method of Multipliers for Machine
Learning, pages 143–205. Springer, 2022b.

X. Liu, Q. Liu, S. Song, and J. Peng. A chance-
constrained generative framework for sequence opti-
mization. In International Conference on Machine
Learning, pages 6271–6281. PMLR, 2020.

S. Lu. A single-loop gradient descent and perturbed as-
cent algorithm for nonconvex functional constrained
optimization. In International Conference on Ma-
chine Learning, pages 14315–14357. PMLR, 2022.

R. Ma, Q. Lin, and T. Yang. Quadratically regular-
ized subgradient methods for weakly convex opti-
mization with weakly convex constraints. In In-
ternational Conference on Machine Learning, pages
6554–6564. PMLR, 2020.

A. Mokhtari, H. Hassani, and A. Karbasi. Stochastic
conditional gradient methods: From convex mini-
mization to submodular maximization. Journal of
machine learning research, 2020.

J. Nocedal and S. J. Wright. Numerical optimization.
Springer, 2nd edition, 2006.

Ahmet Alacaoglu, Stephen J. Wright

Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao Jr. An
accelerated linearized alternating direction method
of multipliers. SIAM Journal on Imaging Sciences,
8(1):644–681, 2015.

M. J. Powell. A method for nonlinear constraints in
minimization problems. Optimization, pages 283–
298, 1969.

T. Rees, H. S. Dollar, and A. J. Wathen. Opti-
mal solvers for pde-constrained optimization. SIAM
Journal on Scientific Computing, 32(1):271–298,
2010.

A. Ruszczyński. A linearization method for nonsmooth
stochastic programming problems. Mathematics of
Operations Research, 12(1):32–49, 1987.

M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre,
and V. Cevher. An inexact augmented lagrangian
framework for nonconvex optimization with nonlin-
ear constraints. Advances in Neural Information
Processing Systems, 32, 2019.

Q. Shi, X. Wang, and H. Wang. A momentum-based
linearized augmented lagrangian method for non-
convex constrained stochastic optimization. Opti-
mization Online, 2022.

K. Sun and A. Sun. Dual descent alm and admm.
arXiv preprint arXiv:2109.13214, 2021.

Y. Xie and S. J. Wright. Complexity of proximal aug-
mented lagrangian for nonconvex optimization with
nonlinear equality constraints. Journal of Scientific
Computing, 86(3):1–30, 2021.

Y. Xu. Accelerated first-order primal-dual proximal
methods for linearly constrained composite convex
programming. SIAM Journal on Optimization, 27
(3):1459–1484, 2017.

Y. Xu. Iteration complexity of inexact augmented la-
grangian methods for constrained convex program-
ming. Mathematical Programming, 185:199–244,
2021.

J. Yang, X. Li, I. Fatkhullin, and N. He. Two
sides of one coin: the limits of untuned sgd and
the power of adaptive methods. arXiv preprint
arXiv:2305.12475, 2023.

Y. Yang, G. Scutari, D. P. Palomar, and M. Pe-
savento. A parallel decomposition method for non-
convex stochastic multi-agent optimization prob-
lems. IEEE Transactions on Signal Processing, 64
(11):2949–2964, 2016.

M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and
K. P. Gummadi. Fairness constraints: A flexible
approach for fair classification. The Journal of Ma-
chine Learning Research, 20(1):2737–2778, 2019.

J. Zhang and Z.-Q. Luo. A proximal alternating direc-
tion method of multiplier for linearly constrained

nonconvex minimization. SIAM Journal on Opti-
mization, 30(3):2272–2302, 2020.

J. Zhang and Z.-Q. Luo. A global dual error bound
and its application to the analysis of linearly con-
strained nonconvex optimization. SIAM Journal on
Optimization, 32(3):2319–2346, 2022.

J. Zhang, P. Xiao, R. Sun, and Z. Luo. A single-
loop smoothed gradient descent-ascent algorithm for
nonconvex-concave min-max problems. Advances
in neural information processing systems, 33:7377–
7389, 2020.

J. Zhang, W. Pu, and Z.-Q. Luo. On the iteration
complexity of smoothed proximal alm for noncon-
vex optimization problem with convex constraints.
arXiv preprint arXiv:2207.06304, 2022.

X. Zhang, J. Liu, Z. Zhu, and E. S. Bentley. Gt-
storm: Taming sample, communication, and mem-
ory complexities in decentralized non-convex learn-
ing. In Proceedings of the Twenty-second Interna-
tional Symposium on Theory, Algorithmic Founda-
tions, and Protocol Design for Mobile Networks and
Mobile Computing, pages 271–280, 2021.

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Not Applicable]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Ahmet Alacaoglu, Stephen J. Wright

A PRELIMINARIES

Remarks regarding the stochastic oracle model in (1.5). One possible way to obtain ∇̃f as characterized
in (1.5) is to compute ∇xf̃(x, ξ) where f̃ is defined in (1.2). For this quantity to satisfy the requirement in (1.5),
its expectation over ξ must be the full gradient. However, this would require the gradient and expectation
operations to be interchangeable, which is not always true, especially in our nonconvex setting. It does however
hold for functions in which the support of ξ is finite (that is, finite-sum functions). It also holds under fairly
general conditions for smooth f . We make similar assumptions and apply similar conventions for the constraint
functions c and c̃ and use the oracle model described in this paragraph. It is worth noting that this oracle access is
standard in stochastic optimization with nonconvexity, see e.g., Ghadimi and Lan (2013); Arjevani et al. (2022);
Cutkosky and Orabona (2019); Lan (2020).

A preliminary lemma. The variance reduction technique introduced in Cutkosky and Orabona (2019) uses a
vector gk at each k as a proxy for a gradient of an expectation function. The variable gk accumulates information
from earlier iterations and from many values of the random variables, thus has lower variance than the gradient
evaluated at xk and a single value of the random variable.

We need a lemma to bound the difference between gk and the corresponding gradient, as it evolves across
iterations. Here we state this lemma in a general form that can be applied in all the problem formulations
considered in this paper. The lemma includes possibly iteration dependent functions to accommodate situations
in which gk represents the gradient of the augmented Lagrangian or quadratic penalty function with an iteration-
dependent penalty parameter. This lemma builds on (Cutkosky and Orabona, 2019, Lemma 5, Theorem 2); see
also Ruszczyński (1987); Mokhtari et al. (2020); Yang et al. (2016) for conceptually similar derivations in other
settings.

Lemma A.1. Let Gk : Rn → Rn and G̃k(x, ξ) be such that Eξ[G̃k(xk, ξ)] = Gk(xk), Eξ[G̃k+1(xk+1, ξ)] =

Gk+1(xk+1). Define gk+1 = G̃k+1(xk+1, ξk+1) + (1 − αk+1)(gk − G̃k(xk, ξk+1)) for k ≥ 0 and g0 ∈ Rn. We then
have

Ek∥gk+1 −Gk+1(xk+1)∥2 ≤ (1 − αk+1)2∥gk −Gk(xk)∥2

+ 7Ek∥G̃k+1(xk+1, ξk+1) − G̃k+1(xk, ξk+1)∥2

+ 42Ek∥G̃k+1(xk, ξk+1) − G̃k(xk, ξk+1)∥2

+ 3α2
k+1Ek∥Gk(xk) − G̃k(xk, ξk+1)∥2,

where Ek is the expectation conditioned on all the history up to and including xk+1, ξk.

Proof. We have, by subtracting Gk+1(xk+1) from both sides of the definition of gk+1, that

gk+1 −Gk+1(xk+1) = G̃k+1(xk+1, ξk+1) + (1 − αk+1)(gk − G̃k(xk, ξk+1)) −Gk+1(xk+1).

On this identity, we use the simple decomposition

(1 − αk+1)(gk − G̃k(xk, ξk+1)) = (1 − αk+1)(gk −Gk(xk)) + (1 − αk+1)(Gk(xk) − G̃k(xk, ξk+1)),

to obtain

gk+1 −Gk+1(xk+1) = (1 − αk+1)(gk −Gk(xk)) + (G̃k+1(xk+1, ξk+1) −Gk+1(xk+1))

+ (1 − αk+1)(Gk(xk) − G̃k(xk, ξk+1)).

We next take the squared norm of both sides and expand the right-hand side

∥gk+1 −Gk+1(xk+1)∥2 = (1 − αk+1)2∥gk −Gk(xk)∥2

+ 2(1 − αk+1)⟨gk −Gk(xk), G̃k+1(xk+1, ξk+1) −Gk+1(xk+1)⟩
+ 2(1 − αk+1)2⟨gk −Gk(xk), Gk(xk) − G̃k(xk, ξk+1)⟩
+ ∥G̃k+1(xk+1, ξk+1) −Gk+1(xk+1) + (1 − αk+1)(Gk(xk) − G̃k(xk, ξk+1))∥2. (A.1)

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

We now take conditional expectation of this equality, where Ek is as defined in the lemma statement:

Ek∥gk+1 −Gk+1(xk+1)∥2 = (1 − αk+1)2∥gk −Gk(xk)∥2

+ Ek∥G̃k+1(xk+1, ξk+1) −Gk+1(xk+1) + (1 − αk+1)(Gk(xk) − G̃k(xk, ξk+1))∥2.
(A.2)

This equality is because the inner product terms on (A.1) disappear after taking condition expectation: we have
gk − Gk(xk) is deterministic when we condition on xk+1 and also Ek[G̃k+1(xk+1, ξk+1) − Gk+1(xk+1)] = 0 and
Ek[Gk(xk) −Gk(xk, ξk+1))] = 0, by the requirements on G̃k and G̃k+1 given in the lemma.

For the last term on the right-hand side of (A.2), we use Young’s inequalities to obtain

Ek∥G̃k+1(xk+1, ξk+1) −Gk+1(xk+1) + (1 − αk+1)(Gk(xk) − G̃k(xk, ξk+1))∥2

≤ 3Ek∥Gk+1(xk+1) −Gk(xk)∥2 + 3Ek∥G̃k+1(xk+1, ξk+1) − G̃k(xk, ξk+1)∥2

+ 3α2
k+1Ek∥Gk(xk) − G̃k(xk, ξk+1)∥2

≤ 6Ek∥G̃k+1(xk+1, ξk+1) − G̃k(xk, ξk+1)∥2 + 3α2
k+1Ek∥Gk(xk) − G̃k(xk, ξk+1)∥2, (A.3)

where the final bound joins the first two terms in the previous bound, by Jensen’s inequality, since

Ek[G̃k+1(xk+1, ξk+1) − G̃k(xk, ξk+1)] = Gk+1(xk+1) −Gk(xk).

For the first term on the right-hand side of (A.3), we add and subtract G̃k+1(xk, ξk+1) and use Young’s inequality
to find that

∥G̃k+1(xk+1, ξk+1) − G̃k(xk, ξk+1)∥2

≤ 7

6
∥G̃k+1(xk+1, ξk+1) − G̃k+1(xk, ξk+1)∥2 + 7∥G̃k+1(xk, ξk+1) − G̃k(xk, ξk+1)∥2.

Thus (A.3) becomes

Ek∥G̃k+1(xk+1, ξk+1) −Gk+1(xk+1) + (1 − αk+1)(Gk(xk) − G̃k(xk, ξk+1))∥2

≤ 7Ek∥G̃k+1(xk+1, ξk+1) − G̃k+1(xk, ξk+1)∥2

+ 42Ek∥G̃k+1(xk, ξk+1) − G̃k(xk, ξk+1)∥2

+ 3α2
k+1Ek∥Gk(xk) − G̃k(xk, ξk+1)∥2.

By using this inequality to bound the last term on the right-hand side of (A.2), we obtain the result.

B LINEAR CONSTRAINTS: PROBLEM (I)

B.1 One-step recursion on augmented Lagrangian

We recall the augmented Lagrangian function for (I) as

Lρ(x, λ) := f(x) + ⟨λ,Ax− b⟩ +
ρ

2
∥Ax− b∥2, (B.1)

for ρ > 0. In this section, we prove the following result concerning the change in ELρ(xk, λk) over one iteration.
Note that the expectation E is with respect to the randomness of ξk for k = 1, 2, Our result makes use of
the Lipschitz constant of ∇xLρ(·, λk), which is

Lρ := Lf + ρ∥A∥2. (B.2)

In the rest of this section, we make frequent use of the matrix Qk defined by

Qk := η−1
k I − ρA⊤A. (B.3)

Ahmet Alacaoglu, Stephen J. Wright

Lemma B.1. Let the assumptions in (A1) hold. Then for any k ≥ 1, we have that

ELρ(xk+1, λk+1) ≤ ELρ(xk, λk) +

(
Lρ

2
− 1

2ηk+1

)
E∥xk+1 − xk∥2 +

ηk+1

2
E∥gk −∇f(xk)∥2

+
1

ρ
E∥λk+1 − λk∥2.

(B.4)

With the definition of Qk+1 as in (B.3), and assuming that ηk+1 is chosen to ensure that Qk+1 ≻ 0, we also
have

E∥λk+1 − λk∥2 ≤ 1

δ

(
6L2

fE∥xk − xk−1∥2 + 6α2
kV

2 + 6α2
kE∥gk−1 −∇f(xk−1)∥2

+ 3E ∥xk+1 − 2xk + xk−1∥2Q⊤
k+1Qk+1

+ 3
(
η−1
k − η−1

k+1

)2 E∥xk − xk−1∥2
)
.

Before proving this result, we state and prove an immediate corollary.

Corollary B.2. Under the same assumptions as Lemma B.1, for any positive constants c1 and c4, and with ηk
defined as in (B.19) (where this definition depends on c1, c5, and other constants), we have

ELρ(xk+1, λk+1) ≤ ELρ(xk, λk) +
ηk+1

2
E∥gk −∇f(xk)∥2 +

6(1 + c1)α2
k

ρδ
E∥gk−1 −∇f(xk−1)∥2

+

(
Lρ

2
− 1

2ηk+1

)
E∥xk+1 − xk∥2 +

(6 + c4)(1 + c1)L2
f

ρδ
E∥xk − xk−1∥2

+
3(1 + c1)

ρδ
E∥xk+1 − 2xk + xk−1∥2Q⊤

k+1Qk+1
+

6(1 + c1)α2
kV

2

ρδ
− c1

ρ
E∥λk+1 − λk∥2.

Proof of Corollary B.2. The proof is immediate after adding and subtracting c1
ρ E∥λk+1 − λk∥2, using the upper

bound of E∥λk+1 − λk∥2 from Lemma B.1 and Fact B.7 to bound 3(η−1
k − η−1

k+1)2 ≤ c4L
2
f .

We now return to the proof of Lemma B.1.

Proof of Lemma B.1. By Lipschitz continuity of ∇Lρ(·, λk), we have

Lρ(xk+1, λk) ≤ Lρ(xk, λk) + ⟨∇xLρ(xk, λk), xk+1 − xk⟩ +
Lρ

2
∥xk+1 − xk∥2. (B.5)

By the definitions of ∇xLρ and xk+1 in Algorithm 1, we have that

⟨∇xLρ(xk, λk), xk+1 − xk⟩ = ⟨gk + A⊤λk + ρA⊤(Axk − b), xk+1 − xk⟩ + ⟨∇f(xk) − gk, xk+1 − xk⟩

≤ − 1

ηk+1
∥xk+1 − xk∥2 +

ηk+1

2
∥∇f(xk) − gk∥2 +

1

2ηk+1
∥xk+1 − xk∥2

= − 1

2ηk+1
∥xk+1 − xk∥2 +

ηk+1

2
∥∇f(xk) − gk∥2,

where the last two terms on the second line are from Young’s inequality. By substituting in (B.5) and collecting
like terms, we obtain

Lρ(xk+1, λk) ≤ Lρ(xk, λk) +

(
Lρ

2
− 1

2ηk+1

)
∥xk+1 − xk∥2 +

ηk+1

2
∥gk −∇f(xk)∥2. (B.6)

We also have by the definition of Lρ in (B.1) and λk+1 in Algorithm 1 that

Lρ(xk+1, λk+1) − Lρ(xk+1, λk) = ⟨λk+1 − λk, Axk+1 − b⟩ =
1

ρ
∥λk+1 − λk∥2.

By using this identity in (B.6), we obtain the first result (B.4) after taking expectation.

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

We now bound E∥λk+1−λk∥2 to get the second result. By using the definitions of xk+1 and λk+1 in Algorithm 1,
we obtain

xk+1 = xk − ηk+1(gk + A⊤λk + ρA⊤(Axk − b))

= xk − ηk+1(gk + A⊤λk+1 + ρA⊤A(xk − xk+1)) (B.7)

⇐⇒
(
η−1
k+1I − ρA⊤A

)
(xk+1 − xk) = −gk −A⊤λk+1. (B.8)

Replacing k by k − 1 in this identity, we have (
η−1
k I − ρA⊤A

)
(xk − xk−1) = −gk−1 −A⊤λk

⇐⇒
(
η−1
k+1I − ρA⊤A

)
(xk − xk−1) +

(
η−1
k − η−1

k+1

)
(xk − xk−1) = −gk−1 −A⊤λk. (B.9)

Subtracting (B.9) from (B.8) (to use a similar technique to one used in Hong (2016); Hong et al. (2018) with the
change of identifying the error coming from iteration-dependent parameters) gives(

η−1
k+1I − ρA⊤A

)
(xk+1 − xk − (xk − xk−1)) −

(
η−1
k − η−1

k+1

)
(xk − xk−1)

= gk−1 − gk + A⊤(λk − λk+1). (B.10)

By rearranging, taking squared norm of each side, and using Young’s inequality, we obtain

∥A⊤(λk − λk+1)∥2 ≤ 3∥gk − gk−1∥2 + 3
∥∥(η−1

k+1I − ρA⊤A
)

(xk+1 − xk − (xk − xk−1))
∥∥2

+ 3
(
η−1
k − η−1

k+1

)2 ∥xk − xk−1∥2. (B.11)

For the first term in this bound, by the definition of gk+1 from Algorithm 1, we have that

gk+1 − gk = ∇̃f(xk+1, ξk+1) − ∇̃f(xk, ξk+1) + αk+1(∇̃f(xk, ξk+1) − gk).

By taking squared norms, using Young’s inequality and Lipschitzness of ∇̃f(·, ξ) from (A1), we obtain

E∥gk+1 − gk∥2 ≤ 2L2
fE∥xk+1 − xk∥2 + 2α2

k+1E∥∇̃f(xk, ξk+1) − gk∥2

= 2L2
fE∥xk+1 − xk∥2 + 2α2

k+1E∥∇̃f(xk, ξk+1) −∇f(xk)∥2 + 2α2
k+1E∥gk −∇f(xk)∥2

≤ 2L2
fE∥xk+1 − xk∥2 + 2α2

k+1V
2 + 2α2

k+1E∥gk −∇f(xk)∥2, (B.12)

where V is the bound on variance from (A1). To obtain the equality in the derivation above, we used the tower
rule: since Eξk+1

[∇̃f(xk, ξk+1)] = ∇f(xk) and gk,∇f(xk) are deterministic when we are taking the conditional

expectation, thus E⟨∇̃f(xk, ξk+1) −∇f(xk), gk −∇f(xk)⟩ = 0.

Using the inequality (B.12) in (B.11) (with index k − 1 instead of k), we have after taking expectation that

E∥A⊤(λk − λk+1)∥2 ≤ 6L2
fE∥xk − xk−1∥2 + 6α2

kV
2 + 6α2

kE∥gk−1 −∇f(xk−1)∥2

+ 3E
∥∥(η−1

k+1I − ρA⊤A
)

(xk+1 − xk − (xk − xk−1))
∥∥2

+ 3
(
η−1
k − η−1

k+1

)2 E∥xk − xk−1∥2. (B.13)

Since λk+1 − λk is in the range of A and δ is the smallest nonzero eigenvalue of A⊤A (see also (1.3)), we have
the result after using the definition of Qk+1 from (B.3).

B.2 One-step recursion on feasibility and iterate difference

Lemma B.3. Let the assumptions in (A1) hold. For all k ≥ 0, assume that ηk+1 is chosen to ensure that
Qk+1 ≻ 0 (where Qk+1 is defined in (B.3)). Then for any k ≥ 1, we have that

ρ

2ηk+2
E∥Axk+1 − b∥2 +

1

2ηk+1
E∥xk+1 − xk∥2Qk+1

≤ ρ

2ηk+1
E∥Axk − b∥2 +

1

2ηk
E∥xk − xk−1∥2Qk

Ahmet Alacaoglu, Stephen J. Wright

− 1

2ηk+1
E∥xk+1 − 2xk + xk−1∥2Qk+1

+
η−1
k+2 − η−1

k+1

2ρ
E∥λk+1 − λk∥2

+

(
Lf

2ηk+1
+

η−1
k+1 − η−1

k

2ηk+1

)
E∥xk+1 − xk∥2 +

(
Lf

ηk+1
+

η−1
k+1 − η−1

k

2ηk+1
+

η−2
k+1 − η−2

k

2

)
E∥xk − xk−1∥2

+
α2
k

Lfηk+1
E∥gk−1 −∇f(xk−1)∥2 +

α2
kV

2

Lfηk+1
.

Before proving this result, we state and prove an immediate corollary.

Corollary B.4. Suppose the assumptions of Lemma B.3 hold and that c1, c2, c3 are arbitrary positive constants,
with ηk and m > 0 defined from (B.19) (where the definitions of ηk and m depend on c1, c2, c3, and other
constants). We have

ρ

2ηk+2
E∥Axk+1 − b∥2 +

1

2ηk+1
E∥xk+1 − xk∥2Qk+1

≤ ρ

2ηk+1
E∥Axk − b∥2 +

1

2ηk
E∥xk − xk−1∥2Qk

− 1

2ηk+1
E∥xk+1 − 2xk + xk−1∥2Qk+1

+
c1
ρm

E∥λk+1 − λk∥2

+
(1 + 2c3)Lf

2ηk+1
E∥xk+1 − xk∥2 +

(1 + c2 + c3)Lf

ηk+1
E∥xk − xk−1∥2

+
α2
k

Lfηk+1
E∥gk−1 −∇f(xk−1)∥2 +

α2
kV

2

Lfηk+1
.

Proof of Corollary B.4. The result is immediate after using (B.37a), (B.37b) and (B.37c) in Fact B.7 on the
result of Lemma B.3 and rearranging terms.

We now return to Lemma B.3

Proof of Lemma B.3. For this recursion, we use a similar technique to Hong (2016); Hong et al. (2018), extended
to use variable step sizes. The additional error terms will appear due to using stochastic gradients and variance
reduction in our case, which were not considered in Hong (2016); Hong et al. (2018). We start from (B.10) and
use the definition of λk+1 in Algorithm 1 (that is, λk+1 − λk = ρ(Axk+1 − b)) and the definition (B.3) of Qk+1

to obtain

gk − gk−1 + ρA⊤(Axk+1 − b) + Qk+1(xk+1 − 2xk + xk−1) + (η−1
k+1 − η−1

k)(xk − xk−1) = 0.

We next take the inner product of this expression with xk+1 − xk, divide by ηk+1 and rearrange to get

ρ

ηk+1
⟨Axk+1 − b, A(xk+1 − xk)⟩ =

1

ηk+1
⟨gk−1 − gk −Qk+1(xk+1 − 2xk + xk−1), xk+1 − xk⟩

+
η−1
k+1 − η−1

k

ηk+1
⟨xk−1 − xk, xk+1 − xk⟩. (B.14)

We now obtain bounds on four parts of this expression in turn.

1. By using the identity 2⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2 for any vectors a and b, we have that

ρ

ηk+1
⟨Axk+1 − b, A(xk+1 − xk)⟩

=
ρ

2ηk+1

(
∥Axk+1 − b∥2 + ∥A(xk+1 − xk)∥2 − ∥Axk − b∥2

)
≥ ρ

2ηk+1

(
∥Axk+1 − b∥2 − ∥Axk − b∥2

)

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

=
ρ

2ηk+2
∥Axk+1 − b∥2 − ρ

2ηk+1
∥Axk − b∥2 +

η−1
k+1 − η−1

k+2

2ρ
∥λk+1 − λk∥2, (B.15)

where the last step used the definition of λk+1 from Algorithm 1 again, together with addition and subtrac-
tion of a term involving η−1

k+2.

2. By using the same identity and the definition (B.3) of Qk+1 ≻ 0, we also have

− 1

ηk+1
⟨Qk+1(xk+1 − 2xk + xk−1), xk+1 − xk⟩

= − 1

ηk+1
⟨xk+1 − 2xk + xk−1, xk+1 − xk⟩Qk+1

= − 1

2ηk+1

(
∥xk+1 − 2xk + xk−1∥2Qk+1

+ ∥xk+1 − xk∥2Qk+1
− ∥xk − xk−1∥2Qk+1

)
≤ − 1

2ηk+1
∥xk+1 − 2xk + xk−1∥2Qk+1

− 1

2ηk+1
∥xk+1 − xk∥2Qk+1

+
1

2ηk
∥xk − xk−1∥2Qk

+
1

2

(
η−2
k+1 − η−2

k

)
∥xk − xk−1∥2, (B.16)

where the last step uses (B.3) together with 0 < ηk+1 ≤ ηk, i.e.,

1

2ηk+1
∥xk − xk−1∥2Qk+1

− 1

2ηk
∥xk − xk−1∥2Qk

=
1

2

(
η−2
k+1 − η−2

k

)
∥xk − xk−1∥2 + ⟨xk − xk−1,

(
−η−1

k+1 + η−1
k

)
ρA⊤A(xk − xk−1)⟩

≤ 1

2

(
η−2
k+1 − η−2

k

)
∥xk − xk−1∥2.

3. By Young’s inequality, we have

η−1
k+1 − η−1

k

ηk+1
⟨xk−1 − xk, xk+1 − xk⟩ ≤

η−1
k+1 − η−1

k

2ηk+1

(
∥xk − xk−1∥2 + ∥xk+1 − xk∥2

)
. (B.17)

4. By Young’s inequality and (B.12) (replacing k by k − 1), we get

1

ηk+1
E⟨gk−1 − gk, xk+1 − xk⟩

≤ 1

2Lfηk+1
E∥gk − gk−1∥2 +

Lf

2ηk+1
E∥xk+1 − xk∥2

≤ 1

2Lfηk+1

(
2L2

fE∥xk − xk−1∥2 + 2α2
kV

2 + 2α2
kE∥gk−1 −∇f(xk−1)∥2

)
+

Lf

2ηk+1
E∥xk+1 − xk∥2. (B.18)

We get the result by taking expectation of (B.14) and substituting from (B.15), (B.16), (B.17), and (B.18).

Ahmet Alacaoglu, Stephen J. Wright

B.3 Main result

In this section, for arbitrary positive values of c1, c2, c3, c4 we define the parameters ηk, m, ρ, and αk in the
following way (recall the definitions of Lf and δ from (A1) and (1.3)):

c = 121L2
f ,

m = min

(
1

448Lf
,

1

32(1 + c2 + c3)Lf
,

1

8(1 + 2c3)Lf

)
ρ = max

(
7(1 + c1)

mδ
,

4(6 + c4)(1 + c1)Lf

δ
,

168(1 + c1)Lf

δ

)
,

η =
1

11(Lf + ρ∥A∥2)
,

k0 = max

((
10m

3c1η

)2

,

(
20

3ηc2Lf

)2

,

(
10

3c3Lf

)2

,
400

3η2c4L2
f

,

(
20

cη2

)4

,

(
50

3cη2

)6

, 2

)
ηk =

η

(k + k0)1/3 log(k + k0)

αk = cη2k.

(B.19)

We should remark that the constants of these parameters and also constants in other bounds in the paper are
not optimized, since we focus on the dependence on ε in this work. The constants certainly could be improved
at the expense of even great complexity in the analysis.

Lemma 2.3. Let the assumptions in (A1) hold and ηk be set as (B.19). For the iterates of Algorithm 1, we
have for k ≥ 1 that

EYk+1 ≤ EYk − ηk+1

2
E∥gk −∇f(xk)∥2 + (β1,k+1 + β2,k+1)E∥xk+1 − xk∥2 + wk + vkV

2, (B.20)

where

Yk+1 = Lρ(xk+1, λk+1) +
ρm

2ηk+2
∥Axk+1 − b∥2 +

m

2ηk+1
∥xk+1 − xk∥2Qk+1

+ β1,k+1∥xk+1 − xk∥2

+
2

cηk+1
∥gk+1 −∇f(xk+1)∥2 +

(
6(1 + c1)

ρδ
+

4m

Lfηk

)
∥gk −∇f(xk)∥2

(B.21)

and

β1,k =
(1 + c2 + c3)Lfm

ηk+1
+

(6 + c4)(1 + c1)L2
f

ρδ
+

42(1 + c1)L2
f

ρδ
+

28mLf

ηk
,

β2,k =
Lρ

2
+

(1 + 2c3)mLf

2ηk
+

14L2
f

cηk
− 1

2ηk
,

wk =
3(1 + c1)

δρ
E∥xk+1 − 2xk + xk−1∥2Q⊤

k+1Qk+1
− m

2ηk+1
E∥xk+1 − 2xk + xk−1∥2Qk+1

,

vk =
6(1 + c1)α2

k

δρ
+

α2
km

Lfηk+1
+

6α2
k+1

cηk+1
+

18(1 + c1)α2
k

ρδ
+

12mα2
k

Lfηk
.

Proof. We combine the bounds of Corollaries B.2 and B.4 after multiplying the latter by the scalar m of (2.1)
(by noting cancellation of the terms with ∥λk+1−λk∥2 and after adding and subtracting ηk+1

2 E∥gk −∇f(xk)∥2):

ELρ(xk+1, λk+1) +
ρm

2ηk+2
E∥Axk+1 − b∥2 +

m

2ηk+1
E∥xk+1 − xk∥2Qk+1

≤ ELρ(xk, λk) +
ρm

2ηk+1
E∥Axk − b∥2 +

m

2ηk
E∥xk − xk−1∥2Qk

− ηk+1

2
E∥gk −∇f(xk)∥2

+

(
Lρ

2
+

(1 + 2c3)mLf

2ηk+1
− 1

2ηk+1

)
E∥xk+1 − xk∥2

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

+

(
(1 + c2 + c3)Lfm

ηk+1
+

(6 + c4)(1 + c1)L2
f

ρδ

)
E∥xk − xk−1∥2

+ ηk+1E∥gk −∇f(xk)∥2 +

(
mα2

k

Lfηk+1
+

6(1 + c1)α2
k

ρδ

)
E∥gk−1 −∇f(xk−1)∥2 (B.22)

+
3(1 + c1)

ρδ
E∥xk+1 − 2xk + xk−1∥2Q⊤

k+1Qk+1
− m

2ηk+1
E∥xk+1 − 2xk + xk−1∥2Qk+1

+

(
6(1 + c1)α2

k

ρδ
+

α2
km

Lfηk+1

)
V 2. (B.23)

Since this expression looks rather daunting, we take a closer look at the different terms. On a high level, we
see that the terms in the first and second lines telescope. For the terms in the third and fourth lines, and the
terms in the sixth line, we show that our parameter choices make them nonpositive or telescoping. The size of
the terms in the last line can be controlled by the choice of αk. The details will be spelled out in Theorem 2.4.
What remains is to handle the fifth line by variance reduction recursion from Lemma B.6.

We now use the definitions of β1,k, β2,k, and vk in the statement of the lemma. These terms include not only the
coefficients of E∥xk −xk−1∥2, E∥xk+1−xk∥2, and V 2 but also the contribution for the corresponding terms that
will come when we use Lemma B.6 to bound the terms on (B.22), cf. (B.31). In particular, with Lemma B.6 to
bound the terms on (B.22), and the definitions of β1,k, β2,k+1, vk, wk in the statement of the lemma, we have

ELρ(xk+1, λk+1) +
ρm

2ηk+2
E∥Axk+1 − b∥2 +

m

2ηk+1
E∥xk+1 − xk∥2Qk+1

+
2

cηk+1
E∥gk+1 −∇f(xk+1)∥2 +

(
6(1 + c1)

ρδ
+

4m

Lfηk

)
E∥gk −∇f(xk)∥2

≤ ELρ(xk, λk) +
ρm

2ηk+1
E∥Axk − b∥2 +

m

2
E∥xk − xk−1∥2Qk

− ηk+1

2
E∥gk −∇f(xk)∥2

+
2

cηk
E∥gk −∇f(xk)∥2 +

(
6(1 + c1)

ρδ
+

4m

Lfηk−1

)
E∥gk−1 −∇f(xk−1)∥2

+ β2,k+1E∥xk+1 − xk∥2 + β1,kE∥xk − xk−1∥2 + wk + vkV
2.

By adding β1,k+1E∥xk+1 − xk∥2 to both sides and using the definition of Yk, we have the result.

We continue with the restatement and proof of Theorem 2.4.

Theorem 2.4. Let the assumptions in (A1) hold and supppose that ηk and the other algorithmic parameters are
chosen as in (B.19). Then, for the iterates of Algorithm 1, we have for any K ≥ 1 that

1

K

K+1∑
k=1

E
[
∥η−1

k (xk − xk−1)∥2 + ∥gk−1 −∇f(xk−1)∥2
]

= O

(
1

ηK+1K

)
= Õ(K−2/3).

Proof. We start with the result of Lemma 2.3. To show that the terms involving wk, β1,k+1, and β2,k+1 in the
right-hand side of (B.20) sum up to a nonpositive constant, we will show that

Qk+1 = η−1
k+1I − ρA⊤A ≻ 0, (B.24a)

m

2ηk+1
Qk+1 −

3(1 + c1)

ρδ
Q⊤

k+1Qk+1 ⪰ 0, (B.24b)

β1,k+1 + β2,k+1 =
Lρ

2
+

(1 + 2c3)mLf

2ηk+1
+

14L2
f

cηk+1
− 1

2ηk+1

+
(1 + c2 + c3)Lfm

ηk+2
+

(6 + c4)(1 + c1)L2
f

ρδ
+

42(1 + c1)L2
f

ρδ
+

28mLf

ηk+1
≤ − 1

16ηk+1
, (B.24c)

where the definitions of β1,k, β2,k are given in Lemma 2.3.

Ahmet Alacaoglu, Stephen J. Wright

First, we know that (B.24a) is satisfied since ηk+1 < η ≤ 1/(ρ∥A∥2). The positive semidefiniteness condition

(B.24b) is satisfied when m ≥ 7(1+c1)
ρδ (which is ensured by the definition of ρ) since m

2 ≥ 3(1+c1)
ρδ and since

Qk+1 =
1

ηk+1
I − ρA⊤A ≻ 0 =⇒ 1

ηk+1
Qk+1 −Q⊤

k+1Qk+1 ⪰ 0,

as can be verified by direct substitution of Qk+1. We thus have from the definition of wk in Lemma 2.3 that
wk ≤ 0.

Finally, we verify (B.24c). With m, ρ, c defined in (2.1), and using η−1
k+2 ≤ 2η−1

k+1, see for example Fact B.7, we
have that

− 1

2ηk+1
+

(1 + 2c3)mLf

2ηk+1
+

14L2
f

cηk+1
+

(1 + c2 + c3)Lfm

ηk+2
+

28mLf

ηk+1
≤ − 3

16ηk+1
,

Lρ

2
+

(6 + c4)(1 + c1)L2
f

ρδ
+

42(1 + c1)L2
f

ρδ
≤ Lρ

2
+

Lf

2
≤ Lρ,

where the final inequality follows from (B.2). Since the left-hand sides of these two inequalitites sum to β1,k+1 +
β2,k+1, (B.24c) holds if we can show that

Lρ ≤ 1

8ηk+1
⇐⇒ ηk+1 ≤ 1

8Lρ
,

which is implied by η ≤ 1
11Lρ

in (2.1).

As shown above, we have wk ≤ 0 with the selected parameters. By substituting this bound together with (B.24c)
into (B.20), we obtain

EYk+1 ≤ EYk − 1

16ηk+1
E∥xk+1 − xk∥2 −

ηk+1

2
E∥gk −∇f(xk)∥2 + vkV

2, (B.25)

By adding to both sides 1
32ηk

E∥xk − xk−1∥2 + ηk

4 E∥gk−1 −∇f(xk−1)∥2 and rearranging, we get

1

32ηk+1
E∥xk+1 − xk∥2 +

1

32ηk
E∥xk − xk−1∥2 +

ηk+1

4
E∥gk −∇f(xk)∥2 +

ηk
4
E∥gk−1 −∇f(xk−1)∥2

≤
(
EYk +

1

32ηk
∥xk − xk−1∥2 +

ηk
4
∥gk−1 −∇f(xk−1)∥2

)
−
(
EYk+1 +

1

32ηk+1
∥xk+1 − xk∥2 +

ηk+1

4
∥gk −∇f(xk)∥2

)
+ vkV

2, (B.26)

From the definition αk = cη2k with ηk = η
(k+k0)1/3 log(k+k0)

in (B.19), we have
∑∞

k=1 α
2
k+1/ηk+1 = O(1) and∑∞

k=1 α
2
k = O(1). It follows from the definition of vk in Lemma 2.3 that

∑∞
k=1 vk = O(1). Thus by summing

the inequality (B.26) over k = 1, 2, . . . ,K and telescoping the right-hand side, we obtain

K∑
k=1

1

32ηk+1
E∥xk+1 − xk∥2 +

1

32ηk
E∥xk − xk−1∥2 +

ηk+1

4
E∥gk −∇f(xk)∥2 +

ηk
4
E∥gk−1 −∇f(xk−1)∥2

≤
(
EY1 +

1

32η1
∥x1 − x0∥2 +

η1
4
∥g0 −∇f(x0)∥2

)
−
(
EYK+1 +

1

32ηK+1
∥xK+1 − xK∥2 +

ηK
4

∥gK −∇f(xK)∥2
)

+ O(1)

≤
(
EY1 +

1

32η1
∥x1 − x0∥2 +

η1
4
∥g0 −∇f(x0)∥2

)
− EYK+1 + O(1). (B.27)

For the terms on the left-hand side, we have for k = 1, 2, . . . ,K, using ηk ≥ ηk+1 ≥ ηK+1, that

1

32ηk+1
E∥xk+1 − xk∥2 +

1

32ηk
E∥xk − xk−1∥2

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

=
ηk+1

32
E∥η−1

k+1(xk+1 − xk)∥2 +
ηk
32

E∥η−1
k (xk − xk−1)∥2

≥ ηK+1

32

[
E∥η−1

k+1(xk+1 − xk)∥2 + E∥η−1
k (xk − xk−1)∥2

]
,

and similarly

ηk+1

4
E∥gk −∇f(xk)∥2 +

ηk
4
E∥gk−1 −∇f(xk−1)∥2 ≥ ηK+1

4

[
E∥gk −∇f(xk)∥2 + E∥gk−1 −∇f(xk−1)∥2

]
.

Thus, by adding successive terms on the left-hand side of (B.27), and using these bounds, we have

K∑
k=1

1

32ηk+1
E∥xk+1 − xk∥2 +

1

32ηk
E∥xk − xk−1∥2 +

ηk+1

4
E∥gk −∇f(xk)∥2 +

ηk
4
E∥gk−1 −∇f(xk−1)∥2

≥ ηK+1

K+1∑
k=1

(
1

32
E∥η−1

k (xk − xk−1)∥2 +
1

4
E∥gk−1 −∇f(xk−1)∥2

)
.

By substituting this lower bound into (B.27), joining the constant coefficients in the left-hand side to the O(1)
term on the right-hand side and using −YK+1 = O(1) (by lower boundedness of the potential function to be
shown below in Lemma B.8), we have the result after dividing both sides by ηK+1K.

Corollary B.5. Let the assumptions in (A1) hold. With the parameter choices in (B.19), Algorithm 1 outputs
(x̄, λ̄) such that

E∥∇f(x̄) + A⊤λ̄∥ ≤ ε, and E∥Ax̄− b∥ ≤ ε,

within K = Õ(ε−3) iterations.

Proof. A useful preliminary result is as follows. For k̂ selected uniformly at random from {1, 2, . . . ,K}, we have

E
[
∥η−1

k̂+1
(xk̂+1 − xk̂)∥2 + ∥η−1

k̂
(xk̂ − xk̂−1)∥2 + ∥gk̂ −∇f(xk̂)∥2 + ∥gk̂−1 −∇f(xk̂−1)∥2

]
=

1

K

K∑
k=1

E
[
∥η−1

k+1(xk+1 − xk)∥2 + ∥η−1
k (xk − xk−1)∥2 + ∥gk −∇f(xk)∥2 + ∥gk−1 −∇f(xk−1)∥2

]
≤ 2

K

K+1∑
k=1

E
[
∥η−1

k (xk − xk−1)∥2 + ∥gk−1 −∇f(xk−1)∥2
]

= Õ(K−2/3), (B.28)

where the last step used the result of Theorem 2.4. As a result, the right-hand side of (B.28) is guaranteed to
be less that ε2 within K = Õ(ε−3) iterations.

To show the stationarity condition, we have by the definition of xk+1, λk+1 in Algorithm 1 and the triangle
inequality that (see also (B.7))

xk+1 = xk − ηk+1(gk + A⊤λk+1 + ρA⊤A(xk − xk+1))

⇐⇒ xk+1 + ηk+1(gk −∇f(xk)) = xk − ηk+1(∇f(xk) + A⊤λk+1 + ρA⊤A(xk − xk+1))

⇐⇒ ∇f(xk+1) + A⊤λk+1 = η−1
k+1(xk − xk+1) + ρA⊤A(xk+1 − xk)

− (gk −∇f(xk)) + ∇f(xk+1) −∇f(xk)

=⇒ ∥∇f(xk+1) + A⊤λk+1∥ ≤ ∥η−1
k+1(xk − xk+1)∥ + ∥gk −∇f(xk)∥ + (ρ∥A∥2 + Lf)∥xk − xk+1∥,

where, after taking expectation and using k = k̂, all the terms on the right-hand side are smaller than ε in
expectation after K = Õ(ε−3) iterations, due to (B.28) and Jensen’s inequality. Setting x̄ = xk̂+1 and λ̄ = λk̂+1,

we thus have E(∥∇f(x̄) + A⊤λ̄∥) ≤ ε.

It remains to show that ∥Axk̂+1 − b∥ ≤ ε for this same value of k̂. For any k, since λk+1 − λk = ρ(Axk+1 − b),

λk+1 − λk is in the range of A. Since δ is the smallest nonzero eigenvalue of A⊤A, we have (see also (1.3))

∥A⊤(λk+1 − λk)∥2 ≥ δ∥λk+1 − λk∥2 = ρ2δ∥Axk+1 − b∥2. (B.29)

Ahmet Alacaoglu, Stephen J. Wright

By (B.11), together with η−1
k+1I ≻ η−1

k+1I − ρA⊤A ≻ 0, 0 < ηk+1 ≤ ηk, and Young’s inequality, we have that

∥A⊤(λk − λk+1)∥2 ≤ 3∥gk − gk−1∥2 +
6

η2k+1

(
∥xk+1 − xk∥2 + ∥xk − xk−1∥2

)
+

3

η2k+1

∥xk − xk−1∥2

≤ 9∥gk −∇f(xk)∥2 + 9∥gk−1 −∇f(xk−1)∥2 + 9∥∇f(xk) −∇f(xk−1)∥2

+
6

η2k+1

(
∥xk+1 − xk∥2 + ∥xk − xk−1∥2

)
+

3

η2k+1

∥xk − xk−1∥2.

As shown in Fact B.7 we have ηk ≤ 2ηk+1 and consequently 1
ηk+1

≤ 2
ηk

. Combining these with Lipschitzness of

∇f and L2
f ≤ η−2

k in the last inequality, we obtain

∥A⊤(λk+1 − λk)∥2 = O
(
∥gk −∇f(xk)∥2 + ∥gk−1 −∇f(xk−1)∥2

+ ∥η−1
k+1(xk+1 − xk)∥2 + ∥η−1

k (xk − xk−1)∥2
)
. (B.30)

Particularly, by (B.28), the last estimate implies

E∥A⊤(λk̂+1 − λk̂)∥2 = Õ(K−2/3).

In view of (B.29), this gives

E∥Axk̂+1 − b∥2 ≤ 1

ρ2δ
E∥A⊤(λk̂+1 − λk̂)∥ = Õ(K−2/3).

As a result, for K = Õ(ε−3), by Jensen’s inequality we have that E∥Ax̄− b∥ ≤ ε for x̄ = xk̂+1, as required.

B.4 Auxiliary results used in the analysis

The following lemma is about control of the variance of the estimator, specializing the preliminary Lemma A.1
for the current purpose.

Lemma B.6. Let the assumptions in (A1) hold and gk be defined as Algorithm 1. For c such that αk = cη2k ≤ 1,
ηk as in (B.19) and any m, c1, ρ, δ, we have

ηk+1E∥gk −∇f(xk)∥2 +

(
mα2

k

Lfηk+1
+

6(1 + c1)α2
k

δρ

)
E∥gk−1 −∇f(xk−1)∥2

≤ 2

cηk
E∥gk −∇f(xk)∥2 +

(
6(1 + c1)

ρδ
+

4m

Lfηk−1

)
∥gk−1 −∇f(xk−1)∥2

− 2

cηk+1
E∥gk+1 −∇f(xk+1)∥2 −

(
6(1 + c1)

ρδ
+

4m

Lfηk

)
E∥gk −∇f(xk)∥2

+
14L2

f

cηk+1
E∥xk+1 − xk∥2 +

(
42(1 + c1)L2

f

ρδ
+

28mLf

ηk

)
E∥xk − xk−1∥2

+

(
6α2

k+1

cηk+1
+

18(1 + c1)α2
k

ρδ
+

12mα2
k

Lfηk

)
V 2.

(B.31)

Proof. We first recall the result from Lemma A.1. By substituting (G̃k(x, ξ), Gk(x)) = (∇̃f(x, ξ),∇f(x)) for all
k, using Lipschitzness of ∇̃f(x, ξ) and the variance bound in (A1), and taking total expectation, we have

E∥gk+1 −∇f(xk+1)∥2 ≤ (1 − αk+1)2E∥gk −∇f(xk)∥2 + 7L2
fE∥xk+1 − xk∥2 + 3α2

k+1V
2. (B.32)

Since αk+1 ≤ 1 by the assumption of the lemma, we have that (1 − αk+1)2 ≤ 1 − αk+1 and therefore

αk+1E∥gk −∇f(xk)∥2 ≤ E∥gk −∇f(xk)∥2 − E∥gk+1 −∇f(xk+1)∥2 + 7L2
fE∥xk+1 − xk∥2 + 3α2

k+1V
2. (B.33)

After multiplying the last inequality (replacing k by k − 1) with 6(1+c1)
ρδ and using α2

k ≤ αk, we obtain

6(1 + c1)α2
k

ρδ
E∥gk−1 −∇f(xk−1)∥2 ≤ 6(1 + c1)

ρδ

(
E∥gk−1 −∇f(xk−1)∥2 − E∥gk −∇f(xk)∥2

)

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

+
42(1 + c1)L2

f

ρδ
E∥xk − xk−1∥2 +

18(1 + c1)α2
kV

2

ρδ
. (B.34)

By using αk = cη2k, we have from (B.33) that

ηk+1E∥gk −∇f(xk)∥2 ≤ 1

cηk+1

(
E∥gk −∇f(xk)∥2 − E∥gk+1 −∇f(xk+1)∥2

+ 7L2
fE∥xk+1 − xk∥2 + 3α2

k+1V
2

)
. (B.35)

Formula (B.37e) from Fact B.7 sat that 1
ηk+1

− 1
ηk

≤ ηk+1c
2 , so we have

1

cηk+1
∥gk −∇f(xk∥2 =

1

cηk
∥gk −∇f(xk∥2 +

(
1

cηk+1
− 1

cηk

)
∥gk −∇f(xk∥2

≤ 1

cηk
∥gk −∇f(xk∥2 +

ηk+1

2
∥gk −∇f(xk∥2,

which by substituting in (B.35) yields

ηk+1E∥gk −∇f(xk)∥2 ≤ 1

cηk
E∥gk −∇f(xk)∥2 +

ηk+1

2
∥gk −∇f(xk)∥2 − 1

cηk+1
E∥gk+1 −∇f(xk+1)∥2

+
7L2

f

cηk+1
L2
fE∥xk+1 − xk∥2 +

3α2
k+1V

2

cηk+1
.

By moving the second term on the right-hand side to the left, then multiplying both sides by 2, we obtain

ηk+1E∥gk −∇f(xk)∥2

≤ 2

c

(
1

ηk
E∥gk −∇f(xk)∥2 − 1

ηk+1
E∥gk+1 −∇f(xk+1)∥2

)
+

14L2
f

cηk+1
E∥xk+1 − xk∥2 +

6α2
k+1V

2

cηk+1
. (B.36)

By replacing k by k − 1 and multiplying both sides by 2mc
Lf

, we get

2mcηk
Lf

E∥gk−1 −∇f(xk−1)∥2

≤ 4m

Lf

(
1

ηk−1
E∥gk−1 −∇f(xk−1)∥2 − 1

ηk
E∥gk −∇f(xk)∥2

)
+

28mLf

ηk
E∥xk − xk−1∥2 +

12mα2
kV

2

Lfηk
.

By using αk ≤ 1 (thus α2
k ≤ αk), αk = cη2k, and ηk ≤ 2ηk+1 from (B.37f) in Fact B.7, we have

mα2
k

Lfηk+1
≤ mαk

Lfηk+1
=

mcη2k
Lfηk+1

≤ 2mcηk
Lf

,

and so by replacing the left-hand side in the previous inequality, we obtain

mα2
k

Lfηk+1
E∥gk−1 −∇f(xk−1)∥2

≤ 4m

Lf

(
1

ηk−1
E∥gk−1 −∇f(xk−1)∥2 − 1

ηk
E∥gk −∇f(xk)∥2

)
+

28mLf

ηk
E∥xk − xk−1∥2 +

12mα2
kV

2

Lfηk
.

The result follows by combining this bound with (B.34) and (B.36).

We use the following fact to simplify the coefficients appearing in the analysis (before and after this point).
We do not try to optimize the constants in this result or other parts of the paper since our focus is on the
ε-dependence in our bounds. (The constants in this lemma are certainly improvable, since, for simplicity, we
make use of loose inequalities to compare terms of the order log(x + 1) and xα for α > 1/3.)

Ahmet Alacaoglu, Stephen J. Wright

Fact B.7. Given ηk = η
(k+k0)1/3 log(k+k0)

, it holds that

1

2ρ

(
1

ηk+2
− 1

ηk+1

)
≤ c1

ρm
, (B.37a)

η−2
k+1 − η−2

k

2
≤ c2Lf

ηk+1
, (B.37b)

η−1
k+1 − η−1

k

2ηk+1
≤ c3Lf

ηk+1
, (B.37c)

3(η−1
k − η−1

k+1)2 ≤ c4L
2
f (B.37d)

1

ηk+1
− 1

ηk
≤ ηk+1c

2
(B.37e)

ηk+1 ≤ 2ηk+2, (B.37f)

where k0 = max

((
10m
3c1η

)2
,
(

20
3ηc2Lf

)2
,
(

10
3c3Lf

)2
, 400
3η2c4L2

f
,
(

20
cη2

)4
,
(

50
3cη2

)6
, 2

)
, for any absolute constants

c1, c2, c3, c4 and any positive values of m, η, c.

Proof. For (B.37a), by straightforward computation, we have

1

ηk+2
− 1

ηk+1
=

(k + k0 + 2)1/3 log(k + k0 + 2) − (k + k0 + 1)1/3 log(k + k0 + 1)

η

=
log(k + k0 + 2)((k + k0 + 2)1/3 − (k + k0 + 1)1/3)

η

+
(k + k0 + 1)1/3(log(k + k0 + 2) − log(k + k0 + 1)

η
. (B.38)

Here, we have

log(k + k0 + 2) − log(k + k0 + 1) = log

(
1 +

1

k + k0 + 1

)
≤ 1

k + k0 + 1

and

(k+k0+2)1/3−(k+k0+1)1/3 =
1

(k + k0 + 2)2/3 + (k + k0 + 2)(k + k0 + 1) + (k + k0 + 1)2/3
≤ 1

3(k + k0 + 1)2/3
.

With these, (B.38) yields

1

ηk+2
− 1

ηk+1
≤ log(k + k0 + 2)

3(k + k0 + 1)2/3η
+

1

η(k + k0 + 1)2/3
≤ 4 log(k + k0 + 2)

3(k + k0 + 1)2/3η

and hence the desired inequality is implied by 4 log(k+k0+2)
3(k+k0+1)2/3η

≤ 2c1
m . By using log(k + k0 + 2) ≤ 5(k + k0 + 1)1/6

for k ≥ 1, the inequality is implied by 10m
3c1η

≤ (k + k0 + 1)1/2 which is implied by k0 ≥
(

10m
3c1η

)2
.

For (B.37b), using the first bound in the previous paragraph and 1
ηk

≤ 1
ηk+1

, we have

1

η2k+1

− 1

η2k
≤ 2

ηk+1

(
1

ηk+1
− 1

ηk

)
≤ 4 log(k + k0 + 1)

3η(k + k0)2/3
2

ηk+1
,

and the inequality we want to prove is implied by 4 log(k+k0+1)
3η(k+k0)2/3

≤ c2Lf . By using log(k + k0 + 1) ≤ 5(k + k0)1/6,

the assertion is implied by 20
3ηc2Lf

≤ (k + k0)1/2 which is implied by k0 ≥
(

20
3ηc2Lf

)2
.

It is straightforward to show (B.37c), (B.37d) by using the same estimates, which we omit for brevity.

For (B.37e), as in the beginning of the proof, we have

1

ηk+1
− 1

ηk
≤ 1

η(k + k0)2/3

(
1 +

log(k + k0 + 1)

3

)
,

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

and the desired inequality is implied by

1

η(k + k0)2/3

(
1 +

log(k + k0 + 1)

3

)
≤ cη

2(k + k0 + 1)1/3 log(k + k0 + 1)
,

which in turn is implied by

2 log(k + k0 + 1) +
2(log(k + k0 + 1))2

3
≤ cη2(k + k0)1/3.

By using log(k + k0 + 1) ≤ 5(k + k0)1/12, this inequality is implied by

10(k + k0)1/12 +
25(k + k0)1/6

3
≤ cη2(k + k0)1/3,

which in turn is implied by

10(k + k0)1/12 ≤ cη2(k + k0)1/3

2
and

25(k + k0)1/6

3
≤ cη2(k + k0)1/3

2
.

These bounds hold when k0 ≥ max

((
20
cη2

)4
,
(

50
3cη2

)6)
=
(

50
3cη2

)6
.

The last assertion ηk+1 ≤ 2ηk+2 (B.37f) is implied by (k+k0+2)1/3 log(k+k0+2) ≤ 2(k+k0+1)1/3 log(k+k0+1)
which is implied by (k+k0+2)1/3 ≤ 4

3 (k+k0+1)1/3 which holds for any k0 and by log(k+k0+2) ≤ 3
2 log(k+k0+1)

which holds, for example, when k0 ≥ 2.

The following lemma is showing the lower boundedness of the potential function Yk defined in Lemma 2.3, which
is important for ensuring that the complexity has the desired dependence on ε.

Lemma B.8. Under the assumptions and the parameter choices of Theorem 2.4 and the definition of Yk

in (B.21), there exists y > −∞ such that EYk ≥ y for any k. In particular y = −2V 2
∑∞

k=1 vk > −∞ since

vk =
6(1 + c1)α2

k

δρ
+

α2
km

Lfηk+1
+

6α2
k+1

cηk+1
+

18(1 + c1)α2
k

ρδ
+

12mα2
k

Lfηk
= O

(
1

(k + k0)(log(k + k0))3

)
,

due to

ηk =
η

(k + k0)1/3 log(k + k0)
, αk = cη2k,

for the constants η and c from (B.19).

Proof. Note that all the terms are nonnegative in the definition of Yk in Lemma 2.3) with the exception of
Lρ(xk, λk). We therefore focus on the latter term. Our argument extends that of (Hong, 2016, Lemma 3.5), the
important difference being that, due to the stochasticity of our setting, we do not have non-increasing potential,
which is critical in the argument. We show that our time-varying choices of step sizes still allow us to establish
lower boundedness.

First, by using f(x) ≥ f ≥ 0 and the definition of λk+1, which implies

⟨λk+1, Axk+1 − b⟩ = ρ−1⟨λk+1, λk+1 − λk⟩ =
1

2ρ

(
∥λk+1∥2 − ∥λk∥2 + ∥λk+1 − λk∥2

)
,

we can show that the following holds for any K:

K∑
k=0

ELρ(xk+1, λk+1) =

K∑
k=0

E
[
f(xk+1) + ⟨λk+1, Axk+1 − b⟩ +

ρ

2
∥Axk+1 − b∥2

]
≥ 1

ρ

(
E∥λK+1∥2 − ∥λ0∥2

)
≥ −1

ρ
∥λ0∥2.

Ahmet Alacaoglu, Stephen J. Wright

It follows that
∞∑
k=1

ELρ(xk, λk) > −∞ =⇒
∞∑
k=1

EYk ≥ y
1
> −∞, (B.39)

for some y
1
.

Next, we use the bound (B.25) which states that

EYk+1 ≤ EYk + vkV
2, (B.40)

where vk from Lemma 2.3 is redefined in the statement of this lemma. For the O() estimate vk =

O
(

1
(k+k0)(log(k+k0))3

)
, we have used ηk = η

(k+k0)1/3 log(k+k0)
, αk = cη2k for constants η, c given in (B.19), to-

gether with with k0 ≥ 2. We define C := V 2
∑∞

k=1 vk which is finite due to the definition of vk with k0 ≥ 2.

We consider three cases.

1. When EYk ≥ 0 for all k, the assertion follows immediately.

2. When EYk2
< 0 for some k2 and EYk ≥ −2C for all k ≥ k2, the assertion also follows.

3. When there exists an index k1 such that EYk1
< −2C, assume without loss of generality that k1 is the

smallest index that satisfies this property. By the definition of this case, EYk ≥ −2C for k < k1. Since
V 2
∑∞

k=1 vk = C, we have from (B.40) that EYk < −C for all k ≥ k1. However, this would cause a
contradiction with (B.39).

This concludes the proof.

C STOCHASTIC CONSTRAINTS: PROBLEM (III)

C.1 Variance control

We start with a result for the variance of the estimator gk. This result is essentially a corollary of Lemma A.1.
We characterize the precise constants for the bound of this lemma which are important for getting the order of
complexity. For ease of reference, let us recall here the relevant quantities from (A2), (A3), (A4):

E∥∇̃f(x, ξ) − ∇̃f(y, ξ)∥2 ≤ L̃2
∇f∥x− y∥2,

E∥∇̃ci(x, ζ) − ∇̃ci(y, ζ)∥2 ≤ L̃2
∇c∥x− y∥2,

E|c̃i(x, ζ) − c̃i(y, ζ)∥2 ≤ L̃2
c∥x− y∥2,

E∥∇̃f(x, ξ) −∇f(x)∥2 ≤ σ2
f ,

E∥∇̃ci(x, ζ) −∇ci(x)∥2 ≤ σ2
∇c,

E∥c̃i(x, ζ) − ci(x)∥2 ≤ σ2
c ,

∥∇ci(x)∥ ≤ C∇c

|ci(x)| ≤ Cc,

∥∇̃ci(x, ζ)∥ ≤ C̃∇c,

|c̃i(x, ζ)| ≤ C̃c,

for any i ∈ {1, . . . ,m}.

Lemma C.1. Let the assumptions in (A2), (A3), (A4) hold and let the parameters of Algorithm 2 be given as

ηk =
1

9L̃ρ(k + 1)3/5
, ρk = ρk1/5, and αk+1 = 72L̃2ρ2k+1η

2
k =

72

81
(k + 1)−4/5,

for some constant ρ > 1, L̃2 = 4L̃2
∇f + 4m2(C̃2

c L̃
2
∇c + C̃2

∇cL̃
2
c), we have

ηkE∥gk −∇Qρk
(xk)∥2 ≤ 1

72L̃2ρ2kηk−1

E∥gk −∇Qρk
(xk)∥2 − 1

72L̃2ρ2k+1ηk
E∥gk+1 −∇Qρk+1

(xk+1)∥2

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

+
7

18ηk
E∥xk+1 − xk∥2 +

7m2C̃2
∇cC̃

2
c

12L̃2ρ2k+1ηk
|ρk+1 − ρk|2

+
α2
k+1

12L̃2ρ2k+1ηk

(
σ2
f + 2m2ρ2k

(
C2

cσ
2
∇c + C̃2

∇cσ
2
c

))
.

Proof. We apply Lemma A.1 with

Gk(xk) = ∇Qρk
(xk) = ∇f(xk) + ρk

m∑
i=1

∇ci(xk)ci(xk), (C.1a)

Gk+1(xk+1) = ∇Qρk+1
(xk+1) = ∇f(xk+1) + ρk+1

m∑
i=1

∇ci(xk+1)ci(xk+1), (C.1b)

G̃k(xk, Bk+1) = ∇̃Qρk
(xk, Bk+1) = ∇̃f(xk, ξ

0
k+1) + ρk

m∑
i=1

∇̃ci(xk, ζ
1
k+1)c̃i(xk, ζ

2
k+1), (C.1c)

G̃k+1(xk+1, Bk+1) = ∇̃Qρk+1
(xk+1, Bk+1) = ∇̃f(xk+1, ξ

0
k+1) + ρk+1

m∑
i=1

∇̃ci(xk+1, ζ
1
k+1)c̃i(xk+1, ζ

2
k+1). (C.1d)

We note that Gk(xk) = EBk+1
G̃k(xk, Bk+1) and Gk+1(xk+1) = EBk+1

G̃k+1(xk+1, Bk+1), as required by Lemma
A.1. This estimation is due to Bk+1 being sampled after the computation of xk+1, by the independence of ζ1

and ζ2 and by ρk being a deterministic sequence. We now estimate the error terms on the right-hand side of
Lemma A.1. Recall that Ek the expectation conditioning on all the history up to and including xk+1.

For lighter notation, we drop the subscripts from the random variables (ξ0, ζ1, ζ2) that define Bk+1 =
(ξ0k+1, ζ

1
k+1, ζ

2
k+1) in this lemma.

First, we estimate the second term on the right-hand side of the inequality in Lemma A.1. By Young’s inequality,
we have

Ek∥G̃k+1(xk+1, Bk+1) − G̃k+1(xk, Bk+1)∥2

≤ 2Ek∥∇̃f(xk+1, ξ
0) − ∇̃f(xk, ξ

0)∥2

+ 2ρ2k+1Ek

∥∥∥∥∥
m∑
i=1

(
∇̃ci(xk+1, ζ

1)c̃i(xk+1, ζ
2) − ∇̃ci(xk, ζ

1)c̃i(xk, ζ
2)
)∥∥∥∥∥

2

. (C.2)

By using (A2) and (A4), we have that

Ek

∥∥∥ m∑
i=1

(
∇̃ci(xk+1, ζ

1)c̃i(xk+1, ζ
2) − ∇̃ci(xk, ζ

1)c̃i(xk, ζ
2)
)∥∥∥2

≤ m

m∑
i=1

Ek

∥∥∥∇̃ci(xk+1, ζ
1)c̃i(xk+1, ζ

2) − ∇̃ci(xk, ζ
1)c̃i(xk, ζ

2)
∥∥∥2

≤ 2m

m∑
i=1

Ek

∥∥∥∇̃ci(xk+1, ζ
1)
(
c̃i(xk+1, ζ

2) − c̃i(xk, ζ
2)
)∥∥∥2

+ 2m

m∑
i=1

Ek

∥∥∥(∇̃ci(xk+1, ζ
1) − ∇̃ci(xk, ζ

1)
)
c̃i(xk, ζ

2)
∥∥∥2

≤ 2m2
(
C̃2

c L̃
2
∇c + C̃2

∇cL̃
2
c

)
∥xk+1 − xk∥2, (C.3)

where the first inequality follows from the fact that for vectors Yi, we have ∥
∑m

i=1 Yi∥2 ≤ (
∑m

i=1 ∥Yi∥)2 ≤
m
∑m

i=1 ∥Yi∥2 and the second by Young’s inequality. Using this in (C.2) along with the first line in (A2), we
have

Ek∥G̃k+1(xk+1, Bk+1) − G̃k+1(xk, Bk+1)∥2 =
(

2L̃2
∇f + 4ρ2k+1m

2
(
C̃2

c L̃
2
∇c + C̃2

∇cL̃
2
c

))
∥xk+1 − xk∥2

Ahmet Alacaoglu, Stephen J. Wright

≤ 4L̃2ρ2k+1∥xk+1 − xk∥2 (C.4)

where the last line is by the definition of L̃, see also (3.2).

Second, we estimate the third term on the right-hand side in Lemma A.1:

Ek∥G̃k+1(xk, Bk+1) − G̃k(xk, Bk+1)∥2 = Ek

∥∥∥∥∥(ρk+1 − ρk)

m∑
i=1

∇̃ci(xk, ζ
1)c̃i(xk, ζ

2)

∥∥∥∥∥
2

≤ m2C̃2
∇cC̃

2
c |ρk+1 − ρk|2. (C.5)

Third, we estimate the fourth term on the right-hand side in Lemma A.1. From Young’s inequality, we have

E∥Gk(xk) − G̃k(xk, Bk+1)∥2

≤ 2E
∥∥∥∇f(xk) − ∇̃f(xk, ξ

0)
∥∥∥2 + 2ρ2kE

∥∥∥∥∥
m∑
i=1

∇ci(xk)ci(xk) −
m∑
i=1

∇̃ci(xk, ζ
1)c̃i(xk, ζ

2)

∥∥∥∥∥
2

≤ 2σ2
f + 4m2ρ2k

(
C2

cσ
2
∇c + C̃2

∇cσ
2
c

)
, (C.6)

where the estimations for the last inequality are similar to (C.3).

By substituting the bounds (C.4), (C.5), (C.6) into (A.1) and also using (C.1), we obtain

Ek∥gk+1 −∇Qρk+1
(xk+1)∥2 ≤ (1 − αk+1)2∥gk −∇Qρk

(xk)∥2

+ 28L̃2ρ2k+1∥xk+1 − xk∥2 + 42m2C̃2
∇cC̃

2
c |ρk+1 − ρk|2

+ 6α2
k+1

(
σ2
f + 2m2ρ2k

(
C2

cσ
2
∇c + C̃2

∇cσ
2
c

))
. (C.7)

In (C.7), dividing all terms by 72L̃2ρ2k+1ηk gives

1

72L̃2ρ2k+1ηk
Ek∥gk+1 −∇Qρk+1

(xk+1)∥2 ≤ (1 − αk+1)2

72L̃2ρ2k+1ηk
∥gk −∇Qρk

(xk)∥2

+
7

18ηk
∥xk+1 − xk∥2 +

7m2C̃2
∇cC̃

2
c

12L̃2ρ2k+1ηk
|ρk+1 − ρk|2

+
α2
k+1

12L̃2ρ2k+1ηk

(
σ2
f + 2m2ρ2k

(
C2

cσ
2
∇c + C̃2

∇cσ
2
c

))
. (C.8)

We focus on the first term on the right-hand side and will show next

(1 − αk+1)2

72L̃2ρ2k+1ηk
∥gk −∇Qρk

(xk)∥2 ≤

(
1

72L̃2ρ2kηk−1

− ηk

)
∥gk −∇Qρk

(xk)∥2. (C.9)

By the definitions of αk+1, ηk, ρk+1, we have that −αk+1

72L̃2ρ2
k+1ηk

= −ηk therefore (C.9) follows after showing that

1 − αk+1 + α2
k+1

72L̃2ρ2k+1ηk
≤ 1

72L̃2ρ2kηk−1

⇐⇒ 1

ρ2k+1ηk
− 1

ρ2kηk−1
≤ αk+1(1 − αk+1)

ρ2k+1ηk
. (C.10)

Note that by definitions of ηk and ρk, we have that

ρ2k+1ηk = ρ2(k + 1)2/5
1

9L̃ρ(k + 1)3/5
=

ρ

9L̃(k + 1)1/5
.

By substituting the values of ρ2k+1ηk and αk+1 = 72L̃2ρ2k+1η
2
k = 72

81(k+1)4/5
, we find that (C.10) is equivalent to

9L̃

ρ

(
(k + 1)1/5 − k1/5

)
≤ 9L̃αk+1(1 − αk+1)(k + 1)1/5

ρ
⇐⇒ (k + 1)1/5 − k1/5 ≤ αk+1(1 − αk+1)(k + 1)1/5.

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

First, we note that (k+1)1/5−k1/5 ≤ 1
5k4/5 and also (1−αk+1) = 1− 72

81(k+1)4/5
≥ 4

10 for k ≥ 1. Therefore, (C.10)

will be implied by
1

5k4/5
≤ 288

810(k + 1)3/5
,

which holds for k ≥ 1. Thus, (C.10) and consequently (C.9) hold for k ≥ 1. Using (C.9) to bound the first term
on the right-hand side of (C.8) and taking total expectation gives the result.

C.2 One iteration inequality

Lemma 3.5. Let the assumptions in (A2), (A3), (A4), (A5) hold and let the parameters of Algorithm 2 be given
as

ηk =
1

9L̃ρ(k + 1)3/5
, ρk = ρk1/5, and αk+1 = 72L̃2ρ2k+1η

2
k =

72

81
(k + 1)−4/5,

for some constant ρ > 1 and L̃2 = 4L̃2
∇f + 4m2(C̃2

c L̃
2
∇c + C̃2

∇cL̃
2
c). Then, we have that

ηk
72

E
[
d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1))

]
≤ E[Yk − Yk+1 + |Qρk

(xk+1) −Qρk+1
(xk+1)|] + Ek+1,

where

Yk+1 = Qρk+1
(xk+1) +

1

72L̃2ρ2k+1ηk
∥gk+1 −∇Qρk+1

(xk+1)∥2

and

Ek+1 =
7m2C̃2

∇cC̃
2
c

12L̃2ρ2k+1ηk
|ρk+1 − ρk|2 +

α2
k+1

12L̃2ρ2k+1ηk

(
σ2
f + 2m2ρ2k

(
C2

cσ
2
∇c + C̃2

∇cσ
2
c

))
.

Remark C.2. By the definitions of ηk, ρk, we have that the first term of Ek+1 is O(k−7/5), the second term of

Ek+1 is O(k−1), therefore
∑K

k=1 Ek+1 = O(log(K + 1)).

Proof. By descent lemma applied on x 7→ Qρk
(x), we have (by denoting the Lipschitz constant of ∇Qρk

(x) as
Lρk

= ρk(L∇f + m(CcL∇c + C∇cLc))),

Qρk
(xk+1) ≤ Qρk

(xk) + ⟨∇Qρk
(xk), xk+1 − xk⟩ +

Lρk

2
∥xk+1 − xk∥2

= Qρk
(xk) + ⟨gk, xk+1 − xk⟩ + ⟨∇Qρk

(xk) − gk, xk+1 − xk⟩ +
Lρk

2
∥xk+1 − xk∥2

≤ Qρk
(xk) + ⟨gk, xk+1 − xk⟩ +

(
Lρk

2
+

1

2ηk

)
∥xk+1 − xk∥2 +

ηk
2
∥∇Qρk

(xk) − gk∥2, (C.11)

where we added and subtracted ⟨gk, xk+1 − xk⟩ for the equality and then used Young’s inequality.

By the definition of xk+1 in Algorithm 2 and xk ∈ X, we have

⟨xk+1 − xk + ηkgk, xk − xk+1⟩ ≥ 0 ⇐⇒ ⟨gk, xk+1 − xk⟩ ≤ − 1

ηk
∥xk − xk+1∥2.

By using this estimate in (C.11), and then splitting the last term, we have

Qρk
(xk+1) ≤ Qρk

(xk) +

(
− 1

ηk
+

Lρk

2
+

1

2ηk

)
∥xk+1 − xk∥2 +

ηk
2
∥∇Qρk

(xk) − gk∥2

= Qρk
(xk) +

(
− 1

2ηk
+

Lρk

2

)
∥xk+1 − xk∥2 + ηk∥∇Qρk

(xk) − gk∥2 −
ηk
2
∥∇Qρk

(xk) − gk∥2.

We take expectation on this inequality and then use Lemma C.1 to bound the expectation of the third term on
the right-hand side to get

EQρk
(xk+1) +

1

72L̃2ρ2k+1ηk
E∥gk+1 −∇Qρk+1

(xk+1)∥2

Ahmet Alacaoglu, Stephen J. Wright

≤ EQρk
(xk) +

1

72L̃2ρ2kηk−1

E∥gk −∇Qρk
(xk)∥2 − ηk

2
E∥gk −∇Qρk

(xk)∥2

+

(
Lρk

2
+

7

18ηk
− 1

2ηk

)
E∥xk+1 − xk∥2 +

7m2C̃2
∇cC̃

2
c

12L̃2ρ2k+1ηk
|ρk+1 − ρk|2

+
α2
k+1

12L̃2ρ2k+1ηk

(
σ2
f + m2ρ2k

(
C2

cσ
2
∇c + C̃2

∇cσ
2
c

))
First, by the definition of ηk and by Lρk

≤ L̃ρk
≤ L̃ρk+1

= L̃ρ(k + 1)1/5 ≤ L̃ρ(k + 1)3/5 which is due to (3.2),

Jensen’s inequality and E[∇̃Qρk
(x,Bk+1)] = ∇Qρk

(x), we have that
Lρk

2 ≤ L̃ρ(k+1)3/5

2 = 1
18ηk

since L̃ρ(k+1)3/5 =

1
9ηk

. We consequently have
Lρk

2 + 7
18ηk

− 1
2ηk

≤ 4
9ηk

− 1
2ηk

≤ − 1
18ηk

. We then add to both sides Qρk+1
(xk+1), use

the definitions of Yk and Ek along with ηk

2 ≥ ηk

18 to get

ηk
18

E
[
η−2
k ∥xk+1 − xk∥2 + ∥gk −∇Qρk

(xk)∥2
]
≤ E

[
Yk − Yk+1 + |Qρk

(xk+1) −Qρk+1
(xk+1)|

]
+ Ek+1. (C.12)

We will now show that

d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1)) ≤ 4(η−2
k ∥xk+1 − xk∥2 + ∥gk −∇Qρk

(xk)∥2). (C.13)

By the definition of xk+1, we have

0 ∈ xk+1 − xk + ηkgk + ∂iX(xk+1)

⇐⇒ η−1
k (xk − xk+1) + (∇Qρk

(xk) − gk) + (∇Qρk
(xk+1) −∇Qρk

(xk)) ∈ ∂iX(xk+1) + ∇Qρk
(xk+1)

⇐⇒ η−1
k (xk − xk+1) + (∇Qρk

(xk) − gk) + (∇Qρk
(xk+1) −∇Qρk

(xk))

∈ ∂iX(xk+1) + ∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),

where the last step also used the definition of ∇Qρk
(xk+1). This gives

d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1))

≤ 3η−2
k ∥xk+1 − xk∥2 + ∥gk −∇Qρk

(xk)∥2 + ∥∇Qρk
(xk) −∇Qρk

(xk+1)∥2

≤ 4η−2
k ∥xk+1 − xk∥2 + ∥gk −∇Qρk

(xk)∥2,

where the last step is due to ∇Qρk
being Lρk

-Lipschitz, Lρk
≤ L̃ρk

≤ L̃ρk+1
and hence Lρk

≤ L̃ρ(k + 1)1/5 <

9L̃ρ(k + 1)3/5 = η−1
k by the definition of ηk. Using (C.13) on (C.12) and taking total expectation gives the

result.

C.3 Controlling the change of penalty parameters

Using variable penalty parameters allows us to remove assumptions on initialization that was done in Shi et al.
(2022) for solving a special case of our problem. To handle the effect of the change on penalty parameters we
have the next lemma that uses (A5) and Lemma 3.5.

Lemma C.3. Let the assumptions in (A2), (A3), (A4), (A5) hold and let the parameters of Algorithm 2 be
given as

ηk =
1

9L̃ρ(k + 1)3/5
, ρk = ρk1/5, and αk+1 = 72L̃2ρ2k+1η

2
k =

72

81
(k + 1)−4/5,

for some constant ρ > 1, we have that

K∑
k=1

E|Qρk
(xk+1) −Qρk+1

(xk+1)|

≤ bQρ1(x1) −
bQ

(K + 1)3/5
+

9b

72L̃ρ
∥g1 −∇Qρ1(x1)∥2

+

K∑
k=1

b(Bf + ρC2
c)

k(k + 1)2/5
+

K∑
k=1

bEk+1

(k + 1)3/5
+

K∑
k=1

bρC2
c

k4/5(k + 1)3/5
+

K∑
k=1

2C2
∇f

5ρδ2k6/5
,

where bk = 648·8L̃
5δ2(k+1)3/5

, b = 648·8L̃
5δ2 and Ek+1 is as given in Lemma 3.5.

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

Remark C.4. In view of Remark C.2 and since bk = O(k−3/5), the right-hand side in this lemma is finite.

Proof. We start with the error term

|Qρk
(xk+1) −Qρk+1

(xk+1)| = (ρk+1 − ρk)∥c(xk+1)∥2. (C.14)

We have by the assumption in (A5) and triangle inequality that

d(ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1)) ≥ ρkδ∥c(xk+1)∥

⇐⇒ ∥c(xk+1)∥ ≤ 1

ρkδ

(
∥∇f(xk+1)∥ + d(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1)

)
. (C.15)

Using this in (C.14) gives

|Qρk
(xk+1) −Qρk+1

(xk+1)|

≤ 2|ρk − ρk+1|
ρ2kδ

2

(
∥∇f(xk+1)∥2 + d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1)

)
. (C.16)

As a result, we wish to bound

K∑
k=1

|Qρk
(xk+1) −Qρk+1

(xk+1)|

≤
K∑

k=1

2|ρk − ρk+1|
ρ2kδ

2

(
∥∇f(xk+1)∥2 + d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1)

)
. (C.17)

For bounding the right-hand side of this inequality, we use a crude bound that can be obtained by Lemma 3.5.
By using (C.14) with the uniform upper bound ∥c(xk+1)∥ ≤ Cc to bound the third term on the right-hand side
of the result in Lemma 3.5, we get

ηk
72

E
[
d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1))

]
≤ E [Yk − Yk+1] + Ek+1 + |ρk − ρk+1|C2

c , (C.18)

Let bk = 648·8L̃
5δ2(k+1)3/5

and b = 648·8
5δ2 . First, note that for k ≥ 1

bk · ηk
72

=
8

5ρδ2(k + 1)6/5
≥ 2

5ρδ2(k)6/5
≥ 2|ρk − ρk+1|

ρ2δ2k2/5
=

2|ρk − ρk+1|
ρ2kδ

2
,

since |ρk+1 − ρk| ≤ ρ
5k4/5 and 4(k)6/5 ≥ (k + 1)6/5 for k ≥ 1. Hence, after multiplying (C.18) by bk, we get

2|ρk − ρk+1|
ρ2kδ

2
E
[
d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1))

]
≤ bk(EYk − EYk+1) + bkEk+1 + bk|ρk − ρk+1|C2

c . (C.19)

In view of (C.17), this gives

K∑
k=1

E|Qρk
(xk+1) −Qρk+1

(xk+1)|

≤
K∑

k=1

(
bk(EYk − EYk+1) + bkEk+1 + bk|ρk − ρk+1|C2

c +
2|ρk − ρk+1|C2

∇f

ρ2kδ
2

)
, (C.20)

after also using ∥∇f(xk+1)∥2 ≤ C2
∇f . By the definitions in Lemma 3.5, we have bkEk+1 = O

(
1

k8/5

)
, bk|ρk−ρk+1| =

O
(

1
k7/5

)
, and |ρk−ρk+1|

ρ2
k

= O
(

1
k6/5

)
. Hence, we now bound the term bk(EYk − EYk+1). By the definition of Yk+1

in Lemma 3.5, we have

K∑
k=1

bk(EYk − EYk+1)

Ahmet Alacaoglu, Stephen J. Wright

=

K∑
k=1

bkE
[
Qρk

(xk) −Qρk+1
(xk+1)

]
+

K∑
k=1

bkE

[
1

72L̃2ρ2kηk−1

∥gk −∇Qρk
(xk)∥2 − 1

72L̃2ρ2k+1ηk
∥gk+1 −∇Qρk+1

(xk+1)∥2
]

(C.21)

First, we have

K∑
k=1

1

(k + 1)3/5
(
Qρk

(xk) −Qρk+1
(xk+1)

)
=

K∑
k=1

(
1

k3/5
Qρk

(xk) − 1

(k + 1)3/5
Qρk+1

(xk+1)

)
+

K∑
k=1

(
1

(k + 1)3/5
− 1

k3/5

)
Qρk

(xk)

≤ Qρ1(x1) −
Q

(K + 1)3/5
+ (Bf + ρC2

c)

K∑
k=1

1

k(k + 1)2/5
,

where the last step is by

|Qρk+1
(xk+1)| = |f(xk+1) + ρk+1∥c(xk+1∥2| ≤ Bf + ρ(k + 1)1/5C2

c

and ∣∣∣∣ 1

(k + 1)3/5
− 1

k3/5

∣∣∣∣ ≤ 1

(k + 1)3/5k
,

since
1

k3/5
− 1

(k + 1)3/5
=

(k + 1)3/5 − k3/5

(k + 1)3/5k3/5
=

(k + 1)3/5k2/5 − k

(k + 1)3/5k
≤ 1

(k + 1)3/5k

and Qρ(x) ≥ Q > −∞ by (A4). After multiplying by b and using bk = b
(k+1)3/5

on the last estimate gives

K∑
k=1

bk
(
Qρk

(xk) −Qρk+1
(xk+1)

)
≤ bQρ1(x1) − bQ

(K + 1)3/5
+ b(Bf + ρC2

c)

K∑
k=1

1

k(k + 1)2/5
. (C.22)

Next, for the second term in (C.21), we have

K∑
k=1

1

(k + 1)3/5

(
1

72L̃2ρ2kηk−1

∥gk −∇Qρk
(xk)∥2 − 1

72L̃2ρ2k+1ηk
∥gk+1 −∇Qρk+1

(xk+1)∥2
)

≤
K∑

k=1

(
1

k3/5
1

72L̃2ρ2kηk−1

∥gk −∇Qρk
(xk)∥2 − 1

(k + 1)3/5
1

72L̃2ρ2k+1ηk
∥gk+1 −∇Qρk+1

(xk+1)∥2
)

≤ 9

72L̃ρ
∥g1 −∇Qρ1

(x1)∥2.

Hence, after multiplying this estimate by b and using bk = b
(k+1)3/5

, we obtain

K∑
k=1

1

(k + 1)3/5

(
1

72L̃2ρ2kηk−1

∥gk −∇Qρk
(xk)∥2 − 1

72L̃2ρ2k+1ηk
∥gk+1 −∇Qρk+1

(xk+1)∥2
)

≤ 9b

72L̃ρ
∥g1 −∇Qρ1(x1)∥2. (C.23)

We take expectations and then combine (C.22) and (C.23) in (C.21) to have

K∑
k=1

bk(EYk − EYk+1) ≤ bQρ1
(x1) − bQ

(K + 1)3/5
+ b(Bf + ρC2

c)

K∑
k=1

1

k(k + 1)2/5

+
9b

72L̃ρ
∥g1 −∇Qρ1(x1)∥2, (C.24)

Using this estimate in (C.20) gives the result after also substituting the values of ρk, bk.

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

C.4 Main theorem

Theorem 3.1. Let the assumptions in (A2), (A3), (A4), (A5) hold. Let

ηk =
1

9L̃ρ(k + 1)3/5
, ρk = ρk1/5, and αk+1 =

72

81
(k + 1)−4/5,

for some constant ρ > 1 and L̃2 = 4L̃2
∇f + 4m2(C̃2

c L̃
2
∇c + C̃2

∇cL̃
2
c), we have that there exists λ such that

E
[
d(∇f(xk̂+1) + ∇c(xk̂+1)⊤λ,−NX(xk̂+1))

]
≤ ε,

E∥c(xk̂+1)∥ ≤ ε.

with number of iterations bounded by Õ(ε−5).

Proof. We start by summing the one iteration inequality in Lemma 3.5

K∑
k=1

ηk
72

E
[
d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1))

]
≤ EY1 +

K∑
k=1

|Qρk
(xk+1) −Qρk+1

(xk+1)| +

K∑
k=1

Ek+1.

We use that ηk ≥ ηK and divide both sides of the inequality by K to derive

1

K

K∑
k=1

E
[
d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1))

]
≤ 72

KηK

(
EY1 +

K∑
k=1

|Qρk
(xk+1) −Qρk+1

(xk+1)| +

K∑
k=1

Ek+1

)
.

In view of Lemma C.3, Remark C.2 and Remark C.4, we have that the sums in the right-hand side are either
finite or increase logarithmically in K and since ηK = O(K−3/5), we have

1

K

K∑
k=1

E
[
d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1))

]
= O

(
log(K + 1)

K2/5

)
, (C.25)

along with ∥∇f(x)∥2 ≤ C2
∇f as per (A4).

This estimate along with ρk = ρk1/5 in (C.15) gives

1

K

K∑
k=1

E∥c(xk+1)∥2 ≤ 1

K

K∑
k=1

2

ρ2k2/5δ2
E
[
∥∇f(xk+1)∥2 + d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1)

]
= O

(
log(K + 1)

K2/5

)
,

This inequality with (C.25) gives

1

K

K∑
k=1

E
[
d2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1)) + ∥c(xk+1)∥2

]
= O

(
log(K + 1)

K2/5

)
.

Hence the claims follow by using λ = ρk̂c(xk̂+1) and Jensen’s inequality.

D EXTENSIONS

Since the arguments in these parts are mostly the same as the previous section, the analyses in these two sections
do not spell out all the details but mentions the changes compared to Section C. In this section, we will consider
two extensions and show how they follow by minor adjustments on the analysis of the previous section.

Ahmet Alacaoglu, Stephen J. Wright

D.1 Dual variable updates

The algorithm in this case, written explicitly, is

xk+1 = PX(xk − ηkgk) (D.1a)

Sample Bk+1 = (ξ0k+1, ζ
1
k+1, ζ

2
k+1) ∈ Ξ × Z2 and set ∇Qρ(x, λ,B) as (D.2) (D.1b)

gk+1 = ∇̃Qρk+1
(xk+1, λk+1, Bk+1) + (1 − αk+1)(gk − ∇̃Qρk

(xk, λk, Bk+1)), (D.1c)

λk+2,i = λk+1,i + γk+1c̃i(xk+1, ζ
2
k+1) ∀i = {1, . . . ,m} (D.1d)

where we have

∇̃Qρ(x, λ,B) = ∇̃f(x, ξ0) +

m∑
i=1

λi∇̃ci(x, ζ
1) + ρ

m∑
i=1

∇̃ci(x, ζ
1)c̃i(x, ζ

2). (D.2)

Theorem 4.1. For the algorithm described in (D.1a)-(D.1d) (as sketched in Section 4.1), let

ηk =
1

9L̃ρ(k + 1)3/5
, ρk = ρk1/5, γk =

γ

k(log(k + 1))2|c̃i(xk, ζ2k)|
, and αk+1 = 72L̃2ρ2k+1η

2
k =

72

81
(k+1)−4/5,

for some constant ρ > 1 and L̃2 = 3
4 L̃

2
∇f + 3

4m
2(∥λ1∥+4)2L̃2

∇c+ 3
2m

2(C̃2L̃2
∇c+C̃2

∇cL̃
2
c). Let also the assumptions

in (A2), (A3), (A4), (A5) hold. We have that there exists λ such that

E
[
d(∇f(xk̂+1) + ∇c(xk̂+1)⊤λ,−NX(xk̂+1))

]
≤ ε,

E∥c(xk̂+1)∥2 ≤ ε

with number of iterations bounded by Õ(ε−5).

Proof. For convenience, let us denote γ̃k = γk,i|c̃i(xk, ζ
2
k)| = γ

k(log(k+1))2 .

• Modification of Lemma C.1.

We apply Lemma A.1 with (cf. Lemma C.1)

Gk(xk) = ∇Qρk
(xk, λk) = ∇f(xk) +

m∑
i=1

∇ci(xk)λk,i + ρk

m∑
i=1

∇ci(xk)ci(xk),

Gk+1(xk+1) = ∇Qρk+1
(xk+1, λk+1) = ∇f(xk+1) +

m∑
i=1

∇ci(xk+1)λk+1,i + ρk+1

m∑
i=1

∇ci(xk+1)ci(xk+1),

G̃k(xk, Bk+1) = ∇̃Qρk
(xk, λk, Bk+1) = ∇̃f(xk, ξ

0
k+1) +

m∑
i=1

c̃i(xk, ζ
1)λk,i + ρk

m∑
i=1

∇̃ci(xk, ζ
1
k+1)c̃i(xk, ζ

2
k+1),

G̃k+1(xk+1, Bk+1) = ∇̃Qρk+1
(xk+1, λk+1, Bk+1)

= ∇̃f(xk+1, ξ
0
k+1) +

m∑
i=1

∇̃ci(xk+1, ζ
1)λk+1,i + ρk+1

m∑
i=1

∇̃ci(xk+1, ζ
1
k+1)c̃i(xk+1, ζ

2
k+1).

where EBk+1
G̃k(xk, Bk+1) = Gk(xk) and EBk+1

G̃k+1(xk+1, Bk+1) = Gk+1(xk+1) as before. We also define

G̃k+1(xk, Bk+1) = ∇̃Qρk+1
(xk, λk+1, Bk+1)

= ∇̃f(xk, ξ
0
k+1) +

m∑
i=1

∇̃ci(xk, ζ
1)λk+1,i + ρk+1

m∑
i=1

∇̃ci(xk, ζ
1
k+1)c̃i(xk, ζ

2
k+1).

As a result, the norm of dual vector λk will affect the bounds in Lemma C.1. First note that by the definition of γk,
we have λk+1,i = λk,i+

γ
k(log(k+1))2|c̃i(xk,ζ2

k)|
c̃i(xk, ζ

2
k) and hence λk+1,i = λ1,i+

∑k
j=1

γ
j(log(j+1))2|c̃i(xj ,ζ2

j)|
c̃i(xj , ζ

2
j)

and hence

∥λk+1∥2 =

m∑
i=1

(λk+1,i)
2

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

≤
m∑
i=1

2(λ1,i)
2 + 2

∣∣∣∣∣∣
k∑

j=1

γ

j(log(j + 1))2|c̃i(xj , ζ2j)
c̃i(xj , ζ

2
j)

∣∣∣∣∣∣
2


≤
m∑
i=1

(2(λ1,i)
2 + 32γ2)

≤ 2∥λ1∥2 + 32mγ2, (D.4)

with |λk+1,i| ≤ |λ1,i| + 4γ, where the second step in the inequality chain is by Young’s inequality and the third
by ∣∣∣∣∣∣

k∑
j=1

γ

j(log(j + 1))2|c̃i(xj , ζ2j)|
c̃i(xj , ζ

2
j)

∣∣∣∣∣∣ ≤
k∑

j=1

∣∣∣∣∣ γ

j(log(j + 1))2|c̃i(xj , ζ2j)|
c̃i(xj , ζ

2
j)

∣∣∣∣∣ ≤ 4γ.

Note that instead of (C.2), we now have

Ek∥G̃k+1(xk+1, Bk+1) − G̃k+1(xk, Bk+1)∥2 ≤ 3Ek∥∇̃f(xk+1, ξ
0) − ∇̃f(xk, ξ

0)∥2

+ 3Ek

∥∥∥∥∥
m∑
i=1

(
∇̃ci(xk+1, ζ

1
k+1) − ∇̃ci(xk, ζ

1
k+1)

)
λk+1,i

∥∥∥∥∥
2

+ 3ρ2k+1Ek

∥∥∥∥∥
m∑
i=1

(
∇̃ci(xk+1, ζ

1)c̃i(xk+1, ζ
2) − ∇̃ci(xk, ζ

1)c̃i(xk, ζ
2)
)∥∥∥∥∥

2

. (D.5)

Note also that, for the second term on the right-hand side of this inequality, we have

Ek

∥∥∥∥∥
m∑
i=1

(
∇̃ci(xk+1, ζ

1
k+1) − ∇̃ci(xk, ζ

1
k+1)

)
λk+1,i

∥∥∥∥∥ ≤
m∑
i=1

Ek

∥∥∥(∇̃ci(xk+1, ζ
1
k+1) − ∇̃ci(xk, ζ

1
k+1)

)
λk+1,i

∥∥∥
≤ (∥λ1∥ + 4)

m∑
i=1

Ek∥∇̃ci(xk+1, ζ
1
k+1) − ∇̃ci(xk, ζ

1
k+1)∥

≤ (∥λ1∥ + 4)mL̃∇c∥xk+1 − xk∥2, (D.6)

where the second inequality used maxi |λk+1,i| ≤ (∥λ1∥ + 4) and the last inequality used (A3) with Jensen’s
inequality.

We reuse the estimation in Lemma C.1 for the third term on the right-hand side of (D.5), see (C.3). For the
second term on the right-hand side of (D.5), we use (D.6) and obtain (cf. (C.4))

Ek∥G̃k+1(xk+1, Bk+1) − G̃k+1(xk, Bk+1)∥2

≤
(

3L̃2
∇f + 3m2L̃2

∇c(∥λ1∥ + 4)2 + 6ρ2k+1m
2
(
C̃2

c L̃
2
∇c + C̃2

∇cL̃
2
c

))
∥xk+1 − xk∥2

≤ 4L̃2ρ2k+1∥xk+1 − xk∥2, (D.7)

where

L̃2 =
3

4
L̃2
∇f +

3

4
m2(∥λ1∥ + 4)2L̃2

∇c +
3

2
m2(C̃2L̃2

∇c + C̃2
∇cL̃

2
c).

Instead of (C.5) we have

Ek∥G̃k+1(xk, Bk+1) − G̃k(xk, Bk+1)∥2

≤ 2Ek

∥∥∥∥∥(ρk+1 − ρk)

m∑
i=1

∇̃ci(xk, ζ
1)c̃i(xk, ζ

2)

∥∥∥∥∥
2

+ 2Ek

∥∥∥∥∥
m∑
i=1

∇c̃i(xk)(λk+1,i − λk,i)

∥∥∥∥∥
2

≤ 2m2C̃2
∇cC̃

2
c |ρk+1 − ρk|2 + 2C̃2

∇cm
2γ̃2

k, (D.8)

where the last estimate is by (A4) and |λk+1,i − λk,i| = γ̃k which is due to the definition of λk+1.

Ahmet Alacaoglu, Stephen J. Wright

Moreover, instead of (C.6), we have

E∥Gk(xk) − G̃k(xk, Bk+1)∥2

≤ 3E
∥∥∥∇f(xk) − ∇̃f(xk, ξ

0)
∥∥∥2 + 3

∥∥∥∥∥
m∑
i=1

(∇̃ci(xk, ζ
2
k+1) −∇ci(xk))λk,i

∥∥∥∥∥
2

+ 3ρ2kE

∥∥∥∥∥
m∑
i=1

∇ci(xk)ci(xk) −
m∑
i=1

∇̃ci(xk, ζ
1)c̃i(xk, ζ

2)

∥∥∥∥∥
2

≤ 3σ2
f + 3σ2

∇cm
2(2∥λ1∥2 + 32mγ2) + 6m2ρ2k

(
C2

cσ
2
∇c + C̃2

∇cσ
2
c

)
, (D.9)

where we used (D.4) and (A3) for the second term on the right-hand side and the estimation in (C.6) for the
third term on the right-hand side.

By tracing the same calculations as Lemma C.1 (i.e., substituting (D.7), (D.8), (D.9) into (A.1), dividing by
72L̃2ρ2k+1ηk and arguing the same way as (C.9) and the following estimations), we have

ηkE∥gk −∇Qρk
(xk, λk)∥2 ≤ 1

72L̃2ρ2kηk−1

E∥gk −∇Qρk
(xk, λk)∥2

− 1

72L̃2ρ2k+1ηk
E∥gk+1 −∇Qρk+1

(xk+1, λk+1)∥2

+
7

18ηk
E∥xk+1 − xk∥2 +

7m2C̃2
∇cC̃

2
c

6L̃2ρ2k+1ηk
|ρk+1 − ρk|2 +

7γ̃2
km

2C̃2
∇c

6L̃2ρ2k+1ηk

+
α2
k+1

8L̃2ρ2k+1ηk

(
σ2
f + σ2

∇cm
2(2∥λ1∥2 + 32mγ2) + 2m2ρ2k

(
C2

cσ
2
∇c + C̃2

∇cσ
2
c

))
.

Note that the additions compared to Lemma C.1 are the constants in the last term and the fifth term (and as
described above L̃ is different in this case). The fifth term is summable thanks to the definition of γ̃k hence the
order of the bound is the same.

• Modification of Lemma 3.5.

In Lemma 3.5, the only change is that in addition to changing the penalty parameter, we also have to take into
account the change in dual variable and also the effect of dual variable size on the Lipschitz constant. The latter
is already reflected in the definition of L̃ earlier in this section. For changing the dual variable, note that

|Qρk
(xk+1, λk+1) −Qρk

(xk+1, λk)| =

∣∣∣∣∣
m∑
i=1

(λk+1,i − λk,i)ci(xk+1)

∣∣∣∣∣ ≤ Cc

m∑
i=1

|λk+1,i − λk|

≤ mCcγ̃k,

where we used triangle inequality, (A4), and the definition of λk+1,i that gives |λk+1,i − λk,i| = γk.

Consequently, the result of Lemma 3.5 becomes

ηk
72

Ed2(∇f(xk+1) + ∇c(xk+1)⊤λk + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1))

≤ E[Yk − Yk+1 + |Qρk
(xk+1, λk+1) −Qρk+1

(xk+1, λk+1)|] + mCcγ̃k + Ek+1, (D.10)

where

Yk+1 = Qρk+1
(xk+1, λk+1) +

1

72L̃2ρ2k+1ηk
∥gk+1 −∇Qρk+1

(xk+1, λk+1)∥2

and

Ek+1 =
7m2C̃2

∇cC̃
2
c

6L̃2ρ2k+1ηk
|ρk+1 − ρk|2 +

7γ2
km

2C̃2
∇c

6L̃2ρ2k+1ηk

Complexity of Single Loop Algorithms for Nonlinear Programming with Stochasticity

+
α2
k+1

8L̃2ρ2k+1ηk

(
σ2
f + σ2

∇cm
2(2∥λ1∥2 + 32mγ2) + 2m2ρ2k

(
C2

cσ
2
∇c + C̃2

∇cσ
2
c

))
.

An important remark here is that the order of the dominant term in Ek is still O
(
1
k

)
as before.

• Modification of Lemma C.3.

In this case, the dual variable update will change two estimations. First is (C.16) where we will now have

|Qρk
(xk+1, λk+1) −Qρk+1

(xk+1, λk+1)|

≤ 3|ρk − ρk+1|
ρ2kδ

(
∥∇f(xk+1)∥2 + C2

c ∥λk∥2

+ d2(∇f(xk+1) + ∇c(xk+1)⊤λk + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1)
)
, (D.11)

where we note that ∥λk∥2 is finite as per (D.4) and hence do not change the order of the dominant terms in this
bound.

The second is (C.18) where now we will have, in view of (D.10), that

ηk
72

Ed2(∇f(xk+1) + ∇c(xk+1)⊤λk + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1))

≤ E [Yk − Yk+1] + Ek+1 + |ρk − ρk+1|C2
c + mCcγ̃k, (D.12)

where the additional error term γ̃k is summable by definition and the rest of the proof of Lemma C.3 would be
the same to get

∑K
k=1 |Qρk

(xk+1, λk+1) −Qρk+1
(xk+1, λk+1)| = O(1).

By combining these modified results as in Theorem 3.1 we deduce the result.

D.2 Deterministic functional constraints

In this section, we consider the case when the constraints are not given in the expectation form. In this case, we
will set the parameters accordingly to get the complexity Õ(ε−4).

Theorem 4.2. For Algorithm 2, set

ηk =
1

9L̃ρ(k + 1)1/2
, ρk = ρk1/4,

αk+1 =
72

81(k + 1)1/2
,

for some ρ > 1 and L̃2 = 4L̃2
∇f + 4m2(C̃2

c L̃
2
∇c + C̃2

∇cL̃
2
c). Let the assumptions in (A2), (A3), (A4), (A5) hold

with a deterministic c(x). We have that there exists λ such that

E
[
d(∇f(xk̂+1) + ∇c(xk̂+1)⊤λ,−NX(xk̂+1))

]
≤ ε,

E∥c(xk̂+1)∥ ≤ ε,

with number of iterations bounded by Õ(ε−4).

Proof. Since the orders of the parameter choices differ in this case, we will show the changes in the analysis of
Section 3.

First, in Lemma C.1, the main change will be that we use full gradients for the constraints. In particular, we
have

Gk(x) = ∇Qρk
(x) = ∇f(x) + ρk

m∑
i=1

ci(x)∇ci(x),

G̃k(x, ξ) = ∇̃Qρk
(x, ξ) = ∇̃f(x, ξ) + ρk

m∑
i=1

ci(x)∇ci(x).

Ahmet Alacaoglu, Stephen J. Wright

As a result, the main change will be in the variance term, i.e.:

E∥Gk(xk) − G̃k(xk, ξk+1)∥2 = E∥∇f(x) − ∇̃f(x, ξ)∥2 ≤ σ2
f .

Since in this case, we have 72L̃2ρ2k+1ηk = 72L̃ρ
9 , it follows that (C.9) holds by αk+1 ≤ 1 due to 1−αk+1+α2

k+1 ≤ 1

(note that this is sufficient as per (C.10) due to the term 72L̃2ρ2k+1ηk being independent of k in this case). This
gives, instead of the result of Lemma C.1, that

ηkE∥gk −∇Qρk
(xk)∥2 ≤ 1

72L̃2ρ2
E∥gk −∇Qρk

(xk)∥2 − 1

72L̃2ρ2
E∥gk+1 −∇Qρk+1

(xk+1)∥2

+
7

18ηk
∥xk+1 − xk∥2 +

7m2C̃2
∇cC̃

2
c

12L̃2ρ2
|ρk+1 − ρk|2 +

α2
k+1σ

2
f

12L̃2ρ2
. (D.13)

The numerical estimations in Lemma 3.5 are true with the new parameters since we still have Lρk
≤ L̃ρk

≤
L̃ρk+1

≤ L̃ρk+1(k + 1)1/4 = 1
9ηk

and hence
Lρk

2 + 7
18ηk

− 1
2ηk

≤ − 1
18ηk

. Moreover, for the estimations at the end

of the proof of Lemma 3.5, we still have that Lρk
≤ η−1

k and as a result we have (cf. the result of Lemma 3.5)

ηk
72

Ed2(∇f(xk+1) + ρk∇c(xk+1)⊤c(xk+1),−NX(xk+1)) ≤ E[Yk − Yk+1 + |Qρk
(xk+1) −Qρk+1

(xk+1)|] + Ek+1,

where

Yk+1 = Qρk+1
(xk+1) +

1

72L̃2ρ2
∥gk+1 −∇Qρk+1

(xk+1)∥2

and

Ek+1 =
7m2C̃2

∇cC̃
2
c

12L̃2ρ2
|ρk+1 − ρk|2 +

α2
k+1σ

2
f

12L̃2ρ2
.

Note that as Remark C.2, we have that
∑K

k=1 Ek+1 = O(log(K + 1)) by the definitions of αk+1 and ρk since
|ρk − ρk+1| ≤ ρ

4k3/4 and αk = 72
81(k+1)1/2

.

For Lemma C.3, we use bk = 72·18L̃
δ(k+1)3/4

to have

bk · ηk
72

=
2

ρδ(k + 1)5/4
≥ 1

2ρδ(k)5/4
≥ 2|ρk − ρk+1|

ρ2kδ
,

by also using |ρk − ρk+1| ≤ ρ
4k3/4 and ρk = ρk1/4. We note also that, in the same way as Lemma C.3, we have∣∣∣ 1

(k+1)3/4
− 1

k3/4

∣∣∣ ≤ 1
(k+1)3/4k

. With these estimations and by repeating the same arguments as Lemma C.3, we

get

K∑
k=1

E|Qρk
(xk+1) −Qρk+1

(xk+1)|

≤ bQρ1
(x1) −

bQ

(K + 1)3/4
+

b

72L̃2ρ2
∥g1 −∇Qρ1

(x1)∥2

+

K∑
k=1

b(Bf + ρC2
c)

k(k + 1)1/2
+

K∑
k=1

bEk+1

(k + 1)3/4
+

K∑
k=1

bρC2
c

k3/2
+

K∑
k=1

2C2
∇f

4ρδk5/4
,

where bk = 72·18L̃
δ(k+1)3/4

, b = 72·18L̃
δ . As Ek = O

(
1
k

)
, the right-hand side on this inequality is finite. We can

then combine these inequalities the same way as Theorem 3.1 and use the definitions of ηk = 1
9L̃ρ(k+1)1/2

and

ρk = ρk1/4 to get the result.

	INTRODUCTION
	Related Works

	LINEAR CONSTRAINTS: PROBLEM (I)
	Algorithm and the Main Result
	Analysis

	STOCHASTIC CONSTRAINTS: PROBLEM (III)
	Algorithm and the Main Result
	Analysis

	EXTENSIONS
	Dual Variable Updates
	Deterministic Functional Constraints

	CONCLUSIONS & OPEN QUESTIONS
	PRELIMINARIES
	LINEAR CONSTRAINTS: PROBLEM (I)
	One-step recursion on augmented Lagrangian
	One-step recursion on feasibility and iterate difference
	Main result
	Auxiliary results used in the analysis

	STOCHASTIC CONSTRAINTS: PROBLEM (III)
	Variance control
	One iteration inequality
	Controlling the change of penalty parameters
	Main theorem

	EXTENSIONS
	Dual variable updates
	Deterministic functional constraints

